A Unit Resolution-Based Approach to Tractable and
Paraconsistent Reasoning

Sylvie Coste-Marquis and Pierre Marquis *

Abstract. A family of unit resolution-based paraconsistent infer- belief revision operators do not make the job here for three reasons:
ence relations-s, for propositional logic in the clausal case is in- (1) B * X is typically underspecified wheB is inconsistent, (2) in-
troduced. Parametét is any consistent set of clauses representingference from a revised bagde * X is typically intractable [11, 16],
the beliefs which are intended to be exploited through full deduc-and (3)X does not represent more entrenched beliefs gaspe-
tion, i.e., every classical consequencedbfnust be kept w.r.t-5;, cially, X is not intended to represent knowledge), but pieces of belief
whatever the belief basB. Contrariwise to many paraconsistent in- we are interested in the whole set of classical consequences.
ference relations, any relatidrg; can be decided in time linear in To fill this gap, we introduce a family of unit resolution-based

| B| wheneverx is of bounded size. We show thiaf; exhibits sev-  paraconsistent inference relationg for propositional logic in the
eral valuable properties, including strong paraconsistency. We alsdausal case. Paramef€ris any consistent set of clauses represent-
show how a unit propagation algorithm can be simply turned into a@ng the beliefs intended to be exploited through full deduction, i.e.,

decision procedure fdrs;,. We finally show how thé-5; family re- every classical consequence®fmust be kept w.r.tt3;, whatever
lates to several inference relations proposed so far as approximatiotise belief base3. Contrariwise to many paraconsistent inference re-
of classical entailment. lations, any relatiort-5; can be decided in time linear {B| when-

everX is of bounded size. We show tha§, exhibits several valuable
properties. In particular, it satisfies strong paraconsisterigynever

1 INTRODUCTION trivializes. We also show how a unit propagation algorithm can be
A fundamental limitation of classical inference in the objective of SIMPly tumed into a decision procedure fek. We finally show how
modeling common-sense reasoning is that it trivializes in presenci'® family relates to several inference relations proposed so far
of inconsistency. In order to address such an issue, many approach@® @Pproximations of classical entailment.

to reasoning from contradictory information have been proposed, in T_he_ res_t of this paper is Organlz_ed as follqws. A_fte_r some formal
various propositional settings; among them are belief revision, beliePreliminaries (Section 2), our family of relations: is introduced
merging, reasoning from preferred consistent subsets, argumentatild Section 3. We also present their main properties and show how to
logics, paraconsistent logics, etc. In this family, paraconsistent logMmechanize them, through an adaptation of a unit propagator. Related
ics are the most basic techniques, in the sense they enable non trivi4Prk are discussed in Section 4, just before the concluding section
reasoning from a single contradictory formula, like\ —a A b. The (Section 5). Proofs are omitted due to space limitations.

fact a belief base3 is encoded as a single formula coheres with the

cognitively plausible assumption that agents typically do not know,
thegreasosrllspof their pieces F())f beliefs (t?]is assﬁnptign is also mad% FORMAL PRELIMINARIES
in the influential AGM framework for belief revision [1]). Contrast-

ingly, other approaches to inconsistency tolerant reasonin icall . i
gy bp Y 9 typ %etPS of symbols, the connectives Vv, A, and a propositional con-

deal with several consistent formulas which are jointly inconsisten . . Lo
(e.g., in belief revision, two formulas are considered: the original be—StantD (denoting the empty clause and also viewed as falsity) in the
' ' sual wayL] is the irreducible contradiction d? RO Pps. A literal

lief base and the revision formula), hence they are not suited to th i ; itional svmbat from PS itive literal) or a neqated
case the available data consists of a single inconsistent formula. S a propositiona’ sy om- (pos_ ve fite al) or a negate
Qne—x (negative literal). Iff = z is a positive literal, then its com-

Many paraconsistent inference relations have been defined so f: . = ) h o .
plementary literal is —z; if | = —z is a negative literal, then its

However, most of them are intractable, their complexity lying at the L . e . .
first or the second level of the polynomial hierarchy [3, 4]. This ren_complementary literal is x. A cIau_sey_ Is a finite d|s,_1u_nct|0n of I.lt_
ders them hard to be used when inconsistent belief bases of lar éals, also weyved as.the set of its IlteraI§ .Whe.n Itis convgnlent. It
size must be dealt with. Furthermore, while tractability can be ob-> Horn when it contains at most one positive literal. A unit clause
tained for some paraconsistent inference relations (e-gdefined (_:ontalns at most one literal, V\./h"e t_he_ empty.clalI_ﬂseontalns no

in a three-valued logical framework when CNF formulas are consid-IIteraI _at all. A CNF formulaX is a (f|n|t_e)_ conjunct_lon of clauses,
ered [10]), we are not aware of a propositional framework in which.also viewed as a set of clauses when it is convenient. In the follow-
strong paraconsistent reasoning can be efficiently achieved from 09, %, B andQ denote sets of clauseBar(X) denotes the set of

limited amount of belief$ (exploited through full deduction), and g%?;monal \t/a(gla;blgs ?t::currln%m Tfhe size of a forTuIE Lrolm d
an unlimited amount of other belief8. Especially, standard AGM ps, NOLE 12, IS the number ot occurrences of symbols an
connectives used to write it.

1 CRIL-CNRS/Universi  d'Artois, Lens, France, email: Formulas are interpreted in the classical truth-functional way.
{coste,marquig@cril.univ-artois.fr Classical interpretations over P.S are defined in the standard way,

PRO Pps denotes the propositional language built up from a finite




as total functions fronP.S to {0,1}. As usual = denotes classical
entailment and= denotes classical equivalence.

3 THE P*Z FAMILY
3.1 Definitions

There are mainly two ways of specifying a paraconsistent inference
relation: (1) by enlarging the set of classical interpretations (as e.g. i
multi-valued logics), and (2) by restricting the set of classical proofs
In the following, we adhere to the second approach and define infe

ence relations in a proof-theoretic way.

Let us first give a brief refresher about resolution. Given two

clausesy; and~. from PROPps s.t.y; contains literall and .
the complementary literd| the resolvent of; and~, over the pair
of complementary literalg I is the clausey containing every literal
of 1 except! and every literal ofy, exceptl.? v is obtained using
the resolution rule over the pair of complementary litefalsfrom
its parent clauses; and~. It is obtained using the unit resolution
rule (ur.

since they are necessarily unique in that case.
A (unit) refutation tree from a CNF formuld is a finite binary tree

r-

for short) if at least one of its parents is a unit clause. Note
that it is not necessary to specify the pair of literals resolved upo

B. For instance, it is not the case that every clause is a logical conse-

quence of the inconsistent $8t= {(aVb), (—aVb), (aV-b), (-aV
—-b)}: we haveB + {a,—a,b, —b} but we do not have3 + O and
we do not haveB + c. Accordingly,i is weakly paraconsistent: for
some inconsistenB, the set of all consequencesBfw.r.t. - is not
the whole set of CNF formulas.

|Qaraconsistency: there are sof@drom whicht- trivializes. For in-
stance, every clause, likeb, ¢, etc. is a consequence w.Itt. of
B = {a,—a,b}, but this is not expected; intuitively, none eb,
¢, etc. is supported by the available evidence —a A b, which just

states that: is over-determined (i.e., there is some evidence about it
to be true, and some evidence about it to be false) and that there is

some evidence fdrto be true.

Let us now explain how to turn the basic relatiorinto our rela-
tionsk5,. Let us do itin a gentle way, through the introduction of two
“intermediate” inference relatiorts® andt-.

The first relatiort-* is obtained by restricting the set of admissible
unit refutations. Only those proofs for which the query is relevant (in

rF(he sense that it actually participates at least to one refutation) are
ept:

Definition 3.2 (+*) Let B and @Q be two sets of clauses from

whose root is labeled blyl, every leaf node is labeled by a clause PROPps. We haveB -* Q iff:

from v and every internal node is labeled by a (unit) resolvent of
the clauses labeling its two sons. While (unrestricted) resolution i
refutationally complete, meaning that there exists a refutation tree

from every inconsistent set of clausEs(and no such tree can be

generated from consistent set of clauses), it is not the case of unit

resolution. For instance, the set of clauses= {(a V b),(—a Vv

S

e () contains a single claush V ... V [, and there exists a unit
refutation tree fromB U {l1, ..., 1; }, S.t. at least one leaf node of
it is labeled with a literal from{i1, . . ., Ix }.
o B I* ~ for every clausey of Q otherwise.

For instance, we havB = {a,—-a,b} F* {a,—a,b}, andB /*

b), (a vV —b), (—a v —b)} is inconsistent but inconsistency cannot be —b, while we haveB  —b. Indeed, the unique unit refutation tree

revealed using unit resolution (simply becadsecontains no unit

clause). Nevertheless, unit resolution is refutationally complete for
significant fragments of clausal propositional logic, like the Horn one
the

and proper supersets of it (like the renamable Horn fragment —

set of all CNF formulas which can be turned into Horn ones through

literal renaming, see e.g., [13]).

Let us now present a simple inference relation based on unit res

lution:

Definition 3.1 (+) Let B and @ be two sets of clauses from
PROPps. We haveB - Q iff:

e @ contains a single clausg Vv --- V [, and there exists a unit
refutation tree fromB U {i,...,lx},
e B {~} for every clausey of Q° otherwise.

For instance, we havB - Q with B = {a, (—a VvV b)} andQ =
{b} since there is a unit refutation tree frathU {—b}:

a,maVb

r b
, o

0 ur.

from B U {b} is (up to the order of the clauses):
a,—a
g

andb does not participate to the proof.
Now, the family of relations-s. is obtained by enlarging the set of

ur.

unit refutations so as to guarantee that each clausal consequence of
T hasa proof w.r.t-s; wheneverX is consistent:

Definition 3.3 (+x) LetX = {~1,...,7}, B andQ be three set
of clauses fromPROPps. We haveB ks Q iff (X is empty and
BFQ),or:

e () contains a single clause and for everyi; of v4, ..
l, of yn, we haveB U {l1,...,l,} F 7.
e B ~ for every clausey of Q otherwise.

., for every

For instance, wittE = {(aVbVc), (—aVb), (aV-b), (maV—b)}
andB = {(—-c V d)}, we haveB Fx {—a, b, ¢, d}, while we have
neitherX U B - c¢nor¥ U B F d. We also haveB /s, a, B t/5 b.
With ¥ = {(avVbVe)}andB = {(—a Vb),(aV —d),(-aV
=b), (—cVd)}, we haveB Fs {—a, -b, ¢, d}. We also haveB i/s a
and B t/x. b. For those two example§; U B is consistent antts,

Unit propagation is a linear time algorithm that searches for unithas the same clausal consequences Brasf= w.r.t. © U B.
refutations from a set of clauses, and it is complete (a set is found Sincel can be recovered as a specific caseé-of it cannot be

unit-refutable by unit propagation iff a unit refutation from it exists).
Hence- can be decided in time linear j#|. Since unit resolution
is a sound inference rule, itis also obvious thas typically a proper
subset of=. Especially}- does not trivialize for every inconsistent

2 The set representation of clauses induces an implicit application of the fa

toring rule: any literal cannot occur more than once in a clause.
3 To avoid too heavy notations, we will typically replaceby its element
whenq is a singleton.

C-

guaranteed thaty, is strongly consistent. For instance, wkh= 0
and B = {a, —a, b}, every clausey (including the empty one) is a
consequence @B w.r.t. Fx. Note also that-x, trivializes whenever
Y is an inconsistent set of clauses (just because eligry. ., 1.}
contains a pair of complementary literals, ¥rcontains the empty
clause).

Finally, our family of inference relatioriss, is intended to achieve
the right balance:

However,- does not satisfy what we expect here, namely strong



Definition 3.4 (-5) LetX = {v1,...,v}, B andQ be three set
of clauses fromPROPps. We haveB +5 Q iff (2 is empty and
BE*Q), or:

e (Q contains a single clause and for everyl; of v4, ..., for every
I, of vn, we haveB U {l1,...,l,} F v and there exist; of y1,
i ln Of st BU{ly, ..., ln} F" v

e B 5, ~ for every clausey of Q otherwise.

4. IfX U B F* ~, thenB 5, ~. The converse does not hold.

5. If ¥ U B is consistent, thenX +5, v iff B x5 ). The converse
does not hold.

6. If B s ~,thenB U X = ~. The converse does not hold.

The last item shows in particular that all our relatiéns (hence,
F5) are approximations by below ¢&. Note that it is not guaran-
teed that-5, (as well as-s) coincides with= wheneverB U X is
consistent, while some paraconsistent inference relationsHike,,

Stepping back to the three above examples, we can easily state tHaf, 18] and=qc1. [2, 12] ensure it in the clausal case. Nevertheless,

B has the same consequences Wifit. as w.r.t.-x regarding the

none of these relations is tractable, and in fact no tractable inference

first two examples. However, as it is expected, it does not trivializerelation can satisfy this property, unleBs= NP. Furthermore}-5,

for the third example: witt = @ and B = {a, —a, b}, we have
B+ {a,—a, b} but B t/5, d and B t/5, —b.

3.2 Main properties of -,

loses no classical consequences when&uery is consistent and
is renamable Horn:

Proposition 3.5 Let Y, B be two sets of clauses andbe a clause.
If B U X is consistent and3 is renamable Horn, the®B k5, ~ iff

Let us first focus on the basic properties one wants satisfied: tractabi@ UZ k.

ity and strong consistency.

Proposmon 3.1 Let X, B, @ be three sets of clauses. Deciding

Let us now present other interesting properties tHatsatisfies:

Proposition 3.6 LetX, B, Q, Q' be sets of clauses s.t. noneyfB
containsd and lety, v' be two clauses:

B l—Z Q is coNP-complete, in the general case, even if the query o
Q reduces to a literal. However, j&| is bounded by a constant, then - kS is reflexive and obviously satisfies the “and” rule (in the sense

the inference problem w.rit:5; can be decided in time linear iB|.

To be more precise, wheli| is bounded by a constant and the

query reduces to a single clausgdetermining whetheB 5, ~
can be achieved in tim@(| B| + |v|), hence linear in the input size,
while it can be achieved in tim@(|B| x ||Q||), hence quadratic in
the input size in the general cabe.

Proposition 3.2 +5; is strongly paraconsistent: for ani, we have
B /5, O (even ifx is inconsistent).

In the pathological casE contains the irreducible contradiction
O, the set of consequences of aByw.r.t. -5, becomes empty; in

all the remaining cases, every tautological clause is a consequence%‘la

any B w.r.t. w.r.t.-5,.

Our relations also have as consequences all the classical conse-

guences ok, provided that: is consistent:

Proposition 3.3 If X is consistent and is any clause s.tt | ~,
then for anyB, we haveB 5, 7. Moreover, under the same consis-
tency assumption, we ha¥el= « iff -5, .

The consistency condition faf is mandatory (otherwise, Propo-
sition 3.2 would be contradicted); whex is inconsistent, the set
of consequences of ang contains all the literals belonging to at
least one maximal (w.r.tC) hitting set of X; for instance, with

= {a,—a,(a Vv b)} and B ¢, we haveB +5 {a,—a,b}
(the unique maximal hitting set isz, —a, b}) while we do not have
B3, bwith X' = {a, —a}.

Now, the following proposition details the links betweef and
the other inference relations we have considered:

Proposition 3.4 LetX, B be two sets of clauses 1.does not con-
tain O and lety be a clause:

1. F = kg
2. " = .
3. k5 C Fsx. Theinclusion is proper in the general case.

41]Q|| denotes the number of clauses(@f

thatif B3 Q andB F3, Q', thenB 5 QU Q).
2. 5, is monotonic by clause expansion w.ki.or B: adding a
clause (resp. a non empty clause)Ro(resp.X) never questions
the set of consequences already derived.
k5, satisfies a weak form of right weakeningBft-5, v and~ =
v, thenB F§ +/

3.

All those properties are expected; the first one expresses that the
explicit statement of a clause B or B is a sufficient evidence to
consider it as a consequence; the second property states that when-
ever a clause is considered as a consequence because the available
evidence £ and B) supports it, this is still the case when some new
pieces of evidence are incorporated; finally, the third property means
t whenever the available evidence supports a claLigesupports
as well all the clausal consequencesyof
_Stronger forms of monotonicity and right weakening cannot be
satisfied sincé-5; is a (strong) paraconsistent inference satisfying
reflexivity. Thus, whileb A =b = a and{a} F% a, we do not have
{b, =b} +5, a. Furthermore, thougfia, —a} 5, {a, —a} holds and
a A —a = b holds, we do not havéa, —a} F5 b

Similarly, left logical equivalence cannot be satisfied by a para-
consistent inference relation (while every inconsistent iagelog-
ically equivalent to the irreducible contradictiah they typically do
not have the same set of expected consequences). However, when
3 is consistent, it can be replaced by any equivalent set of clauses
without questioning the set of consequences of Bny.r.t. 5, (es-
pecially, every subsumed clause can be removed ¥om

Finally, neither transitivity nor the cut rule are satisfied by; (in
the general case); for instance, ¥et= ), B = {(aVbVc), (aVbV
=c),(aV =bVc),(aV-bV-c)}, B ={(aVb),(aV-b)}and
B" = {a}; we haveB +5, B, B' 5 B”, butB t/3, B”. Sincer-%,
is monotonic by clause expansion w.i, this example also serves
as a counter-example for the cut rule: we ha¥eJ B’ +5, B”,

B % B, but B I/ B”. While the lack of transitivity would be
dramatic for a fully rational reasoner (since it captures the ability of
chaining inferences), it is not so much demanded when the purpose
is to design a reasoner with limited computational resources.

5 Note that since-% is an approximation by below ¢#, the fact that transi-
tivity does not hold implies that right weakening does not hold.



3.3 Mechanizings, Function UNIT-PROP*

Input: a set of clause®

Output: B once simplified using unit propagation and some marks
1: while B has a unit clausédo

: foreachy € Bdo

Itis quite easy to modify a unit propagation algorithm as used in DLL
procedures [8] for the satisfiability problem in order to get decision
algorithms for our inference relatiofns;. Note that many DLL pro-

cedures have been proposed so far in the literature so that severa%

implementations of unit propagation are available (including open 3: if marked() andl €  then
source ones, sddtp://sat.inesc-id.pt/OpenSAT/ ). 4 markey)
5: v =\ {l}

Function UNIT-PROP 6: return (B)
Input: a set of clause®
Output: B once simplified using unit propagation Function DECIDE*-SIGMA?

1: while B has a unit clausedo Input: a set of clause®

gj retﬁrrT(g; \ [y e B} asetofclauses = {y1,...,7n}

i aclause{li,...,lx}

First of all, let us recall that unit propagatfofcf. the function Ollftﬂu; jré‘fh'ff Brrliv.-Vin
UNIT-PROP) searches for unit refutations that are also directional 2: ! DE_CIDE?’;(B { L))
[9] (this assumption can be done without loss of generality); further- 3: clse UL -
more, unit propagation can be achieved in linear time [7]: by main- 4j flag— false

taining a list of clauses containing each literal and a stack containing_’ ) ,
. . . . . 5. foreach(l,...,Il;,) € (71,...,7n) dO

unit clauses, propagating a unit cladsequires looking at only those : S BU{L I} Ugl I}

clauses which contaify associating a counter with each clause that Lyreoin Ly s sath

gives the number of literals left in the clause, it is sufficient to decre- unmark(y) .

. . . - ) . : UNIT-PROP*(S)
ment it each time a literal is resolved out of the clause; a unit clause .
; 9: if O ¢ S then
is generated whenever the counter value reatchesd the empty 10° return (false)
clause when it reach&s UNIT-PROP can be used directly to get a ) .
decision procedure for: if the queryyis (I1 V... Vi) with k > 0 1w else ifmarked(J) then

’ s ' 12: flag < true

then add{l1, .. .,I;} to B, runUNIT-PROP and we haves I v iff

the resulting seB containd . 13:  return (flag)

Function DECIDE*? Note that the monotonicity property 6f w.r.t. clause expansion
Input: a set of clauses, can be exploited to let aside some conjunctions in the body of the
aclause{ly, ..., Ik} loops: if ¥ is consistent and if?, C’ are two conjunctions to be

Output: trueiff BE* Iy V--- Vi considered s.C’ |= C, then it is sufficient to keef' only. Accord-

1: markly, ..., I ingly, it is sufficient to keep only the prime implicants Bf (when

2: S+ BU{l,...,Ix} ¥ is consistent). Whei does not often change and is of limited

3: UNIT-PROP*(S) size, such a set can be computed and stored during an off-line pre-

4: foreach~ € S do processing (compilation) phase. Note however that the set of con-

5. if v = () and marked{) then junctions to be considered whénhis consistent does not reduce to

6: return (true) any minimal disjunctive normal form a&f but the whole set of prime

7: return (false) implicants must be considered in generakit= {(a vV —b), (bV¢)}

andB = {(bvdVe),(bV-dVe),(-bVdVe),(-bV-dVe)},
It is also quite easy to take advantageUMIT-PROP to get an  we do not haveB % e, just becaus® U {a, c} I/ e. ThoughX is

algorithmDECIDE* for deciding-": the idea is to use an additional equivalent to(a A b) V (—b A ¢), not considering the terrtu A c)

bit array so as to mark each clause®fU {l1,...,[x} thatis re-  would lead to accept as a consequence.

solved with a marked clause, while initially only the unit clauses

from {l1,...,lx} are marked. The unit clauses frofy, ...,

are processed first, and whenever a unit clause is generated, it OTHER RELATED WORK

pushed on the stack. When the executiotdbfiT-PROP ends, we

haveB +* « iff the counter value of at least one marked clause is
Now, in order to implement-5, it is sufficient to call it-

eratively UNIT-PROP* (which achieves the main treatment of

Relationt has been introduced and studied by Dalal in [5, 6] as a
tractable approximation by below of classical entailment. In order to
preserve more classical consequences, Dalal also introduces a whole

DECIDE*?) on BU{l}, ..., 1} and{l] o Zk} for each conjunc- family of unit resolution-based inference relatiorfs parameterized
tion {I;,...,1,} of literals s.t. for eveny € 1...n, I} belongs to b}’ an integerk. For anyk, any set of clause# and any clauses,
thei'” clausey; of & = {v1, ..., ~a}. If the resulting set of clauses 7+~ iS defined by:

does not contaifn’, then B I/5, v (one can exit from the: nested 5

loops); otherwise, if the counter value of at least one marked cIaUS§ :I g ;Ek% Eha?nndBB#U ?'?nlij’“ and~’ contains at most literals

is 0, then aflag is raised and one returns to the loops. Once each con- thenB Jc v v v ’
-

junction {l1,...,1;,} has been considered, we haBe-}, ~ iff the

flag has been raised. The second rule above allows for restoring chaining for clauses of
6 Also referred to as “boolean constraint propagation” [15]. limited sizes. [5, 6] show that for each fixgd-" is tractable and the




sequencélr"); is monotonic and stationary from someg,..; be-

consequences df when is consistent. While (1) prevents from

sides/-*me= coincides with= (restricted to clausal formulas). Nev- capturing all the classical consequencesioin the caseB U ¥ is
ertheless, it is easy to prove that strong consistency is not guarante€@nsistent (under the usual assumptions of complexity thebgy),

by any relatior+-* (just consideB = {a, —a, b}).

Schaerf and Cadoli [19] introduce a family of inference relations® =
renamable Horn formula. Last but not least, our inference relations

benefit from many algorithmic insights at work in unit propagators.

This work calls for some perspectives. One of them concerns the
semantics issue. It would be interesting to investigate how the model-
theoretic semantics ¢f given in [6] could be adapted to our infer-
ence relations. Another perspective is to extend further the deductive
power of our inference relations by adding more chaining, i.e., con-
sideringr-" as the basic inference relation instead-of

|:§ which approximate by below classical entailment. Paramgter
is a subset of.S, the variables upon which full resolution is allowed.
=5 generalizes the entailment relatigs of three-valued logic (it
corresponds to the case= (). Every relation=3 is tractable in the
clausal case, provided that the size5ds bounded (it can be decided
in time linear in the size oB and exponential in the size 6.

Our inference relatior ™ typically captures at least all the conse-
guences of:?ﬁ, and much more in many cases (for instance, wBen
is a consistent renamable Horn formula). Furthermore, every relation
=5 can be associated in linear time té-a relation including=5-

Proposition 4.1 Let B, Q be sets of clauses and lef =
{z1,...,z,} be asubset aPS:

may keep much more expected consequences fthareven when

(; in particular}-; coincides with= wheneverB is a consistent
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1. If0 ¢ BandB =Y Q, thenB +* Q. The converse does not
hold.
2. f B =5 Q, thenB ks Q WithE = {(z1 V ~z1),. .., (zn V

—z,)}. The converse does not hold. (1

Clearly, Point 2. above cannot be extendeéfobecause the lat-
ter is strongly paraconsistent while5 is not in the general case
(considerB = {a,—a} andS = {a}: we haveB =5 b while
B 17 (av-a)} b). Note also that=5 does not offer the right way to
capture all the classical clausal consequences of a designated subgsf
¥ of the beliefs; indeed, considerirfy= Var(X) achieves the job
but may lead to trivialization, while it is avoided usikg;. For in-

(2]

stance, letB = {a, —a,b}: with S = {a}, we haveB =5 ~ for [4]
every clausey, while B /5, O, whatevery.
Marquis and Porquet [14] refine the family [ef§ relations, so as  [5]

to guarantee strong consistency, while preserving tractability when
|S| is bounded. Whenevee3 trivializes, they suggest to weaken

S (i.e., to remove variables from¥) so as to recover a paracon- 7]
sistent inference relation. They present several policies for weak-
ening S, closely related to the policies at work in the approach to [8]
inconsistency tolerant reasoning based on the selection of preferrefb]
subsets of the belief bases. Thus, given a suBsetf S, the in-
clusion preference policP consists in considering every maxi- [10]
mal (w.r.t. C) subsetS’ of S containingSy and s.t.B bég?’ 0
we haveBRZ7+50 iff for every such sets’, we haveB |£5 .
With B = {a,—-a V b,b}, So = 0, andS = {a,b}, we have
BREPS0a A =b A (ma V b), but we haveB 57 b (while b is
a consequence d# w.r.t. ). Because the inference relations given [12]
in [14] are subsets of=5, they typically preserve less information [13]
from B thants;, but this is not always the case. For instance, with

B ={(aVvbVe), (maVbd),(aV-d), (maV-b),d,—~d}, So =0and  [14]
S = {a,b,c,d}, we haveBr "% c while we do not haveB +;; c.
Finally, like ):5, the inference relations given in [14] do not offer
the right way to capture all the classical clausal consequences of
designated subsé&t of the beliefs.

5 CONCLUSION

We have presented a family of unit resolution-based paraconsistefit7]
inference relations-3, for propositional logic in the clausal case.

k5 exhibits many valuable features, which are typically not jointly [18]
shared by alternative approaches: (1) it can be decided in time Iirhg]
ear in the size of the belief base provided ttat is bounded; (2)

it is strongly paraconsistent; (3) it captures all the classical clausal

(11]

[15]

[16]
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