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Résumé
Le comptage de modèles, c’est à dire compter le

nombre d’assignations satisfaisant une formule proposi-
tionnelle, est un outil important pour le raisonnement
probabiliste. Récemment, il a été proposé de modéliser5

et résoudre des requêtes probabilistes via du Comptage
de Modèle Projeté et Pondéré (CMPP). Dans ce travail,
nous proposons un nouveau langage de modélisation, sim-
plifié, basé sur du CMPP. Dans ce langage, les requêtes
sont modélisées en utilisant des clauses de Horn avec un10

nouveau schéma de pondération. Nous montrons que ce
nouveau langage permet d’encoder plusieurs problèmes
majeurs : le calcul de probabilités marginales dans les
réseaux Bayesien, l’estimation de résilience d’un réseau et
l’inférence de programmes logiques probabilistes. Ensuite,15

nous proposons un nouveau solutionneur spécifiquement
optimisé pour résoudre les requêtes encodées dans ce
langage. Nos expériences montrent que ce solutionneur
est compétitif avec les solutionneurs de l’état de l’art
pour les problèmes étudiés.20

Les compteurs de modèles pondérés sont des sys-
tèmes qui calculent la somme, pondérée, du nombres
d’assignations satisfaisant une formule propositionnelle
en forme normal conjonctive. Le problème du comptage
de modèles pondérés (CMP) est difficile : il est #P -25

complet. Construire des systèmes efficients pour cette
tâche est donc un défi. Une application importante
du CMP est l’inférence probabiliste, c’est à dire calcu-
ler la probabilité d’une observation selon un modèle
probabiliste donné. En utilisant un schéma de pon-30

dération adéquat, les compteurs de modèles pondérés
ont été utilisés pour résoudre les problèmes d’inférence
probabiliste suivant :

— le calcul de probabilités marginales dans les ré-
seaux Bayésiens [5, 6, 11] ;35

— des requêtes de connectivité dans des graphes
probabilistes [7, 13] ;

— l’inférence de programmes logiques probabi-
listes [8].

Dans chacune de ses études, des approches ont été40

proposées pour encoder les tâches d’inférences comme
un problème de CMP sur une formule proposition-
nelle. Pour les réseaux Bayésien, la taille de la formule
croit de manière polynomiale avec la taille du réseaux,
mais de nombreux travaux ont proposé des encodages45

de plus en plus complexes pour résoudre efficacement
le CMP [2, 3, 4]. En revanche, pour les deux autres
types de problème, la formule peut être exponentielle-
ment plus large que le problème initial [13]. Modéliser
de manière simple ces tâches d’inférence et obtenir50

de bonnes performances reste donc un défi à relever.
Une approche prometteuse à ce défi est d’utiliser le
comptage de modèles pondérés projetés (CMPP) [1].
Dans le CMP classique, les modèles sont considérés sur
toutes les variables de la formule originelle tandis qu’en55

CMPP les modèles sont projetés sur un sous-ensemble
des variables ; les variables projetées (ou probabilistes
dans ce travail). Il en résulte que deux modèles dis-
tincts en CMP peuvent être équivalent en CMPP. Il
a été montré qu’en utilisant un encodage basé sur du60

CMPP il est possible d’obtenir des formules de taille
polynomiale pour les problème de résilience dans les
réseaux probabilistes.

Dans ce travail, nous étudions le défi de faire de
l’inférence probabiliste en utilisant un modèle simple65

basé sur du CMPP. Nous montrons qu’un ensemble de
problèmes probabilistes peuvent être formulés comme
une tâche de CMPP sur des formules propositionnelles
spéciales : des formules composées de clauses de Horn
avec un schéma de pondération spécifique. Ces formules70

sont plus simples, le problème de satisfaisabilité est
résolvable en temps linéaire sur les formules de Horn, et
ont une taille qui grandit de manière polynomiale avec



la taille du problème initial. Ensuite, nous introduisons
un nouveau solutionneur, nommé Schlandals, qui tire75

avantage de cette structure particulière.
Ce solutionneur est basé sur une recherche exhaus-

tive de type DPLL sur les variables probabilistes. Les
techniques classiques de comptage de modèles telles que
la mémoïsation, la détection de composantes indépen-80

dantes ou l’apprentissage de clauses y sont implémen-
tées. En outre, une propagation supplémentaire, basée
sur la projection des modèles, est implémentée dans
Schlandals. Nous montrons qu’il est possible de trou-
ver, efficacement, une assignation à certaines variables85

non-probabilistes qui réduit le problème tout en conser-
vant le même compte. Finalement, nous montrons que
l’utilisation de clauses de Horn permet d’arrêter la re-
cherche lorsque toutes les variables probabilistes ont
été assignées. Contrairement, un compteur de modèles90

classique, traitant une formule quelconque, doit vérifier
qu’il existe un modèle pour la formule résiduelle ce qui
est NP−difficile.

Nous évaluons notre solutionneur sur deux problèmes
majeurs en inférence probabiliste : calculer une pro-95

babilité marginale dans un réseau Bayésien et le pro-
blème de joignabilité dans un graphe probabiliste. Nous
comparons Schlandals avec les compteurs de modèles
pondérés les plus performants dans les compétitions ces
dernières années : d4 [9], projMC [10] et GPMC [12]. Pour100

les réseaux Bayésien, nous utilisons, pour les autres so-
lutionneurs, les encodages de l’état de l’art, qui diffèrent
du notre. Nous montrons que sur les deux problèmes
susmentionnés, Schlandals obtient des performances
comparables avec d4 et GPMC. Pour le problème de joi-105

gnabilité, pour lequel notre encodage et celui de l’état
de l’art est le même, nous obtenons des meilleures
performances.

En conclusion, nous présentons Schlandals, un nou-
veau solutionneur pour le comptage de modèles pondé-110

rés et projetés. Il résout des formules propositionnelles
basées sur des clauses de Horn avec un schéma de pon-
dération basé sur des distributions. Nous montrons que
des problèmes majeurs en raisonnement probabiliste
peuvent être formulés via de telles formules. Nos expé-115

riences montrent que sur les problèmes étudiés notre
solutionneur est compétitif avec l’état de l’art.
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Abstract
Weighted model counting, that is, counting the weighted number of satisfying assignments of a
propositional formula, is an important tool in probabilistic reasoning. Recently, the use of projected
weighted model counting (PWMC) has been proposed as an approach to formulate and answer
probabilistic queries. In this work, we propose a new simplified modeling language based on PWMC
in which probabilistic inference tasks are modeled using a conjunction of Horn clauses and a particular
weighting scheme for the variables. We show that the major problems of inference for Bayesian
Networks, network reachability and probabilistic logic programming can be modeled in this language.
Subsequently, we propose a new, relatively simple solver that is specifically optimized to solve the
PWMC problem for such formulas. Our experiments show that our new solver is competitive with
state-of-the-art solvers on the major problems studied.
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1 Introduction

Weighted model counters are systems that calculate the weighted number of assignments
that satisfy a formula in conjunctive normal form (CNF). Weighted model counting (WMC)
is a hard problem: it is #P complete, and hence building efficient systems for this task is a
challenge.

An important application of WMC is probabilistic inference, that is, calculating the
probability of an observation according to a given probabilistic model. With increasing sizes
of probabilistic models, the performance of inference remains important. Model counters
have already been used to solve probabilistic inference problems on

Bayesian networks (BNs) [6, 9, 20];
Probabilistic networks (PNs) [12, 27]
Probabilistic logic programs (PLPs) [13].

In each of these studies, approaches were proposed for how to model a probabilistic inference
task as a WMC task on a CNF formula. Unfortunately, the resulting models are not always
simple. For Bayesian networks the CNF formulas are polynomial in size given the size of the
BN, but a number of papers have proposed increasingly complex models to make solving
efficient [2, 4, 5]; for PNs and PLPs the CNF can even be exponentially larger than the
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original probabilistic model [27]. A challenge remains how to model inference tasks in a
simple manner and obtain good performance at the same time.

A promising solution to this modeling problem may be the use of projected (weighted)
model counting (PWCM) [1] as a general approach for probabilistic inference; it was shown
that using PWMC a CNF of polynomial size can be used to solve reachability problems
on PNs [12]. Where in weighted model counting a sum is calculated over all models of a
formula F , in PWMC the models are projected on a subset of the variables (the priority
variables) and a weight is given only to each resulting projected model. For example, if
F = (a ∨ b) ∧ (b ∨ c ∨ d), then a model counter will sum over the 11 models of F . On the
other hand, if the priority variables are {a, c}, then a projected model counter sums over 4
projected models (as setting b = ⊤ always makes F true).

In this work, we study the challenge of efficient and simple probabilistic inference using
PWMC in more detail. We show that the aforementioned probabilistic inference tasks
can be modeled as PWMC tasks over a simpler form of CNF formulas: CNF formulas of
Horn clauses with a specific weighting scheme. We will call this task the task of projected
probabilistic Horn model counting (PPHMC). We will argue that the resulting weighted CNF
models are simple and polynomial in size given the original probabilistic models.

Subsequently, we will introduce a new solver, the Schlandals solver, which takes full
advantage of the probabilistic weighting scheme and the fact that all clauses in our formulas
are Horn clauses. The main intuition behind our solver is that it exploits the well-known
fact that the SAT problem over conjunctions of Horn clauses can be solved in linear time.
Using this observation, it is able to efficiently find assignments to the non-priority variables
that greatly reduce the number of constrained clauses in the input formula (like b = ⊤ in the
example above). At the same time, it is still able to exploit optimizations found in other
DPLL-style model counters, such as component caching, unit propagation and branching
strategies, to run with a bounded use of memory.

An experimental evaluation of our solver shows that it is competitive with state-of-the-art
existing tools. We compare our solver with the best performing solvers of the 2022 projected
(weighted) model counting competition on two probabilistic inference tasks: inference in
Bayesian Networks and reliability estimation in PNs. Our experiments show that our solver
is able to solve most of the instances for the BN task, beating other tools when using simple
forms of CNF models, and getting similar performance when compared to optimized complex
models. On PNs, our solver even outperforms the state-of-the-art, without any optimization
of our model. These results open up future possibilities for the use of PPHMC.

2 Related Work

This work is concerned with the task of Projected Weighted Model Counting (PWMC). In
the classical Model Counting problem, one is interested in finding the number of models
of a Boolean formula F , the assignments that makes the formula true. In this work we
focus on the most common setting, in which F is a formula in conjunctive normal form
(CNF). In Projected Model Counting, the goal is to count the assignments to a subset of the
variables (the priority variables) such that there exists an assignment to the other variables
that makes F true. If the set of priority variables contains all variables of F , the projected
and unprojected problems are the same. In the rest of this work, we thus assume that the
subset of priority variable is not empty. In the weighted version of these problems, each valid
assignment is weighted and the goal is to return the sum of the weights of the models.

More formally, let F be a Boolean formula over a set of variables V with P ⊆ V the



A. Dubray, P. Schaus and S. Nijssen 11:3

priority variables and D = V \P the non-priority variables. In traditional projected weighted
model counting each priority variable is given two weights, w(v) and w(¬v), one for each
polarity. We denote by SX an assignment to the variables in X ⊆ V and SX [x] the assigned
value of x ∈ X. If X, Y ⊂ V are two disjoint sets of variables, then SX ∪ SY is defined as the
conjunction of the assignments. We define

SF = {SP | ∃SD : F [SP ∪ SD] = ⊤}

as the set of assignments to the priority variables that can be extended with an assignment
to the non-priority variables and satisfy the formula. The goal of the traditional PWMC
task is then to find

∑
S∈SF

 ∏
v∈V|S[v]=⊤

w(v)×
∏

v∈V|S[v]=⊥

w(¬v)

 .

Note that when weighted model counters are used to model probabilistic inference tasks,
the weights of assignments are set such that this sum corresponds to a probability. If for
every variable p ∈ P it holds that w(p) + w(¬p) = 1 the resulting sum will always be ≤ 1.
Unfortunately, the models for some problems require that w(p) + w(¬p) > 1, and hence
solvers cannot assume that w(p) + w(¬p) = 1.

Various solvers exist to solve the PWMC problem and its unweighted version. In [22], the
authors present Ganak is a model counter build upon sharpSAT, a DPLL-style model counter
with component caching [26]. Ganak uses probabilistic component caching while ensuring
guarantees on the validity of the returned count. Furthermore, the authors propose to use
information about the cache in the branching heuristics and show that this is beneficial to
model counters. Ganak can also be used for projected model counting, by first branching on
the priority variables, but it does not use other specialized techniques. Further modifications
of Ganak have been proposed and in particular it has been shown that integrating tree
decomposition in the branching heuristic can have a positive impact [15]. This has led to the
development of SharpSAT-TD [15], a (weighted) model counter, and GPMC [25], which is also
able to solve the PWMC problem.

The projMC solver [17] uses another approach to solve the PWMC problem1. To compute
the count over a formula F they first compute a disjunctive decomposition from a model of
F . They then use the pairwise incompatible parts of the decomposition to simplify F , and
they recursively solve the new sub-problems.

The aforementioned solvers use a strategy in which a limited amount of memory is used.
This is also the focus of our work. An alternative strategy is to use a model compilation in
combination with dynamic programming. Recently, Dudek et al. proposed the two-phased
ProCount solver [11]. In the first phase, the input formula is transformed into a graded
project-join tree (by a planner). Then, in the second phase, an executor (based on algebraic
decision diagrams) is used to compute the count, using a dynamic programming approach.

3 Problem Definition

First, let us note that, since this work focuses on probabilistic problems, the weights on the
priority variables are used to model probabilities. Hence, we refer to those as probabilistic

1 Although the original paper only describes the unweighted problem, a parameter in the solver enables
the retrieval of the count as a float, taking into account the weights

CP 2023
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variables while the set of non-priority variables are called deterministic variables. In the rest
of this paper, we denote with P (E) the probability that an event E occurs. In this work, we
introduce a combination of two novelties in how to model problems using PWMC. First, a
constraint on the clauses in F is imposed: we only allow clauses to be Horn clauses.

▶ Definition 1 (Horn clause). A Horne clause C is a formula of the form

v1 ∧ · · · ∧ vn ⇒ vt

where I = v1 ∧ · · · ∧ vn is called the implicant of the clause and h = vt is the head of the
clause. Here vi ∈ V is a variable, and vt is either a variable in V or ⊥. If n = 0 (the
implicant is empty) then the left-hand side reduces to ⊤.

It can be observed that when a Horn clause is written as an implication, as above, all the
literals in the clause have the same (positive) polarity. Hence, in order to simplify our
discussion and notation, we only talk about variables, and not literals. A Horn clause Ci can
be identified uniquely by its implicant Ii and its head hi. In the rest of this paper, we will
use the notation Ci and (Ii, hi) interchangeably. For simplicity of notation, we also denote
by v ∈ Ii the fact that v ∈ V is a variable of the implicant of Ci.

Horn clauses have been well studied in the literature. An important result is that the
SAT problem over a CNF formula of Horn clauses can be solved in linear time [10]; given
that the SAT problem in its general form is NP hard, this is a significant simplification.

Secondly, we add the notion of distributions over the probabilistic variables. We assume
that each probabilistic variable p ∈ P belongs to exactly one partition Pi ⊆ P of the
probabilistic variables. We define a distribution over each such partition, in the following
simple manner: we require that one weight is specified for each probabilistic variable and
require that

∑
p∈Pi

w(p) = 1 for all variables in the partition. Subsequently, we calculate the
weight of an assignment S to the probabilistic variables as follows. The weight of a partition,
given the assignment S, is defined as follows:

wPi(S) =
{

w(p) if there is exactly one p ∈ Pi for which S[p] = ⊤
0 otherwise,

or, in other words, if exactly one variable in the partition is set to ⊤, the weight of that
variable is given to that partition; otherwise, the assignment is invalid. Implicitly, we allow
only one variable within a partition to be true at the same time. The weight of the assignment
S is the product of the partition weights given S and thus the solution of the PPHMC
problem is given by ∑

S∈SF

∏
i

wPi
(S),

where we assume there is at least one partition of probabilistic variables.

3.1 Models
As our earlier discussion makes clear, in this work we study a simpler modeling language
in which non-Horn clauses are not allowed, and we combine this with a different approach
to weighting. In this section, we will show that even though we apply the aforementioned
restrictions, a number of different problems can still be modeled in our language.

▶ Example 2 (Bayesian Networks). A Bayesian Network (BN) is a probabilistic model that
can be represented by a directed acyclic graph. Random variables are represented by nodes
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and conditional dependency relationships by edges. Figure 1(a) shows an example of a BN
with four nodes. For simplicity, we illustrate the encoding in our language for a network with
nodes that have two values, but this generalizes for nodes with more than two values.

In this network, both B and C depend on A, while D depends on B and C. In addition
to the network structure, conditional probability tables (CPTs) give, for each node, the
probability of its values conditioned by its parent’s value. These are called the parameters of
the network and for conciseness we write P (x | u) for the parameter corresponding to the
probability that a node X takes value x given that its parents take values u = u1, . . . , un.

Various CNF encodings have been proposed for Bayesian networks [2, 4, 5, 7]. Even
though the author of these works use Horn clauses, the un-projected nature of their target
solvers imposes additional, non-Horn, clauses.

Let us present our encoding for BN by first defining the logical variables. For every
value x of node X in the network, we define one deterministic variable vx. For the BN in
Figure 1, we have the following variables: va0 , va1 , vb0 , vb1 , vc0 , vc1 , vd0 , vd1 . Moreover for
each parameter P (x | u) we define a corresponding probabilistic variable px

u. For the CPT of
node B, we introduce four such variables: pb0

a0
, pb1

a0
, pb0

a1
, pb1

a1
.

In our approach, we have to define the distributions over the probabilistic variables. The
CPTs of the network give a natural partition of the probabilistic variables. That is, for a
node X in the network, we define one partition for each line of its CPT. Hence, for node B

there are two partitions: PB1 = {pb0
a0

, pb1
a0
} and PB2 = {pb0

a1
, pb1

a1
}. Next, we define the weight

on the variables. Contrary to previous encodings, only weights on probabilistic variables are
needed, and we use as weight the parameter they represent: w(px

u) = P (x | u). For example,
we have that w(pb0

a0
) = 0.6 and w(pb1

a0
) = 0.4.

Finally, we define the clauses: for each parameter P (x | u) with u = u1, . . . , un, we
introduce one clause vu1 ∧ . . .∧ vun ∧ px

u ⇒ vx. The clauses for the BN in Figure 1 are shown
below.

pa0 ⇒va0 va0 ∧ pc0
a0
⇒vc0 vb1 ∧ vc0 ∧ pd0

b1c0
⇒ vd0

pa1 ⇒va1 va0 ∧ pc1
a0
⇒vc1 vb1 ∧ vc0 ∧ pd1

b1c0
⇒ vd1

va0 ∧ pb0
a0
⇒vb0 va1 ∧ pc0

a1
⇒vc0 vb0 ∧ vc1 ∧ pd0

b0c1
⇒ vd0

va0 ∧ pb1
a0
⇒vb1 va1 ∧ pc1

a1
⇒vc1 vb0 ∧ vc1 ∧ pd1

b0c1
⇒ vd1

va1 ∧ pb0
a1
⇒vb0 vb0 ∧ vc0 ∧ pd0

b0c0
⇒ vd0 vb1 ∧ vc1 ∧ pd0

b1c1
⇒ vd0

va1 ∧ pb1
a1
⇒vb1 vb0 ∧ vc0 ∧ pd1

b0c0
⇒ vd1 vb1 ∧ vc1 ∧ pd1

b1c1
⇒ vd1

The clause va0 ∧ pb0
a0
⇒ vb0 , for instance, represents that if A has value a0 and we pick the

variable pb0
a0

from the distribution {pb0
a0

, pb1
a0
}, B will have value b0; we believe this is a natural

and simple representation that directly reflects the BN.
Note that we can satisfy all clauses by setting the v variables to true. A common inference

problem on Bayesian Networks is that of calculating a probability P (X = x). We can solve
this problem by adding a clause vx′ ⇒ ⊥ for each value x′ of X such that x′ ̸= x. Effectively
this removes from the sum those assignments in which X ̸= x.

This encoding differs in a number of ways from the encodings used in WMC [2, 6]. The
general idea is similar: for rows of the CPT, clauses are created; probabilistic variables
receive weights that represent entries in the CPTs. Compared to earlier encodings, we do
not generate clauses to impose that the indicators variables (vx) are mutually exclusive for a
node X. Our weighting scheme takes care of this. Furthermore, the earlier encodings have
the parameter variables as the head of the implications in the CNFs, while in our encoding

CP 2023
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A

B

C

A

B

(a)

D

C

D

A

B

C

D

E

(b)

Figure 1 a) An example of Bayesian Network with four binary variables. In this network B and
C depends on A and D depends on B and C. The probability tables are given next to the nodes. b)
An example of probabilistic network for reliability problems. The numbers labeled on the edges are
their probability of being present.

they are in the implicants; while both representations are equivalent, we believe that in our
representation the structure of the BN is more closely reflected in the clauses.

▶ Example 3 (Reliability in Networks). Reliability in network (RN) problems study the
connectivity of nodes in probabilistic graphs. In such graphs, as shown in Figure 1(b), each
edge has a probability of being present. In this work, we consider the computation of the
probability that two nodes are connected.

More formally, let G = (V, E) be a probabilistic graph and fw : E 7→ [0, 1] a weighting
function that assign to each edge a probability of being present or not. We denote s the
source node, t the target node and Rs

t (R̄s
t ) the fact that t is (not) reachable from s. The

goal is then to compute P (Rs
t ).

The encoding of this problem in our language is similar to that in [12], in which the
authors propose to compute P (R̄s

t ) and then use the fact that P (Rs
t ) = 1− P (R̄s

t ) to answer
the initial query.

Let us first define the logical variables. For each node X ∈ V , we introduce one
deterministic variable vX . For each edge e ∈ E from u to v, we introduce two probabilistic
variables puv (the edge is present) and p̄uv (the edge is not present). The weighting scheme
of the probabilistic variables uses the weighting function of the edges: w(puv) = fw(e) and
w(p̄uv) = 1− fw(e). A distribution is defined for each edge, containing these two variables:
Pe = {puv, p̄uv}. Since the probabilistic variables for each edge are in their own distribution,
and each distribution contains no other variables, it is easy to see that an assignment to the
probabilistic variables corresponds to a possible instance of the graph.

We will use the deterministic variables vX to represent whether in the instance implied
by the probabilistic variables, X is reachable from s. The clauses, that we define hereafter,
must ensure that an assignment is a model only if vt = ⊥ given the choices for the edges.

To ensure that, the clauses use the transitive nature of the connectivity. That is, for each
edge e from u to v, a clause vu ∧ puv ⇒ vv is created. This can be interpreted as that if
u is reachable from s and e is present, then v is also reachable from s. We impose that s

is reachable from s by adding the clause ⊤ ⇒ s and that t is not reachable by adding the
clause vt ⇒ ⊥. The clauses for the query P (R̄A

E) for the graph in Figure 1 are shown below.

vA ∧ pAB ⇒ vB vB ∧ pBD ⇒ vD vC ∧ pCE ⇒ vE vE ⇒ ⊥
vA ∧ pAC ⇒ vC vC ∧ pCD ⇒ vD vD ∧ pDE ⇒ vE ⊤ ⇒ vA
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▶ Example 4 (Probabilistic programming). ProbLog is a probabilistic programming language
that extends Prolog with probabilistic predicates [8]. It can be used to represent both the
aforementioned inference problems. While a full discussion of this language is beyond the
scope of this paper, we wish to illustrate how PPHMC can be used in ProbLog. Consider
the following example ProbLog program, taken from the ProbLog website2:

0.4 :: heads.
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
query(win).

For such a logic program, ProbLog performs grounding, creating a propositional version of
the program. This propositional version can be represented as follows in our language:

pheads, pcol(1,red) ⇒ vwin pcol(1,blue), pcol(2,blue) ⇒vwin

pheads, pcol(2,red) ⇒ vwin vwin ⇒⊥
pcol(1,red), pcol(2,red) ⇒ vwin

Here we have these partitions: w(pheads) = 0.4, w(p̄heads) = 0.6; w(pcol(1,red)) = 0.3,
w(pcol(1,blue)) = 0.7; w(pcol(2,red)) = 0.2, w(pcol(2,green)) = 0.3, w(pcol(2,blue)) = 0.5. The
probability of the query is obtained by PPHMC on this ground version. Given that our
previous example showed how reliability problems can be modeled in polynomial space, while
the model for this problem is exponential in the grounded ProbLog model, we hypothesize
that this is possible for all grounded programs without cycle breaking.

4 Algorithm

In the section we present the main algorithms of our solver. At the core, the problem is solved
by a backtracking search over the possible assignments for the distributions. When a value
is assigned to a variable, we call a new propagator designed specifically for the structure of
the clauses. We first present the general algorithm for a search-based solver for the PWMC
problem and then the specific propagation algorithm as well as some branching heuristics.

4.1 General Approach
The main algorithm is shown in Algorithm 1. In essence, it is similar to other DPLL-based
solvers. The computation of the count for a non-empty formula F starts by looking into a
cache (line 7) to determine if the formula has already been counted. If not, then it chooses
an unfixed variable (lines 8, 10) and assigns it a value. A residual formula is computed after
calling a propagation algorithm (line 11) which is then divided into independent components
(line 14). The components are then solved independently (line 17) and their count is stored
in the cache (line 18). In order to bound the memory consumption of search based solvers,
the cache has a limited number of entries. As cache cleaning techniques are not the focus of
this work, we simply fully clear the cache when the limit is reached.

There are a few differences between our solver and other model counters that need to be
pointed out. First, let us note that the variables in a distribution are mutually exclusive.

2 https://dtai.cs.kuleuven.be/problog/tutorial/advanced/00_inference.html
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Algorithm 1 General PPHMC search algorithm.

1 Function PWMC(F,P)
input : A Horn-CNF formula F with probabilistic variables P
output : The projected (on P) weighted model count of F

2 C ← newCache()
3 return PWMCr(F , P, C)
4

5 Function PWMCr(F,P, C)
input : F,P same as PWMC()
input : C the cache of previously found counts
output : Same as PWMC()

6 if P = ∅ then return 1
7 if F ∈ C then return C[F ]
8 P ← a distribution of P such that ∃v ∈ P | v is not fixed
9 count← 0

10 foreach v ∈ P | v is not fixed do
/* Assign v = ⊤ and call the propagation algorithm. Returns the

residual formula F ′ and the unconstrained probability of F

given F ′. */
11 (F ′, UF |F ′)← Propagate(F , P, v)
12 proba← UF |F ′

13 if F ′ is not UNSAT then
14 Components← all connected components of F ′

15 foreach Comp ∈ Components do
16 P ′ ← P reduced to the variables in Comp

17 probaComp ← PWMCr (Comp, P ′, C)
18 C[Comp]← probaComp

19 proba← proba ∗ probaComp

20 end
21 count← count + proba

22 end
23 end
24 return count

Indeed, if a distribution does not have exactly one variable set to ⊤ in an assignment, then
its weight is 0 and

∏
i wPi

(S) = 0, which does not contribute to the count.
A consequence of this is that, unlike classical DPLL-based counters, the branching decision

is made on distributions and not variables. Indeed, since the distributions partition of the
probabilistic variables (i.e., the variables on which the number of weighted models must be
counted), assigning one variable to ⊤ in each distribution means that all other probabilistic
variables are set to ⊥. Moreover, when fixing a variable v in the selected distribution, only the
case of fixing to ⊤ needs to be explored. The case v = ⊥ is explored when the other variables
in the distribution are selected for branching. Notice that when there is no distribution
left in F , then 1 is returned as the remaining formula is SAT (line 6). Indeed, there are
no unit clauses (they are removed during the propagation) and all that remains in F are
Horn clauses with deterministic variables. By setting all remaining variables to ⊥ we obtain
a model of this formula, as the implicant of all clauses evaluates to ⊥. This would not be
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possible if F was not solely composed of Horn clauses. In this case, the SAT problem needs
to be solved on F , which is NP-hard.

The computation of independent components is also slightly different. In traditional
model counters, when the input formula F can be decomposed into multiple sub-formulas
that do not share any variable, each sub-formula is solved independently and the count of
F is the product of the sub-formulas’ count. However, since the probabilistic variables are
linked in partitions, we must add as condition that two independent sub-formulas cannot
share any variable in the same distribution.

Finally, we also devised a new propagation algorithm, explained in the next section. It
returns (line 11) a residual formula F ′ as well as what we call the unconstrained probability of
F given F ′: UF |F ′ . This probability accounts for the distributions of F that are unconstrained
in F ′. Indeed, if for a distribution Pi = {p1

i , . . . , pm
i } occurring in F , there are no clause in

F ′ that contains any of the pk
i ∈ Pi, Pi will never be selected by the branching heuristic.

Moreover, branching on it will not impact F ′. Hence, the probability obtained by branching
of Pi can be precomputed and is given by

∑
p∈Pi|p is not fixed w(p). Note that this sum may

not be 1 if propagation fixed one of the pk
i variables to ⊥ earlier, and |Pi| > 2. More generally,

for l such distributions Pu1 , . . . , Pul
we have UF =

∏l
i=1

∑
p∈Pui

|p is not fixed w(p).

4.2 Propagation
In this section, we describe the propagation algorithm used by our solver, summarized in
Algorithm 2. In brief, we first apply the classical Boolean Unit Propagation (BUP), in which
the links between probabilistic variables in partitions are also enforced, until a fixed point is
reached. Then we remove from the remaining formula the clauses that do not constrain the
count anymore. First, let us detail what the BUP does when a variable v is fixed in F :

If v = ⊤ then
If v is a probabilistic variable in a distribution P , apply the BUP on all v′ ∈ P, v′ ̸= v

with v′ = ⊥.
Every clause C = (I, h) such that h = v is removed from F . Indeed, for every
assignment on its remaining variables, it evaluates to ⊤.
For every clause C = (I, h) such that v ∈ I, replace I by I ′ = I \ {v}.

If v = ⊥ then
If v is a probabilistic variable in a distribution P and only one variable v′ remains
unfixed in P , apply BUP with v′ = ⊤.
Every clause C = (I, h) such that v ∈ I is removed from F for the same reason as
above.
The head of every clause C = (I, h) such that h = v is replaced by ⊥.

There are two cases in which, after a call to the BUP, a variable is forced to take a value,
and the BUP algorithm needs to be called again. First, when the last variable of an implicant
is removed from it, then the head of the clause must be ⊤. Secondly, when a clause (I, h)
has its head set to ⊥ and there is only one variable left in I, then this variable must be set to
⊥. In Algorithm 2, the call to BUP at line 2 is executed until no such clauses can be found.

However, in the context of projected model counting, a key insight for our work is that
further propagation can be done that is not entailed by BUP. The intuition is that the
deterministic variables can be used to remove additional clauses from F . For example, if
our formula includes a clause ¬a ∨ ¬b ∨ ¬c with a, b being probabilistic variables and c a
deterministic variable that does not appear in any other clauses, then setting c to ⊥ makes
the clause evaluate to ⊤, regardless of the choice for a and b. Since we are only interested in

CP 2023
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A B

D

C E

F G

H

Figure 2 On the left: an instance of a reliability problem on probabilistic networks. In the center:
the associated clauses for the query P (R̄s

t ). On the right: the graph of clauses implication: there is
one node per clause and a link between Ci and Cj if hi ∈ Ij .

finding an assignment to the deterministic variables, this assignment does not impact the
final count.

Let us show how this works on the clauses in Figure 2, taken from a reliability query in a
probabilistic networks, in which we want to compute P (R̄s

t ), the probability that s and t

are not connected in the graph on the left. Applying BUP gives vs = ⊤ and vt = ⊥, which
removes these variables from C1, C3 and C6. No further propagation can be done with BUP.
However, when looking at the graph on the left, it is clear that only the nodes B, C and D

impact the connectivity between s and t, but this is not detected by BPU. For instance, let us
look at nodes A and the associated clause C0, which contains the distribution {eAB , ēAB}. It
can be seen that for both choices for the edge eAB , setting vA = ⊥ (a deterministic variable)
reduces the clause C0 to ⊤. Since there are no clauses that have vA in their head, setting vA

to ⊥ has no impact on the other variables in F . Moreover, since it is a deterministic variable,
it does not impact the projected weighted model count. A similar reasoning can be made for
H and C11 by setting vH = ⊤, since vh does not appear in any implicant in F .

The intuition behind our propagation is the following. In order for an assignment to not
be a model of the input formula, it must generate a clause ⊤ ⇒ ⊥. Some clauses cannot
contribute to such a contradiction, by setting a deterministic variable to ⊥ in its implicant
or its head to ⊤. We formalize this intuition next.

First, let us define in which case we cannot know if a clause will have its head set to ⊥ or
its implicant set to ⊤.

▶ Definition 5 ({⊤,⊥}-reachability). A clause Ci = (Ii, hi) ∈ F is ⊥-reachable if one of the
two following conditions is met:
1. Ci is of the form Ii ⇒ ⊥ or Ii ⇒ p with p ∈ P
2. There exists a clause Cj = (Ij , hj) ∈ F such that Cj is ⊥-reachable and hi ∈ Ij.
Similarly, Ci is ⊤-reachable if one of the two following conditions is met:
1. There exists no deterministic variables in Ii

2. There exists a clause Cj = (Ij , hj) ∈ F such that Cj is ⊤-reachable and hj ∈ Ii.

We say that a clause is constrained if it is ⊥-reachable and ⊤-reachable. The {⊥,⊤}-
reachability can be seen for the clauses in Figure 2 on the right, on the implication graph
of the clauses. The implication graph of a set of Horn clauses is a graph G = (V, E) such
that there is one node per clause and an edge from a clause Ci = (Ii, hi) to Cj = (Ij , hj) if
hi ∈ Ij . If a clause is ⊤-reachable (⊥-reachable), so are all its descendants (ancestors) in the
implication graph.
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Algorithm 2 Propagation algorithm of Schlandals.

1 Function Propagate(F,P, v)
input : A boolean formula F with probabilistic variables P
input : A variable v set to ⊤
output : The residual formula F ′ and a propagation probability pprog

/* Call the BUP procedure with the initial assignment of ⊤ to v

until fix point is reached */
2 F ′ ← BUP(F , v, ⊤)
3 foreach C = (I, h) ∈ F ′ do
4 if h = ⊥ or h ∈ P then SetFReachable(F ′, C)
5 if ∄v ∈ I | v /∈ P then SetTReachable(F ′, C)
6 end
7 foreach C ∈ F ′ do
8 if C is not ⊤-reachable or C is not ⊥-reachable then
9 F ′ ← F ′ − C

10 end
11 end
12 UF |F ′ ← 1
13 foreach distribution P such that P ∈ F ∧ P /∈ F ′ do
14 UF ← UF ∗

∑
p∈P |p is not fixed w(p)

15 end
16 return (F ′, UF |F ′)

We have the following theorem, which states that if a clause is not constrained, then it
can be removed safely (without impacting the count) from F .

▶ Theorem 6. Let F = C1 ∧ . . .∧Cn be a formula with n Horn clauses over the variables V,
P ⊆ V the set of probabilistic variables and D = V \ P the set of deterministic variables. Let
Cu1 , . . . , Cuk

be k unconstrained clauses of F with Cui
= (Iui

, hui
).

There exists a subset of k deterministic variables X = {x1, . . . xk} ⊆ D with xi ∈
Iui
∪ {hui

} and an assignment SX on X such that

SF = SF [SX ]

where SF denotes the set of models of F , projected on P, and F [SX ] the formula obtained by
applying the BUP algorithm on F with the assignment SX .

We now prove this theorem and give the procedure to find the assignment on the deterministic
variables.

Proof. Let G = (V, E) be the graph of the implications of F and Ci an unconstrained clause
in F . We prove that an assignment can be found for one of the deterministic variables of Ci

such that it does not impact the count of F .
First, let us assume that Ci is not ⊥-reachable. We denote Gd

Ci
= (V d

Ci
, Ed

Ci
) the sub-graph

of G that contains Ci and all its descendants. By definition there is no clause Cj ∈ V d
Ci

that is
⊥-reachable, otherwise Ci would be ⊥-reachable. Hence, all clauses in V d

Ci
are unconstrained.

Let Xd = ∪Cj∈V d
Ci

{hj} be the set of (deterministic) heads in Gd
Ci

. We define the assignment
SXd such that SXd [x] = ⊤, ∀x ∈ Xd. This removes all the clauses in V d

Ci
from F without

impacting the values of the other variables in the clauses.
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Next, if Ci is ⊥-reachable but unconstrained, then it is not ⊤-reachable. Let Gp
Ci

=
(V p

Ci
, Ep

Ci
) be the sub-graph of G that contains Ci and all its parents. Since Ci is ⊥-reachable,

so is every clause in V p
Ci

. Thus we have that every clause Cj ∈ V p
Ci

has at least one
deterministic node dj ∈ Ij , otherwise they would be ⊤-reachable. Let Xp = ∪Cj∈V p

Ci

{dj}
be the set of such nodes. We set SXp such that SXp [dj ] = ⊥ for all clause dj ∈ Xp which
removes all clauses in V p

Ci
from F without constraining the other variables. ◀

Algorithm 3 Procedure to mark the clauses of a formula F as ⊥-reachable.

1 Function SetFReachable(F, C)
input : A boolean formula F , a clause C = (I, h) of F

2 if C is not marked as ⊥-reachable then
3 Mark C as ⊥-reachable
4 foreach C ′ = (I ′, h′) ∈ F | h′ ∈ I do SetFReachable(F, C ′)
5 end

This additional propagation is shown in lines 3-11 of Algorithm 2. After the application
of BUP until a fix point is reached, the remaining clauses are iterated over. If a clause
is of the form C = (I,⊥) or has a head with an unfixed probabilistic variable, then the
procedure SetFReachable is called, for which the code is shown in Algorithm 3. This
algorithm basically traverses the implication graph of F , starting from C and marks every
clause it encounters as ⊥-reachable. Notice that it does not mark multiple times the same
clause. Hence, the cost of marking all the ⊥-reachable clauses is O(n) with n the number of
clauses in F ′. A similar procedure is defined for the ⊤-reachability, but we do not include it
for conciseness. After marking the clauses (lines 3-5), every unconstrained clause is removed
from the formula obtained after BUP (lines 7-11). Finally, the algorithm computes the
unconstrained probability UF |F ′ (lines 12-15).

It can be noted that in some cases our propagation is similar to Pure Literal Elimination
(PLE) on the deterministic variables. For instance, in Figure 2, vA never appears in the head
of any clause. Hence, it can be set as ⊥, which is also the value found by our procedure.
However, PLE cannot detect that the nodes E, F and G are not useful for the query. It
should also be noted that although our propagation implies that PLE is performed, the
procedure only reasons about the clauses, which makes it more efficient.

4.3 Branching Heuristic

At line 8 of Algorithm 1, a distribution is selected within the set of distributions for which
no element is set to ⊤. In this section we explain the heuristics implemented in our solver
to choose the distribution. We must note that our solver is not a conflict-driven clause
learning (CDCL) solver, making it impossible to use the heuristics of such solvers [19, 22].
Instead, we implemented some easy to understand, fast to evaluate, but effective heuristics
based on the implication graph of a formula F . We provide three heuristics related to the
degree of a clause in the implication graph. These heuristics select a clause with i) the lowest
in-degree ii) the lowest out-degree and iii) the maximum degree, and then a distribution
in this clause. Each time they are called, they re-evaluate the score of each clause in the
current sub-formula.
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5 Results

In order to evaluate the effectiveness of our approach, we compare our solver3 with GPMC [25]
and ProjMC [17] on Bayesian networks and reliability queries in probabilistic networks. We
chose these solvers as they were the best performing on the Projected Model Counting and
Projected Weighted Model Counting tracks of the 2022 model counting competition. We did
not include the proCount solver [11] as it is a knowledge compilation based solver. Ganak
[22] also was not used as we found it was the worst performing on the projected tasks (as
also observed in the 2022 competition). For the reliability queries, we also ran ApproxMC
[3, 23, 24] as it is known to perform well on this problem, although it should be stressed
ApproxMC solves an approximate model counting problem, while we solve an exact model
counting problem. For each of the two problems we first present the methodology used to
generate the instances and then present the results4. For each instance, a timeout of 600
seconds and a memory limit of 15 GB were set.

5.1 Baysian Networks
The Bayesian networks come from the bnlearn R package [21] repository and range from
small networks (fewer than 20 nodes) to large (up to hundreds of nodes). We selected all the
networks in the repository for which at least one solver did not time out. For each of these
networks, the queries are done on the leaves of the networks without any evidence. Hence,
for a leaf L of the network that takes values l1, . . . , ln, we create n instances for the queries
P (L = l1), . . . , P (L = ln).

The goal of this experiment is to answer the following questions: i) how do the evaluated
PWMC solvers perform using our simple encoding? ii) How does our encoding perform
compared to other state-of-the-art, but more complex encodings for BNs, designed for
weighted model counters? For i) we use a CNF formula in other PWMC solvers similar to
our model, where we add additional clauses to enforce the distribution constraints that we
have in our weighting scheme. For ii), we follow the nomenclature in [6], and we compare
our encoding with ENC1 [7], ENC3 [4], and ENC4 [5]. We also add the encoding recently
presented in [2], which we denote ENC4linp. Briefly, ENC1 is the simplest encoding: there
is one indicator variable λx for each value x of node X and one parameter variable θx

u per
parameter P (x | u) of the network. For the clauses, the indicator variables of the same
node are mutually exclusive; a clause λu1 ∧ ... ∧ λun ∧ λx ⇔ θx

u is created for each parameter
P (x | u). The main addition of ENC3 is that, for a given CPT in the network, the same
variable θx

u is reused for all the entries having the same probability. In ENC4, The CPTs
are simplified using a modified version of Quine/McCluskey algorithm for finding prime
implicants, resulting in a better decomposition of the input CNF. Finally, in ENC4linp, the
authors propose two novelties for encoding BNs in a CNF: the use of log-encoding for the
elementary assignment of a variable and one parameter variable per CPT is kept implicit.
For these encodings, GPMC and projMC are run in WMC mode (which is the d4 [16] model
counter for the latter).

Figure 3 shows the percentage of instances solved within the time limit.
First, it can be seen that if we use our model in other PWMC solvers, their performance

is much worse; these solvers solve a few instances.

3 Available at https://github.com/aia-uclouvain/schlandals
4 The instances can be found here https://github.com/AlexandreDubray/pwmc_benchmarks
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Figure 3 Percentage of instances solved in 600 seconds for the Bayesian Network data sets.

Compared to the ENC1 model used in traditional WMC, which is arguably the model for
traditional WMC most similar to our model, we can still observe that our approach performs
significantly better, solving 80% of the instances for the minimum in degree heuristic. We
believe it is highly encouraging that our approach works so well for such a simple model.

When evaluating the more complex, optimized models ENC3, ENC4 and ENC4linp
developed for WMC, we can see that these have increasingly better results. This confirms
the benefit of the various improvements made, over the years, to the encodings. Overall, the
GPMC solver is the best performing of all, even when using only the ENC3 encoding. The
biggest gap between the ENC encodings is between ENC1 and ENC3. Indeed, using the
same parameter variables for multiple parameters of a CPT gives a huge drop in the number
of variables, especially for the hardest instances, which contain large CPTs. The benefits of
the Quine/McCluskey reduction are clearly visible for the d4 solver.

The nature of our modeling language is such that the optimizations of ENC3, ENC4
and ENC4linp cannot be directly applied to our models. Unlike the ENC encodings, we
require that one variable per distribution is set to ⊤. However, we hypothesize that similar
optimizations can also be developed for our solver in future work.

5.2 Connectivity in Probabilistic Networks

For this problem, the data sets used come from two sources. First, we used the power grid
network of Europe and USA as extracted by the GridKit tool [18, 28]. The extracted graphs
represent the electric power system in these geographical areas. In order to have various
sizes of instances, both networks are divided by country (Europe) or by state (USA). Then
for each subnetwork, five random pairs of nodes are selected and the probability that they
are connected is computed. Notice that since the edges in the power-grid network have no
orientation (the graph is undirected), we transformed it into a directed graph by replacing
each edge between u and v by one edge from u to v and one edge from v to u. We assume
that each edge has a probability of 0.125 to be down, as done in [12].

Secondly, we used (oriented) graphs representing water distribution systems from the
WNTR Python package [14]. We considered as sources (sinks) nodes having no parents
(children). Then, we compute P (R̄s

t ) between each source-target pair (s, t) such that there
exists a path between s and t. As for the power grid network data set, we assume a fix
probability of 0.125 that each link is down.

Unlike for Bayesian Networks, our encoding and the one proposed in [12] are almost
identical and can be reused for all the evaluated solvers. The only difference is that we do not
create two variables per edge for the encoding passed to GPMC and projMC. Figure 4 shows
the percentage of instances solved in the given amount of time for both of these data sets.
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Figure 4 Percentage of instances solved in 600 seconds for the power-grid networks (left) and the
water networks (right).

First, let us note that GPMC performs the least well on both data sets. While it is able to
solve up to 25% of the instances for the power grid network, it is unable to solve the largest
instances of the water networks. For the latter data set, it quickly reaches the memory limit
(15 GB) and stagnates until the time-out. On the other hand, it can be seen that projMC
and Schlandals solve roughly the same number of instances on the power grid networks,
while Schlandals solves 10% more instances on the water networks. On these types of data
sets, the min-in degree and min-out degree heuristics work best for our solver. It can be seen
that for the water networks, Schlandals outperforms projMC.

Interestingly, on the power grid data sets, our solver is still able to match the performance
of projMC even though our propagation is not used to its full capacity. Indeed, since the
original graphs are not directed, they were transformed by adding two directed edges for
each undirected edge. As a result, either all clauses in a component are constrained, or no
clause is constrained. Indeed, by doubling the edges in the original graph, the edges in the
implication graph of the resulting CNF are also doubled. Hence, every clause which is a
descendant of a ⊥-reachable clause is also one of its ancestors and a similar argument can
be made for ⊤-reachable clauses. Hence, our propagation algorithm has less pruning power.
On the other hand, for the water network data set, our solver uses the full strength of our
propagation and is more efficient than projMC.

Let us briefly comment on the performance of approxMC [12]. Again, it should be noted
that approxMC is an approximate model counter that provides provides (δ − ϵ)-guarantees
and does not consider weights on the literals. Hence, the problem it solves is quite different
from the other solvers compared in this work: if the count returned by approxMC is C,
and the exact count C⋆, it ensures that C⋆

1+ϵ < C < C⋆(1 + ϵ) with a confidence of 1 − δ

(δ, ϵ ∈ [0, 1]). In Figure 4 the results are shown for ϵ = 0.1 and δ = 0.05. This is an example
of configuration in which the solver is quite confident in its solution, and hence the results
are more comparable to that of the other solvers. It can be seen that it performs very well
on the power grid network instances, but poorly on the water supply network ones. Using
ϵ = 0.8 and δ = 0.2, as reported in [12], the solver is able to solve all instances on both
data sets, but it is much less confident in its solution. Overall the performance of approxMC
heavily depends on the acceptable margin of error.
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6 Conclusion

Weighted model counters have become an essential tool in probabilistic reasoning, but the
CNF models have grown more and more complex. A step towards simplicity for some
problems has been taken by the introduction of projected weighted model counting. In this
work, we propose the Projected Probabilistic Horn model counting (PPHMC) problem, in
which only Horn clauses are allowed, making the modeling language simpler. We have shown
that with an appropriate weighting scheme it is possible to model important probabilistic
problems as PPHMC problems. In particular, we provide an encoding for Bayesian networks,
probabilistic networks and probabilistic logic programs. We also introduced a new tool, the
Schlandals solver, specifically designed for our language. Our experiments show that our
solver is competitive with state-of-the-art solvers and opens the path to further work on
PPHMC.

As we have seen for the Bayesian Networks, the encoding can have a great impact on
the performance. An interesting line of work would be to investigate how the optimizations
developed during the past twenty years, for the encoding of Bayesian Networks into a logical
formula, can be applied with our weighting schema, and how our solver can be integrated in
probabilistic logic programming systems. On the other hand, a lot of work has been done
to make model counters efficient. In the future, integrating such techniques (probabilistic
caching, tree decomposition, symmetry breaking, advanced branching heuristics, etc.) with
the specificity of PPHMC can also increase the performance of our solver. Finally, this paper
has been focused on PWMC within bounded memory. However, the core of our solver can
be reused in a knowledge compiler or an approximate solver.
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