Une approche logistique au transport aérien visant la réduction de la consommation de fuel et donc les émissions de CO₂

Thomas Chaboud^{1,*}, Jean-Loup Farges¹
*thomas chaboud@onera.fr

Ecole Nationale d'Ingenieurs de Tarbes - salle du Conseil - 19 Janvier 2024 -

Introduction Objectif

Améliorations des aéronefs (aérodynamique, motorisation) et de l'ATM, déjà bien étudiées Gisement d'économie pratiquement ignoré au niveau du système :

- Affectation et utilisation des véhicules, i.e. la « logistique »
- Pour effectuer leur tâche principale, le transport de personnes et de fret

Petite part de cette optimisation réalisée par les compagnies aériennes :

- Privilégient des logiques internes (flottes, formation et affectation équipages, fréquences...)
- Intérêt pour la réaliser gloablement avec un objectif de faible impact environnemental

Point de vue socio-économique :

- Service du STA : possibilité offerte à des passagers de se rendre où ils le souhaitent
- Quasi-monopole de l'avion sur des liaisons → dégradation de qualité du service (vols plus longs ou fréquences moindres) relativisable
- Implique des efforts importants de réorganisation de l'industrie

Objectif:

■ Evaluer les gains envisageables

Introduction *Méthodologie*

Axes principaux d'amélioration logistique :

- taux de remplissage de chaque aéronef
- type d'appareil utilisé pour chaque mission
- réglages de ce type d'appareil pour cette mission :
 - vitesse et altitude de croisière
 - indice de coût

Approche:

- Modélisation du problème
- Optimisation sur le modèle

Modélisation du problème logistique *Approches*

- Nombres d'avions par intervalle de temps
- Dates de décollage pour chaque vol

Modélisation du problème logistique

Données communes aux deux approches

Temps

- *N* périodes de durée Δ : $[0, \Delta], [\Delta, 2\Delta], \dots [(N-1)\Delta, N\Delta]$
- Rythmes sociaux → circulaire

Demande

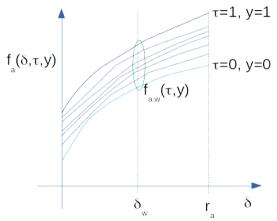
- Aéroports : \mathcal{N} ; Couples origine-destination : $\mathcal{W} \subset \mathcal{N} \times \mathcal{N}$, $w \in \mathcal{W}$
 - origine : $o_W \in \mathcal{N}$; destination : $d_W \in \mathcal{N}$; distance origine \rightarrow destination : δ_W
 - Nombre de passagers désirant se rendre de o_w à d_w durant la période $[t, t + \Delta]$: $D_{w,t}$

Types d'aéronefs : A, $a \in A$

- lacktriangle Nombre de passagers pouvant être transportés : c_a
- Distance pouvant être parcourue sans escale : r_a
- lacksquare Fonctions, pour une distance δ , un taux de remplissage au et un indice de coût y:
 - Consommation : $f_a(\delta, \tau, y)$ Temps de vol : $T_a(\delta, \tau, y)$

Capacité aéroportuaire

■ Nb. mouvements pouvant être effectués sur l'aéroport n pendant la période $[t, t + \Delta]$: $e_{n,t}$



Pré-calcul de la consommation pour le couple origine destination w et le type d'avion a

Modèle considérant le nombre d'avions *Variables*

Pour chaque couple origine-destination w et chaque période $[t, t + \Delta]$

- Pour chaque type d'appareil a
 - Nombre : $x_{w,t,a}$
 - Réglage de l'indice de coût : $y_{w,t,a} \in [0,1]$
- \blacksquare Taux de remplissage des aéronefs : $\tau_{w,t}$

Modèle considérant le nombre d'avions Contraintes

- Limite d'autonomie : $\forall w \in \mathcal{W}, \forall t, \forall a \in \mathcal{A} \quad x_{w,t,a} = 0 \text{ si } \delta_w > r_a$
 - types d'avions pouvant desservir $w: A_w \subset A$
- Satisfaction de la demande $\forall w \in \mathcal{W}, \forall t \quad \sum_{a \in \mathcal{A}} c_a x_{w,t,a} \geq D_{w,t}$
- Définition taux de remplissage des appareils : $\forall w \in \mathcal{W}, \forall t \quad \tau_{w,t} \sum_{a \in \mathcal{A}} c_a x_{w,t,a} = D_{w,t}$
- Conservation des appareils $\forall n \in \mathcal{N}$, $\forall t, \forall a \in \mathcal{A}$ $\sum_{w \in \mathcal{W} \mid d_w = n} x_{w,t,a} = \sum_{w \in \mathcal{W} \mid o_w = n} x_{w,t,a}$
- Respect de la capacité aéroportuaire : $\forall n \in \mathcal{N}$, $\forall t$ $\sum_{a \in \mathcal{A}}$ $\sum_{w \in \mathcal{W} \mid o_w = n \lor d_w = n} x_{w,t,a} \le e_{n,t}$
 - $\implies \forall w \in \mathcal{W}, \forall t, \forall a \in \mathcal{A} \quad x_{w,t,a} \in \{0, \dots \min\{\lfloor \frac{e_{o_w,t}}{2} \rfloor, \lfloor \frac{e_{d_w,t}}{2} \rfloor\}\}$
 - **b** borne supérieure pour $x_{w,t,a}$

Modèle considérant le nombre d'avions *Critère*

Minimiser pour tous les aéronefs une pondération α entre :

- consommation de fuel
- temps de vol

$$\min \sum_{w \in \mathcal{W}} \sum_{a \in \mathcal{A}_w} \sum_t x_{w,t,a} (f_a(\delta_w, \tau_{w,t}, y_{w,t,a}) + \alpha T_a(\delta_w, \tau_{w,t}, y_{w,t,a}))$$

Minimiser une pondération β entre :

- la consommation de fuel pour tous les appareils
- le temps de vol de tous les passagers

$$\min \sum_{w \in \mathcal{W}} \sum_{a \in A_{w}} \sum_{t} x_{w,t,a} (f_a(\delta_w, \tau_{w,t}, y_{w,t,a}) + \beta c_a \tau_{w,t} T_a(\delta_w, \tau_{w,t}, y_{w,t,a}))$$

Problème

- Pouvant être décomposé en problèmes d'optimisation par période indépendants
- Faisant sens que pour △ relativement élevé > 1 jour

Modèle considérant les dates de décollage

Nombre de vols desservant le couple origine-destination $w \in \mathcal{W}$: n_w Pour chaque vol $i \in \{1, \dots n_w\}$:

- Date de décollage : $t_{i,w} \in [0, N\Delta[$
- Durée : $T_{i,w}$
- Type d'appareil utilisé : $a_{i,w}$
- Indice de coût utilisé : $y_{i,w} \in [0, 1]$

Pour chaque couple origine-destination $w \in \mathcal{W}$

lacktriangle Taux de remplissage commun à tous les vols : au_w

Modèle considérant les dates de décollage Contraintes

- Autonomie des appareils utilisés : $\forall w \in \mathcal{W}, \forall i \in \{1, \dots n_w\}$ $a_{i,w} \in \mathcal{A}_w$
- Satisfaction de la demande : $\forall w \in \mathcal{W}$ $\sum_{i=1}^{n_w} c_{a_{i,w}} \geq \sum_t D_{w,t}$
- Définition du taux de remplissage des appareils : $\forall w \in \mathcal{W}$ $\tau_w \sum_{i=1}^{n_w} c_{a_{i,w}} = \sum_t D_{w,t}$
- Conservation des appareils : $\forall n \in \mathcal{N}, \forall a \in \mathcal{A}$ $\sum_{w \in \mathcal{W}|d_w = n} \sum_{i=1}^{n_w} \mathbf{I}_{\{i|a_{i,w} = a\}} = \sum_{w \in \mathcal{W}|o_w = n} \sum_{i=1}^{n_w} \mathbf{I}_{\{i|a_{i,w} = a\}}$ \mathbf{I} : fonction indicatrice de l'ensemble en indice
- lacksquare Durée de vol : $T_{i,w} = T_{a_i}(\delta_w, au_w, y_{i,w})$
- Respect de la capacité aéroportuaire : $\forall n \in \mathcal{N}, \forall t \quad \sum_{w \in \mathcal{W} \mid d_w = n} \sum_{i=1}^{n_w} \mathbf{I}_{\{i \mid t_{i,w} + T_{i,w} \equiv z \pmod{N\Delta}, z \in [t,t+\Delta]\}} + \sum_{w \in \mathcal{W} \mid o_w = n} \sum_{i=1}^{n_w} \mathbf{I}_{\{i \mid t_{i,w} \in [t,t+\Delta]\}} \leq e_{n,t}$

Modèle considérant les dates de décollage *Critère*

Minimisation d'une pondération β entre :

- la somme de la consommation de carburant pour tous les vols de tous les couples origine destination
- le temps de service de tous les passagers
 - temps de vol
 - temps d'attente moyen égal au demi intervalle moyen entre avions

$$\min \sum_{w \in \mathcal{W}} \sum_{i=1}^{n_w} f_{a_i}(\delta_w, \tau_w, y_{i,w}) + \beta c_{a_i} \tau_w \left[\frac{1}{2} \frac{N\Delta}{n_w} + T_{i,w} \right]$$

Problème:

- modèle est relativement compliqué
 - nombre de variables dependant de la valeur de certaines variables
 - fait appel à des fonctions indicatrices d'ensemble qui demandent en pratique des tests d'appartenance à ces ensembles
- traduit une réelle interaction entre les différents intervalles de temps

Optimisation pour le modèle considérant le nombre d'avions Décomposition à l'instant t

Contraintes:
$$\forall w \in \mathcal{W}, \forall a \in \mathcal{A} \quad x_{w,t,a} = 0 \text{ si } \delta_w > r_a$$

$$\forall w \in \mathcal{W} \quad \sum_{a \in \mathcal{A}} c_a x_{w,t,a} \geq D_{w,t}$$

$$\forall w \in \mathcal{W} \quad \tau_{w,t} \sum_{a \in \mathcal{A}} c_a x_{w,t,a} = D_{w,t}$$

$$\forall n \in \mathcal{N}, \forall a \in \mathcal{A} \quad \sum_{w \in \mathcal{W} \mid d_w = n} x_{w,t,a} = \sum_{w \in \mathcal{W} \mid o_w = n} x_{w,t,a}$$

$$\forall n \in \mathcal{N} \quad \sum_{a \in \mathcal{A}} \quad \sum_{w \in \mathcal{W} \mid o_w = n \lor d_w = n} x_{w,t,a} \leq e_{n,t}$$

$$\forall w \in \mathcal{W}, \forall a \in \mathcal{A} \quad y_{w,t,a} \in [0,1]$$

Critère: $\min_{\mathbf{x}_t, \mathbf{y}_t} \sum_{w \in \mathcal{W}} \sum_{a \in \mathcal{A}_w} x_{w,t,a} (f_a(\delta_w, \tau_{w,t}, y_{w,t,a}) + \alpha T_a(\delta_w, \tau_{w,t}, y_{w,t,a}))$ $\mathbf{x}_t, \mathbf{y}_t$ concatenation des $X_{w,t,a}$, $Y_{w,t,a}$

Optimisation indépendante des indices de coût

Les contraintes sauf la dernière concernent uniquement les variables \mathbf{x}_t et $\tau_{w,t}$ et $\tau_{w,t}$ fixées \to optimisations des variables \mathbf{y}_t indépendantes :

$$\min_{\mathsf{x}_t} \sum_{w \in \mathcal{W}} \sum_{a \in \mathcal{A}_w} \min_{y_{w,t,a}} x_{w,t,a} (f_a(\delta_w, \tau_{w,t}, y_{w,t,a}) + \alpha \mathcal{T}_a(\delta_w, \tau_{w,t}, y_{w,t,a}))$$

Pour $x_{w,t,a}^*$, $\tau_{w,t}^*$ admissibles $y_{w,t,a}$ donné par :

$$\min_{y_{w,t,a} \in [0,1]} x_{w,t,a}^*(f_a(\delta_w, \tau_{w,t}^*, y_{w,t,a}) + \alpha T_a(\delta_w, \tau_{w,t}^*, y_{w,t,a}))$$

Simple problème monovariable :

- Exploration systèmatique de l'intervalle, dichtomie, méthode du nombre d'or...
- $\mathbf{x}_{w,t,a}^* = 0 \implies \forall y_{w,t,a} \in [0,1] \text{ critère} = 0$

Recherche de solutions admissibles pour les nombres d'avions - Principe général

- Chercher des solutions admissibles
- Pour chaque solution admissible C = 0, itérer sur w:
 - si $\exists a : x_{w,t,a}^* \neq 0$:

- \blacksquare calcul des $y_{w,t,a}^*$ correspondants par optimisation indépendante
- ajout à C du critère relatif à w
- lacktriangle Si C < meilleur coût jusqu'à présent, meilleur coût jusqu'à présent $\leftarrow C$

Recherche de solutions admissibles :

- programmation par contraintes
- programmation en nombres entiers
- méthodes arborescentes
- méthodes heuristiques → méthode Tabou

Recherche de solutions admissibles pour les nombres d'avions - Méthode Tabou - Relation d'ordre entre solutions

Basée sur l'association d'une fonction de pénalisation à chaque contrainte :

$$p_{1}(\mathbf{x}_{t}) = \sum_{w \in \mathcal{W}} \sum_{a \in \mathcal{A}: \delta_{w} > r_{a}} x_{w,t,a}$$

$$p_{2}(\mathbf{x}_{t}) = \sum_{w \in \mathcal{W}} \max\{D_{w,t} - \sum_{a \in \mathcal{A}} c_{a}x_{w,t,a}, 0\}$$

$$p_{3}(\mathbf{x}_{t}) = \sum_{n \in \mathcal{N}} \sum_{a \in \mathcal{A}} |\sum_{w \in \mathcal{W}|d_{w} = n} x_{w,t,a} - \sum_{w \in \mathcal{W}|o_{w} = n} x_{w,t,a}|$$

$$p_{4}(\mathbf{x}_{t}) = \sum_{n \in \mathcal{N}} \max\{\sum_{a \in \mathcal{A}} \sum_{w \in \mathcal{W}|o_{w} = n \lor d_{w} = n} x_{w,t,a} - e_{n,t}, 0\}$$

Comparaison de \mathbf{x}_t avec \mathbf{x}_t' :

- *i* le plus petit indice / $p_i(\mathbf{x}_t) \neq p_i(\mathbf{x}_t')$
- si $p_i(\mathbf{x}_t) < p_i(\mathbf{x}_t')$ \mathbf{x}_t meilleure que \mathbf{x}_t' , sinon \mathbf{x}_t' meilleure que \mathbf{x}_t

Ordre des fonctions de pénalisation arbitraire mais influe la recherche de solutions

Recherche de solutions admissibles pour les nombres d'avions - Méthode Tabou - Voisinage, type, initialisation

Voisin de la solution courante :

- \blacksquare solution dont un seul des $x_{w,t,a}$ est différent de celui de la solution courante
- valeur absolue de la différence égale à un
- \blacksquare respect du domaine de variation de $x_{w,t,a}$

Au plus $2|\mathcal{W}||\mathcal{A}|$ voisins

Types de tabou :

- sur les changements, pour un certain nombre d'itérations il est interdit de faire le changement inverse d'un changement déjà effectué et
- sur les solutions, pour un certain nombre d'itérations il est interdit d'avoir comme solution courante une solution déjà considérée.
- ⇒ des solutions du voisinage pas considérées pour le choix de la solution courante suivante La solution initiale :
 - tous $x_{w,t,a} = 0$ à l'intérieur du domaine de variation
 - pratique courante

Traitement d'un nombre restreint de couples origine-destination

Ordre de grandeur des quantitées dimentionnant le problème élevé :

- $|\mathcal{N}| \approx 4\,000$ à niveau mondial et 250 à niveau Européen
- $|\mathcal{W}| \approx 10~000$ pour l'Europe
- → réaliser l'optimisation sur une sous-zone du monde :
 - ne considérer qu'une portion de la capacité aéroportuaire réelle dans le modèle de sous-zone

Présentation de l'exemple - Une journée typique entre Toulouse Blagnac (LFBO) et Paris Orly (LFPO)

Créneau horaire	LFBO o LFPO	LFPO → LFBO	
0	-	-	
1	-	-	
2	-	-	
3	-	-	
4	_	_	
5	A F 6 1 0 1 A F 6 1 0 2	_	
6	AF6101, AF6103	A F (100	
7	AF6105, AF6107	AF6102	
8	-	AF6104	
9	AF6111	AF6108	
10	AF6113	AF6112	
11	AF6117	_	
12	AF6121	AF6116	
13			
14	AF6125	AF6122	
15	-	AF6124, EC4847	
16	AF6131	AF6126, AF6128	
17	AF6133, EC4848	_	
18	AF6135, AF6137	AF6132, AF6134	
19	_	AF6136, EC4851	
20	AF6141, AF6143, EC4852	AF6138, AF6140	
21	AF6145	AF6142, AF6144	
22	- 1	_	
23	-	-	

Présentation de l'exemple - Trois types d'avion

Modèles:

$$f_a(\delta, \tau) = f_{a,0} + f_{a,\delta}\delta + f_{a,\tau}\tau$$
$$T_a(\delta, \tau) = T_{a,0} + T_{a,\delta}\delta + T_{a,\tau}\tau$$

Paramètres:

T	A 0 1 0	A 0 1 0	A 200	
Type d'avion	A318	A319	A320	
c_a (passagers)	132	156	176	
r_a (m)	5750000	6940000	6150000	
$f_{a,0}$ (kg)	121.7	130.1	139.9	
$f_{a,\delta}$ (kg/m)	0.0030	0.0044	0.0036	
$f_{a, au}$ (kg)	0.2	0.2	0.2	
$T_{a,0}$ (s)	1200	1200	1200	
$T_{a,\delta}$ (s/m)	0.0038	0.0038	0.0038	
$T_{a,\tau}$ (s)	0.2	0.2	0.2	
i _a	0.04	0.04	0.04	

Présentation de l'exemple - Demande et capacité

Demande:

 $\delta_w = 584940$ passagers dans chaque sens

Capacité:

- Aéroports fermés, donc de capacité nulle, de 0h à 5h59 et de 23h à 23h59.
- Pendant leur heures d'ouvertures capacités :
 - Constantes
 - LFPO: 70 avions par heure
 - LFBO: 30 avions par heure
- Partie des capacités dédidées au trafic de l'exemple :
 - LFPO : 3 avions par heure ; 4,3% de la capacité totale
 - LFBO : 4 avions par heure ; 13,3% de la capacité totale

Choix du nombre et de la durée des périodes

$$N=24$$
 et $\Delta=3600 \rightarrow \text{problèmes d'admissiblit\'e}$ de la situation actuelle :

- Equilibre entre avions entrants et sortants rarement assuré
- Dépassement de la capacité allouée

$$N=2$$
 et $\Delta=3600*12 \rightarrow$ moindre problème d'admissibilité de la situation actuelle :

- Pas d'équilibre
- Capacité allouée respectée

$$N=1$$
 et $\Delta=3600*24 \rightarrow \text{aucun problème d'admissibilité}$:

- Il y a 18 vols qui atterisent à LFBO et 18 vols qui en décollent.
- 36 mouvements à LFPO pour une capacité de 51

Illustre l'analyse qualitative du modèle

Contrainte de conservation des appareils : correspond à une réalité pour une longueur d'intervalles de temps > journée

Performance de la solution actuelle

Difficile de se faire une idée précise de la solution actuelle :

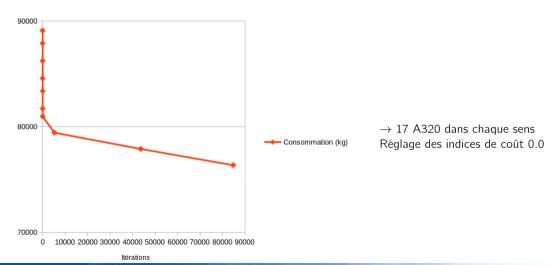
- appareils utilisés peuvent varier d'un jour à l'autre
- réglage des indices de coût peut varier d'un vol à l'autre
- → hypothèses
- 6 A318, 6 A319 et 6 A320 dans chaque sens :
 - demande pas satisfaite
- 9 A319 et 9 A320 dans chaque sens :
 - demande satisfaite
 - consommation de fuel entre 89 099 kg et 92 662 kg suivant réglage des indices de coût

Expérimentations numériques sur un exemple jouet Optimisation de la consommation de carburant

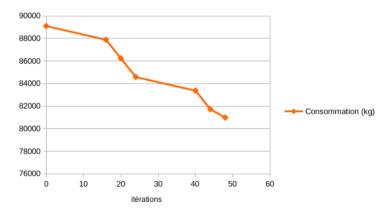
Méthode tabou pour 100 000 itérations Longueur de liste taboue de 100 000 Variations :

- le type de tabou, soit état soit mouvement;
- l'ordre dans lequel sont considérés les critères, soit $p_1 > p_2 > p_3 > p_4$ soit $p_1 > p_4 > p_3 > p_2$;
- la solution initiale, soit la solution actuelle soit une solution non admissible consistant à fixer tous les nombres d'avions à 0.

Optimisation de la consommation - Tabou état ; initialisation solution actuelle ; ordre critères 1 » 2 » 3 » 4

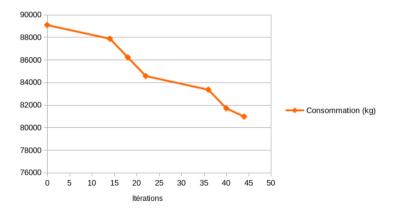


Optimisation de la consommation - Tabou état ; initialisation solution actuelle ; ordre critères 1 » 4 » 3 » 2



ightarrow12 A318 et 8 A320 dans chaque sens Plus de voisins admissibles après un certain nombre d'itérations

 $Optimisation \ de \ la \ consommation \ - \ Tabou \ mouvement \ ; \ initialisation \ solution \ actuelle \ ; \ \forall \ ordre \ critères$



ightarrow 12 A318 et 8 A320 dans chaque sens Plus de voisins admissibles après un certain nombre d'itérations

Optimisation de la consommation de carburant - Synthèse des résultats d'optimisation

Il vaut mieux:

- Initialiser l'algorithme par la solution non admissible plutôt que de la solution actuelle
- Ordonner les critères d'écart $p_1 \gg p_2 \gg p_3 \gg p_4$ plutôt que $p_1 \gg p_4 \gg p_3 \gg p_2$
- Utiliser un tabou sur l'état plutôt que sur le mouvement

Conclusion à pondérer par la taille réduite de l'exemple

Problèmes d'absence de voisins ightarrow valeur plus faible pour la longueur de la liste taboue

Tabou	Initialisation	Ordre critères	Consommation (kg)	Itérations	Plus de voisins
État	0	1234	76 360	34	non
État	0	1432	76 360	34	oui
État	actuelle	1234	76 360	84 854	non
État	actuelle	1432	80 975	48	oui
Mouvement	0	1234	76 360	34	oui
Mouvement	0	1432	76 360	34	oui
Mouvement	actuelle	1234	80 975	44	oui
Mouvement	actuelle	1432	80 975	44	oui

Conclusion

Contribution:

- Développement de deux modèles : nombre d'avions et dates de décollage
- Développement d'une méthode d'optimisation pour le premier modèle
- Démonstration de l'optimisation pour le premier modèle sur un exemple jouet

Perspectives:

- Utiliser la Base de données de vols déposés de l'Official Aviation Guide pour construire des exemples réalistes et pertinents
- Définir des fonctions réalistes pour l'impact environnemental et temps de vol à partir d'un grand nombre de simulations individuelles
 - Tables ou réseaux de neurones
- Développer une méthode d'optimisation pour le modèle sur les dates de décollage
- Tirer des conclusions sur la possible réduction de la consommation de ressources et de l'impact climatique du trafic aérien

