
Compiling Constraint Networks
into Multivalued Decomposable Decision Graphs

Frédéric Koriche and Jean-Marie Lagniez and Pierre Marquis and Samuel Thomas
CRIL-CNRS and Université d’Artois, Lens, France

{koriche, lagniez, marquis, thomas}@cril.univ-artois.fr

Abstract

We present and evaluate a top-down algorithm for
compiling finite-domain constraint networks (CNs)
into the language MDDG of multivalued decompos-
able decision graphs. Though it includes Decision-
DNNF as a proper subset, MDDG offers the same key
tractable queries and transformations as Decision-
DNNF, which makes it useful for many applica-
tions. Intensive experiments showed that our com-
piler cn2mddg succeeds in compiling CNs which
are out of the reach of standard approaches based
on a translation of the input network to CNF, fol-
lowed by a compilation to Decision-DNNF. Further-
more, the sizes of the resulting compiled represen-
tations turn out to be much smaller (sometimes by
several orders of magnitude).

1 Introduction
Constraint Programming (CP) has long been recognized as a
paradigm of choice for representing and solving combinato-
rial problems [Rossi et al., 2006]. Knowledge about the prob-
lem is represented in a compact and intuitive way, using a
constraint network (CN), which involves a set of variables as-
sociated with their domain of values, and a collection of con-
straints specifying that some subsets of values cannot be used
together. Despite its undoubtable success in IA, one of the key
remaining challenges of CP is to provide performance guar-
antees for query answering, which often amounts to solving
instances of NP-hard problems. As emphasized in [Freuder
and O’Sullivan, 2014], this issue is critical in on-line applica-
tions, such as configuration softwares [Junker, 2006] and rec-
ommender systems [Cambazard et al., 2010], where queries
supplied “on the fly” by users, are to be answered in real time.

The aim of this paper is to address this challenge using
knowledge compilation [Darwiche and Marquis, 2002]. The
overall idea is to convert a constraint language into a tar-
get compilation language that supports inference tasks (often
classified as queries and transformations) in polynomial time.
Thus, while many queries are intractable when the input is a
CN, they become tractable from a compiled representation of
it, enabling on-line performance guarantees when the com-
piled representation remains small enough.

Specifically, we present a top-down algorithm cn2mddg
for compiling finite-domain CNs into multivalued decom-
posable decision graphs. The input of cn2mddg is a CN
represented in the XCSP 2.1 format [Roussel and Lecoutre,
2009]. The output of our compilation algorithm is a repre-
sentation of the solutions of the CN in the language MDDG
of multivalued decomposable decision graphs. MDDG is pre-
cisely the extension to non-Boolean domains of the language
DDG [Fargier and Marquis, 2006] also known as Decision-
DNNF [Oztok and Darwiche, 2014]: it is based on decom-
posable ∧-nodes and (multivalued) decision nodes. Similarly
to Decision-DNNF, the MDDG language offers a number of
tractable queries, including (possibly weighted) solution find-
ing and counting, solution enumeration (solutions can be enu-
merated with polynomial delay), and optimization w.r.t. a lin-
ear objective function. It also offers tractable transformations,
especially the conditioning one (i.e., the instantiation of vari-
ables, and more generally, the addition of unary constraints).
cn2mddg benefits from a specific caching technique, a

new variable ordering heuristic based on betweenness cen-
trality and it detects universal constraints during the search
in order to perform additional simplifications. We performed
an intensive evaluation of cn2mddg on a number of bench-
marks (173) from several data sets (15). Given the availability
of Decision-DNNF compilers, a way to compile CNs is to fol-
low a translate-then-compile schema: one first encodes the in-
put network into a CNF formula, then one takes advantage of
a compiler like c2d [Darwiche, 2004] or Dsharp [Muise et
al., 2012] to turn the resulting formula into a Decision-DNNF
representation. Based on the results reported from our exper-
imentations, it turns out that whatever the encodings used,
both the huge number of Boolean variables in the generated
CNF formulae, and the structure loss inherent to the CNF
format (compared to the constraint network one) make the
translate-then-compile approaches impractical in many cases.
Contrastingly, our compiler cn2mddg proved much more ro-
bust since it succeeded in compiling many CNs which are out
of reach of the translate-then-compile approaches. Moreover,
the sizes of the resulting compiled representations turn out to
be much smaller (sometimes by several orders of magnitude).

The run-time code of our compiler, as well as the trans-
lators and the benchmarks used in our experiments, and ad-
ditional empirical results, can be downloaded from www.
cril.fr/KC/

2 Formal Preliminaries
A finite-domain constraint network (CN) is a triple N = (X ,
D, C) consisting of a set X = {X1, · · · , Xn} of vari-
ables, a set D = {D1, · · · , Dn} of domains, and a set C =
{C1, · · · , Cm} of constraints. Each domain Di is a finite set
containing the possible values ofXi. Each constraintCj char-
acterizes the combinations of values satisfying it. Formally,
Cj = (Sj , Rj), where Sj = {Xj1 , · · · , Xjk} is a subset of
variables from X , called the scope of Cj , and Rj is a predi-
cate over the Cartesian product Dj1 × · · · × Djk , called the
relation of Cj . Rj can be represented extensionally by the
list of its satisfying tuples (or dually, by the list of its forbid-
den tuples), or intensionally by an oracle, i.e., a mapping from
Dj1×· · ·×Djk to {0, 1}which is supposed to be computable
in time polynomial in its input size. The arity of a constraint
is given by the size of its scope. Constraints of arity 2 are
called binary and constraints of arity greater than 2 are called
non-binary.
Example 1 Let N be the CN given by four variables
X1, X2, X3, and X4, each of them being defined on the same
domain {0, 1, 2}, and three constraints C1, C2, and C3, spec-
ified by the following mathematical statements:

• C1 = (X1 6= X2);
• C2 = (X2 = 0) ∨ (X2 = 1) ∨ (X2 = X3 +X4 + 1);
• C3 = (X3 > X4).
Given a subset S of variables from X , a (decision) state s

over S is a mapping that associates with each variableXi in S
a subset s(Xi) of values in Di. In what follows, states are of-
ten noted as union of elementary assignments, i.e., sets of the
form {〈Xi, xj〉}, where xj ∈ s(Xi). scope(s) denotes the
set S of variables over which s is defined. A state s is partial
if scope(s) is a proper subset of X ; otherwise, s is called a
full state. A variableXi in scope(s) is instantiated if s(Xi) is
a singleton set. The set of instantiated variables in s is noted
single(s). As usual, a state s is called an instantiation when
all its variables are instantiated, i.e., scope(s) = single(s).

For a state s and a set of variables T ⊆ scope(s), s[T] de-
notes the restriction of s to T , i.e., s[T] is the set {〈Xi, xj〉 ∈
s | Xi ∈ T}. An instantiation s satisfies a contraint Cj =
(Sj , Rj) if Sj ⊆ scope(s) and Rj(xj1 , . . . , xjk) = 1, where
∀l ∈ 1, . . . , k, 〈Xjl , xjl〉 ∈ s[Sj]. A solution of a CN N =
(X ,D, C) is a full instantiation s satisfying all constraints Cj

in C. For example, s = {〈X1, 1〉, 〈X2, 0〉, 〈X3, 1〉, 〈X4, 0〉}
is a solution of the CN given at Example 1.

Given a CN N = (X ,D, C) and a state s over a subset of
X , the conditioning N | s of N by s is the CN (X ′,D′, C′)
defined as follows:X ′ = X \single(s); with each domainDi

in D, one associates the domain D′
i ∈ D′, where D′

i = Di if
Xi 6∈ scope(s) and D′

i = s(Di) otherwise; finally, with each
constraint Cj = (Sj , Rj) in C, one associates the constraint
C ′

j = (S′
j , R

′
j) in C′, where S′

j = Sj \ single(s) and R′
j is

the restriction of Rj to S′
j .

The primal graph of a CN N = (X ,D, C) is the undi-
rected graph G with vertex set X and edge set E , such that
{Xp, Xq} ∈ E if and only if {Xp, Xq} is a subset of the
scope Sj of some constraint Cj in C. For instance, the primal
graph of the CN given at Example 1 is depicted on Figure 1.

X1 X2

X3

X4

Figure 1: The primal graph of the CN given at Example 1.

3 The MDDG Language
Let us first consider the language MDG of multivalued deci-
sion graphs:

Definition 1 (MDG) Given a finite set X of finite-domain
variables, the (read-once) MDG language over X is the set of
all single-rooted directed acyclic graphs ∆, where leaf nodes
are labelled by > (true) or ⊥ (false), and every internal node
is either a ∧-node N = ∧(N1, . . . , Ni) or a decision node N
associated with variableXi ∈ X , i.e., a deterministic ∨-node
N = ∨(N1, . . . , Nj) such that Di = {xi1 , . . . , xij} and the
arc from N to Nk (k ∈ 1, . . . , j) is labelled by the elemen-
tary assignment {〈Xi, xik〉}. The paths of ∆ must satisfy the
read-once property: for every path from the root of ∆ to a >
leaf node, and for any variable Xi ∈ X , no more than one
arc can be labelled by an elementary assignment over Xi.

For every node N in an MDG representation ∆, Var(N) is
defined inductively as follows:

• if N is a leaf node, then Var(N) = ∅;
• if N is a ∧-node N = ∧(N1, . . . , Ni),

then Var(N) =
⋃i

k=1 Var(Ni);
• if N is a decision node N = ∨(N1, . . . , Nj) as-

sociated with variable X , then Var(N) = {X} ∪⋃j
k=1 Var(Nk).

Let s be a full instantiation over X and let ∆ be a MDG
representation over X , rooted at node N . Let eval(N, s) be
the MDG representation without any decision node, defined
inductively by:

• if N is a leaf node, then eval(N, s) = N ;
• if N is a ∧-node N = ∧(N1, . . . , Ni), then

eval(N, s) = ∧(eval(N1, s), . . . , eval(Ni, s));
• if N is a decision node N = ∨(N1, . . . , Nj) associated

with variableXi, then eval(N, s) = eval(Nk, s), where
〈Xi, xik〉 ∈ s.

s is a solution of ∆ if and only eval(N, s) evaluates to true.
The language MDDG we are interested in is the subset

of MDG consisting of decomposable representations, those
where the children of any ∧-node do not share any variable:

Definition 2 (MDDG) Given a finite set X of finite-domain
variables, the MDDG language over X is the subset of MDG
representations ∆, where each ∧-node N = ∧(N1, . . . , Ni)
is decomposable, i.e., ∀k, l ∈ 1, . . . , i, if k 6= l, then
Var(Nk) ∩Var(Nl) = ∅.

The MDDG representation reported on Figure 2 is equiva-
lent to the CN given at Example 1, i.e., they have the same
solution set. Nodes with a single child are shunted, and their

labels (in the case of decision nodes) are gathered with those
of their incoming arcs. The corresponding elementary assign-
ments typically result from propagation (the ∨-nodes are not
created in that case, we mention them in the definition of
MDDG for the ease of exposure). The arcs leading to ⊥ are
not depicted. The > leaf is duplicated for readability reasons.

∨

∧ ∧ ∧

∨ ∨ ∨ ∨

>> > ∨ > >

>

〈X2,0〉 〈X2,1〉 〈X2,2〉

〈X3,1〉

〈X4,0〉〈X1,1〉 〈X1,2〉

〈X3,1〉

〈X4,0〉 〈X3,2〉 〈X1,0〉 〈X1,2〉 〈X1,0〉 〈X1,1〉

〈X4,0〉 〈X4,1〉

Figure 2: An MDDG equivalent to the CN given at Example 1.

Decision-DNNF [Oztok and Darwiche, 2014; Fargier and
Marquis, 2006] corresponds to the proper subset of MDDG
where each variable has a Boolean domain. Despite the
increase of generality obtained by accepting non-Boolean
domains, the key tractable queries and transformations
(weighted solution counting, solution enumeration, optimiza-
tion w.r.t. a linear objective function and conditioning) of-
fered by Decision-DNNF are also offered by MDDG (the
polynomial-time (or polynomial-delay) algorithms used to
achieve those queries and transformations in the Decision-
DNNF case can be extended in a trivial way to the MDDG case).
MDDG is also close to the MDD language considered in

[Amilhastre et al., 2014], and to the AOMDD language con-
sidered in [Mateescu et al., 2008], but it does not coincide
with any of them. Thus, MDD and MDDG are not comparable
w.r.t. set-inclusion; on the one hand, MDD consists of non-
deterministic structures (more than one outgoing arc of a de-
cision node labelled by a variable Xi can be labelled by the
same value from the domain Di of Xi), while the decision
nodes in an MDDG representation are always deterministic
ones; on the other hand, MDDG representations include ∧-
nodes, while the internal nodes of any MDD representation are
decision nodes. Similarly, AOMDD and MDDG are not compa-
rable w.r.t. set-inclusion; on the one hand, AOMDD is suited to
the compilation of graphical models (or weighted constraint
networks), and as such, it enables the representation of func-
tions the co-domain of which is not Boolean in essence (like
utility or cost functions, probability distributions, etc.) while
MDDG cannot do it; on the other hand, AOMDD representations
are ordered structures (they respect a pseudo-tree induced by
a preset elimination order over the variables – this is a crucial
requirement for canonicity) while in MDDG there is no such a

requirement (MDDG representations are not canonical ones).

4 A Top-Down MDDG Compiler
We developed a top-down compiler cn2mddgwhich takes as
input a CN represented in the XCSP 2.1 format [Roussel and
Lecoutre, 2009], and generates a MDDG representation equiv-
alent to it, i.e., having the same solutions. All the basic fea-
tures offered by the XCSP 2.1 format are taken into account;
especially, the constraints can be represented in intension (as
“predicates”) or in extension (as “relations”); however, only
three global constraints are supported by our compiler in its
current turn; namely allDifferent , weightedSum (i.e., linear
constraints), and element .1

The architecture of our cn2mddg compiler is some-
how “standard”, i.e., close to the one of a top-down com-
piler suited to Boolean domains, like the c2d compiler
(reasoning.cs.ucla.edu/c2d/), or the Dsharp
compiler (www.haz.ca/research/dsharp/), both tar-
geting the Decision-DNNF language. Especially, our compiler
is search-based: it follows the trace of a search engine [Huang
and Darwiche, 2007]. It covers similar techniques as those
used in c2d and in Dsharp, including conflict analysis for
guiding the search, constraint propagation for simplification
purpose, component caching in order to avoid the duplica-
tion of identical subparts of the compiled representation, and
a dynamic variable ordering heuristic (as in Dsharp which
takes advantage of the vsads variable selection heuristic).2
Both the caching technique and the variable ordering heuris-
tic used in cn2mddg are specific to the nature of the input (a
CN), which exhibits much more structure than “flat” CNF for-
mulae. Furthermore, our algorithm exploits a specific method
for handling universal constraints, enabling additional simpli-
fications to be performed.

Universal constraints. Universal constraints are con-
straints which are necessarily satisfied whatever the values
(in the current domains of the variables) given to the vari-
ables of their scopes. Thus, for the CN given at Example 1,
contraint C2 when conditioned by any of the elementary as-
signments {〈X2, 0〉} or {〈X2, 1〉} becomes universal. At ev-
ery step of the compilation (i.e., whatever the current de-
cision state), universal constraints are detected. Every con-
straint Cj = (Sj , Rj) ∈ C for which there exists Xi ∈ Sj

such that Di has been reduced by propagation after the last
elementary assignment, is checked for universality. One looks
for an instantiation s of the variables of the current scope of
Cj to values in their current domains such that s violates Rj ;
Cj is valid iff one cannot find such an instantiation s. For ef-
ficiency reasons, s is searched in a lazy way: when found, s
is stored and the next time Cj is checked for universality, s
is considered in priority. Once detected, a universal constraint
Cj is simply deleted from the current network; obviously, this
simplifies the forthcoming treatments (no need to take those
constraints into account), favors decomposability (due to the

1These constraints can be encoded as “predicates” as well, but
then one cannot take advantage of their dedicated propagator.

2Contrastingly, in c2d the variable ordering is static.

edge deletion it leads to on the primal graph of the CN), and
impacts the variable ordering heuristic. Note that in Decision-
DNNF compilers the handling of universal constraints simply
amounts to ignoring every clause sharing a literal with the
current partial interpretation.

Caching. Caching is a key technique of any compiler com-
puting DAG-based representations. It aims at refraining from
solving the same subproblem twice or more, and duplicating
parts of the compiled representation. Indeed, due to the (con-
ditional) interchangeability of values in many networks, it is
often the case that two distinct decision states s1 and s2 con-
sidered successively during the search give rise to the same
problem, i.e., N | s1 and N | s2 are equivalent. In such a
case, instead of compiling both networks, it can prove much
better to compile N | s1 only, then to store in a cache an
entry corresponding to N | s1 associated with the root node
N of its MDDG representation, and to detect that N | s2 is
equivalent to N | s1 by looking at each step into the cache:
in this case, instead of performing the computationally de-
manding compilation of N | s2, it is enough to create an arc
pointing to N to do the job. Thus, for the CN N given at
Example 1, the component about {X3, X4} obtained by dy-
namic decomposition is the same one for the states {〈X2, 0〉}
and {〈X2, 1〉}, so there is no need to duplicate it.

However, testing the equivalence of two CNs under states
is computationally hard and an exponential number of sub-
problems have to be considered in general. For these reasons,
it is not possible to perform brute-force caching where all
non-equivalentN | s networks encountered during the search
would be considered (this would require unmanageable com-
pilation times). Thus, N | s1 and N | s2 are detected as
“equivalent” when they are identical.

A main issue to be addressed for an efficient caching in
practice concerns the size of the entries; preferably, one must
keep them as small as possible. In our cache, one first stores
the current domains of the current variables, i.e., s restricted
to its unassigned variables. Storing all the current constraints
would be too space demanding. Fortunately, this is useless in
general. Indeed, every constraint Cj = (Sj , Rj) such that
Sj ∩ single(s) = ∅ does not need to be saved (provided
that the initial constraint Cj is available). Furthermore, no
constraint Cj = (Sj , Rj) which is binary in the input net-
work needs to be saved, provided that the current network
is arc consistent: if no variable from Sj = {Xi, Xk} has
been instantiated, then the previous case is recovered; if both
variables Xi, Xk from Sj have been instantiated, then ei-
ther Cj is universal or Cj is inconsistent, and there is no
need to store it whatever the case; finally if only one vari-
able Xi from Sj has been instantiated (say, to value xi),
then the projection on the remaining (uninstantiated) vari-
able Xk of the restriction of Rj for which Xi = xi coin-
cides with the restriction of s to {Xk} when the current net-
work is arc consistent.3 Similarly, there is no need to store the
allDifferent constraints which can be viewed as conjunctions

3This is reminiscent to the treatment of binary clauses in
Dsharp, which do not need to be cached provided that unit propa-
gation has been performed [Muise et al., 2012].

of binary constraints. The remaining constraints are saved in
our cache: for those represented in intension, the variables in-
stantiated in s are replaced by their values in the predicates,
and a simplification step is performed in order to possibly re-
duce the representations; those represented in extension are
stored explicitly; finally, for each weightedSum constraint,
the variables instantiated in s are replaced by their values, the
constraint is simplified and only the resulting constant term
needs to be stored; each element constraint R, when binary,
does not need to be stored; in the remaining case, one stores
{〈Xi, xi〉 ∈ s | Xi ∈ Sj} into the cache.

Variable ordering heuristic. Our variable ordering heuris-
tic bc is based on the concept of betweenness centrality [Bran-
des, 2008]which has been used in many network applications.
Given a node Xi in a graph (in our case, the primal graph of
the current CN in which the nodes can be identified as with
the variables labelling them), bc(Xi) is equal to the number
of shortest paths from all nodes to all others that pass through
Xi. Formally,

bc(Xi) = ΣXj 6=Xi 6=Xk

σXi(Xj , Xk)

σ(Xj , Xk)

whereXi, Xj , Xk are nodes of the given network, σ(Xj , Xk)
is the number of shortest paths from Xj to Xk, and
σXi

(Xj , Xk) are the number of those paths passing through
Xi. Thus, for the CNN given at Example 1,X2 is the unique
variable maximizing the value of bc. Clearly enough, assign-
ing first the most central variables of the primal graph (X , E)
of a CN is a way to promote the generation of disjoint con-
nected components of similar sizes, allowing the decomposi-
tion of the network into independent networks (i.e., bearing
on pairwise disjoint sets of variables) of close sizes, which
can be compiled separately and gathered using a ∧-node in
the resulting MDDG representation. Interestingly, computing
the betweenness centralities of all nodes in (X , E) can be
done in time O(n.p), where n = #(X) and p = #(E). In
practice, the computation of bc(Xi) for each node Xi of the
primal graph (X , E) of a CN is efficient enough so that we
can achieve it dynamically, i.e., for each network encountered
during the compilation.

The cn2mddg compiler. Algorithm 1 provides the
pseudo-code for the compiler cn2mddg. The compilation of
a given CN N is achieved by calling cn2mddg on it and on
the decision state s = {〈Xi, xi〉 | Xi ∈ X , xi ∈ Di}. First
of all (line 1), the arc consistency ofN under s is established
(the values of the variables occurring in s which are not sup-
ported in N are removed from the state). For efficiency rea-
sons, arc consistency is ensured at start (i.e., at the first call)
and then maintained dynamically each time a new elemen-
tary assignment is considered (at line 13). Then, N is condi-
tioned by the resulting state (line 2).4 At line 3, a CSP solver

4In the implementation, the conditioning N | s at line 2 is not
performed explicitly (it is presented as such for the sake of clarity);
only the list of uninstantiated variables and the current domains are
updated at each step (the constraints themselves are never modified
for efficiency reasons).

is used to determine whether the resulting N is consistent or
not. We developed our own solver, based on chronological
backtracking and using the (now standard) conflict-directed
dom/wdeg heuristic for selecting variables [Boussemart et al.,
2004]. Arc consistency is maintained at every choice step.
Every constraint Cj of C is associated with a weight, which
is incremented each time a conflict is detected. If N is in-
consistent, then it is equivalent to the MDDG representation
reduced to a leaf labelled by ⊥, as returned by the algorithm.
Line 4 concerns the other base case, when all the variables
of X have been considered; in this situation, N is equivalent
to the MDDG representation >, as returned by the algorithm.
In the remaining case (line 5), one first determines whether
the current network N has already been encountered or not
during the search. One takes advantage of the cache function
which associates networks with MDDG representations given
by their root nodes. If N has already been found, then the
algorithm simply returns the root node of its MDDG compi-
lation. Otherwise, N is first simplified by removing from it
the universal constraints it may contain (this is achieved by
the removeUniversal function, at line 6). Then (line 7) the
connected components of the resulting network are looked
for. The function connectedComponents returns a partition
CoCo of the current set of variables X corresponding to the
connected components of the primal graph of N (a simple
breadth-first search is performed to find them). Each element
Co of CoCo is considered successively (line 9); Co is a set
of variables which are independent from the other elements
of CoCo and each network corresponding to N restricted to
Co can be compiled separately, leading to a set of nodes N∧
which is initialized to the empty set at line 8. For each Co,
the current decision state s can be restricted to the variables
occurring in Co. A variable Xi from Co is picked up us-
ing the function selectVariable at line 10. Then the values xi
from the current domain of Xi are successively considered
(line 12); each of them corresponds to an elementary assign-
ment {〈Xi, xi〉} and the current network conditioned by s
restricted to the variables of Co but Xi, and enriched with
〈Xi, xi〉, is compiled recursively (line 13); the set N∨ of re-
sulting nodes, initialized to the empty set at line 11 is updated
at line 13. When all the values xi have been considered, a
new decision node labelled by Xi is created at line 14, and
added to the set N∧. When all the connected components of
CoCo have been considered, the elements of N∧ are gath-
ered conjunctively to form a ∧-node N at line 15 thanks to
the function aNode. This node is added to the cache associ-
ated with the entry N (line 16) and finally returned (line 17)
as the root node of the MDDG representation of N .

Algorithm 1 is guaranteed to terminate since at each recur-
sive step at least one variable of the initial CN is instantiated.
By construction, the resulting MDDG representation is equiva-
lent to N | s.

5 Experiments
While compiling CNs has been an issue considered for
years (see e.g., [Vempaty, 1992; Amilhastre et al., 2002]),
we are not aware of any available compiler suited to CNs
over non-Boolean domains and handling constraints which

Algorithm 1: cn2mddg
input : a constraint networkN = (X ,D, C)
input : a decision state s over a subset of X
output: the root node N of an MDDG representation

1 s← ac(N , s)
2 N ← N | s
3 if unsat(N) then return leaf(⊥)
4 if #(X) = 0 then return leaf(>)
5 if cache(N) 6= nil then return cache(N)
6 C ← removeUniversal(C)
7 CoCo ← connectedComponents(N)
8 N∧ ← ∅
9 foreach Co ∈ CoCo do

10 Xi ← selectVariable(Co)
11 N∨ ← ∅
12 foreach xi s.t. 〈Xi, xi〉 ∈ s do
13

N∨ ← N∨∪cn2mddg(N , s[Co \{Xi}]∪{〈Xi, xi〉})
14 N∧ ← N∧ ∪ dNode(Xi, N∨)

15 N ← aNode(N∧)
16 cache(N)← N
17 return N

are intensionally represented. Especially, the AOMDD com-
piler available at http://graphmod.ics.uci.edu/
group/aomdd assumes that each constraint of the input
CN is represented extensionally by the list of its satisfy-
ing tuples. Fortunately, many SAT-encodings of CNs have
been pointed out so far (see among others [de Kleer, 1989;
Iwama and Miyazaki, 1994; Walsh, 2000; Gent, 2002]), ren-
dering feasible a comparison with Decision-DNNF compila-
tions of CNF translations of such CNs.

Setup. We have considered 173 CNs from
15 data sets, downloaded from github.com/
MiniZinc/minizinc-benchmarks, www.cril.
univ-artois.fr/˜lecoutre/benchmarks.html,
and www.itu.dk/research/cla/externals/
clib/. Those data sets correspond to several families of
problems, including configuration problems, scheduling
problems, frequency allocation problems. For some in-
stances, the constraints are represented extensionally, by the
list of satisfying tuples or by the list of forbidden tuples; for
other instances, they are given in intension.

Our purpose was to compile each input CN into an MDDG
representation using cn2mddg, and into Decision-DNNF rep-
resentations, using first a translation of it into CNF, then the
Decision-DNNF compiler Dsharp. Two CNF encodings have
been considered in our experiments: the sparse encoding S of
the domains together with a mixed clause encoding of the
constraints (i.e., each constraint is encoded using the support
encoding or the conflict encoding, in order to minimize the
number of generated clauses), and the log encoding L of the
domains together with a conflict encoding of the constraints.5

5Some of the available translators, like Sugar [Tamura et al.,
2009] or Azucar [Tanjo et al., 2012] lead to encodings which do
not preserve equivalence (they are oriented to solve the satisfaction

CN CNF - sparse mixed encoding CNF - log conflict encoding
Name type #X #C maxA maxD tw time size #pv #pcl time size #pv #pcl time size

rect-packing/rect-packingrpp09-true I 2196 2353 10 36 19 1673.33 514754 37044 593518 375.66 16118647 4466 392657 TO -
ghoulomb/ghoulomb3-4-5 I 2033 2051 11 26 31 15.17 5162 MO MO MO MO MO MO MO MO

driver/normalized-driverlogw-08c-sat-ext E 408 9321 2 11 92 15.63 2931 9528 62825 6.42 139306 1050 46081 32.78 499796
scheduling/talent-concert I 325 352 46 316 52 1277.21 404437 MO MO MO MO MO MO MO MO

fapp/fapp19/normalized-fapp19-0350-6 I 350 3114 2 802 130 79.34 1694146 166130802 867243022 - MO MO MO MO MO
costaArray/CostasArray10 I 110 338 4 19 23 10.39 13440 149564 841930 TO - 540 3606946 TO -
costaArray/CostasArray14 I 210 808 4 27 36 TO - 988671 5568047 TO - 1036 34687218 - MO

photo/photophoto2 I 89 133 21 11 21 499.93 9564220 685555 14326576 TO - 204 10923133 - MO
rlfap/normalized-scen4 I 680 3967 2 44 30 3.47 52226 915553 4875002 - MO 4060 3058032 TO -
radiation/radiation04 I 781 569 9 5180 33 - MO MO MO MO MO MO MO MO MO

renault/normalized-renault-mod-32-ext E 111 154 10 42 11 20.39 160238 222582 1755876 TO - 286 138124077 - MO
renault/normalized-renault-mod-11-ext E 111 149 10 42 10 16.22 41919 223718 1762294 3538.01 2399273 286 138117804 - MO

still-life/still-life7x7 I 690 803 50 50 49 1819.87 738478 MO MO MO MO MO MO MO MO
configit/Aralia/edfpa15r I 198 110 13 2 28 175.49 2044261 396 24710 - MO 396 24710 - MO
configit/Aralia/edfpa14q I 505 194 22 2 34 TO - 1010 5793030 TO - 1010 5793030 TO -
configit/Aralia/das9207 I 600 324 8 2 15 8.94 45853 1200 3894 642.68 22707412 1200 3894 97.86 9937506

Table 1: An excerpt of our empirical results.

For each instance, we computed the compilation time (in
seconds) and the size of the compiled representation (num-
ber of arcs in the DAG). For translation-based approaches,
we also computed the translation time and the size of the
resulting CNF formula (number of variables and number of
clauses). Our experiments have been conducted on a Quad-
core Intel XEON X5550 with 32GB of memory. A time limit
of 3600s for the CNF translation phase (resp. the off-line com-
pilation phase) and a total amount of 8GB of memory for stor-
ing the resulting CNF formula (resp. the compiled representa-
tion) have been considered for each instance.

Some Results. Within the time and memory limits we set,
cn2mddg succeeded in compiling 131 instances over 173;
the computation aborted with a time-out (TO) for 32 in-
stances, and with a memory-out (MO) for 10 instances. This
heavily contrasts with Dsharp which succeeded in compil-
ing only 83 instances when the S encoding was used, and
61 instances when the L encoding was used. More in details,
the CNF translation using S (resp. L) led to a memory-out
for 27 (resp. 35) instances over 173; over the 146 (resp. 138)
remaining instances, the DNNF compilation using Dsharp
aborted with a time-out for 24 (resp. 21) instances, and with
a memory-out for 39 (resp. 56) instances.

 1

 10

 100

 1000

 1 10 100 1000

D
s
h
a
rp

cn2mddg

(a) Time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

D
s
h
a
rp

cn2mddg

(b) Size

Figure 3: cn2mddg vs. Dsharp: comparing the compilation
times and the sizes of the compiled forms.

Whatever the encoding used (S or L), the translate-then-
compile approach appears as impractical in many cases. This

problem), and cannot be used as such for our compilation purpose.

can be explained both by the huge number of Boolean vari-
ables in the generated CNF formulae, and the structure loss
inherent to the CNF format (compared to the CN one). Con-
trastingly, our compiler cn2mddg proved much more ro-
bust since it succeeded in compiling many CNs which are
out of reach of the translate-then-compile approaches. Es-
pecially, each of the 83 instances which have been com-
piled with success using Dsharp (with the S encoding)
have also proved compilable into MDDG using cn2mddg. The
compilation times required to produce MDDG representations
from the input network are often smaller than the compila-
tion times required to produce DNNF representations from
the CNF translation of the network. More importantly, the
sizes of the resulting compiled representations turn out to be
always smaller, sometimes by several orders of magnitude,
when MDDG is targeted compared to the DNNF case. This is
salient on Figure 3, where each dot represents one of the 83
instances for which Dsharp (with the S encoding) did not
fail. The time needed to compute (resp. the size of) the result-
ing MDDG representation is given by its x-coordinate and the
the time needed to compute (resp. the size of) the resulting
DNNF representation from the CNF translation is given by its
y-coordinate.6 Every scale is a logarithmic one.

Table 1 presents a selection of the results. Each line cor-
responds to a constraint network N = (X ,D, C) identified
by the leftmost column. The next columns give respectively
the “type” of CN (Extension or Intension), the number #X
of variables, the number #C of constraints, the maximal ar-
ity maxA of the constraints, the maximal size maxD of the
domains, a upper bound tw of the treewidth of its primal
graph,7 the time needed to get the MDDG representation us-
ing cn2mddg, and the size of it. For the two CNF encodings
under consideration, one can find the number #pv of propo-
sitional variables in it, the number #pcl of clauses in it, the
time needed to get the DNNF representation using Dsharp,
and the size of it. The reported results illustrate the bene-
fits offered by cn2mddg over the translate-then-compile ap-

6Note that the time differences in favor of cn2mddg would be
even larger if the time needed to translate the CN into CNF would
have been taken into account.

7Computed using QuickBB – see http://www.hlt.
utdallas.edu/˜vgogate/quickbb.html – equipped with
the random ordering heuristic and for an allocated time of 1800s.

proaches, about both the number of benchmarks for which the
compilation succeeded, and the sizes of the compiled repre-
sentations. They also show the feasibility of MDDG compila-
tion of CNs corresponding to real applications, and of signif-
icant complexity (often out of reach of tree clustering com-
pilations [Dechter and Pearl, 1989], given the sizes of their
domains and the treewidth of their primal graphs).

We also performed a differential evaluation for assessing
the impact of each technique used within cn2mddg. Let
dom/wdeg+noU be the version of cn2mddg for which the
dom/wdeg heuristic is used (instead of bc), and the handling
of universal constraints is disabled. dom/wdeg+noU solved
only 101 instances (over 173) within the time and memory
limits. Besides, the number of instances (over 101) for which
the size of the MDDG representation obtained by cn2mddg
(resp. dom/wdeg+noU) is lower than p = 1

2 times the size of
the MDDG representation obtained by dom/wdeg+noU (resp.
cn2mddg) is 35 (resp. 6). The corresponding number for the
proportion p = 1

10 (instead of 1
2) is 12 (resp. 0).

6 Conclusion
The contribution of the paper is a top-down algorithm
cn2mddg for compiling finite-domain CNs into multivalued
decomposable decision graphs. cn2mddg takes advantage of
a specific caching technique, a new variable ordering heuristic
based on betweenness centrality, and the handling of univer-
sal constraints. Intensive experiments showed that cn2mddg
succeeds in compiling CNs which cannot be compiled into
Decision-DNNF via a preliminary translation into CNF, and
leads to compiled forms which are typically much smaller.

References
[Amilhastre et al., 2002] J. Amilhastre, H. Fargier, and

P. Marquis. Consistency restoration and explanations in
dynamic CSPs application to configuration. Artificial In-
telligence, 135(1-2):199–234, 2002.

[Amilhastre et al., 2014] J. Amilhastre, H. Fargier,
A. Niveau, and C. Pralet. Compiling CSPs: A com-
plexity map of (non-deterministic) multivalued decision
diagrams. International Journal on Artificial Intelligence
Tools, 23(4), 2014.

[Boussemart et al., 2004] F. Boussemart, F. Hemery, Ch.
Lecoutre, and L. Saı̈s. Boosting systematic search by
weighting constraints. In Proc. of ECAI’04, pages 146–
150, 2004.

[Brandes, 2008] U. Brandes. On variants of shortest-path be-
tweenness centrality and their generic computation. Social
Networks, 30(2):136–145, 2008.

[Cambazard et al., 2010] H. Cambazard, T. Hadzic, and
B. O’Sullivan. Knowledge compilation for itemset min-
ing. In Proc. of ECAI’10, pages 1109–1110, 2010.

[Darwiche and Marquis, 2002] A. Darwiche and P. Marquis.
A knowledge compilation map. Journal of Artificial Intel-
ligence Research, 17:229–264, 2002.

[Darwiche, 2004] A. Darwiche. New advances in compiling
CNF into decomposable negation normal form. In Proc.
of ECAI’04, pages 328–332, 2004.

[de Kleer, 1989] J. de Kleer. A comparison of ATMS and
CSP techniques. In Proc. of IJCAI’89, pages 290–296,
1989.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree
clustering for constraint networks. Artificial Intelligence,
38(3):353–366, 1989.

[Fargier and Marquis, 2006] H. Fargier and P. Marquis. On
the use of partially ordered decision graphs in knowledge
compilation and quantified Boolean formulae. In Proc. of
AAAI’06, pages 42–47, 2006.

[Freuder and O’Sullivan, 2014] E. Freuder and
B. O’Sullivan. Grand challenges for constraint pro-
gramming. Constraints, 19:150–162, 2014.

[Gent, 2002] I. P. Gent. Arc consistency in SAT. In Proc. of
ECAI’02, pages 121–125, 2002.

[Huang and Darwiche, 2007] J. Huang and A. Darwiche.
The language of search. Journal of Artificial Intelligence
Research, 29:191–219, 2007.

[Iwama and Miyazaki, 1994] K. Iwama and S. Miyazaki.
SAT-variable complexity of hard combinatorial problems.
In Proc. of IFIP World Computer Congress’94, pages 253–
258, 1994.

[Junker, 2006] U. Junker. Configuration. In F. Rossi, P. van
Beek, and T. Walsh, editors, Handbook of Constraint Pro-
gramming, chapter 24. Elsevier, 2006.

[Mateescu et al., 2008] R. Mateescu, R. Dechter, and
R. Marinescu. AND/OR multi-valued decision diagrams
(AOMDDs) for graphical models. Journal of Artificial
Intelligence Research, 33:465–519, 2008.

[Muise et al., 2012] Ch.J. Muise, Sh.A. McIlraith, J.Ch.
Beck, and E.I. Hsu. Dsharp: Fast d-DNNF compilation
with sharpSAT. In Proc. of AI’12, pages 356–361, 2012.

[Oztok and Darwiche, 2014] U. Oztok and A. Darwiche. On
compiling CNF into decision-DNNF. In Proc. of CP’14,
pages 42–57, 2014.

[Rossi et al., 2006] F. Rossi, P. van Beek, and T. Walsh.
Handbook of Constraint Programming. Foundations of
Artificial Intelligence. Elsevier, 2006.

[Roussel and Lecoutre, 2009] O. Roussel and Ch. Lecoutre.
XML Representation of Constraint Networks: Format
XCSP 2.1. Technical report, Computing Research Repos-
itory (CoRR) abs/0902.2362, feb 2009.

[Tamura et al., 2009] N. Tamura, A. Taga, S. Kitagawa, and
M. Banbara. Compiling finite linear CSP into SAT. Con-
straints, 14(2):254–272, 2009.

[Tanjo et al., 2012] T. Tanjo, N. Tamura, and M. Banbara.
Azucar: A SAT-based CSP solver using compact order en-
coding - (tool presentation). In Proc. of SAT’12, pages
456–462, 2012.

[Vempaty, 1992] N.R. Vempaty. Solving constraint satisfac-
tion problems using finite state automata. In Proc. of
AAAI’92, pages 453–458, 1992.

[Walsh, 2000] T. Walsh. SAT v CSP. In Proc. of CP’00,
pages 441–456, 2000.

