
Representing Policies for Quantified Boolean Formulae
Sylvie Coste-Marquis∗

CRIL — Univ. d’Artois, Lens, France

Hélène Fargier and Jérôme Lang
IRIT — Univ. Paul Sabatier, Toulouse, France

Daniel Le Berre∗ and Pierre Marquis ∗

CRIL — Univ. d’Artois, Lens, France

Abstract

The practical use of Quantified Boolean Formulae
(QBFs) often calls for more than solving the validity
problemQBF. For this reason we investigate the cor-
responding function problems whose expected outputs
are policies. QBFs which do not evaluate to true do
not have any solution policy, but can be of interest nev-
ertheless; for handling them, we introduce a notion of
partial policy. We focus on the representation of poli-
cies, considering QBFs of the form∀X ∃Y Φ. Because
the explicit representation of policies for such QBFs can
be of exponential size, descriptions as compact as pos-
sible must be looked for. To address this issue, two ap-
proaches based on the decomposition and the compila-
tion of Φ are presented.

Introduction
A Quantified Boolean Formula (QBF) consists of a classi-
cal propositional formula, called the matrix of the QBF, to-
gether with an ordered partition of its variables, correspond-
ing to quantifier alternations, called the prefix of the QBF.
Formally, such a QBF is closed, polite and prenex. Since
the validity problem for any QBF can be reduced in poly-
nomial time to the validity problem for a closed, polite and
prenex QBF, we focus on such QBFs in the following. For
instance,∃{a} ∀{b, d} ∃{c} ((a∧¬c) → (b∧ d)) is a QBF.
Any (closed) QBF evaluates to true or false; it evaluates to
true if and only if the corresponding statement where quan-
tifiers on variables bear actually on thetruth valuesof these
variables, holds, and in that case the QBF is said to bevalid
(as it is the case for the latter instance).QBF is the decision
problem consisting in determining whether a given QBF is
valid. It is the canonicalPSPACE-complete problem.

Solving the decision problemQBF has become for a few
years an important research area in AI. Several explanations
for this can be provided, including the fact that many AI
problems whose complexity is located inPSPACE can be
reduced toQBF and then solved byQBF solvers (see e.g.,
(Egly et al. 2000; Fargier, Lang, & Marquis 2000; Rintanen

∗This work is supported by the IUT de Lens, the Région
Nord/Pas de Calais through the IRCICA Consortium and the CO-
COA Project, and by the European Community FEDER Program.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1999a; Pan, Sattler, & Vardi 2002; Besnardet al. 2005));
furthermore, there are some empirical evidences from vari-
ous AI fields (including among others planning, nonmono-
tonic reasoning, paraconsistent inference) that a translation-
based approach can prove more “efficient” than domain-
dependent algorithms dedicated to such AI tasks. Accord-
ingly, manyQBF solvers have been developed for the past
few years (see among others (Cadoli, Giovanardi, & Schaerf
1998; Rintanen 1999b; Feldmann, Monien, & Schamberger
2000; Rintanen 2001; Giunchiglia, Narizzano, & Tacchella
2001; Letz 2002; Zhang & Malik 2002; Benedetti 2005b;
GhasemZadeh, Klotz, & Meinel 2004; Pan & Vardi 2004;
Audemard & Säıs 2004) and three QBF evaluations have
been organized (Le Berre, Simon, & Tacchella 2003; Le
Berreet al. 2004; Narizzano, Pulina, & Tacchella 2006).

Obviously, QBFs can be viewed as planning problems un-
der incomplete knowledge and feedback as well as sequen-
tial two-player games with complete information. For in-
stance,∃{a}∀{b}∃{c}∀{d}Φ represents a game with two
playersP∀ and P∃, playing alternatively by assigning a
propositional variable:P∃ starts by assigning a value toa,
thenP∀ assigns a value tob, etc. The goal ofP∃ is to haveΦ
satisfied at the end of the game: thus,∃{a}∀{b}∃{c}∀{d}Φ
is a positive instance ofQBF if and only if there exists a
winning strategy forP∃. When the game is understood as
a game against nature (or as a planning problem with non-
deterministic actions or exogenous events), instantiations of
existentially (respectively universally) quantified variables
correspond to plays by the agent (respectively by nature),
and winning strategies are policies (or conditional plans).
Clearly enough, when QBFs are used to represent such prob-
lems, what is expected is more than simply solvingQBF.
Indeed, solving the decision problem only enables telling
whether there exists a winning strategy or a valid plan; in
practice, one would also like to determine such a plan (that
we call asolution policy) or at least, an approximation of
it. Therefore, the aim becomes solving thefunction problem
associated with QBFs, denoted byFQBF.

While this function problem is nothing really new – it
has been considered before in (Kleine Büning, Subramani,
& Zhao 2003; Liberatore 2005), as well as in (Chen 2004)
in the close framework of quantified constraint satisfaction
problems (QCSPs) – this paper investigates new issues.
First, when no solution policy exists, we search forpar-

tial policieswhich solve the problem “as much as possible”.
Then, we introducerepresentation schemesof such policies.
Lastly, we investigate the search forcompact policies, fo-
cusing on QBFs of the form∀X ∃Y Φ. Because the explicit
representation of policies for such QBFs can be of exponen-
tial size, descriptions as compact as possible are looked for.
This issue is addressed by two approaches, based respec-
tively on thedecompositionand thecompilationof Φ.

The rest of the paper is organized as follows. First, some
formal preliminaries are provided. Then, we define several
notions of policies for QBFs: total policies, partial policies,
sound and maximal sound policies. Then, we focus on the
problem of representing policies, and we present two ap-
proaches for representing and exploiting policies for QBFs
of the form∀X ∃Y Φ. Finally, we discuss some related
work before concluding the paper.

Formal Preliminaries
In the following, PROPPS denotes the propositional lan-
guage built up from a finite setPS of symbols, the usual
connectives¬, ∨, ∧, →, ↔ and the Boolean constants>,
⊥ in the standard way.V ar(Σ) is the set of symbols from
PS occurring in formulaΣ. ~x is an instantiation of vari-
ables fromX ⊆ PS (also referred to as anX-instantiation)
and2X is the set of all possibleX-instantiations. Thus, if
X = {a, b, c}, ~x = (a,¬b, c) is anX-instantiation. IfX
andY are two disjoint subsets ofPROPPS , (~x, ~y) is the
concatenation of~x and~y: in this instantiation, each variable
of X (respectivelyY) takes the value indicated by~x (respec-
tively ~y). |= denotes entailment and≡ denotes equivalence.

For Φ ∈ PROPPS and~x ∈ 2X , we denote byΦ~x the
formula obtained by conditioningΦ by ~x; this formula is
obtained fromΦ by replacing occurrences of each variable
x from X by> (respectively⊥) if x ∈ ~x (respectively¬x ∈
~x).

Definition 1 (quantified boolean formula) Letk be a pos-
itive integer andq ∈ {∃,∀}. A quantified boolean formula
(QBF) is a (k + 3)-uple P = 〈k, q,Xk, ...,X1,Φ〉 where
{X1, ...,Xk} is a partition of the set of propositional vari-
ables occurring inΦ ∈ PROPPS . k is the rank ofP andq
the first quantifier of its prefix.

Example 1
〈2,∀, {a, b}, {c}, (a ∨ b) ∧ (a → c) ∧ (b ∨ c)〉 is a QBF.

Example 2
〈3,∃, {a}, {b}, {c, d}, (a → (c∧d))∧ (b ↔ ¬c)〉 is another
QBF.

In theory, there is no need to specify the rankk, since it
can be determined from the number of elements ofP . How-
ever, we keep it for the sake of readability. For similar rea-
sons, we also denote QBFsP = 〈k, q,Xk, ...,X1,Φ〉 in the
following way:

∃Xk∀Xk−1 . . . ∀X1Φ if q = ∃ andk is even;
∃Xk∀Xk−1 . . . ∃X1Φ if q = ∃ andk is odd;
∀Xk∃Xk−1 . . . ∃X1Φ if q = ∀ andk is even;
∀Xk∃Xk−1 . . . ∀X1Φ if q = ∀ andk is odd.

QBFk,q is the set of all QBFs of rankk and first quantifier
q. We also notelast(k, q) the innermost quantifier of the

considered QBF and|∃(k, q)| (resp.|∀(k, q)|) the number of
groups of existential (resp. universal) quantifiers of the QBF.
We now define formally the decision problemQBF through
its positive instances:

Definition 2 (QBF) P = 〈k, q,Xk, ...,X1,Φ〉 is a positive
instance ofQBF if and only if one of the following conditions
is true:

1. k = 0 andΦ ≡ >;

2. k ≥ 1 and q = ∃ and there exists anXk-instantiation
~xk ∈ 2Xk such that〈k − 1,∀,Xk−1, ...,X1,Φ ~xk

〉 is a
positive instance ofQBFk−1,∀ ;

3. k ≥ 1 andq = ∀ and for eachXk-instantiation
~xk ∈ 2Xk , 〈k − 1,∃,Xk−1, . . . ,X1,Φ ~xk

〉 is a positive
instance ofQBFk−1,∃ .

In this definition,QBFk,q is the subproblem ofQBF where
only formulae from QBFk,q are considered.

Example 1 (continued).
〈2,∀, {a, b}, {c}, (a∨b)∧(a → c)∧(b∨c)〉 is not a positive
instance ofQBF.

Example 2 (continued).
〈3,∃, {a}, {b}, {c, d}, (a → (c ∧ d)) ∧ (b ↔ ¬c)〉 is a posi-
tive instance ofQBF.

While QBF is the canonicalPSPACE-complete problem,
QBFk,∃ (resp. QBFk,∀) is the canonicalΣp

k-complete (resp.
Πp

k-complete) problem. In particular,QBF1,∃ (resp.QBF1,∀)
coincides with the satisfiability problemSAT (resp. the va-
lidity problemVAL).

Policies

Intuitively, a policy is a function mapping instantiationsof
each group of universally quantified variables into instantia-
tion of the group of existentially quantified variables imme-
diately following it.

Definition 3 (total policy) The setTP (k, q,Xk, ...,X1) of
total policiesfor QBFs from QBFk,q is defined inductively
as follows:

• TP (0, q) = {λ};

• TP (k,∃,Xk, ...,X1)
= {~xk ;πk−1 | πk−1 ∈ TP (k − 1,∀,Xk−1, ...,X1)};

• TP (k,∀,Xk, ...,X1)
= 2Xk → TP (k − 1,∃,Xk−1, ...,X1).

λ represents theempty policy. The operator “;” repre-
sents the sequential composition of policies.π;λ is typi-
cally abbreviated asπ. 2Xk → TP (k − 1,∃,Xk−1, ...,X1)
denotes the set of all total functions from2Xk to TP (k −
1,∃,Xk−1, ...,X1).

In particular, one can check that:

• a policy ofTP (1,∃,X1) has the form(~x1;λ), i.e.,~x1 (an
X1-instantiation);

• TP (1,∀,X1) is reduced to a unique policy: the constant
functionλX1

= {~x1 7→ λ | ~x1 ∈ 2X1} which maps any
X1-instantiation toλ;1

• a policy ofTP (2,∃,X2,X1) has the form(~x2 ;λX1
);

• a policy ofTP (2,∀,X2,X1) is a total function from2X2

to 2X1 .

Example 3
A total policy of TP (3,∃, {e, f}, {a, b}, {c, d}) is: π =
(e,¬f);π′, where

π′((¬a,¬b)) = (c, d);

π′((¬a, b)) = (c, d);

π′((a,¬b)) = (¬c, d);

π′((a, b)) = (¬c, d).

Intuitively, performingπ consists in first instantiatinge to
true andf to false, then observing the values taken bya and
b and then acting consequently,i.e., instantiatingc andd to
true if a is false, orc to false andd to true otherwise.

Definition 4 (satisfaction) A total policy π of
TP (k, q,Xk, ...,X1) satisfiesP = 〈k, q,Xk, ...,X1,Φ〉,
denoted byπ |= P , if and only if one of these conditions
holds:

• k = 0, π = λ, andΦ ≡ > ;
• k ≥ 1, q = ∃ andπ = (~xk;π′) with

π′ |= 〈k − 1,∀,Xk−1, ...,X1,Φ~xk
〉 ;

• k ≥ 1, q = ∀, and for all~xk ∈ 2Xk we have
π(~xk) |= 〈k − 1,∃,Xk−1, ...,X1,Φ~xk

〉.

Example 1 (continued).
There is no policy satisfying〈2,∀, {a, b}, {c}, (a∨b)∧(a →
c) ∧ (b ∨ c)〉.

Example 2 (continued).
〈3,∃, {a}, {b}, {c, d}, (a → (c∧d))∧(b ↔ ¬c)〉 is satisfied
by

π = ¬a;

[

(b) 7→ (¬c, d)
(¬b) 7→ (c, d)

]

.

The following result shows how positive instances ofQBF
and total policies for QBFs are related:

Proposition 1 (folklore) P = 〈k, q,Xk, ...,X1,Φ〉 is a
positive instance ofQBFk,q if and only if there exists a total
policy π ∈ TP (k, q,Xk, ...,X1) such thatπ |= P . Such a
π is called a solution policy forP .

This result is nothing really new and is proven easily; we
mention it because it enables us to define formally the func-
tion problemFQBF as follows:

Definition 5 (FQBF: function problem) Let P = 〈k, q,
Xk, ..., X1,Φ〉 be a QBF. Solving the function problem
FQBFk,q for P consists in finding a total policyπ such that
π |= P , if there exists any, and in stating that no solution
policy exists forP otherwise. We noteFQBF the function
problem associated to any QBF.

1~x1 7→ λ is another notation for(~x1, λ) which reflects in a
more salient way thatλX1

is a function (anyway, a function is a set
of pairs).

Now, asking for a solution policy is often too much de-
manding. For instance, let us consider the following exam-
ple.

Example 4
P = 〈2,∀, {a, b}, {c}, (a → c) ∧(b → ¬c)〉 is not valid be-
cause the instantiation(a, b) makesΦ unsatisfiable. IfP is
understood as a game against nature, instantiations of exis-
tentially (respectively universally) quantified variables cor-
respond to plays by the agent (respectively by nature), and
winning strategies are policies (or conditional plans). Thus,
if nature plays(a, b), the agent cannot do anything leading
to the satisfaction ofΦ. On the other hand, if nature plays
anything but(a, b) then the agentcando something satisfac-
tory, namely,(a,¬b) 7→ c, (¬a, b) 7→ ¬c, (¬a,¬b) 7→ c (or
¬c).

These policies are undefined for some possible instantia-
tions of groups of universally quantified variables, hence we
call thempartial policies:

Definition 6 (partial policy) The setPP (k, q,Xk, ...,X1)
of partial policiesfor QBFs fromQBFk,q is defined induc-
tively as follows:

• PP (0, q) = {λ,×} ;

• PP (1,∃,X1) = 2X1 ∪ {×} ;

• PP (1,∀,X1) = 2X1 → {λ,×} ;

• PP (k,∃,Xk, ...,X1)
= {~xk;πk−1 |πk−1 ∈ PP (k−1,∀,Xk−1, ..,X1)}∪{×};

• PP (k,∀,Xk, ...,X1)
= 2Xk → PP (k − 1,∃,Xk−1, ...,X1).

× represents failure. Any partial policy fromPP (k −
1, q,Xk−1, ..,X1) used to define a partial policyπ of rankk
along the definition above is called aninternal policyof π. It
is auniversal internal policywhenq = ∀, and anexistential
internal policyotherwise.

Observe that the set of partial policies for a givenQBFk,q

includes the set of total policies for that class of QBFs and
is finite.

With each partial policyπ we can associate a treeTπ: if π
is a policy ofPP (k, q,Xk, ...,X1) thenTπ is the tree whose
depth is equal to|∀(k, q)|, whose leaves are labelled by×,
λ or by instantiations ofX1 if last(k, q) = ∃ whose inter-
nal nodes (except the root) are labelled by instantiations of
groups of existentially quantified variables, and whose edges
are labelled by instantiations of groups of universally quanti-
fied variables. Such a tree representation for a partial policy
of example 1 is:

Example 1 (continued).
A partial policyπ1 for P = 〈2,∀, {a, b}, {c}, (a∨b)∧(a →
c) ∧ (b ∨ c)〉 is:

π1 =

(a, b) 7→ c
(¬a, b) 7→ c
(a,¬b) 7→ c
(¬a,¬b) 7→ ×

and can be represented by the tree:

c c c ×

ab ¬ab a¬b ¬a¬b

Clearly enough, one is not interested in any partial policy
for a given QBF, but only in sound ones:

Definition 7 (sound policy) A partial policyπ ∈ PP (k, q,
Xk, ..., X1) is soundfor P = 〈k, q, Xk, ..., X1, Φ〉 if and
only if one of these conditions is satisfied:

1. k = 0 and (π = × or (π = λ andϕ ≡ >));
2. q = ∃ andπ = ×;
3. (k, q) = (1,∃), π = ~x1 and~x1 |= Φ;
4. (k, q) = (1,∀) and∀~x1 ∈ 2X1 , π(~x1) = × or

(π(~x1) = λ and~x1 |= Φ);
5. k > 1, q = ∃, π = ~xk;πk−1 and πk−1 is sound for

〈k − 1,∀,Xk−1, ...,X1,Φ~xk
〉;

6. k > 1, q = ∀, and for any~xk ∈ 2Xk , π(~xk) is sound for
〈k − 1,∃,Xk−1, ...,X1,Φ~xk

〉.

Equivalently, a policy is sound if and only if on every
path of its associated tree where× does not appear, the vari-
able assignments along this path (on its nodes and branches)
makeΦ true.
Example 1 (continued).
The policyπ1 given above is sound. Another sound policy
for P is:

π2 =

(a, b) 7→ ×
(¬a, b) 7→ ×
(a,¬b) 7→ ×
(¬a,¬b) 7→ ×

Contrastingly, the following partial policy forP is not
sound:

π3 =

(a, b) 7→ c
(¬a, b) 7→ c
(a,¬b) 7→ c
(¬a,¬b) 7→ c

While only valid QBFs have solution policies, it is clear
that every QBFP = 〈k, q, Xk, ..., X1, Φ〉 has a sound
partial policy. Indeed, ifq = ∃ thenπ = × is a sound policy
for P , while if q = ∀, then the policyπ given byπ(~xk) = ×
for every~xk ∈ 2Xk is a sound policy forP .

Intuitively, the best policies among the sound ones are
those built up from internal policies where× is used when
needed, only:

Definition 8 (maximal sound policy) Let π andπ′ be two
partial policies ofPP (q, k,Xk, ...,X1). π is at least as cov-
ering asπ′, denoted byπ w π′, if and only if one of the
following conditions is satisfied:

• k = 0 andπ = λ ;
• q = ∃ andπ′ = × ;
• q = ∀, k = 1 and for all~x1 ∈ 2X1 , eitherπ′(~x1) = × or

π(~x1) = λ ;

• q = ∃, π = [~xk;πk−1], π′ = [~x′
k;π′

k−1], and
πk−1 w π′

k−1 ;

• q = ∀, k > 1 and for all~xk ∈ 2Xk , π(~xk) w π′(~xk).

π is a maximal soundpolicy for a QBFP if and only if
π is sound forP and there is no sound policyπ′ for P such
thatπ′ w π andπ 6w π′.

It is easy to show that the covering relationw is a partial
order (i.e., a reflexive and transitive relation over the setof
partial policies).

Maximal sound policies minimize failure: a policy is
maximal sound if and only if each time× appears on a
path of its associated tree, the variable assignments along
this path (on its nodes and branches) falsifyΦ (whatever the
values of the unassigned variables); in other words, there
is no assignment of the existentially quantified variables at
this node for which there would still be a hope of seeingΦ
eventually satisfied.
Example 1 (continued).
〈2,∀, {a, b}, {c}, (a∨b)∧(a → c)∧(b∨c)〉 has two maximal
sound policies:π1 as reported before, andπ′

1 identical toπ
except that it maps(¬a, b) to¬c.

Clearly, every QBFP has at least one maximal sound pol-
icy (just because it has at least one sound policy – and the
fact that the set of all partial policies forP is finite); further-
more, if a solution policy forP exists, then solution policies
and maximal sound policies coincide.

Especially, every positive instance ofP = 〈∃,X1,Φ〉 of
QBF1,∃ has as many maximal sound policies asΦ has mod-
els, while every positive instance fromQBF1,∀ has a unique
maximal sound policy, namelyλX1

. Every negative instance
of QBF1,∃ has a unique maximal sound policy, namely×.
Every negative instance ofQBF1,∀ has a unique maximal
sound policyπ such that: for every~x1 ∈ 2X1 , if ~x1 |= Φ,
thenπ(~x1) = λ, elseπ(~x1) = × .

In the following, we are mainly interested in the represen-
tation issue for the solutions of the function problemsFQBF
andSFQBF:

Definition 9 (SFQBF: second function problem) Let P =
〈k, q, Xk, ..., X1,Φ〉 be a QBF. Solving the second func-
tion problemSFQBFk,q for P consists in finding a maximal
sound policyπ for P . We noteSFQBF the second function
problem associated to any QBF.

Policy Representation
It is essential to distinguish between the notion of policyπ
per seand the notion ofrepresentationσ of a policy. Indeed,
policies may admit many different representations, and two
representations of the same policy can easily have differ-
ent sizes, and can be processed more or less efficiently (e.g.
computing the imageπ(~x) of an instantiation~x by a given
policy for a QBF with first quantifier∀ can be more or less
computationally demanding).

A representation schemeS for policies is a finite set of
data structures representing policies. Associated with any
representation schemeS is an interpretation functionIS
such that for anyσ ∈ S, π = IS(σ) is the policy represented
by σ. The simplest representation scheme is theexplicitone:
the representation of a policy is the policy itself (so the cor-
responding interpretation function is identity). Accordingly,

π also denotes the explicit representation of policyπ. Within
the explicit representation of a policyπ, every universal in-
ternal policyπ′ is represented explicitly as a set of pairs (this
is the representation we used in the examples reported in the
previous sections). Another representation of a policyπ is
its tree representationTπ. Observe that the tree representa-
tion of a policy is equivalent to the explicit one in the sense
that there exists a polytime algorithm which turns the ex-
plicit representation into the tree one, and the converse also
holds.

Another representation scheme for total policies consists
of circuits (Liberatore 2005): to each existentially quanti-
fied variablex ∈ Xi of a QBFP = 〈k, q,Xk, ...,X1,Φ〉 is
associated a circuitCx whose inputs are all the universally
quantified variablesY from

⋃k
j=i+1 Xj . For each instantia-

tion ~y of those variables,Cx gives the corresponding value
of x.

The next proposition makes precise the connection be-
tween the decision problemQBF and the function problem
FQBF. It shows that explicit representations of total policies
are certificatesfor QBF, i.e., data structures from which a
polytime verification of the validity of positive instancesis
possible. To be more precise:

Proposition 2 There is a polytime algorithm whose in-
put consists of (a) the explicit representation of a pol-
icy π ∈ TP (k, q, Xk, ..., X1) and (b) a QBFP =
〈k, q,Xk, ...,X1,Φ〉, and which returns1 if π is a solution
policy forP and0 otherwise.

Proof: The proof is by induction onk. The base case
is for k = 0. π is a solution policy forP = 〈0, q,Φ〉
if and only if Φ is valid. SinceV ar(Φ) = ∅, checking
whetherΦ is valid can be done in polynomial time in the
size of Φ. Now assume that the property holds for every
k = i ≥ 0. Let us show that it holds fork = i + 1.
Let P = 〈i + 1, q,Xi+1, ...,X1,Φ〉 be a QBF. Ifq = ∃,
thenπ = ~xi+1;πi with πi ∈ TP (i,∀,Xi, ...,X1) satisfies
P if and only if πi satisfies〈i,∀,Xi, ...,X1,Φ~xi+1

〉. Since
Φ~xi+1

can be computed in time polynomial in the size of
Φ andXi+1, the induction hypothesis leads directly to the
expected conclusion. Finally, ifq = ∀, thenπ satisfiesP
if and only if for every~xi+1 ∈ 2Xi+1 , the policyπ(~xi+1)
from TP (i,∃,Xi, ...,X1) satisfies〈i,∃,Xi, ...,X1,Φ~xi+1

〉.
Sinceπ = {(~xi+1, π(~xi+1)) | ~xi+1 ∈ 2Xi+1}, the induction
hypothesis completes the proof. �

For every positive instanceP = 〈1,∃,X1,Φ〉 of QBF1,∃

(i.e., everySAT instance), a solution policyπ for P can
be represented explicitly by any model ofΦ over X1; ob-
viously, such representations of policies are certificatesfor
QBF1,∃. Now, for every positive instanceP = 〈1,∀,X1,Φ〉
of QBF1,∀, the solution policyπ for P is represented explic-
itly by the set{(~x1 7→ λ) | ~x1 ∈ 2X1}; again, this rep-
resentation is a certificate forQBF1,∀. The same policyπ
can be represented in an exponentially more succinct way
by the nameλX1

of the constant function mapping anyX1-
instanciation toλ; obviously, such a (non-explicit) represen-
tation of π is not a certificate forQBF1,∀, unlessP = NP;
furthermore, the existence of a certificate of polynomial size

for QBF1,∀ would lead toNP = coNP, hence the polyno-
mial hierarchy to collapse. This example clearly shows how
different representations of the same policy may lead to dif-
ferent computational behaviours when the purpose is to use
the policy.

Now, a policy is a function. Instead of representing a
policy using a data structure, we can also represent it us-
ing an algorithm which computes the function. Accordingly,
an algorithm is said to represent a solution policy for a QBF
P = 〈k, q, Xk, ..., X1,Φ〉 if and only if given an instantia-
tion of all universally quantified variables ofP it enables to
compute an instantiation of all existentially quantified vari-
ables ofP such that the concatenation of the two instantia-
tions is a model ofΦ.

Interestingly, there exist polytime (algorithmic) represen-
tations of solution policies for some QBFs. In order to
present one of them, we first need the following notions.
A propositional fragmentF ⊆ PROPPS is said to enable
polytime conditioning (Darwiche & Marquis 2001) (resp.
polytime quantification elimination) if and only if there ex-
ists a polytime algorithm which, for any~x ∈ 2X with
X ⊆ PS and anyΦ ∈ F computes a formula fromF
equivalent toΦ~x (resp. there exists a polytime algorithm
which, for anyX ⊆ PS, any quantifierq and anyΦ ∈ F
computes a formula fromF equivalent toqXΦ). A propo-
sitional fragmentF ⊆ PROPPS is said to enable polytime
model finding (i.e. the function problem forSAT) if and only
if there exists a polytime algorithm which, for anyΦ ∈ F
computes a model ofΦ if Φ is satisfiable, and returns that no
model exists otherwise.

Such fragments are valuable when the purpose is to decide
QBF and, more generally, to represent solution policies for
QBFs:

Proposition 3 Let P = 〈k, q, Xk, ..., X1,Φ〉 be a QBF
whereΦ belongs to a propositional fragmentF enabling
polytime conditioning, polytime model finding and polytime
quantification elimination. Then deciding whetherP is a
positive instance ofQBF can be achieved in polynomial time.
Furthermore, there exist a polytime (algorithmic) represen-
tation of a solution policy for each validP .

Proof: In order to decide whetherP is valid, it is suffi-
cient to eliminate in polynomial time each quantification of
the prefix ofP (from the innermost to the outermostqXk),
in Φ within the fragment and to check in polynomial time
whether or not the resulting formula has a model. IfP is
valid andk = 0, then we just return the policyπ = λ. If P
is valid and its first quantifierq is existential, then it is suf-
ficient to remove in polynomial time all the quantifications
of the prefix ofP in Φ from the innermost to the outermost,
but the first oneqXk, then to search in polynomial time for
a model of the resulting formula: each such model~xk is the
first element of a solution policy forP and the converse also
holds. IfP is valid and its first quantifierq is universal, then
given anXbk-instantiation~xk, it is sufficient to compute in
polynomial time the first element ofπ(~xk) whereπ is a solu-
tion policy forP . This can be done by considering the QBF
〈k−1, ∃, Xk−1k, ..., X1,Φ~xk

〉. A straightforward induction
completes the proof. �

In (Coste-Marquiset al. 2005), some of us have shown
that the fragment OBDD< of ordered binary decision di-
agrams enable polytime quantification elimination for the
quantification bearing on the last variable w.r.t.<. Since
OBDD< was already known to satisfy polytime condition-
ing and model finding, this is sufficient to take advantage of
the approach described above to represent solution policies
for valid QBFs whose matrix is from OBDD< and whose
prefix is compatible w.r.t.<.

The Case ofSFQBF2,∀

We now focus on the practical resolution ofSFQBF2,∀, the
second function problem for QBFs fromQBF2,∀, which aims
at computing a maximal sound policy for a givenP from
QBF2,∀. Why the choice ofk = 2 andq = ∀? It is impor-
tant, before investigating more complexSFQBFk,q problems,
to focus on the problems at the first levels (which are already
complex enough, as we will see). The casek = 1 for QBFk,q

has received an enormous attention since it corresponds to
the satisfiability problem and the validity problem (depend-
ing onq) for propositional formulae. However, it is not very
interesting from the point of view of policy representation,
as shown before.SFQBF2,∃ is not really new either, since it
reduces to an abduction problem: indeed, it consists in find-
ing an instantiation~x1 such thatΦ~x1

is valid; this problem
has been considered many times. Things are different with
SFQBF2,∀, since (i) finding maximal sound policies becomes
here relevant and (ii) the size of the representation of a pol-
icy becomes a crucial issue.

Polynomially compact and tractable schemes
In the case ofSFQBF2,∀, a partial policy forP = 〈2, ∀, X,

Y, Φ〉 is any mappingπ from 2X to 2Y ∪ {×}. Ideally, we
are looking for representation schemes for maximal sound
policies that are both polynomially compact and tractable:

Definition 10 (polynomially compact scheme)A policy
representation schemeS for maximal sound policies for
QBF2,∀ is said to bepolynomially compactif and only if
there is a polysize functionRS that associates eachP = 〈2,
∀, X, Y,Φ〉 ∈ QBF2,∀ to a representationσ ∈ S of a
maximal sound policyπ for P .

Definition 11 (tractable scheme)A policy representation
schemeS for maximal sound policies for QBF2,∀ is said
to be tractableif and only if there exists a polytime algo-
rithm DS such that for anyσ ∈ S, DS computesπ(~x) =
DS(σ, ~x) for any~x ∈ 2X , whereπ = IS(σ).

Clearly, the explicit representation scheme for maximal
sound policies is not polynomially compact in the general
case. For instance, there exist instances of QBF2,∀ for which
any solution policy is injective, as in the following example
(from (Fargier, Lang, & Marquis 2000)):

Example 5
∀{x1, . . . , xn}∃{y1, . . . , yn}

∧n
i=1(xi ↔ yi).

However, it is possible to encode the solution policiesπ
for the set of QBFs of this example (withn varying), using
data structuresσ of size polynomial inn and from which

π(~x) can be computed in time polynomial inn. See for in-
stance the policy description schemePD given in the next
subsection. This argues towards using implicit representa-
tion schemes for policies, but still, the existence of a poly-
nomially compact and tractable representation scheme for
maximal sound policies cannot be ensured:

Proposition 4 If a polynomially compact and tractable
representation schemeS for maximal sound policies for
QBF2,∀ exists, thenNP ⊆ P/poly holds.

Proof: Suppose that there exists a representation schemeS
such that there exists a polysize functionRS and a poly-
time algorithmDS such thatRS maps each QBFP =
〈2,∀,X, Y,Φ〉 to a tractable representationσ = RS(P) of
a maximal sound policyπ = IS(σ) for P and such thatDS

computesπ(~x) = DS(σ, ~x) for any~x ∈ 2X .
Let us associate to any CNF formulaΣ of PROPPS such

thatV ar(Σ) = {p1, . . . , pn} the following instancePΣ of
QBF2,∀:

∀L∃V (Σ ∧
n
∧

i=1

(¬l+i ∨ pi) ∧ (¬l−i ∨ ¬pi))

with V = V ar(Σ), L =
⋃n

i=1{l
+
i , l−i } ⊆ PS \ V . Observe

that the size ofPΣ is linear in the size ofΣ.
Now, if S is tractable, then there exists a polytime algo-

rithm for deciding clausal entailment fromΣ. Indeed, for
any clauseγ built upon the variables ofV , we haveΣ |= γ
if and only if Σ ∧ ¬γ is unsatisfiable. Each possible sat-
isfiable term¬γ corresponds to a vector~l of 2L such that
∀pi ∈ V , (1) if pi ∈ ¬γ then l+i ∈ ~l and¬l−i ∈ ~l, (2) if
¬pi ∈ ¬γ then¬l+i ∈ ~l and l−i ∈ ~l, and (3) if pi 6∈ ¬γ

and¬pi 6∈ ¬γ then¬l+i ∈ ~l and¬l−i ∈ ~l. Therefore, for
any non-valid clauseγ on V , we haveΣ |= γ if and only
if (Σ ∧

∧n
i=1(¬l+i ∨ pi) ∧ (¬l−i ∨ ¬pi))~l is unsatisfiable.

Accordingly, given any maximal sound policyπ for PΣ and
any non-valid clauseγ on V , we haveΣ |= γ if and only if
π(~l) = ×.

Let σ = RS(PΣ). Since RS is polysize, the map-
ping Σ 7→ RS(PΣ) also is polysize. If the representa-
tion schemeS for π were tractable then checking whether
π(~l) = × could be done in polynomial time (just check
whetherDS(σ,~l) = ×), therefore deciding whetherΣ |= γ
could also be achieved in polynomial time. As a conse-
quence, we would getNP ⊆ P/poly (Selman & Kautz
1996). �

The inclusionNP ⊆ P/poly is considered very unlikely,
because it implies that the polynomial hierarchy collapses
at the second level (Karp & Lipton 1980). Actually, the fact
that the existence of a polynomially compact and tractable
representation schemeS for maximal sound policies
for QBF2,∀ exists entails that the polynomial hierarchy
collapses at the second level can also be proved in a more
direct way. Indeed, suppose that there exists a represen-
tation schemeS such that there exists a polysize function
RS and a polytime algorithmDS such thatRS maps each
QBF P = 〈2,∀,X, Y,Φ〉 to a tractable representation

σ = RS(P) of a maximal sound policyπ = IS(σ) and such
thatDS computesπ(~x) = DS(σ, ~x) for any~x ∈ 2X . Let us
now consider the following nondeterministic algorithm for
solvingQBF2,∀:

Input: a QBF P = 〈2, ∀, X, Y, Φ〉.
1. guess σ = RS(P);
2. check that IS(σ) is a solution policy for
P.

Provided thatRS exists, guessingσ in step 1. only re-
quires polynomial time (since its size must be polynomial in
the input size). Let us recall thatP is a positive instance of
QBF2,∀ if and only if it has a solution policy (Proposition 1),
and that if a solution policy exists, then any maximal sound
policy is a solution policy. Now, provided thatDS exists,
when the input isP andσ has been guessed, the problem
of determining whetherπ = IS(σ) is not a solution policy
for P is in NP: just guess~x ∈ 2X and check in polynomial
time usingDS that π(~x) = DS(σ, ~x) = ×. Accordingly,
step 2. can be achieved using one call to anNP oracle. Sub-
sequently, the algorithm above shows thatQBF2,∀ is in Σp

2,
henceΣp

2 = Πp
2 and the polynomial hierarchy collapses at

the second level.
Proposition 4 generalizes Theorem 5 from (Liberatore

2005) in two directions: considering maximal sound poli-
cies (instead of the proper subset of it consisting of solu-
tion policies), and considering any tractable representation
scheme (and not only the so-called directional representa-
tion scheme as in (Liberatore 2005)).

Given Proposition 4, it seems reasonable to look for rep-
resentations of policies, which areas concise as possible,
and especially more concise than the explicit representa-
tions, provided that they are tractable:

Definition 12 (tractable representation) A representation
σ of a policyπ for a QBF P = 〈2,∀,X, Y,Φ〉 ∈ QBF2,∀

is said to betractableif and only if there exists an algo-
rithm DS,σ such that for any~x ∈ 2X , DS,σ computes
π(~x) = DS,σ(~x) in time polynomial in|σ| + |~x|.

The decomposition approach
It is based on two simple observations:

1. It is often needless looking for a specificY -instantiation
for each X-instantiation: someY -instantiations may
cover large sets ofX-instantiations, which can be de-
scribed in a compact way, for instance by a propositional
formula.

2. It may be the case that some sets of variables fromY are
more or less independent givenX w.r.t. Φ and therefore
that their assigned values can be computed separately.2

Definition 13 (subdecision)An instantiation ofsome(not
necessarily all) variables ofY (or equivalently, a satisfiable
termγY on Y) is called asubdecision. 3Y is the set of all

2As briefly evoked in (Rintanen 1999a) (Section 6), such inde-
pendence properties can also prove helpful in the practical solving
of instances ofQBF.

subdecisions. Any mappingπ : 2X → 3Y assigning a sub-
decision to eachX-instantiation is called asubpolicy for
∀X∃Y Φ. Similarly as for policies, we can also definepar-
tial subpoliciesthat assign a subdecision to a subset of2X .
Themergingof subdecisions is the commutative and asso-
ciative internal operator on3Y ∪ {×} defined by:

• γY .λ = λ.γY = γY ;
• γY .× = ×.γY = ×;
• if γY , γ′

Y are two terms onY , then

γY .γ′
Y =

{

γY ∧ γ′
Y if γY ∧ γ′

Y is satisfiable
× otherwise .

Here, the empty decisionλ is assimilated to the empty term.
Themergingof two subpoliciesπ1, π2 is defined by:
∀~x ∈ 2X , (π1 � π2)(~x) = π1(~x).π2(~x).

Definition 14 (policy description) The policy description
scheme PDis a representation scheme for maximal sound
policies for QBF2,∀, defined inductively as follows:

• λ and× are inPD;
• any satisfiable termγY onY is in PD;
• if ϕX is a propositional formula built onX and σ1, σ2

are inPD, then
if ϕX then σ1 else σ2

is in PD
• if σ1 andσ2 are inPD, thenσ1 � σ2 is in PD.

Now, the partial subpolicyπ = IPD(σ) induced by a de-
scriptionσ ∈ PD is defined inductively as follows; for every
~x ∈ 2X :

• IPD(λ)(~x) = λ andIPD(×)(~x) = ×;
• IPD(γY)(~x) = γY ;
• IPD(if ϕX then σ1 else σ2)(~x)

=

{

IPD(σ1)(~x) if ~x |= ϕX

IPD(σ2)(~x) if ~x |= ¬ϕX

• IPD(σ1 � σ2) = IPD(σ1) � IPD(σ2).3

To simplify notations,
if ϕ then σ else ×

is abbreviated into
if ϕ then σ

and

if ϕ1 then σ1

else if ϕ2 then σ2

else . . .
else if ϕn then σn

is abbreviated intoCase ϕ1: σ1; . . . ϕn: σn End

Example 6
LetP = ∀{x1, x2}∃{y1, y2} Φ, where

Φ = x1 ∧ ¬y2 ∧ (y1 ↔ (x1 ↔ x2))

Let σ1 = if x1 ↔ x2 then y1 else ¬y1, σ2 =
if x1 then ¬y2 andσ = σ1 � σ2.

3We slightly abuse notations here, using� both for merging
policies and for merging policy descriptions.

The corresponding policiesπ1 = IPD(σ1), π2 =
IPD(σ2) and π = π1 � π2 = IPD(σ1 � σ2) are given
by

π1 π2 π
(x1, x2) y1 ¬y2 (y1,¬y2)

(x1,¬x2) ¬y1 ¬y2 (¬y1,¬y2)
(¬x1, x2) ¬y1 × ×

(¬x1,¬x2) y1 × ×

π1 is a subpolicy forP ; π2 is a partial subpolicy forP . We
can check thatπ is a maximal sound policy forP .

Proposition 5 PD is a tractable representation scheme for
maximal sound policies for QBF2,∀.

Proof: It is clear from its definition that for all~x ∈ 2X ,
IPD(~x) is computable in polynomial time; letDPD be the
algorithm that computesIPD(σ)(~x) from σ and~x. DPD

computesπ(~x) = DPD(σ, ~x) for any~x ∈ 2X , whereπ =
IPD(σ). Therefore,PD is a tractable representation scheme
for maximal sound policies for QBF2,∀. �

Example 5 (continued).
A tractable representation inPD of the solution policy for
the QBF∀{x1, . . . , xn}∃{y1, . . . , yn}

∧n
i=1(xi ↔ yi) is

σ = �n
i=1((if xi then yi) � (if ¬xi then ¬yi))

Note, however, thatPD is not necessarily polynomially
compact.

We first establish the following, which tells precisely
when a partial policy for∀X∃Y Φ is sound.

Proposition 6 LetP = ∀X∃Y Φ.

1. A partial policyπ for P is sound forP if and only if for
every~x ∈ 2X , π(~x) = ~y 6= × implies(~x, ~y) |= Φ.

2. A sound policyπ for P is maximal sound forP if and only
if for every~x ∈ 2X , π(~x) = × implies~x |= ¬Φ.

Proof: Remark first thatπ ∈ PP (2,∀,X, Y) if and only if,
by definition,π is a mapping from2X to 2Y ∪ {×}.

1. Applying point 5 of Definition 7 leads to the equivalent
formulation:π is sound forP if and only if for all~x ∈ 2X ,
π(~x) is sound for∃Y.Φ~x. Now, again after Definition 7,
π(~x) is sound for∃Y.Φ~x if and only if eitherπ(~x) = ×
or π(~x) |= Φ~x. Putting things together we have thatπ is
sound forP if and only if for all~x ∈ 2X , eitherπ(~x) = ×
or (~x, π(~x)) |= Φ.

2. Letπ be a sound policy forP .

⇒ Assume that there exists an~x∗ ∈ 2X such thatπ(~x∗) =
× and~x∗ 6|= ¬Φ, which means that there exists a~y∗ ∈
2Y such that(~x∗, ~y∗) |= Φ. We now build the following
partial policyπ′ for P :

for every~x ∈ 2X , π′(~x) =

{

π(~x) if ~x 6= ~x∗

~y∗if ~x = ~x∗

We have immediately thatπ′ w π holds, but not
π w π′, that is,π′ A π. Moreover,π′ is sound for
P . Therefore,π is not maximal sound forP .

⇐ Assume thatπ is not maximal sound forP , which
means that there exists a sound partial policyπ′ such
that π′ strictly coversπ, i.e., π′ A π. The fact that
π′ A π means that
(a) for every~x ∈ 2X , π′(~x) = × impliesπ(~x) = ×,
and
(b) there exists an~x∗ ∈ 2X such thatπ′(~x∗) 6= × and
π(~x∗) = ×. Consider this~x∗. Sinceπ′(~x∗) 6= ×, there
is a~y∗ such thatπ′(~x∗) = ~y∗, and sinceπ′ is sound for
P , it must be the case that

(1) (~x∗, ~y∗) |= Φ
Therefore,~x∗ 6|= ¬Φ, that is, there is a~x ∈ 2X such
thatπ(~x) = × and~x 6|= ¬Φ.

�

Putting points (1) and (2) together, and after some rewrit-
ing, we have:

Corollary 1 π is maximal sound forP if and only if for all
~x ∈ 2X , either
(a) π(~x) = γY for someγY ∈ 3Y , and(~x, γY) |= Φ, or
(b) π(~x) = × and there is noγY ∈ 3Y s. t. (~x, γY) |= Φ.

Proposition 7 Let P = 〈2,∀,X, Y,Φ〉 and let
{ϕX

1 , ϕY
1 , . . . , ϕX

p , ϕY
p } be2p formulae such that

Φ ≡ (ϕX
1 ∧ ϕY

1) ∨ . . . ∨ (ϕX
p ∧ ϕY

p).
Let J = {j | ϕY

j is satisfiable} = {j1, . . . , jq} and for
everyj ∈ J , let ~yj |= ϕY

j . Then the policy represented by
the description

σ = Case ϕX
j1

: ~yj1 ; . . . ; ϕX
jq

: ~yjq
End

is a maximal sound policy forP .

Proof: First, note that
∨p

i=1(ϕ
X
i ∧ ϕY

i) is logically equiva-
lent to

∨

i∈J(ϕX
i ∧ϕY

i), becausei 6∈ J implies thatϕX
i ∧ϕY

i

is unsatisfiable. Therefore, without loss of generality, wecan
assume thatJ = {1, . . . , q}, that is, for alli ∈ {1, . . . , q},
ϕY

j is satisfiable. For everyj ∈ {1, . . . , p}, let ~yi such that
~yi |= ϕY

j . Now, let
σ = Case ϕX

1 : ~y1; . . . ; ϕX
q : ~yq End

For all~x, let f(~x) = min{i | ~x |= ϕX
i }, with the convention

f(~x) = ∞ if ~x |= ¬ϕX
i for all i = 1, . . . , p. Then we have

IPD(σ)(~x) = ~yf(~x) if f(~x) 6= ∞, andIPD(σ)(~x) = ×
otherwise. Using Proposition 6, this immediately shows that
I(σ) is sound forP .

Now, suppose thatIPD(σ) is not a maximal sound pol-
icy for P . Then there exists a sound policyπ for P strictly
coveringIPD(σ), i.e., such thatπ A IPD(σ). The fact that
π A IPD(σ) means that
(a) for every~x ∈ 2X , π(~x) = × impliesIPD(σ)(~x) = ×,
and
(b) there exists an~x∗ ∈ 2X such thatπ(~x∗) 6= × and
IPD(σ)(~x∗) = ×. Consider this~x∗. Sinceπ(~x∗) 6= ×,
there is a~y∗ such thatπ(~x∗) = ~y∗, and sinceπ is sound for
P , it must be the case that

(1) (~x∗, ~y∗) |= Φ
Now, I(σ)(~x∗) = × implies thatf(~x∗) = ∞, that is,

(2) ~x∗ |= ¬ϕX
1 ∧ . . . ∧ ¬ϕX

p

SinceΦ is logically equivalent to
∨p

i=1(ϕ
X
i ∧ ϕY

i), (2) im-
plies~x∗ |= ¬Φ, which contradicts (1). Henceforth,I(σ) is
a maximal sound policy forP . �

The interest of Proposition 7 is that onceΦ has been de-
composed in such a way, the resolution of the instance of
SFQBFgiven byP = ∀X∃Y Φ comes down to solvingp in-
stances ofSAT. Furthermore, it is always possible to find
such a decomposition – just take all instantiations ofX:
Φ ≡

∨

~x∈2X (~x ∧ Φ~x).
Of course, such a decomposition is interesting only if it

is not too large, i.e., if it leads to a reasonable number of
SAT instances to solve. LetN(Φ) the minimal number of
pairs of such a decomposition: the best case isN(Φ) =
1 and the worst isN(Φ) = 2min(|X|,|Y |). Finding a good
decomposition actually amounts to break the links between
X andY in Φ, the ideal case being when there are no links
between them, i.e., whenΦ ≡ ϕX ∧ϕY (or equivalently,X
andY are marginally conditionally independent with respect
to Φ (Darwiche 1997; Lang, Liberatore, & Marquis 2002)).

Example 7
LetP = ∀{a, b}∃{c, d}Φ, where

Φ = ((a ↔ b) ∧ c) ∨ (a ∧ ¬c ∧ d))

The description of a maximal sound policy forP is

σ = Case (a ↔ b) : (c, d); a : (¬c, d) End

The associated policyIPD(σ) is

IPD(σ) =

(a, b) 7→ (c, d)
(¬a, b) 7→ ×
(a,¬b) 7→ (¬c, d)
(¬a,¬b) 7→ (c, d)

Furthermore, Proposition 7 immediately tells how to
compute a maximal sound policy in polynomial time for
∀X∃Y Φ whenΦ is in DNF, which implies the following:

Corollary 2 WhenΦ is a DNF formula, a maximal sound
policy for∀X∃Y Φ is computable in polynomial time.

Interestingly, the problem of computing of maximal
sound policy (i.e., a solution policy when the∀X∃Y Φ is
positive) is easier than the decision problem of deciding
whether∀X∃Y Φ is a positive instance (the latter iscoNP-
complete whenΦ is a DNF formula).

The next decomposition result makes possible to com-
pute subpolicies independently on disjoints subsets ofY ,
and then merge those subpolicies.

Proposition 8 Let {Y1, Y2} be a partition ofY such that
Y1 and Y2 are conditionally independent givenX with re-
spect toΦ, which means that there exist two formulaeΦ1

andΦ2 of respectivelyPROPX∪Y1
andPROPX∪Y2

such
that Φ ≡ Φ1 ∧ Φ2. Thenπ is a maximal sound policy for
∀X∃Y Φ if and only if there exist two subpoliciesπ1, π2,
maximal sound for∀X∃Y Φ1 and ∀X∃Y Φ2 respectively,
such thatπ = π1 � π2.

Proof: AssumeΦ ≡ Φ1 ∧ Φ2, whereΦ1 andΦ2 are respec-
tively in PROPX∪Y1

andPROPX∪Y2
.

⇒ Let π be a maximal sound policy for∃X∀Y Φ1. Define
nowπ1 as follows:

1. if π(~x) 6= × thenπ1(~x) is the restriction ofπ onY1;
2. if π(~x) = × and~x 6|= ¬Φ1 thenπ1(~x) = ~y1 for some

~y1 such that(~x, ~y1) |= Φ1;
3. if π(~x) = × and~x |= ¬Φ1 thenπ1(~x) = ×;

and similarly forπ2, replacingY1 andΦ1 by, respectively,
Y2 andΦ2. π1 (resp.π2) is a policy for∀X∃Y Φ1 (resp.
∀X∃Y Φ2). We first check thatπ = π1 � π2. Indeed:

– if π(~x) = × then, sinceπ is maximal sound, we have
~x |= ¬Φ. Now, assume thatπ1 � π2(~x) 6= ×. Then
π1(~x) 6= × andπ2(~x) 6= ×, which implies that there
exists~y1 ∈ 2Y1 and~y2 ∈ 2Y2 such that(~x, ~y1) |= Φ1

and(~x, ~y2) |= Φ2, becauseπ1 andπ2 are sound. The
latter implies that there exists~y1 ∈ 2Y1 and~y2 ∈ 2Y2

such that(~x, ~y1, ~y2) |= Φ1 ∧ Φ2, i.e.,(~x, ~y1, ~y2) |= Φ,
which contradicts~x |= ¬Φ. Hence,π1 � π2(~x) 6= ×.

Then, we check thatπ1 andπ2 are maximal sound for,
respectively,∀X∃Y Φ1 and∀X∃Y Φ2. The construction
of π1 ensures that~x |= ¬Φ1 holds wheneverπ1(~x) = ×,
which, by Proposition 6, implies thatπ1 is maximal and
sound. The proof forπ2 is similar.

⇐ Assume there exist two subpoliciesπ1, π2, maximal
sound for∀X∃Y Φ1 and for∀X∃Y Φ2 respectively, such
thatπ = π1 � π2.
(a) Let us first show thatπ is sound. Let~x ∈ 2X such
that π(~x) 6= ×. Sinceπ(~x) 6= ×, we haveπ(~x) = ~y
for some~y ∈ 2Y . Let ~y1 and~y2 be the projections of~y
on Y1 andY2, respectively. Sinceπ(~x) = π1(~x).π2(~x),
we necessarily haveπ1(~x) = ~y1 andπ2(~x) = ~y2. Now,
π1 is sound for∀X∃Y Φ1, therefore, by Proposition 6,
(1) (~x, ~y1) |= Φ1. Similarly, (2) (~x, ~y2) |= Φ2. (1) and
(2) imply that (~x, ~y) |= Φ1 ∧ Φ2, that is, (~x, ~y) |= Φ.
This being true for all~x ∈ 2X such thatπ(~x) 6= ×, we
conclude thatπ is sound.
(b) Let us show now thatπ is maximal sound. Suppose it
is not. Then, by Proposition 6, there exists~x ∈ 2X such
thatπ(~x) = × and~x 6|= ¬Φ. ~x 6|= ¬Φ is equivalent to the
existence of~y ∈ 2Y such that(~x, ~y) |= Φ. Let ~y1 and~y2

be the projections of~y on Y1 andY2, respectively. Then
(~x, ~y) = (~x, ~y1, ~y2) |= Φ, therefore(~x, ~y1) |= Φ1 and
(~x, ~y2) |= Φ2, i.e.,

(1) ~x 6|= ¬Φ1 and~x 6|= ¬Φ2 .
Now, sinceπ = π1 � π2, π(~x) = × implies that either
π1(~x) = × or π2(~x) = ×. Without loss of generality, as-
sumeπ1(~x) = ×. This, together with (1) and Proposition
6, implies thatπ1 is not maximal sound for∀X∃Y1Φ1, a
contradiction.

�

Proposition 8 can be used efficiently to reduce an instance
of SFQBF2,∀ into two (or several, when iterated) instances
of SFQBF2,∀ with smaller setsY . Ideally, Φ is already on
the desired form (i.e., there exists a partition that works);
however, in general this is not the case and we have then to
find a candidate partition{Y1, Y2} which isalmostindepen-
dent w.r.t.Φ givenX, and then break the links betweenY1

andY2 through case-analysis on a set of variables fromY ,
which must be chosen as small as possible (for efficiency
reasons). The good point is that we can take advantage of

existing decomposition techniques to achieve that goal, es-
pecially those based on the notion of decomposition tree (see
e.g. (Darwiche 2001)).

Example 8
LetP = 〈∀{a, b}∃{c, d, e}Φ, where

Φ = (((a ↔ b) ∧ c) ∨ (a ∧ ¬c ∧ d)) ∧ ((a ∨ b) ↔ ¬e)

{c, d} and {e} are independent given{a, b} givenΦ: in-
deed,Φ = Φ1∧Φ2, whereΦ1 = ((a ↔ b)∧c)∨(a∧¬c∧d))
is a formula ofPROP{a,b,c,d} andΦ2 = ((a ∨ b) ↔ ¬e) is
a formula ofPROP{a,b,e}.
A maximal sound policy for∀{a, b}∃{c, d}Φ1 is given in
Example 7. A maximal sound policy for∀{a, b}∃{e}Φ2 is
the policy induced by the descriptionCase a ∨ b : ¬e;
¬(a ∨ b) : e End.
Therefore, a maximal sound policy forP is the policy in-
duced by the following description:

[Case a ↔ b : (c, d); a : (¬c, d)) End]
� [Case a ∨ b : ¬e; ¬(a ∨ b) : e End].

The compilation approach
The compilation approach consists in generating first acom-
piled formσ of Φ enabling polytime conditioning and model
finding:

Proposition 9 LetP = ∀X ∃Y Φ be a QBF and letσ be a
propositional formula equivalent toΦ and which belongs to
a propositional fragmentF enabling polytime conditioning
and polytime model finding.σ is a tractable representation
of a maximal sound policy forP .

Proof: Given an instantiation~x ∈ 2X , any model ofσ~x

computed in polytime by the algorithm (whose existence is
postulated above) is (if it exists) an instantiation~y ∈ 2Y .
Now, we can show that~y |= σ~x holds if and only if(∃Y σ)~x

is valid (indeed, a central property of conditioning is thatan
instantiation~x is an implicant of a formulaΨ if and only if
the conditioningΨ~x is valid). Now,(∃Y σ)~x is valid if and
only if ∃Y (σ~x) is valid (sinceX ∩ Y = ∅). Lastly, remark
that∃Y (σ~x) is valid if and only ifσ~x is satisfiable. �

Note that there is no policy representation scheme here.
Actually, within this compilation-based approach,σ alone
does not represent any policy forP but a specific maximal
sound policy forP is fully characterized by the way a model
of σ~x is computed for each~x.

Among the target fragmentsF of interest are all polyno-
mial CNF classes forSAT problem, which enable polytime
conditioning. Indeed, for every formula from such a class,
polytime model enumeration is possible (see e.g. (Darwiche
& Marquis 2001)). Among the acceptable classes are the
Krom one, the Horn CNF one, and more generally the re-
namable Horn CNF one. Several other propositional frag-
ments can be considered, including the DNF one, the OBDD
one and more generally the DNNF one since each of them
satisfies the three requirements imposed in Proposition 9.

Even if there is no guarantee that for everyΦ, the cor-
respondingσ is polysize (unless the polynomial hierarchy
collapses at the second level), many experiments reported
e.g., in (Schrag 1996; Boufkhadet al. 1997; Darwiche

2004) showed the practical interest of knowledge compila-
tion techniques for clausal entailment; clearly, such a con-
clusion can be drawn as well when the purpose is the repre-
sentation of tractable policies for QBFs from QBF2,∀.

Related Work
As illustrated in Proposition 1, a topic very close to the
notion of policy is the notion ofcertificate. In the case
of QBF and under the usual assumption of complexity the-
ory, there is no way to represent in polynomial space or
to check in polynomial time a certificate of membership to
the class of positive or negative instances ofQBF. One of
the practical consequence forQBF solver designers is the
impossibility to easily validate the answers of their solver.
In the last two QBF evaluations (Le Berreet al. 2004;
Narizzano, Pulina, & Tacchella 2006), one third of the
solvers submitted were found incorrect.

(Kleine Büning, Subramani, & Zhao 2003; Zhao & Bun-
ing 2005) investigate the properties of QBFs having polysize
solution policies of a specific kind (e.g., when each∃ vari-
abley is a monotone term – or a boolean constant – built up
from ∀ variables beforey in the prefix). Contrariwise to our
work, no restriction is put on the prefix of instances in their
study; on the other hand, it is not the case that every positive
QBF (even when from QBF2,∀) has a polysize solution pol-
icy; furthermore, they do not consider partial policies. This
shows their approach mainly orthogonal to ours.

(Benedetti 2005a) suggests to represent certificates for
positive instances ofQBF using a forest of OBDD. Accord-
ing to the author, in practice, the cost of verifying that certifi-
cate is reasonable (both in terms of space and time). How-
ever, reconstructing the certificate from the solver’s trace
may overcome the time needed to solve the problem.

(Chen 2004) defines the notion of decomposability of a set
of functions using policies in the QCSP framework; the main
purpose is to show that if an operationµ is j-collapsible then
any constraint languageΓ invariant underµ is j-collapsible
(Theorem 7), from which tractability results for QCSPs (Γ)
are derived. Neither the notion of partial policy nor the prob-
lem of their representation are considered in (Chen 2004).

Closer to our work, (Liberatore 2005) considers the rep-
resentation issue for solution policies using a circuit-based
representation scheme. The complexity of determining
whether a given QBF has a solution policy representation,
with size bounded by a given integerk is identified and
shown hard, even in the casek is in unary notation. In some
sense, our work completes (Liberatore 2005) by focusing on
partial policies, generalizing some results and focusing on
other representation schemes.

Conclusion
In this paper we provided theoretical ground for solving
function problems associated with QBF, and algorithmic
techniques for solving (and representing solutions for) for-
mulae∀X ∃ Φ from QBF2,∀.

The specificities of our work are the following ones: de-
fine partial, but maximal sound policies for a QBFΣ, even
when it is not valid (other approaches would handle such

Σ by concluding that it is impossible to find a solution pol-
icy); address the issues of the size of partial policies and
their compact representation; focus on the specific problem
QBF2,∀ and show how techniques such as decomposition and
compilation can be fruitfully exploited for computing maxi-
mal sound policies.

A next step would consist in determining from the practi-
cal side the performances of several representation schemes
for maximal sound policies. We plan to make some ex-
periments to measure how the size of the representation of
policies varies with various parameters (e.g., the numbersof
clauses and of variables in a CNF ofΦ, the ratio |X|

|X|+|Y |),
and to compare it with the coverage of the corresponding
policy (i.e., how many~x ∈ 2X are not mapped to×).

References

Audemard, G., and Saı̈s, L. 2004. SAT based BDD solver
for Quantified Boolean Formulas. InICTAI’04, 82–89.

Benedetti, M. 2005a. Extracting Certificates from Quanti-
fied Boolean Formulas. InIJCAI’05, 47–53.

Benedetti, M. 2005b. sKizzo: a Suite to Evaluate and
Certify QBFs. InCADE’05.

Besnard, P.; Schaub, T.; Tompits, H.; and Woltran, S. 2005.
Inconsistency tolerance, volume 3300 ofLNCS State-of-
the-Art Survey. Springer. chapter Representing paraconsis-
tent reasoning via quantified propositional logic, 84–118.

Boufkhad, Y.; Gŕegoire, E.; Marquis, P.; Mazure, B.; and
Säıs, L. 1997. Tractable cover compilations. InIJCAI’97,
122–127.

Cadoli, M.; Giovanardi, A.; and Schaerf, M. 1998. An
algorithm to evaluate quantified boolean formulae. In
AAAI’98, 262–267.

Chen, H. 2004. Collapsibility and consistency in quantified
constraint satisfaction. InAAAI-04, 155–160.

Coste-Marquis, S.; Le Berre, D.; Letombe, F.; and Mar-
quis, P. 2005. Propositional Fragments for Knowl-
edge Compilation and Quantified Boolean Formulae. In
AAAI’05, 288–293.

Darwiche, A., and Marquis, P. 2001. A perspective on
knowledge compilation. InIJCAI’01, 175–182.

Darwiche, A. 1997. A logical notion of conditional inde-
pendance : properties and applications.Artificial Intelli-
gence97(1–2):45–82.

Darwiche, A. 2001. Decomposable negation normal form.
JACM48(4):608–647.

Darwiche, A. 2004. New Advances in Compiling CNF
into Decomposable Negation Normal Form. InECAI’04,
328–332.

Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S.
2000. Solving advanced reasoning tasks using Quantified
Boolean Formulas. InAAAI’00, 417–422.

Fargier, H.; Lang, J.; and Marquis, P. 2000. Propositional
logic and one-stage decision making. InKR’00, 445–456.

Feldmann, R.; Monien, B.; and Schamberger, S. 2000. A
distributed algorithm to evaluate quantified boolean formu-
las. InAAAI’00, 285–290.
GhasemZadeh, M.; Klotz, V.; and Meinel, C. 2004. Zqsat:
a qsat solver based on zero-suppressed binary decision di-
agrams. Technical report, University of Trier.
Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2001.
Backjumping for quantified boolean logic satisfiability. In
IJCAI’01, 275–281.
Karp, R., and Lipton, R. 1980. Some connections between
non-uniform and uniform complexity classes. InSTOC’80,
302–309.
Kleine Büning, H.; Subramani, K.; and Zhao, X. 2003. On
boolean models for quantified boolean Horn formulas. In
SAT’03, 93–104.
Lang, J.; Liberatore, P.; and Marquis, P. 2002. Conditional
independence in propositional logic.Artificial Intelligence
141(1–2):75–121.
Le Berre, D.; Narizzano, M.; Simon, L.; and Tacchella,
A. 2004. The second QBF solvers evaluation. InSAT’04,
volume 3542 ofLNCS, 376–392.
Le Berre, D.; Simon, L.; and Tacchella, A. 2003. Chal-
lenges in the QBF arena: the SAT’03 evaluation of QBF
solvers. InSAT’03, volume 2919 ofLNCS, 468–485.
Letz, R. 2002. Lemma and Model Caching in De-
cision Procedures for Quantified Boolean Formulas. In
Tableaux’02, 160–175.
Liberatore, P. 2005. Complexity issues in finding suc-
cinct solutions of PSPACE-complete problems. Technical
report, CS.AI/0503043, Computing Research Repository
(CoRR).
Narizzano, M.; Pulina, L.; and Tacchella, A. 2006. The
third QBF solvers comparative evaluation.Journal on Sat-
isfiability, Boolean Modeling and Computation2:145–164.
Pan, G., and Vardi, M. 2004. Symbolic Decision Proce-
dures for QBF. InCP’04, 453–467.
Pan, G.; Sattler, U.; and Vardi, M. 2002. BDD-based deci-
sion procedures for K. InCADE’02, 16–30.
Rintanen, J. 1999a. Constructing conditional plans by a
theorem-prover.JAIR10:323–352.
Rintanen, J. 1999b. Improvements to the evaluation of
Quantified Boolean Formulae. InIJCAI’99, 1192–1197.
Rintanen, J. 2001. Partial implicit unfolding in the Davis-
Putnam procedure for Quantified Boolean Formulae. In
QBF Workshop at IJCAR’01, 84–93.
Schrag, R. 1996. Compilation for critically constrained
knowledge bases. InAAAI’96, 510–515.
Selman, B., and Kautz, H. 1996. Knowledge compilation
and theory approximation.Journal of the ACM43:193–
224.
Zhang, L., and Malik, S. 2002. Towards a symmetric treat-
ment of Satisfaction and Conflicts in Quantified Boolean
Formula Evaluation. InCP’02, 200–215.
Zhao, X., and Buning, H. K. 2005. Model-equivalent re-
ductions. InSAT’05, 355–370.

