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Abstract. Many coherence-based approaches to inconsistency han-
dling within propositional belief bases have been proposed so far.
They consist in selecting one or several preferred consistent subbases
of the given (usually inconsistent) stratified belief base (SBB), then
using classical inference from some of the selected subbases. Unfor-
tunately, deciding the corresponding inference relations is typically
hard from the computational complexity point of view. In this paper,
we show how some knowledge compilation techniques for classical
inference can be used to circumvent the intractability of such sophis-
ticated inference relations. For several families of compiled SBBs
and several selection policies, the complexity of skeptical inference
is identified. Interestingly, some tractable restrictions are exhibited.

1 Introduction

Dealing with inconsistency is required in many situations in which
pieces of information come from different, possibly conflicting
sources, or when some exceptions to knowledge must be handled.
In order to prevent reasoning from trivialization, classical inference
cannot be directly used from an inconsistent formula. To cope with
this problem, we adhere to thecoherence-based approach to incon-
sistency handling. Pieces of information are represented byproposi-
tional stratified belief bases(SBB for short), i.e., finite sets of propo-
sitional formulas equipped with a total pre-order which represents
the available preferences over the given beliefs.

Following [20], coherence-based nonmonotonic entailment can be
viewed as a two-step process: first, the preferred consistent subbases
of the given SBBB are characterized and then inference fromB is
defined as classical inference from some of the selected subbases.
Clearly enough, there are many ways to extend the given total pre-
order over formulas into a preference relation over sets of beliefs.
In this paper, four important subbases selection policies are consid-
ered [1], namely thepossibilisticpolicy, thelinear orderpolicy, the
inclusion-preferencepolicy and thelexicographicpolicy. Addition-
ally, several entailment principles can be defined [20, 3]; indeed, a
formula can be considered as a (nonmonotonic) consequence ofB
whenever it is a logical consequence of (1) all preferred subbases of
B (skeptical inference), or (2) at least one preferred subbase ofB
(credulous inference), or finally (3) when it can be credulously in-
ferred fromB but its negation cannot be (argumentative inference).
These three entailment principles have their own motivations and fea-
tures; among them,skeptical inferenceis the most rational relation
[9]. Consequently, the rest of the paper focuses on this relation.

A major drawback of inference from a SBB lays on its computa-
tional cost which makes it impractical for many instances. Thus an
important question is: how to circumvent the intractability of infer-
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ence from a SBB in order to enlarge the set of instances which can
be solved in practice?

In this paper, we propose to useknowledge compilationas a way
to improve inference from a SBB when many queries are to be con-
sidered. The key idea of compilation is pre-processing the fixed part
of the inference problem (the SBB under consideration). This SBB is
turned into a compiled one during an off-line compilation phase and
then the compiled SBB is used to answer on-line queries. Assuming
that the SBB does not often change and that answering queries from
the compiled SBB is computationally easier than answering them
from the original SBB, the compilation time can be balanced over
a sufficient number of queries. Several knowledge compilation tech-
niques for improving classical inference have been proposed so far
(see [6] for a survey). When compiled knowledge bases are consid-
ered and queries are CNF formulas, the complexity of classical in-
ference falls fromcoNP-complete down toP. While none of these
techniques can ensure that the objective of enhancing inference is
reached in the worst case (because the size of the compiled form can
be exponentially larger than the size of the original knowledge base),
experiments have shown such approaches valuable in many practical
situations.

In the following, we show how such compilation techniques for
classical inference from knowledge bases can be used to possibly
improve sophisticated nonmonotonic inference from SBBs. Interest-
ingly, any equivalence-preserving knowledge compilation technique
can be used and the given stratification of beliefs can change without
requiring the SBB to be re-compiled from scratch. Clearly enough,
such a compilation approach can prove helpful only if the complex-
ity of inference from a compiled SBB is lower than the complexity of
inference from the original SBB. That is why it is important to iden-
tify the complexity pattern. We achieve it, focusing on four different
knowledge compilation functions found in the literature.

2 Formal Preliminaries

PROPPS denotes the propositional language built up from a denu-
merable setPS of symbols, the boolean constantstrue andfalse,
and the connectives in the standard way.V ar(Σ) denotes the set of
propositional variables occurring inΣ. The size of a formulaΣ from
PROPPS , noted|Σ|, is the number of signs (symbols and connec-
tives) used to write it. For every subsetV of PS, LV is the set of
literals built up from the propositional symbols ofV . A negative lit-
eral is a literal of the form¬x, wherex ∈ PS.

Formulas are interpreted in the classical way. Every finite setΣ
of formulas is interpreted conjunctively.card(Σ) denotes the cardi-
nal of Σ. A Krom formula is a CNF formula in which every clause
contains at most two literals. A formula is Horn CNF iff it is a CNF
formula s.t. every clause in it contains at most one positive literal.
A renamable Horn CNF formulaΣ is a CNF formula which can be
turned into a Horn CNF formula by substituting in a uniform way in
Σ some literals ofLV ar(Σ) by their negation.



We assume that the reader is familiar with some basic notions of
computational complexity, especially the complexity classesP, NP,
andcoNP, and the classes∆p

k, Σp
k andΠp

k of the polynomial hierar-
chyPH (see [19] for details).∆p

2[O(log n)] is the class of problems
which can be decided using only logarithmically many calls to anNP
oracle. Let us recall that a decision problem is said at thekth level
of PH iff it belongs to∆p

k+1, and is eitherΣp
k-hard orΠp

k-hard. It is
strongly believed thatPH does not collapse (at any level), i.e., is a
truly infinite hierarchy (for every integerk, PH 6= Σp

k).

3 Inference from Stratified Belief Bases

Let us first define what a SBB is:

Definition 3.1 (stratified belief bases)A stratified belief base
(SBB)B is an ordered pairB = 〈∆,≤〉, where∆ = {φ1, . . . , φn}
is a finite set of formulas fromPROPPS and≤ is a total pre-order
over∆. Every subsetS of ∆ is asubbaseof B.

It is equivalent to defineB as a finite sequence(∆1, . . . , ∆k) of
subbases of∆, where each∆i (i ∈ 1 .. k) is the non-empty set
which contains all the minimal elements of∆ \ (

⋃i−1

j=1
∆j)

3 w.r.t.
≤. Clearly enough,{∆1, . . . , ∆k} is a partition of∆. Each subset
∆i (i ∈ 1 .. k) is called astratumof B, andi is the priority level
of each formula of∆i. Intuitively, the lowest the priority level of a
formula the highest its plausibility. Given a subbaseS of B, we note
Si (i ∈ 1 .. k) the subset ofS defined bySi = S ∩∆i.

In the following, we assume that∆1 is a consistent set contain-
ing all the certain beliefs (i.e., the pieces ofknowledge) of ∆. This
assumption can be done without loss of generality since when no cer-
tain beliefs are available, it is sufficient to addtrue to∆ as its unique
minimal element w.r.t.≤. Accordingly, a SBBB = (∆1, . . . , ∆k) is
a “standard” consistent knowledge base whenk = 1, a supernormal
default theory without prioritization whenk = 2, and a supernormal
default theory with priorities in the general case [5].

There are several ways to use the information given by a SBB
corresponding to several epistemic attitudes. Following Pinkas and
Loui’s analysis [20], inference from a SBBB is considered as a two-
step process, consisting first in generating some preferred consistent
subbases ofB and then using classical inference from some of them.
Many policies (or generation mechanisms) for the selection of pre-
ferred consistent subbases can be defined. In formal terms, a policy
P is a mapping that associates to every SBBB a setBP consisting
of all the preferred consistent subbases ofB w.r.t.P. In the follow-
ing, four policies are considered: thepossibilisticpolicy, the linear
order policy, the inclusion-preferencepolicy, and thelexicographic
policy.

Definition 3.2 (selection policies)
LetB = (∆1, . . . , ∆k) be a SBB.

• The setBPO of all the preferred subbases ofB w.r.t. the possi-
bilistic policy is the singleton{

⋃s−1

i=1
∆i}, wheres is the smallest

index (1 ≤ s ≤ k) s.t.
⋃s

i=1
∆i is inconsistent.

• The setBLO of all the preferred subbases ofB w.r.t. the linear
order policy is the singleton{

⋃k

i=1
∆′i}, where∆′i (i ∈ 1..k) is

defined by∆′i = ∆i if ∆i ∪
⋃i−1

j=1
∆′j is consistent,∅ otherwise.

• The setBIP of all the preferred subbases ofB w.r.t. the inclusion-
preference policy is{S ⊆ ∆ s.t.S is consistent and∀S′ ⊆ ∆ s.t.
S′ is consistent,∀i ∈ 1..k ((∀j < i(S′j = Sj)) ⇒ Si 6⊂ S′i)}.

• The setBLE of all the preferred subbases ofB w.r.t. the lexico-
graphic policy is{S ⊆ ∆ s.t.S is consistent and∀S′ ⊆ ∆ s.t.

3 By convention,
⋃0

j=1
∆j = ∅.

S′ is consistent,∀i ∈ 1..k ((∀j < i(card(S′j) = card(Sj))) ⇒
card(Si) 6< card(S′i))}.

All preferred subbasesS of B (w.r.t. any of the above policy)
are (by construction) consistent sets. Moreover, since∆1 is assumed
consistent, we always have∆1 ⊆ S. Unlike BPO andBLO, every
elementS of BIP (or BLE ) always is a maximal (w.r.t.⊆) consis-
tent subbase ofB. To be more precise, we haveBLE ⊆ BIP ⊆ B⊆,
whereB⊆ = {S ⊆ ∆ s.t.S is consistent,∆1 ⊆ S, and∀φ ∈ ∆\S,
S ∪ {φ} is inconsistent} is the set of all maximal (w.r.t.⊆) con-
sistent subbases ofB. It is worth noting that givenB⊆, bothBIP
andBLE can be computed in polynomial time (just filter out the pre-
ferred elements w.r.t. the chosen selection policy). The elements of
BIP correspond to the so-called preferred subtheories of [5].

Given a selection policy, several entailment principles can be
considered, especially credulous inference, argumentative inference,
skeptical inference. Among them, we specifically focus on skeptical
reasoning which is the most rational one [9].

Definition 3.3 (skeptical inference) Let B = (∆1, . . . , ∆k) be a
SBB,P a policy for the generation of preferred subbases, andΨ a
formula fromPROPPS . Ψ is askeptical consequenceof B w.r.t.P,
notedB|∼P∀ Ψ, iff ∀S ∈ BP , S |= Ψ.

Unfortunately, whatever the selection policy among{|∼PO∀ , |∼LO∀
, |∼IP∀ , |∼LE∀ }, skeptical inference is not tractable (under the standard
assumptions of complexity theory).

Definition 3.4 (FORMULA |∼P∀ )
Let |∼P∀ be any inference relation among{|∼PO∀ , |∼LO∀ , |∼IP∀ , |∼LE∀ }.
FORMULA |∼P∀ is the following decision problem:
• Input: A SBB B = (∆1, . . . , ∆k) and a formulaΨ from

PROPPS .
• Query: DoesB|∼P∀ Ψ hold?

CLAUSE |∼P∀ (resp.LITERAL |∼P∀ ) is the restriction ofFORMULA

|∼P∀ to the case whereΨ is required to be a CNF formula (resp. a
term).

The following complexity results can be found in the literature4

(see Theorem 8 from [17] (or Corollary 1 from [8]), Theorems 5.17
and 6.5 from [18], Theorem 15 from [16]).

Proposition 3.1 (skeptical inference from SBBs)
The complexity ofFORMULA |∼P∀ from a SBB and of its restrictions to
clause and literal inference forP ∈ {PO,LO, IP,LE} is reported
in Table 1.

P FORMULA / CLAUSE / LITERAL |∼P∀
PO ∆p

2[O(log n)]-complete
LO ∆p

2-complete
IP Πp

2-complete
LE ∆p

2-complete

Table 1. Complexity of skeptical inference from SBBs (general case).

4 Knowledge Compilation

Knowledge compilation(see [6] for a survey) gathers several tech-
niques which prove helpful in the objective of improving inference,
in particular clause deduction [23], but also diagnosis, planning, be-
lief revision, etc [14]. In the following, we focus on knowledge com-
pilation techniques for improving classical inference, i.e., for making
the following decision problem easier:
4 Actually, previous complexity results typically concern theFORMULA |∼P∀

problem. Nevertheless, it is easy to modify the corresponding hardness
proofs to show that the complexity lower bounds are also valid for both
the correspondingCLAUSE |∼P∀ andLITERAL |∼P∀ problems.



Definition 4.1 (FORMULA |=)
FORMULA |= is the following decision problem:
• Input: Two formulasΣ andΨ fromPROPPS

• Query: DoesΣ |= Ψ hold?

CLAUSE |= (resp.LITERAL |=) is the restriction ofFORMULA |=
to the case whereΨ is required to be a CNF formula (resp. a term).

Existing researches about knowledge compilation can be split into
two categories. The first category gathers theoretical works about
compilability, which indicates whether the objective can be expected
to be reached in the worst case by focusing on the size of the com-
piled form (see e.g., [7, 14]). Indeed, if the size of the compiled form
is exponentially larger than the size of the original KBΣ, significant
computational improvements are hard to be expected. Accordingly,
some decision problems are compilable, while others are probably
not compilable (i.e., not compilable under the standard assumptions
of the complexity theory). Thus,LITERAL |= is compilable while
bothFORMULA |= andCLAUSE |= are (probably) not compilable5.

The second category contains works that are much more ori-
ented towards the design of compilation algorithms and their em-
pirical evaluations. Thus, among others, [21, 13, 15, 22, 4, 12]
present equivalence-preserving knowledge compilation methods for
clause deduction. All these methods aim at computing a formula
COMP (Σ) equivalent toΣ, and from whichCLAUSE |= belongs
to P. Stated otherwise, compilingΣ consists in turning it into a for-
mula belonging to a tractable class for clause deduction.

Abusing words, a formula ofPROPPS is said|=-tractable when
it belongs to such a tractable class of formulas. Considering|=-
tractable KBΣ is helpful for theCLAUSE |= problem, since deter-
mining whether a clause is entailed by a|=-tractable KBΣ can be
achieved in polynomial time, while the problem iscoNP-complete
when Σ is unconstrained. In the rest of this paper, the following
tractable classes of formulas which are target classes for some ex-
isting compilation functions are considered:

• The Blakeclass is the set of formulas given in prime implicates
normal form,

• the DNF class is the set of formulas given in disjunctive normal
form (DNF),

• the Horn coverclass is the set of disjunctions of Horn CNF for-
mulas,

• the renamable Horn coverclass is the set of disjunctions of re-
namable Horn CNF formulas.

The Blake class (resp. the DNF class) is the target class of the com-
pilation function described in [21] (resp. in [22]). The Horn cover
class and the renamable Horn cover class are target classes for the
tractable covers compilation functions given in [4]. Of course, all
these compilation functionsCOMP are subject to the limitation
explained above: in the worst case, the size of the compiled form
COMP (Σ) is exponential in the size ofΣ. Nevertheless, there is
some empirical evidence that some of these approaches can prove
computationally valuable for many instances of theCLAUSE |= prob-
lem (see e.g., the experimental results given in [22, 4]).

5 Compiling Stratified Belief Bases

In the following, we will only consider compiled SBBs, i.e., SBBs
in which the certain beliefs form a|=-tractable formula and all the

5 The existence of an equivalence-preserving compilation functionCOMP
s.t. it is guaranteed that for every propositional CNF formulaΣ, FORMULA
|= (resp.CLAUSE |=) from COMP (Σ) is in P and|COMP (Σ)| is poly-
nomially bounded in|Σ| would makeP = NP (just because determining
whether a formula is valid iscoNP-complete) (resp. the polynomial hierar-
chy to collapse at the second level (see [23, 6] for more details)).

remaining beliefs are represented by literals:

Definition 5.1 (compiled SBBs)A SBB B = (∆1, . . . , ∆k) is
compilediff ∆1 is |=-tractable and

⋃k

i=2
∆i ⊆ LPS .

Interestingly, for every SBB, there exists an equivalent compiled
SBB with equivalence defined as:

Definition 5.2 (equivalence of SBBs)Let B = (∆1, . . . , ∆k) and
B′ = (∆′1, . . . , ∆′l) be two SBBs. LetV be a subset ofPS andP
a selection policy.B and B′ are equivalenton V w.r.t. P iff there
exists a bijectionβ fromBP to B′P s.t. for everyS ∈ BP and every
formulaΨ fromPROPV , S |= Ψ iff β(S) |= Ψ.

Let us now show how any equivalence-preserving knowledge
compilation function can be used to compile a SBB.

Definition 5.3 (compiling SBBs) Let B = (∆1, . . . , ∆k) be a
SBB (with∆ =

⋃k

i=1
∆i) and let COMP be any equivalence-

preserving compilation function (for clause deduction). Without loss
of generality, let us assume that every stratum∆i (i ∈ 1 .. k) of B is
totally ordered (w.r.t. any order) and let us noteφi,j thejth formula
of ∆i w.r.t. this order.
The SBBCOMP (B) = (χ1, . . . , χk) whereχi = {newi,1, . . . ,
newi,card(∆i)} for i ∈ 2 .. k, eachnewi,j ∈ LPS \ LV ar(∆), and

χ1 = COMP (∆1 ∪ (
⋃k

i=2
{
∧card(∆i)

j=1
(newi,j ⇒ φi,j)})) is the

compilationof B w.r.t. COMP .

This transformation basically consists in giving a name (under the
form of a new literal) to each assumption of∆ and in storing the cor-
respondance assumption/name with the certain beliefsbeforecom-
piling them for clause deduction. As an important fact, our compi-
lation approach does not question equivalence on the original lan-
guage.

Proposition 5.1 (equivalence preservation)Let B = (∆1, . . . ,

∆k) be a SBB (with∆ =
⋃k

i=1
∆i) and let COMP be any

equivalence-preserving compilation function (for clause deduction).
COMP (B) is a compiled SBB equivalent toB on V ar(∆) w.r.t.
P ∈ {PO,LO, IP,LE}.

The motivation for our definition of compiled SBBsB relies on
the fact that making|=-tractable every formula of∆ is not suffi-
cient for improvingCLAUSE |∼P∀ in the general case. Indeed, form-
ing preferred subbases ofB requires to check the consistency of
conjunctions of such formulas and|=-tractable formulas do not mix
well w.r.t. conjunction as far as computational complexity is con-
cerned. For instance, determining whether a finite set of clauses con-
taining only Horn CNF clauses and Krom clauses is consistent is
NP-complete. More specifically, tractable classes of formulas are
typically not closed under conjunction (especially, for all the four
tractable classes considered in this paper), and the existence of a
polytime algorithm that would turn the conjunction of two input for-
mulas of a given tractable class into one equivalent formula from that
class is hard to be expected. Contrastingly, because every assumption
from

⋃k

i=2
∆i is a literal, and whatever the compilation function

used to compile∆1 is, the consistency of any subbase of a com-
piled SBBB which contains∆1 can be checked in polynomial time.
Thus, any equivalence-preserving compilation function can be used
for compiling a SBB. Since many of the existing compilation func-
tions have no comparable computational behaviours (each of them
performs better than the others on some instances), such a flexibility
is a major advantage.



6 Complexity of Inference from Compiled SBBs

The purpose of compiling a SBB is to enhance inference from it. This
objective can be achieved only if (1) the size of the compiled SBB
is not exponentially larger than the size of the original SBB, and
(2) inference from the compiled SBB is easier than inference from
the original SBB. Because every inference relation considered in this
paper is supra-classical (just consider SBBs for which∆ = ∆1),
the compilability limitations for bothFORMULA |= andCLAUSE |=
also apply for these more sophisticated forms of inference: it is not
granted that the size of the compilation of a SBB remains polynomial
in the size of the original SBB, whatever the compilation function is.
Let us stress that these limitations not only concern the compilation
technique proposed in this paper, but any conceivable preprocessing
of SBBs. Because some of these functions have empirically proved
their computational value, we can nevertheless expect computational
benefits for many instances. In this section, we show the extent to
which (2) can be achieved, depending on the inference relation under
consideration, the nature of the query (formula, clause, literal) and
the compilation functionCOMP used.

We have identified the following complexity results:

Proposition 6.1 (skeptical inference from compiled SBBs)
The complexity ofFORMULA |∼P∀ and of its restrictions to clause and
literal inference forP ∈ {PO,LO, IP,LE} from a compiled SBB
is reported in Table 2.

P FORMULA |∼P∀ CLAUSE / LITERAL |∼P∀
PO coNP-complete in P
LO coNP-complete in P
IP coNP-complete coNP-complete
LE ∆p

2-complete ∆p
2-complete

Table 2. Complexity of skeptical inference from compiled SBBs.

Proposition 6.1 shows that compiling a SBB can actually make
inference computationally easier. Actually, compiling makes all in-
ference relations considered in this paper easier, except|∼LE∀ .

Within Proposition 6.1, no assumption on the nature of the com-
piled SBB has been done. In order to possibly obtain tractability re-
sults for inference w.r.t. theIP policy and theLE policy, restricted
compiled SBBs must be considered. In the following, we focus on
compiled SBBs of the formCOMP (B) whereCOMP is a compi-
lation function which maps any propositional formula into a Blake,
DNF, Horn cover or renamable Horn cover formula.

Proposition 6.2 (skeptical inference w.r.t.IP from COMP (B))
The complexity ofFORMULA |∼IP∀ and of its restrictions to clause
and literal inference from compiled SBBsCOMP (B) is reported
in Table 3.

COMP FORMULA |∼IP∀ CLAUSE / LITERAL |∼IP∀
Blake coNP-complete coNP-complete
DNF coNP-complete in P

Horn cover coNP-complete coNP-complete
renamable Horn cover coNP-complete coNP-complete

Table 3. Complexity of skeptical inference w.r.t.IP from COMP (B).

Proposition 6.3 (skeptical inference w.r.t.LE from COMP (B))
The complexity ofFORMULA |∼LE∀ and of its restrictions to clause
and literal inference from compiled SBBsCOMP (B) is reported
in Table 4.

COMP FORMULA |∼LE∀ CLAUSE / LITERAL |∼LE∀
Blake ∆p

2-complete ∆p
2-complete

DNF coNP-complete in P
Horn cover ∆p

2-complete ∆p
2-complete

renamable Horn cover ∆p
2-complete ∆p

2-complete

Table 4. Complexity of skeptical inference w.r.t.LE from COMP (B).

Tractability is only achieved for compiled SBBs for which∆1 is a
DNF formula and queries are restricted to CNF formulas. Especially,
all the hardness results presented in Tables 3 and 4 still holds in the
specific case in which the number of strata under consideration satis-
fiesk ≥ 2. Intractability results w.r.t. both|∼IP∀ and|∼LE∀ still hold
when∆1 is a consistent Krom formula (such formulas are renamable
Horn and can be turned in polynomial time into Blake normal form),
or when∆1 is a Horn CNF formula.

Interestingly, imposing some restrictions on the literals used to
name assumptions enables us to derive tractable restrictions for both
CLAUSE |∼IP∀ andCLAUSE |∼LE∀ from a compiled SBB where∆1 is
a Horn cover formula. Indeed, we have:

Proposition 6.4 (tractable restrictions)
CLAUSE |∼IP∀ and CLAUSE |∼LE∀ from a compiled SBBB = (∆1,

. . . , ∆k) where∆1 is a Horn cover formula and
⋃k

i=2
∆i contains

only negative literals are inP.

Due to space limitations, we cannot give all complexity proofs6.
So let us just focus on tractability results. Actually, in all the tractable
cases listed above,B⊆ can be computed in time polynomial in|B|
thanks to the following lemma:

Lemma 6.1 LetB = (∆1, . . . , ∆k) be a SBB with∆ =
⋃k

i=1
∆i.

We have:
• If ∆1 = {α1 ∨ . . . ∨ αn} where eachαi (i ∈ 1 .. n) is a

formula fromPROPPS , thenB⊆ = {∆1 ∪ (S ∩ ∆) | S ∈
max⊆(

⋃n

i=1
({αi},

⋃k

j=2
∆j)⊆).

• If α is a term and
⋃k

j=2
∆j contains only literals, orα is a Horn

CNF formula and
⋃k

j=2
∆j contains only negative literals, then

({α},
⋃k

j=2
∆j)⊆ is the singleton

{{α} ∪ {φ ∈
⋃k

j=2
∆j | α 6|= ¬φ}}.

WhenB = (∆1, . . . , ∆k) is s.t.∆1 is a DNF (resp. a Horn cover
formula) and

⋃k

i=2
∆i contains only literals (resp. negative literals),

every elementS of B⊆ can be turned into a DNF (resp. a Horn cover
formula) in polynomial time. Moreover, filtering outBIP (or BLE )
from B⊆ can be done in polynomial time.

Since the transformation reported in Definition 5.3 does not re-
quire any constraint on the literals used to name beliefs, negative lit-
erals can be used. Accordingly, it is possible to compile any SBB so
as to make bothCLAUSE |∼IP∀ andCLAUSE |∼LE∀ tractable from the
compiled form. Of course, this is already achieved by only requir-
ing ∆1 to be a DNF formula. However, while every DNF formula
is a Horn cover formula, the converse typically does not hold and
the Horn cover class can prove much more compact as a represen-
tation formalism (some DNF formulas can be represented by Horn
cover formulas the sizes of which are logarithmically lower but the
converse does not hold7).

Let us ask Omer the emu for an illustration of Lemma 6.1 (Omer
is an emu, every emu is a bird, normally, emus do not fly, normally,
birds fly). Formally, letB = (∆1, ∆2, ∆3) with:

6 Some of them are easy consequences of results reported in [10, 18, 11].
7 For instance, the size of the smallest DNF formula equivalent to the Horn

cover formula
∧m

i=1
(¬x2i ∨ ¬x2i+1) is Ω(2m).



∆1 = {emu(Omer), (emu(Omer) ⇒ bird(Omer))},
∆2 = {emu(Omer) ⇒ ¬fly(Omer)}, and
∆3 = {bird(Omer) ⇒ fly(Omer)}.

The stratification used here reflects the fact that most specific
beliefs are preferred (exceptional emus are rarer than exceptional
birds). B can be turned into the following compiled SBBB′ =
(∆′

1, ∆
′
2, ∆

′
3) using Horn cover compilation:

∆′
1 = {(fly(Omer) ∧ emu(Omer) ∧

(emu(Omer) ⇒ bird(Omer)) ∧
(emu(Omer) ⇒ Emusfly(Omer))) ∨
(¬fly(Omer) ∧ emu(Omer) ∧
(emu(Omer) ⇒ bird(Omer)) ∧
(bird(Omer) ⇒ Birdsdon′tfly(Omer))}
∆′

2 = {¬Emusfly(Omer)},
∆′

3 = {¬Birdsdon′tfly(Omer)}.

Here,¬Emusfly(Omer) and¬Birdsdon′tfly(Omer) are the
new literals used to name (uncertain) beliefs before compilation.
From this compiled SBB,B′

⊆ can be derived in polynomial time as:

{∆′
1∪{¬Birdsdon′tfly(Omer)}, ∆′

1∪{¬Emusfly(Omer)}}.

By construction, each of the two elements ofB′
⊆ is a Horn CNF

formula. Only the latter one is preferred w.r.t.IP (orLE), enabling
us to conclude the desired result (Omer doesn’t fly).

7 Related Work and Conclusion

In this paper, we have shown how knowledge compilation techniques
can be used to compile SBBs in order to make skeptical inference
more efficient. Through a complexity analysis, we have demonstrated
that improvements can be expected (as long as the size of the com-
piled form remains “small enough”) for all the selection policies un-
der consideration, exceptLE . Focusing on four compilation func-
tions found in the literature, tractable fragments have also been ex-
hibited for bothIP andLE .

Our approach for compiling a SBBB can be favourably com-
pared with the basic compilation approach that consists in comput-
ing BP (reducing inference to deduction, hence making it “only”
coNP-complete in the general case). Like ours, this approach cannot
be achieved in polynomial time in the general case (BP can easily
contain exponentially many elements whenP ∈ {IP,LE}). How-
ever, our transformation is much more flexible. On the one hand,
many knowledge compilation functions can be used within it (and
some of them may achieve the objective of keeping the size “small
enough”). On the other hand,BP cannot be computed incrementally
in the general case since removed pieces of belief can reappear later
on; indeed, starting fromBP only, it is not always possible to com-
pute the preferred subbases of a SBBB extended with a new formula.
Our approach does not suffer from this drawback. In the same vein,
re-partitionning8 the SBB requiresBP to be re-computed (which is
very time-consuming in general). No re-compilation is mandatory in
our approach. Finally, it is obvious that, in the general case, there is
no guarantee that every element ofBP is |=-tractable, while this is
ensured by our approach.

There are many works concerned with reasoning from an incon-
sistent SBB, and our approach is related to many of them. Among
the closer approaches is [10] which provides several complexity re-
sults for inference from SBBs (and we used some of them in our
hardness proofs). This paper also gives a BDD-based algorithm for
|∼LE∀ inference; since a BDD is nothing but a compact representa-

8 When designing a SBB, it is not always easy to put each piece of belief into
the right stratum without making some adjustments. Hence, the capacity of
re-partionning a SBB “for free” is valuable.

tion of a DNF formula, Lemma 6.1 shows how such an algorithm
could be extended to deal with other selection policies based onB⊆.
Let us finally mention [2] which presents a compilation approach
for SBB. This approach consists in turning the given SBB into an
equivalent one which has only one preferred subbase (not necessar-
ily |=-tractable). This makes this approach complementary to ours.
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