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Abstract. A family of unit resolution-based paraconsistent infer-
ence relations̀ ∗

Σ for propositional logic in the clausal case is in-
troduced. ParameterΣ is any consistent set of clauses representing
the beliefs which are intended to be exploited through full deduc-
tion, i.e., every classical consequence ofΣ must be kept w.r.t.̀ ∗Σ,
whatever the belief baseB. Contrariwise to many paraconsistent in-
ference relations, any relatioǹ∗Σ can be decided in time linear in
|B| wheneverΣ is of bounded size. We show that`∗Σ exhibits sev-
eral valuable properties, including strong paraconsistency. We also
show how a unit propagation algorithm can be simply turned into a
decision procedure for̀∗Σ. We finally show how thè ∗

Σ family re-
lates to several inference relations proposed so far as approximations
of classical entailment.

1 INTRODUCTION

A fundamental limitation of classical inference in the objective of
modeling common-sense reasoning is that it trivializes in presence
of inconsistency. In order to address such an issue, many approaches
to reasoning from contradictory information have been proposed, in
various propositional settings; among them are belief revision, belief
merging, reasoning from preferred consistent subsets, argumentative
logics, paraconsistent logics, etc. In this family, paraconsistent log-
ics are the most basic techniques, in the sense they enable non trivial
reasoning from a single contradictory formula, likea ∧ ¬a ∧ b. The
fact a belief baseB is encoded as a single formula coheres with the
cognitively plausible assumption that agents typically do not know
the reasons of their pieces of beliefs (this assumption is also made
in the influential AGM framework for belief revision [1]). Contrast-
ingly, other approaches to inconsistency tolerant reasoning typically
deal with several consistent formulas which are jointly inconsistent
(e.g., in belief revision, two formulas are considered: the original be-
lief base and the revision formula), hence they are not suited to the
case the available data consists of a single inconsistent formula.

Many paraconsistent inference relations have been defined so far.
However, most of them are intractable, their complexity lying at the
first or the second level of the polynomial hierarchy [3, 4]. This ren-
ders them hard to be used when inconsistent belief bases of large
size must be dealt with. Furthermore, while tractability can be ob-
tained for some paraconsistent inference relations (e.g.,|=3 defined
in a three-valued logical framework when CNF formulas are consid-
ered [10]), we are not aware of a propositional framework in which
strong paraconsistent reasoning can be efficiently achieved from a
limited amount of beliefsΣ (exploited through full deduction), and
an unlimited amount of other beliefsB. Especially, standard AGM
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belief revision operators∗ do not make the job here for three reasons:
(1) B ∗ Σ is typically underspecified whenB is inconsistent, (2) in-
ference from a revised baseB ∗ Σ is typically intractable [11, 16],
and (3)Σ does not represent more entrenched beliefs thanB (espe-
cially, Σ is not intended to represent knowledge), but pieces of belief
we are interested in the whole set of classical consequences.

To fill this gap, we introduce a family of unit resolution-based
paraconsistent inference relations`∗Σ for propositional logic in the
clausal case. ParameterΣ is any consistent set of clauses represent-
ing the beliefs intended to be exploited through full deduction, i.e.,
every classical consequence ofΣ must be kept w.r.t.̀ ∗Σ, whatever
the belief baseB. Contrariwise to many paraconsistent inference re-
lations, any relatioǹ ∗

Σ can be decided in time linear in|B| when-
everΣ is of bounded size. We show that`∗Σ exhibits several valuable
properties. In particular, it satisfies strong paraconsistency:`∗Σ never
trivializes. We also show how a unit propagation algorithm can be
simply turned into a decision procedure for`∗Σ. We finally show how
the`∗Σ family relates to several inference relations proposed so far
as approximations of classical entailment.

The rest of this paper is organized as follows. After some formal
preliminaries (Section 2), our family of relations̀∗Σ is introduced
in Section 3. We also present their main properties and show how to
mechanize them, through an adaptation of a unit propagator. Related
work are discussed in Section 4, just before the concluding section
(Section 5). Proofs are omitted due to space limitations.

2 FORMAL PRELIMINARIES

PROPPS denotes the propositional language built up from a finite
setPS of symbols, the connectives¬,∨,∧, and a propositional con-
stant� (denoting the empty clause and also viewed as falsity) in the
usual way.� is the irreducible contradiction ofPROPPS . A literal
l is a propositional symbolx from PS (positive literal) or a negated
one¬x (negative literal). Ifl = x is a positive literal, then its com-
plementary literal̄l is ¬x; if l = ¬x is a negative literal, then its
complementary literal̄l is x. A clauseγ is a finite disjunction of lit-
erals, also viewed as the set of its literals when it is convenient. It
is Horn when it contains at most one positive literal. A unit clause
contains at most one literal, while the empty clause� contains no
literal at all. A CNF formulaΣ is a (finite) conjunction of clauses,
also viewed as a set of clauses when it is convenient. In the follow-
ing, Σ, B andQ denote sets of clauses.V ar(Σ) denotes the set of
propositional variables occurring inΣ. The size of a formulaΣ from
PROPPS , noted|Σ|, is the number of occurrences of symbols and
connectives used to write it.

Formulas are interpreted in the classical truth-functional way.
Classical interpretationsI overPS are defined in the standard way,



as total functions fromPS to {0, 1}. As usual,|= denotes classical
entailment and≡ denotes classical equivalence.

3 THE `∗Σ FAMILY

3.1 Definitions

There are mainly two ways of specifying a paraconsistent inference
relation: (1) by enlarging the set of classical interpretations (as e.g. in
multi-valued logics), and (2) by restricting the set of classical proofs.
In the following, we adhere to the second approach and define infer-
ence relations in a proof-theoretic way.

Let us first give a brief refresher about resolution. Given two
clausesγ1 andγ2 from PROPPS s.t. γ1 contains literall andγ2

the complementary literal̄l, the resolvent ofγ1 andγ2 over the pair
of complementary literalsl, l̄ is the clauseγ containing every literal
of γ1 exceptl and every literal ofγ2 exceptl̄.2 γ is obtained using
the resolution rule over the pair of complementary literalsl, l̄ from
its parent clausesγ1 andγ2. It is obtained using the unit resolution
rule (ur. for short) if at least one of its parents is a unit clause. Note
that it is not necessary to specify the pair of literals resolved upon
since they are necessarily unique in that case.

A (unit) refutation tree from a CNF formulaΣ is a finite binary tree
whose root is labeled by�, every leaf node is labeled by a clause
from γ and every internal node is labeled by a (unit) resolvent of
the clauses labeling its two sons. While (unrestricted) resolution is
refutationally complete, meaning that there exists a refutation tree
from every inconsistent set of clausesΣ (and no such tree can be
generated from consistent set of clauses), it is not the case of unit
resolution. For instance, the set of clausesΣ = {(a ∨ b), (¬a ∨
b), (a ∨ ¬b), (¬a ∨ ¬b)} is inconsistent but inconsistency cannot be
revealed using unit resolution (simply becauseΣ contains no unit
clause). Nevertheless, unit resolution is refutationally complete for
significant fragments of clausal propositional logic, like the Horn one
and proper supersets of it (like the renamable Horn fragment – the
set of all CNF formulas which can be turned into Horn ones through
literal renaming, see e.g., [13]).

Let us now present a simple inference relation based on unit reso-
lution:

Definition 3.1 (̀ ) Let B and Q be two sets of clauses from
PROPPS . We haveB ` Q iff:

• Q contains a single clausel1 ∨ · · · ∨ lk and there exists a unit
refutation tree fromB ∪ {l̄1, . . . , l̄k},

• B ` {γ} for every clauseγ of Q3 otherwise.

For instance, we haveB ` Q with B = {a, (¬a ∨ b)} andQ =
{b} since there is a unit refutation tree fromB ∪ {¬b}:

a,¬a ∨ b

b
ur. ,¬b

�
ur.

Unit propagation is a linear time algorithm that searches for unit
refutations from a set of clauses, and it is complete (a set is found
unit-refutable by unit propagation iff a unit refutation from it exists).
Hence,̀ can be decided in time linear in|B|. Since unit resolution
is a sound inference rule, it is also obvious that` is typically a proper
subset of|=. Especially,̀ does not trivialize for every inconsistent

2 The set representation of clauses induces an implicit application of the fac-
toring rule: any literal cannot occur more than once in a clause.

3 To avoid too heavy notations, we will typically replaceQ by its element
whenQ is a singleton.

B. For instance, it is not the case that every clause is a logical conse-
quence of the inconsistent setB = {(a∨b), (¬a∨b), (a∨¬b), (¬a∨
¬b)}: we haveB ` {a,¬a, b,¬b} but we do not haveB ` � and
we do not haveB ` c. Accordingly,` is weakly paraconsistent: for
some inconsistentB, the set of all consequences ofB w.r.t.` is not
the whole set of CNF formulas.

However,` does not satisfy what we expect here, namely strong
paraconsistency: there are someB from which` trivializes. For in-
stance, every clause, like¬b, c, etc. is a consequence w.r.t.` of
B = {a,¬a, b}, but this is not expected; intuitively, none of¬b,
c, etc. is supported by the available evidencea ∧ ¬a ∧ b, which just
states thata is over-determined (i.e., there is some evidence about it
to be true, and some evidence about it to be false) and that there is
some evidence forb to be true.

Let us now explain how to turn the basic relation` into our rela-
tions`∗Σ. Let us do it in a gentle way, through the introduction of two
“intermediate” inference relations̀∗ and`Σ.

The first relatioǹ ∗ is obtained by restricting the set of admissible
unit refutations. Only those proofs for which the query is relevant (in
the sense that it actually participates at least to one refutation) are
kept:

Definition 3.2 (̀ ∗) Let B and Q be two sets of clauses from
PROPPS . We haveB `∗ Q iff:

• Q contains a single clausel1 ∨ . . . ∨ lk and there exists a unit
refutation tree fromB ∪ {l̄1, . . . , l̄k}, s.t. at least one leaf node of
it is labeled with a literal from{l̄1, . . . , l̄k}.

• B `∗ γ for every clauseγ of Q otherwise.

For instance, we haveB = {a,¬a, b} `∗ {a,¬a, b}, andB 6`∗
¬b, while we haveB ` ¬b. Indeed, the unique unit refutation tree
from B ∪ {b} is (up to the order of the clauses):

a,¬a

�
ur.

andb does not participate to the proof.
Now, the family of relations̀ Σ is obtained by enlarging the set of

unit refutations so as to guarantee that each clausal consequence of
Σ has a proof w.r.t.̀ Σ wheneverΣ is consistent:

Definition 3.3 (̀ Σ) Let Σ = {γ1, . . . , γn}, B andQ be three set
of clauses fromPROPPS . We haveB `Σ Q iff (Σ is empty and
B ` Q), or:

• Q contains a single clauseγ and for everyl1 of γ1, ..., for every
ln of γn, we haveB ∪ {l1, . . . , ln} ` γ.

• B `Σ γ for every clauseγ of Q otherwise.

For instance, withΣ = {(a∨b∨c), (¬a∨b), (a∨¬b), (¬a∨¬b)}
andB = {(¬c ∨ d)}, we haveB `Σ {¬a,¬b, c, d}, while we have
neitherΣ ∪ B ` c nor Σ ∪ B ` d. We also haveB 6`Σ a, B 6`Σ b.
With Σ = {(a ∨ b ∨ c)} andB = {(¬a ∨ b), (a ∨ ¬b), (¬a ∨
¬b), (¬c∨d)}, we haveB `Σ {¬a,¬b, c, d}. We also haveB 6`Σ a
andB 6`Σ b. For those two examples,Σ ∪ B is consistent and̀ Σ

has the same clausal consequences w.r.t.B as|= w.r.t. Σ ∪B.
Since` can be recovered as a specific case of`Σ, it cannot be

guaranteed that̀Σ is strongly consistent. For instance, withΣ = ∅
andB = {a,¬a, b}, every clauseγ (including the empty one) is a
consequence ofB w.r.t. `Σ. Note also that̀ Σ trivializes whenever
Σ is an inconsistent set of clauses (just because every{l1, . . . , ln}
contains a pair of complementary literals, orΣ contains the empty
clause).

Finally, our family of inference relations̀∗Σ is intended to achieve
the right balance:



Definition 3.4 (̀ ∗
Σ) Let Σ = {γ1, . . . , γn}, B andQ be three set

of clauses fromPROPPS . We haveB `∗Σ Q iff (Σ is empty and
B `∗ Q), or:

• Q contains a single clauseγ and for everyl1 of γ1, ..., for every
ln of γn, we haveB ∪ {l1, . . . , ln} ` γ and there existl1 of γ1,
..., ln of γn s.t.B ∪ {l1, . . . , ln} `∗ γ.

• B `∗Σ γ for every clauseγ of Q otherwise.

Stepping back to the three above examples, we can easily state that
B has the same consequences w.r.t.`∗Σ as w.r.t.`Σ regarding the
first two examples. However, as it is expected, it does not trivialize
for the third example: withΣ = ∅ andB = {a,¬a, b}, we have
B `∗Σ {a,¬a, b} butB 6`∗Σ � andB 6`∗Σ ¬b.

3.2 Main properties of`∗Σ
Let us first focus on the basic properties one wants satisfied: tractabil-
ity and strong consistency.

Proposition 3.1 Let Σ, B, Q be three sets of clauses. Deciding

B
?

`∗Σ Q is coNP-complete, in the general case, even if the query
Q reduces to a literal. However, if|Σ| is bounded by a constant, then
the inference problem w.r.t.̀∗Σ can be decided in time linear in|B|.

To be more precise, when|Σ| is bounded by a constant and the
query reduces to a single clauseγ, determining whetherB `∗Σ γ
can be achieved in timeO(|B|+ |γ|), hence linear in the input size,
while it can be achieved in timeO(|B| × ||Q||), hence quadratic in
the input size in the general case.4

Proposition 3.2 `∗Σ is strongly paraconsistent: for anyB, we have
B 6`∗Σ � (even ifΣ is inconsistent).

In the pathological caseΣ contains the irreducible contradiction
�, the set of consequences of anyB w.r.t. `∗Σ becomes empty; in
all the remaining cases, every tautological clause is a consequence of
anyB w.r.t. w.r.t.`∗Σ.

Our relations also have as consequences all the classical conse-
quences ofΣ, provided thatΣ is consistent:

Proposition 3.3 If Σ is consistent andγ is any clause s.t.Σ |= γ,
then for anyB, we haveB `∗Σ γ. Moreover, under the same consis-
tency assumption, we haveΣ |= γ iff ∅ `∗Σ γ.

The consistency condition forΣ is mandatory (otherwise, Propo-
sition 3.2 would be contradicted); whenΣ is inconsistent, the set
of consequences of anyB contains all the literals belonging to at
least one maximal (w.r.t.⊆) hitting set of Σ; for instance, with
Σ = {a,¬a, (a ∨ b)} and B = ∅, we haveB `∗Σ {a,¬a, b}
(the unique maximal hitting set is{a,¬a, b}) while we do not have
B `∗Σ′ b with Σ′ = {a,¬a}.

Now, the following proposition details the links between`∗Σ and
the other inference relations we have considered:

Proposition 3.4 LetΣ, B be two sets of clauses s.t.Σ does not con-
tain � and letγ be a clause:

1. ` = `∅.
2. `∗ = `∗∅.
3. `∗Σ ⊆ `Σ. The inclusion is proper in the general case.

4 ||Q|| denotes the number of clauses ofQ.

4. If Σ ∪B `∗ γ, thenB `∗Σ γ. The converse does not hold.
5. If Σ ∪ B is consistent, then (B `∗Σ γ iff B `Σ γ). The converse

does not hold.
6. If B `Σ γ, thenB ∪ Σ |= γ. The converse does not hold.

The last item shows in particular that all our relations`Σ (hence,
`∗Σ) are approximations by below of|=. Note that it is not guaran-
teed that̀ ∗

Σ (as well as̀ Σ) coincides with|= wheneverB ∪ Σ is
consistent, while some paraconsistent inference relations, like|=LPm

[17, 18] and|=QCL [2, 12] ensure it in the clausal case. Nevertheless,
none of these relations is tractable, and in fact no tractable inference
relation can satisfy this property, unlessP = NP. Furthermore,̀ ∗

Σ

loses no classical consequences wheneverB ∪Σ is consistent andB
is renamable Horn:

Proposition 3.5 Let Σ, B be two sets of clauses andγ be a clause.
If B ∪ Σ is consistent andB is renamable Horn, thenB `∗Σ γ iff
B ∪ Σ |= γ.

Let us now present other interesting properties that`∗Σ satisfies:

Proposition 3.6 LetΣ, B, Q, Q′ be sets of clauses s.t. none ofΣ, B
contains� and letγ, γ′ be two clauses:

1. `∗Σ is reflexive and obviously satisfies the “and” rule (in the sense
that if B `∗Σ Q andB `∗Σ Q′, thenB `∗Σ Q ∪Q′).

2. `∗Σ is monotonic by clause expansion w.r.t.Σ or B: adding a
clause (resp. a non empty clause) toB (resp.Σ) never questions
the set of consequences already derived.

3. `∗Σ satisfies a weak form of right weakening: ifB `∗Σ γ andγ |=
γ′, thenB `∗Σ γ′.

All those properties are expected; the first one expresses that the
explicit statement of a clause inΣ or B is a sufficient evidence to
consider it as a consequence; the second property states that when-
ever a clauseγ is considered as a consequence because the available
evidence (Σ andB) supports it, this is still the case when some new
pieces of evidence are incorporated; finally, the third property means
that whenever the available evidence supports a clauseγ, it supports
as well all the clausal consequences ofγ.

Stronger forms of monotonicity and right weakening cannot be
satisfied sincè ∗

Σ is a (strong) paraconsistent inference satisfying
reflexivity. Thus, whileb ∧ ¬b |= a and{a} `∗Σ a, we do not have
{b,¬b} `∗Σ a. Furthermore, though{a,¬a} `∗Σ {a,¬a} holds and
a ∧ ¬a |= b holds, we do not have{a,¬a} `∗Σ b.

Similarly, left logical equivalence cannot be satisfied by a para-
consistent inference relation (while every inconsistent baseB is log-
ically equivalent to the irreducible contradiction�, they typically do
not have the same set of expected consequences). However, when
Σ is consistent, it can be replaced by any equivalent set of clauses
without questioning the set of consequences of anyB w.r.t. `∗Σ (es-
pecially, every subsumed clause can be removed fromΣ).

Finally, neither transitivity5 nor the cut rule are satisfied bỳ∗Σ (in
the general case); for instance, letΣ = ∅, B = {(a∨ b∨ c), (a∨ b∨
¬c), (a ∨ ¬b ∨ c), (a ∨ ¬b ∨ ¬c)}, B′ = {(a ∨ b), (a ∨ ¬b)} and
B′′ = {a}; we haveB `∗Σ B′, B′ `∗Σ B′′, butB 6`∗Σ B′′. Since`∗Σ
is monotonic by clause expansion w.r.t.B, this example also serves
as a counter-example for the cut rule: we haveB ∪ B′ `∗Σ B′′,
B `∗Σ B′, but B 6`∗Σ B′′. While the lack of transitivity would be
dramatic for a fully rational reasoner (since it captures the ability of
chaining inferences), it is not so much demanded when the purpose
is to design a reasoner with limited computational resources.

5 Note that sincè ∗
Σ is an approximation by below of|=, the fact that transi-

tivity does not hold implies that right weakening does not hold.



3.3 Mechanizing`∗Σ
It is quite easy to modify a unit propagation algorithm as used in DLL
procedures [8] for the satisfiability problem in order to get decision
algorithms for our inference relations̀∗Σ. Note that many DLL pro-
cedures have been proposed so far in the literature so that several
implementations of unit propagation are available (including open
source ones, seehttp://sat.inesc-id.pt/OpenSAT/ ).

Function UNIT-PROP
Input: a set of clausesB
Output: B once simplified using unit propagation

1: while B has a unit clausel do
2: B ← {γ \ {l̄} | γ ∈ B}
3: return (B)

First of all, let us recall that unit propagation6 (cf. the function
UNIT-PROP) searches for unit refutations that are also directional
[9] (this assumption can be done without loss of generality); further-
more, unit propagation can be achieved in linear time [7]: by main-
taining a list of clauses containing each literal and a stack containing
unit clauses, propagating a unit clausel requires looking at only those
clauses which contain̄l; associating a counter with each clause that
gives the number of literals left in the clause, it is sufficient to decre-
ment it each time a literal is resolved out of the clause; a unit clause
is generated whenever the counter value reaches1, and the empty
clause when it reaches0. UNIT-PROP can be used directly to get a
decision procedure for̀: if the queryγ is (l1 ∨ . . .∨ lk) with k > 0,
then add{l̄1, . . . , l̄k} to B, runUNIT-PROP and we haveB ` γ iff
the resulting setB contains�.

Function DECIDE*?
Input: a set of clausesB,

a clause{l1, . . . , lk}
Output: true iff B `∗ l1 ∨ · · · ∨ lk

1: mark l̄1, . . . , l̄k
2: S ← B ∪ {l̄1, . . . , l̄k}
3: UNIT-PROP*(S)
4: for eachγ ∈ S do
5: if γ = ∅ and marked(γ) then
6: return (true)
7: return (false)

It is also quite easy to take advantage ofUNIT-PROP to get an
algorithmDECIDE* for deciding`∗: the idea is to use an additional
bit array so as to mark each clause ofB ∪ {l̄1, . . . , l̄k} that is re-
solved with a marked clause, while initially only the unit clauses
from {l̄1, . . . , l̄k} are marked. The unit clauses from{l̄1, . . . , l̄k}
are processed first, and whenever a unit clause is generated, it is
pushed on the stack. When the execution ofUNIT-PROP ends, we
haveB `∗ γ iff the counter value of at least one marked clause is0.

Now, in order to implement̀ ∗
Σ, it is sufficient to call it-

eratively UNIT-PROP* (which achieves the main treatment of
DECIDE*?) onB∪{l′1, . . . , l′n} and{l̄1, . . . , l̄k} for each conjunc-
tion {l′1, . . . , l′n} of literals s.t. for everyi ∈ 1 . . . n, l′i belongs to
theith clauseγi of Σ = {γ1, . . . , γn}. If the resulting set of clauses
does not contain�, thenB 6`∗Σ γ (one can exit from then nested
loops); otherwise, if the counter value of at least one marked clause
is 0, then a flag is raised and one returns to the loops. Once each con-
junction{l′1, . . . , l′n} has been considered, we haveB `∗Σ γ iff the
flag has been raised.
6 Also referred to as “boolean constraint propagation” [15].

Function UNIT-PROP*
Input: a set of clausesB
Output: B once simplified using unit propagation and some marks

1: while B has a unit clausel do
2: for eachγ ∈ B do
3: if marked(l) andl̄ ∈ γ then
4: mark(γ)
5: γ ← γ \ {l̄}
6: return (B)

Function DECIDE*-SIGMA?
Input: a set of clausesB

a set of clausesΣ = {γ1, . . . , γn}
a clause{l1, . . . , lk}

Output: true iff B `∗Σ l1 ∨ · · · ∨ ln
1: if Σ = ∅ then
2: DECIDE*?(B, {l1, . . . , lk})
3: else
4: flag← false
5: for each 〈l′1, . . . , l′n〉 ∈ 〈γ1, . . . , γn〉 do
6: S ← B ∪ {l′1, . . . , l′n} ∪{l̄1, . . . , l̄k}
7: unmark(S)
8: UNIT-PROP*(S)
9: if � 6∈ S then

10: return (false)
11: else ifmarked(�) then
12: flag← true
13: return (flag)

Note that the monotonicity property of̀∗ w.r.t. clause expansion
can be exploited to let aside some conjunctions in the body of the
loops: if Σ is consistent and ifC, C′ are two conjunctions to be
considered s.t.C′ |= C, then it is sufficient to keepC only. Accord-
ingly, it is sufficient to keep only the prime implicants ofΣ (when
Σ is consistent). WhenΣ does not often change and is of limited
size, such a set can be computed and stored during an off-line pre-
processing (compilation) phase. Note however that the set of con-
junctions to be considered whenΣ is consistent does not reduce to
any minimal disjunctive normal form ofΣ but the whole set of prime
implicants must be considered in general: ifΣ = {(a∨¬b), (b∨ c)}
andB = {(b ∨ d ∨ e), (b ∨ ¬d ∨ e), (¬b ∨ d ∨ e), (¬b ∨ ¬d ∨ e)},
we do not haveB `∗Σ e, just becauseB ∪ {a, c} 6` e. ThoughΣ is
equivalent to(a ∧ b) ∨ (¬b ∧ c), not considering the term(a ∧ c)
would lead to accepte as a consequence.

4 OTHER RELATED WORK

Relation` has been introduced and studied by Dalal in [5, 6] as a
tractable approximation by below of classical entailment. In order to
preserve more classical consequences, Dalal also introduces a whole
family of unit resolution-based inference relations`k, parameterized
by an integerk. For anyk, any set of clausesB and any clausesγ,
γ′, `k is defined by:

• If B ` γ, thenB `k γ, and
• If B `k γ′ andB ∪ {γ′} `k γ andγ′ contains at mostk literals,

thenB `k γ.

The second rule above allows for restoring chaining for clauses of
limited sizes. [5, 6] show that for each fixedk, `k is tractable and the



sequence(`k)k is monotonic and stationary from somekmax; be-
sides,̀ kmax coincides with|= (restricted to clausal formulas). Nev-
ertheless, it is easy to prove that strong consistency is not guaranteed
by any relatioǹ k (just considerB = {a,¬a, b}).

Schaerf and Cadoli [19] introduce a family of inference relations
|=S

3 which approximate by below classical entailment. ParameterS
is a subset ofPS, the variables upon which full resolution is allowed.
|=S

3 generalizes the entailment relation|=3 of three-valued logic (it
corresponds to the caseS = ∅). Every relation|=S

3 is tractable in the
clausal case, provided that the size ofS is bounded (it can be decided
in time linear in the size ofB and exponential in the size ofS).

Our inference relatioǹ ∗ typically captures at least all the conse-
quences of|=∅

3, and much more in many cases (for instance, whenB
is a consistent renamable Horn formula). Furthermore, every relation
|=S

3 can be associated in linear time to a`Σ relation including|=S
3 :

Proposition 4.1 Let B, Q be sets of clauses and letS =
{x1, . . . , xn} be a subset ofPS:

1. If � 6∈ B and B |=∅
3 Q, thenB `∗ Q. The converse does not

hold.
2. If B |=S

3 Q, thenB `Σ Q, with Σ = {(x1 ∨ ¬x1), . . . , (xn ∨
¬xn)}. The converse does not hold.

Clearly, Point 2. above cannot be extended to`∗Σ because the lat-
ter is strongly paraconsistent while|=S

3 is not in the general case
(considerB = {a,¬a} and S = {a}: we haveB |=S

3 b while
B 6`∗{(a∨¬a)} b). Note also that|=S

3 does not offer the right way to
capture all the classical clausal consequences of a designated subset
Σ of the beliefs; indeed, consideringS = V ar(Σ) achieves the job
but may lead to trivialization, while it is avoided using̀∗Σ. For in-
stance, letB = {a,¬a, b}: with S = {a}, we haveB |=S

3 γ for
every clauseγ, while B 6`∗Σ �, whateverΣ.

Marquis and Porquet [14] refine the family of|=S
3 relations, so as

to guarantee strong consistency, while preserving tractability when
|S| is bounded. Whenever|=S

3 trivializes, they suggest to weaken
S (i.e., to remove variables fromS) so as to recover a paracon-
sistent inference relation. They present several policies for weak-
eningS, closely related to the policies at work in the approach to
inconsistency tolerant reasoning based on the selection of preferred
subsets of the belief bases. Thus, given a subsetS0 of S, the in-
clusion preference policyIP consists in considering every maxi-
mal (w.r.t.⊆) subsetS′ of S containingS0 and s.t.B 6|=S′

3 �:
we haveB|≈IP,S0

S γ iff for every such setS′, we haveB 6|=S′
3 γ.

With B = {a,¬a ∨ b, b}, S0 = ∅, and S = {a, b}, we have
B|≈IP,S0

S a ∧ ¬b ∧ (¬a ∨ b), but we haveB 6 |≈IP,S0
S b (while b is

a consequence ofB w.r.t.`∗∅). Because the inference relations given
in [14] are subsets of|=S

3 , they typically preserve less information
from B than`∗Σ, but this is not always the case. For instance, with
B = {(a∨b∨c), (¬a∨b), (a∨¬b), (¬a∨¬b), d,¬d}, S0 = ∅ and
S = {a, b, c, d}, we haveB|≈IP,S0

S c while we do not haveB `∗∅ c.
Finally, like |=S

3 , the inference relations given in [14] do not offer
the right way to capture all the classical clausal consequences of a
designated subsetΣ of the beliefs.

5 CONCLUSION

We have presented a family of unit resolution-based paraconsistent
inference relations̀ ∗

Σ for propositional logic in the clausal case.
`∗Σ exhibits many valuable features, which are typically not jointly
shared by alternative approaches: (1) it can be decided in time lin-
ear in the size of the belief base provided that|Σ| is bounded; (2)
it is strongly paraconsistent; (3) it captures all the classical clausal

consequences ofΣ whenΣ is consistent. While (1) prevents from
capturing all the classical consequences ofB in the caseB ∪ Σ is
consistent (under the usual assumptions of complexity theory),`∗Σ
may keep much more expected consequences than|=3, even when
Σ = ∅; in particular,̀ ∗

∅ coincides with|= wheneverB is a consistent
renamable Horn formula. Last but not least, our inference relations
benefit from many algorithmic insights at work in unit propagators.

This work calls for some perspectives. One of them concerns the
semantics issue. It would be interesting to investigate how the model-
theoretic semantics of̀ given in [6] could be adapted to our infer-
ence relations. Another perspective is to extend further the deductive
power of our inference relations by adding more chaining, i.e., con-
sidering`k as the basic inference relation instead of`.
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