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Abstract

One of the key purposes of eXplainable AI (XAI) is to de-
velop techniques for understanding predictions made by Ma-
chine Learning (ML) models and for assessing how much re-
liable they are. Several encoding schemas have recently been
pointed out, showing how ML classifiers of various types can
be mapped to Boolean circuits exhibiting the same input-
output behaviours. Thanks to such mappings, XAI queries
about classifiers can be delegated to the corresponding cir-
cuits. In this paper, we present some explanation queries and
verification queries about classifiers. We show how they can
be addressed by combining queries and transformations about
the associated Boolean circuits. Taking advantage of previ-
ous results from the knowledge compilation map, this allows
us to identify a number of cases for which XAI queries are
tractable provided that the circuit has been first turned into a
compiled representation.

1 Introduction
In the past decade, ML techniques have revolutionized vi-
sion, speech, language understanding, and many other fields.
However, the most powerful ML models (e.g., deep neural
nets) in term of quality of predictions are poorly explainable.
For such black boxes, it is humanly impossible to under-
stand the sequence of operations which are performed for
predicting the label of an input instance. Thus, explaining
the predictions made by such ML models (i.e., why a given
instance is classified as such?) is not feasible in general. As-
sessing the robustness of the predictions (i.e., would a small
change in the input instance question the predicted label?)
is also out of reach. In essence, the impossibility to explain
predictions and to determine the extent to which they are re-
liable forms a major obstacle in a number of applications for
which safety is of paramount importance (like autonomous
cars or medical diagnosis).

This calls for explanation technologies, enabling for rea-
soning about the decisions made by the classifier, measur-
ing how robust they are, testing whether the classifier is
biased and how much it complies with some prior knowl-
edge about classes, etc. Accordingly, there has been a
growing body of work on explainable and robust AI (XAI)
for the past couple of years (Katz et al. 2019; Ignatiev,
Narodytska, and Marques-Silva 2019; Bunel et al. 2018;
Leofante et al. 2018; Molnar, Casalicchio, and Bischl 2018;

Shih, Darwiche, and Choi 2019; Guidotti et al. 2019;
Miller 2019; Molnar 2019). In this research topic, recent
works have shown how ML classifiers C of various types
(including black boxes) can be associated with Boolean
circuits Σ (alias transparent or “white” boxes), exhibiting
the same input-output behaviours (Narodytska et al. 2018;
Shih, Choi, and Darwiche 2018a; Shih, Choi, and Darwiche
2019). Thanks to such mappings, XAI queries about clas-
sifiers can be delegated to the corresponding circuits (Dar-
wiche and Hirth 2020). The rationale for this approach
is twofold: on the one hand, Σ as an abstraction of C is
typically far less complex than C; on the other hand, the
Boolean nature of Σ makes it amenable to various reasoning
tasks required for generating explanations and addressing re-
liability issues.

The present study is relevant to this research trend within
XAI. Our objective is to state in a formal way a number of
XAI queries about C and for each of them, to identify some
sufficient conditions on the language L used to represent
Σ that render the query tractable. For the sake of general-
ity, we do not make any strong assumption on the nature
of the classifier: C can be a feedforward neural network, a
Bayesian network classifier, a random forest, etc. We just
assume that C is a discrete multi-label classifier from which
a Boolean circuit Σ having the same input-output behaviour
can been generated. More precisely, each input instance is a
vector x of n values assigned to Boolean features from a set
X = {x1, · · · , xn} and each corresponding output is a vec-
tor y ∈ Y of m values taken from a set Y = {y1, · · · , ym}
of Boolean labels.1 Given the prediction y = C(x), the in-
stance x ∈ X is classified by C as an element of the jth
class if and only if yj = 1.

The variables of Σ are split into three categories:
(1) Input variables used to describe the input features of C.

Each input variable is a Boolean variable from X;
(2) Output variables used to describe classes or labels. Each

output variable is a Boolean variable from Y ;
1When an input feature xi is not Boolean, but takes values into

a finite domain {v1, · · · , vp}, one can represent it using p Boolean
features x1

i , · · · , xp
i so that xj

i is true if and only if xi takes value
vj . The direct – or sparse – encoding (de Kleer 1989; Walsh 2000)
of xi is given by the constraints
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(3) Intermediate variables used to capture all other features
of the classifier C, and corresponding to the wires of Σ
that are not output ones. Each intermediate variable is
also assumed to take a Boolean value, and we use Z to
denote the set of those variables.

As Σ and C are supposed to have the same input-output be-
haviour, for any pair (x,y) for which y = C(x), we have
yj = 1 precisely when the output variable yj of the circuit Σ
on the input x is set to 1. Importantly, we make no assump-
tion about the number of predicted labels: for an input x,
several coordinates – resp. no coordinate – of the associated
output y can be set to 1, which means that C (and hence
Σ) recognizes x as a member of several (resp. no) class(es).
In practice, C is often associated with additional informa-
tion about y, taking the form of weights representing confi-
dences or probabilities about predicted labels. Such weights
are usually exploited by the encoding scheme for generat-
ing Σ from C, but they are not encoded into Σ. Thus, Σ is
viewed as a compact representation of the classes Y , as they
are recognized by C.

In the following, we present a number of XAI queries of
practical interest for explaining classifications achieved by
C, or for assessing the robustness of C. These queries are
addressed by considering the circuit Σ associated with C,
instead of C itself. For the sake of clarity, we split XAI
queries into explanation queries and verification queries.
Explanation queries are concerned by the local interpretabil-
ity issue, i.e., they are about a given input x, while verifi-
cation queries are concerned by the global interpretability
issue, i.e., they are independent of any input. Some of the
XAI queries considered in the following are brand new, oth-
ers have been introduced in the recent past. In both cases, we
show how these explanation and verification queries can be
modeled using basic operations over Boolean circuits. Tak-
ing advantage of previous results from the knowledge com-
pilation map for propositional languages L (Darwiche and
Marquis 2002), this allows us to identify a number of XAI
queries which are tractable, provided that the circuit Σ has
been first turned into a compiled representation from L.

The rest of the paper is organized as follows. After
some formal preliminaries about propositional logic and the
knowledge compilation map, we present a simple encoding
schema that can be used to associate a Boolean circuit Σ
with a given random forest C over Boolean features. A toy
example is provided, that will serve as a running example
for illustrating the XAI queries presented afterwards. Then,
we successively present some explanation queries and some
verification queries, and for each of them, we identify some
sufficient conditions on the propositional language used to
represent Σ which ensure that the query is tractable (i.e., it
can be answered using a polynomial-time algorithm). Fi-
nally, we discuss the results and conclude the paper.

2 Formal Preliminaries
Propositional Languages. The languages considered in
this paper are defined over a finite set PS of propositional
variables and a finite set of connectives. The elements of
a propositional language L are called representations, and

for any such representation Σ, we denote by Var(Σ) the
subset of variables of PS occurring in Σ. As usual, atomic
representations include propositional variables in PS , and
Boolean constants in {>,⊥}. A literal is a propositional
variable, possibly negated, or a Boolean constant. Any
propositional variable x is called a positive literal, and the
negation of x, denoted ¬x or x, is called a negative literal. A
term is a conjunction of literals, and a clause is a disjunction
of literals.

Given a set of variables X ⊆PS , an interpretation over
X is a mapping ω from X to B = {0, 1}. Propositional
representations are interpreted in a classical way. For a rep-
resentation Σ and an interpretation over X = Var(Σ), we
use ω |= Σ to denote the fact that ω if a model of Σ ac-
cording to the semantics of propositional logic. That is, as-
signing the variables of Σ to truth values as specified by ω
makes Σ true. By [Σ] we denote the set of models of Σ over
Var(Σ), and by ‖Σ‖ we denote the number of models of Σ
over Var(Σ). In particular, Σ is inconsistent if ‖Σ‖ = 0,
and consistent otherwise. A representation Σ2 is a logical
consequence of a representation Σ1 (denoted Σ1 |= Σ2) if
Σ1∧¬Σ2 is inconsistent. Σ1 and Σ2 are logically equivalent
(denoted Σ1 ≡ Σ2) if they are logical consequences of each
other.

Given a representation Σ and a consistent term γ, the con-
ditioning of Σ by γ is the representation obtained by replac-
ing in Σ every occurrence of a variable x ∈ Var(γ) by >
if x is a positive literal of γ and by ⊥ if ¬x is a negative
literal of γ. Finally, when X is a subset of propositional
variables from PS , Σ is said to be independent of X if
there is a representation Φ logically equivalent to Σ such that
Var(Φ)∩X = ∅. The forgetting ofX in Σ, denoted ∃X.Σ,
is the most general consequence of Σ that is independent of
X (see e.g., (Lang, Liberatore, and Marquis 2003)). The
projection of Σ onto X is the forgetting of X in Σ, where X
denotes the set PS \X . We mention in passing that ∃X.Σ
can be computed as a propositional representation, thanks to
the following inductive characterization:
• ∃∅.Σ ≡ Σ,
• ∃{x}.Σ ≡ (Σ | ¬x) ∨ (Σ | x),
• ∃(X ′ ∪ {x}).Σ ≡ ∃X ′.(∃{x}.Σ).

Knowledge Compilation Map. Introduced by Darwiche
and Marquis (2002), and extended in a number of papers
(e.g., (Darwiche and Marquis 2004; Niveau et al. 2010; Dar-
wiche 2011; Fargier, Marquis, and Niveau 2013; Fargier and
Marquis 2014; Koriche et al. 2016)), the knowledge compi-
lation (KC) map is a multicriteria evaluation of propositional
languages. Various languages have been considered as target
languages for knowledge compilation. They include, among
others, DNF (disjunctions of terms), DNNF (decomposable
normal form circuits) (Darwiche 2001), FBDD (free binary
decision diagrams) (Gergov and Meinel 1994), and OBDD
(ordered binary decision diagrams) (Bryant 1986). In the
KC map, a propositional language L is evaluated according
to properties it offers, or not, depending on the existence of
a polynomial-time algorithm for achieving some treatment
of interest. These properties are usually decomposed into
queries and transformations. In this paper, we focus on the



following queries and transformations:
• Queries

– consistency: L satisfies CO if and only if there is a
polynomial-time algorithm that maps every representa-
tion Σ fromL to 1 if Σ is consistent, and to 0 otherwise.

– implicant: L satisfies IM if and only if there is a
polynomial-time algorithm that maps every represen-
tation Σ from L and every term γ to 1 if γ |= Σ holds,
and to 0 otherwise.

– sentential entailment: L satisfies SE if and only if
there is a polynomial-time algorithm that maps any two
representations Σ1 and Σ2 from L to 1 if Σ1 |= Σ2

holds, and to 0 otherwise.
– equivalence: L satisfies EQ if and only if there is a

polynomial-time algorithm that maps any two repre-
sentations Σ1 and Σ2 from L to 1 if Σ1 ≡ Σ2 holds,
and to 0 otherwise.

– model counting: L satisfies CT if and only if there
is a polynomial-time algorithm that maps every repre-
sentation Σ from L to a nonnegative integer (in binary
notation) corresponding to the number of models ‖Σ‖
of Σ over Var(Σ).

– model enumeration: L satisfies ME if and only if
there is an enumeration algorithm with polynomial de-
lay for the set [Σ] of models of Σ over Var(Σ). Here,
the algorithm must generate all models in sequence,
without any model occurring more than once. Addi-
tionally, the algorithm must guarantee that each delay
between the generation of two successive models and
between the generation of the last model and the notifi-
cation of termination, is polynomial in the size of Σ.2

• Transformations
– conditioning: L satisfies CD if and only if there is a

polynomial-time algorithm that maps every representa-
tion Σ from L and every consistent term γ to a repre-
sentation from L that is logically equivalent to Σ | γ.

– bounded conjunction: L satisfies ∧BC if and only
if there is a polynomial-time algorithm that maps every
pair of representations Σ1 and Σ2 from L to a represen-
tation from L that is logically equivalent to Σ1 ∧ Σ2.

– forgetting: L satisfies FO if and only if there is a
polynomial-time algorithm that maps every represen-
tation Σ from L and every subset X of variables from
PS to a representation from L equivalent to ∃X.Σ.

– optimization: L satisfies OPT if and only if there ex-
ists a polynomial-time algorithm that maps every rep-
resentation Σ from L and any linear function f over
Var(Σ) into a representation from L for which the
models are those of Σ minimizing the value of f .

We also add to the list of properties the following trans-

2Actually, this requirement is stronger than the one considered
in (Darwiche and Marquis 2002) which only required that the set
of models can be enumerated in time polynomial in the size of Σ
plus the size of the corresponding set of models. Note that we have
that L satisfies ME (in the strong sense) whenever it satisfies CD
and CO (see (Fargier and Marquis 2014) for details).

formation that will be useful in the rest of the paper:
– decomposable conjunction: L satisfies∧DC if and only

if there is a polynomial-time algorithm that maps k rep-
resentations Σ1, · · · ,Σk from L such that Var(Σi) ∩
Var(Σj) = ∅ (for i, j ∈ {1, · · · , k}, i 6= j) to a repre-
sentation from L that is logically equivalent to

∧k
i=1 Σi.

In the KC map, the space efficiency or succinctness of
propositional languages is also assessed. Informally, the
succinctness captures the relative ability of propositional
languages to encode pieces of information using little space.
For example, it is known that DNNF is strictly more succinct
than OBDD and DNF. A language suited for a given appli-
cation is then viewed as one of the most succinct languages
offering the queries and transformations required by the ap-
plication (Darwiche and Marquis 2002).

3 Encoding Random Forests
In order to illustrate the approach into which our work takes
place and the forthcoming XAI queries, let us first explain
how to associate a Boolean circuit Σ with a given random
forest C over Boolean features (the proposed encoding is
quite easy).

A decision tree (here, a classification tree) (Breiman et al.
1984; Quinlan 1986) is a finite tree T where each internal
node is a decision node labelled by a feature x from X and
having as many children as the cardinality of the domain of
x, and each leaf node is labelled by a non-empty subset of
Y . The arcs from a decision node to its children are labelled
by pairs noted x = v where v is an element of the domain
of the feature x labelling the node (one value v per arc).
A path of T is a (finite) sequence of labels x = v of the
arcs encountered from the root of T to one of its leaves.
A decision tree classifies an input x as an element of class
yj ∈ Y if the unique path of T that is compatible with x
(i.e., that contains a pair x = v only if x takes the value v in
x) leads to a leaf node whose label contains yj .

A random forest R (Ho 1998; Breiman 1996; Breiman
2001) is a finite set of p decision trees over the set X of
features. Given a threshold τ ∈ {1, . . . , p}, a random forest
R = {T1, . . . , Tp} classifies an input x as yj ∈ Y if at least
τ decision trees of R classifies x as yj .

Example 1. As a matter of example, consider a fruit
classification task and the random forest R given by the
trees T1, T2 and T3, illustrated in Figure 1. Each deci-
sion tree is defined over the set of input features X =
{SW(eet taste), GR(een), RO(und shape)}, and the set of
output labels Y = {GRA(pe fruit), BAN(ana), APP(le)}. An
instance x is classified as a label y ∈ Y if and only if it is
classified as such by a strict majority of decision trees in R
(i.e., at least τ = 2 decision trees of R classify x as y).

In Figure 1, the labels x = v of the arcs are not explicitly
represented. A dashed line from a decision node labelled by
x corresponds to the label x = 0, while a plain line corre-
sponds to the label x = 1.

Based on this example, the input instance x1 given by
(SW = 0, GR = 0, RO = 0) is classified by T1 (resp. T2,
T3) as an element of GRA (resp. GRA or BAN, BAN). The
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Figure 1: A random forest with three decision trees T1, T2, T3.

instance x2 defined by (SW = 1, GR = 1, RO = 0) is classi-
fied by T1 (resp. T2, T3) as an element of GRA (resp. BAN,
BAN). Thus, R classifies x1 as an element of GRA or BAN,
and R classifies x2 as an element of BAN.

Note that R may remain mute about a given instance,
meaning that there is no evidence enough to classify it as
any element of Y . For instance, R does not predict anything
about the input instance (SW = 1, GR = 1, RO = 1), since
this input is classified by T1 (resp. T2, T3) as an element of
GRA (resp. BAN, APP). Thus, the strict majority threshold of
2 is not met for this instance.

Based on these considerations, let us present an encod-
ing schema which maps any random forest R, defined on
the input variables X and the output variables Y , to a rep-
resentation Σ over the set of propositional variables PS
= X ∪ Y ∪Z, where Z captures the intermediate variables.
Σ is the conjunction of two kinds of constraints:
• for every j ∈ {1, . . . ,m}, Σ includes the constraint

yj ⇔

(
p∑
k=1

zkj ≥ τ

)

where variable zkj is true if and only if the input instance x
is classified as an element of class yj by Tk. Accordingly,
the input is classified as yj by R if and only if the number
of decision trees of R classifying x as an element of yj is
at least equal to the threshold τ ;

• for every j ∈ {1, . . . ,m} and every k ∈ {1, . . . , p}, Σ

SW GR RO GRA BAN APP
0 0 0 1 1 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 1
1 1 0 0 1 0
1 1 1 0 0 0

Table 1: The projection of Σ over X ∪ Y .

includes a constraint

zkj ⇔

 ∨
γ∈Γ(Tk,yj)

γ


indicating that zkj is set to true (i.e., x is classified as an
element of yj by Tk) if and only if x is compatible with
a path of Tk leading to a leaf node labelled by yj . Here,
Γ(Tk, yj) denotes the set of all terms γ encoding the paths
of Tk which lead to leaf nodes labelled by yj .
For our running example, R is associated with the repre-

sentation Σ, which is given by the conjunction of the follow-
ing constraints:

GRA ⇔ (GRA1 + GRA2 + GRA3 ≥ 2)
BAN ⇔ (BAN1 + BAN2 + BAN3 ≥ 2)
APP ⇔ (APP1 + APP2 + APP3 ≥ 2)

GRA1 ⇔ ((SW ∧ GR) ∨ (SW ∧ GR))
BAN1 ⇔ ((SW ∧ GR ∧ RO) ∨ (SW ∧ GR ∧ RO))
APP1 ⇔ ((SW ∧ GR ∧ RO) ∨ (SW ∧ GR ∧ RO))

GRA2 ⇔ ((SW ∧ GR ∧ RO) ∨ (SW ∧ GR ∧ RO))
BAN2 ⇔ ((SW ∧ GR ∧ RO) ∨ (SW ∧ GR ∧ RO)

∨(SW ∧ GR))
APP2 ⇔ ((SW ∧ GR ∧ RO) ∨ (SW ∧ GR ∧ RO))

GRA3 ⇔ (SW ∧ GR ∧ RO)
BAN3 ⇔ RO
APP3 ⇔ ((SW ∧ GR ∧ RO) ∨ (SW ∧ RO))

From Σ, the following constraints expressing how each
class is inferred from the input features can be derived as
logical consequences:

GRA ⇔ (SW ∧ GR)
BAN ⇔ RO
APP ⇔ ((SW ∧ GR) ∨ (SW ∧ GR)) ∧ RO

Equivalently, the projection of Σ onto X ∪ Y is given by
the truth assignments in Table 1.

4 XAI Queries
After illustrating how multi-labels classifiers can be encoded
into propositional representations, we are now in position to
examine XAI queries. We first present a couple of results,
showing how the notion of membership of an instance x to
a class of Y as predicted by C can be translated in logical
terms when Σ (represented using a propositional language
L) is considered instead of C.

To this point, observe that any input instance x of the form
(x1 = v1, . . . , xn = vn) can be encoded as a term over
the literals on X , also denoted x to avoid heavy notations.
Specifically, x is given by

∧n
j=1 `j where `j = xj if vj = 1

and `j = xj otherwise.



Now, since Σ has the same input-output behaviour as C,
we know that every variable from Y ∪ Z is defined in Σ
in terms of X . In other words, for any input x, we have
C(x) = (y1 = c1, . . . , ym = cm) if and only if the unique
model of Σ over X ∪ Y ∪ Z which is compatible with x
assigns to each output variable yj (j ∈ {1, . . . ,m}) the truth
value cj . Being “defined” means here that for any variable
u ∈ Y ∪ Z there exists a formula ϕu built upon variables
of X , only, that is such that Σ |= u ⇔ ϕu (Beth 1953;
Lang and Marquis 2008).

Based on these notions, the input instances x which are
classified by C as elements of class yj in the sense that
yj = 1 when C(x) = (y1 = c1, . . . , ym = cm) can be
characterized in several ways using Σ:
• abductive characterization: x is an abductive explanation

of yj with respect to Σ provided that the set of assump-
tions is the set of all literals over the variables from X .
Indeed, if yj is true in C(x) then we have Σ ∧ x |= yj .
Note here that Σ∧x is consistent for every input instance
x over X , since Σ is a Boolean circuit with inputs in X .

• model-based characterization: x is a model over X of
∃X.(Σ∧ yj), or equivalently a model over X of ∃X.(Σ |
yj). Thus, the projection of Σ | yj onto X can be viewed
as a compact representation of all the input instances x
viewed as elements of yj by C.

4.1 Verification Queries
As indicated above, the XAI queries under consideration
in this study are separated into verification and explanation
queries. We start with the verification queries.

Counting the inputs (CIN) / enumerating the inputs
(EIN) associated with a given class. These queries are
useful for a user in order to figure out the classes of Y as
they are recognized by C (which may differ from what the
user has in mind). For instance, in our running example, the
user might be surprised by the fact that the instance given by
SW∧GR∧ RO is classified as an element of GRA, and hence,
she would like to gather more information about instances
labeled by this class.

Proposition 1. Counting the inputs associated by C with a
given class is in P when L satisfies CD and CT. Enumer-
ating those inputs with polynomial delay is feasible when L
satisfies CD and ME.

Proof. Counting the inputs x associated by C with a given
output yj amounts to computing ‖Σ | yj‖. Enumerat-
ing those inputs boils down to enumerating the models of
∃X.(Σ | yj) with polynomial delay, which is feasible as
soon as L satisfies CD, FO, and ME. Since every variable
of Var(Σ) not belonging to X is defined from X in Σ, we
can just enumerate the models of Σ | yj , filtering out from
each of them all the literals over the intermediate variables
from Z. Thus, the enumeration query is tractable as soon as
L satisfies CD and ME.

Counting the inputs (CAM) / enumerating the inputs
(EAM) for which the classifier provides ambiguous out-
puts / remains mute. The CAM query is important for

estimating how resolute the classifier C is. Indeed, as much
C provides ambiguous outputs or remains mute for input in-
stances, as much it will be hard to take advantage of it for
making decisions. The EAM query is also useful, as it points
out instances for which ambiguities or omissions arise. In
our running example, only one instance, given by the term
SW ∧ GR ∧ RO, is ambiguously classified by C. Similarly,
only one instance, given by SW∧GR∧ RO, is not recognized
by C as a member of any class from Y .

Proposition 2. Counting the inputs for which C provides
ambiguous outputs / remains mute is in P when L satisfies
CD and CT. Enumerating with polynomial delay the in-
puts that are ambiguously recognized by C as elements of
the intersection of a given set of classes / the inputs for which
C remains mute, is feasible when L satisfies CD and ME.

Proof. Counting the inputs for which C remains mute
amounts to computing A =

∥∥∥Σ |
∧m
j=1 yj

∥∥∥. Furthermore,
the number of inputs mapped by C into a single class yj is

given by Bj =
∥∥∥Σ | (yj ∧

∧
k∈{1,...,m}|k 6=j yk)

∥∥∥. There-
fore, counting the number of inputs for which C pro-
vides ambiguous outputs amounts to evaluating |X| − A −∑m
j=1Bj . The instances classified as elements of the inter-

section of a given set S ⊆ Y of classes are given by the
models over X of Σ | γS , where γS =

∧
yj∈S yj , and those

for which C remains mute correspond to the models over X
of Σ |

∧m
j=1 yj . Thus, they can be enumerated with polyno-

mial delay from Σ when L satisfies CD and ME.

Measuring the frequency of some feature in a given class
(MFR) / identifying mandatory or forbidden features
(IMA). MFR aims to evaluate how significant is the pres-
ence of each feature xk in each class of interest yj . More
generally, one can consider a combination of features (each
of them being either present or absent) instead of a single
feature being present. We can also consider a combination of
classes (again, each of them being either met or not). When
the frequency is equal to 1, xk is mandatory for being rec-
ognized as an element of yj , while when it is equal to 0, it
is forbidden for being recognized as an element of yj . In
our running example, the frequency of SW (resp. GR, RO) in
class APP is 1

2 (resp. 1
2 , 1). Thus, none of the three features

is forbidden for the class of apples, but having a round shape
(RO) is mandatory.

Proposition 3.
• Computing the frequency of a feature (or a combination

of features) in a given class (or combination of classes) is
in P when L satisfies CD and CT.

• Deciding whether a feature (or a combination of features)
is mandatory or forbidden in a given class (or combina-
tion of classes) is in P when L satisfies CD and CO.

Proof.

• The frequency of xk in yj is given by ‖Σ|(yj∧xk)‖
‖Σ|yj‖ . When

a more complex combination of features / classes is con-
sidered, it is sufficient to replace the terms yj ∧ xk (resp.



yj) in this equation by the terms denoting the combina-
tion of features and classes (resp. classes) to get the right
value. This value can be computed in polynomial time
when L satisfies CD and CT.

• Determining whether xk is mandatory (resp. forbidden)
for yj amounts to deciding whether or not Σ | (yj ∧ xk)
is inconsistent (resp. Σ | (yj ∧xk) is inconsistent), which
can be achieved in polynomial time when L satisfies CD
and CO. When a more complex combination of features
/ classes is considered, one consistency test per feature
must be done, replacing yj by the combination of classes
under consideration. Since the combination of features is
part of the input, the problem can still be solved in poly-
nomial time when L satisfies CD and CO.

Identifying irrelevant features for a given class (IIR). In
many scenarios, the user has some beliefs about the features
that must be relevant (or not), for some classes. For instance,
she might expect that the shape of a fruit is relevant for de-
termining whether it is a banana - this is indeed the case in
our running example. Dually, the user could believe that a
given class should not depend on some features, which oth-
erwise would reveal a bias in the classifier. For instance, she
might expect that the class of bananas should not depend on
GR - again, this is the case in our running example.

Recall that an input feature xi is irrelevant for a class yj
if the value of xi can be switched without changing the fact
that the instance is predicted by the classifier as an element
of yj . Stated otherwise, the membership in yj of any in-
stance x does not depend on the value of its feature xi.
Proposition 4. Determining the features that are considered
as useless by C for a given class is in P whenever L satisfies
CD, FO, and EQ.

Proof. xi is irrelevant for yj if and only if ∃X.(Σ | yj) is
independent from xi (Lang, Liberatore, and Marquis 2003).
This amounts to testing whether (∃X.(Σ | yj)) | xi and
(∃X.(Σ | yj)) | ¬xi are equivalent, or not. This can be done
in polynomial time when L satisfies CD, FO, and EQ.

When considering Boolean features, this proposition co-
heres with a result reported in (Shih, Choi, and Dar-
wiche 2018a), showing that identifying irrelevant features
is tractable when an OBDD representation of ∃X.(Σ | yj) is
provided.

Identifying monotone/anti-monotone features (IMO).
In many applications, it is believed that increasing the value
of some feature does not change the membership to some
class. Dually, one might also expect that decreasing the
value of another feature does not change the membership
to that class. For example, if a given fruit with a non-green
color is recognized as an apple, then switching its color to
green should not change the fact that it is still an apple. By
contrast, if a fruit with sweet taste is recognized as a grape,
then it is reasonable to expect that it would remain a grape
fruit if its taste was sour (i.e., not sweet).

In more formal terms, a classifier C is monotone (resp.
anti-monotone) for a given class yj , with respect an input

feature xi, if for any input instance x such that C(x) =
y with yj = 1 implies that C(x[xi ← 1]) = y′ (resp.
C(x[xi ← 0]) = y′) with y′j = 1.3

Proposition 5. Checking whether the classifier is monotone
(or anti-monotone) for a class yj with respect to an input
feature xi is in P whenever L satisfies CD, FO, and SE.

Proof. At the semantics level, conditioning a propositional
representation ϕ by a literal ` (resp. ¬`) consists first in
selecting the models ω of ϕ over Var(ϕ) where ` is assigned
to 1 (resp. 0), then in forgetting ` in the result (which leads to
add to this set of models every interpretation that coincides
with one of the ω but is such that ` is assigned to 0 (resp.
1) in it). Using symbols, ϕ | x ≡ ∃{x}.(ϕ ∧ x) and ϕ |
x ≡ ∃{x}.(ϕ ∧ x). Accordingly, if C is not monotonic
(resp. anti-monotonic) for yj with respect to xi, then there is
a model of ∃X.(Σ | yj) which is not a model of ∃X.(Σ | yj)
conditioned by xi (resp. xi). Thus, checking whether C is
monotonic (resp. anti-monotonic) for yj w.r.t. xi amounts
to testing whether ∃X.(Σ | yj) |= (∃X.(Σ | yj)) | xi (resp.
∃X.(Σ | yj) |= (∃X.(Σ | yj)) | xi). This can be done in
polynomial time when L satisfies CD, FO, and SE.

In our running example, one can check that the random
forest R is monotonic for the class GRA with respect to the
feature SW. We mention in passing that the notion of mono-
tonicity has already been considered in (Shih, Choi, and Dar-
wiche 2018a) for binary classifiers (i.e., when m = 1).

Determining how much classes are close to each other
(MCJ, MCH). In multi-label classification, the user may
have some beliefs about the extent to which the classes of Y
are close to each other. For example, it can be expected that
the class of apples is at least as close to the class of grape
fruits as to the class of bananas. Thus, it is interesting to
determine whether or not the closeness of classes (as they are
identified by the predictor) is compatible with those beliefs.
Such a consideration requires a formal characterization of
the notion of “similarity”.

A simple, yet poorly informative notion of similarity is
ordinal and takes the form of a set of pre-orders≤yj over Y ,
one for each class j ∈ {1, · · · ,m}. By writing yk ≤yj yl,
we mean that yk is at least as close to yj as to yl. Thus,
the user may believe that APP ≤GRA BAN. Of course, it is
expected that yj ≤yj yl whatever yl ∈ Y . Clearly enough,
every cardinal similarity σ between classes of Y (i.e., a sym-
metric mapping associating a non-negative number with a
couple of classes), induces an ordinal similarity given by
yk ≤yj yl if and only if σ(yk, yj) ≥ σ(yl, yj).

Several cardinal similarities can be defined and evaluated
from Σ. A first one is given by the Jaccard index J(yk, yl):
it is the number of elements belonging to both classes, di-
vided by the number of elements belonging to at least one
of them (i.e., the cardinality of the intersection of the two
classes divided by the cardinality of their union). J(yk, yl)
indicates the proportion of inputs that are (possibly wrongly)

3If x = (x1, · · · , xn), then x[xk ← v] is the same vector as
x, except that the jth coordinate xk of x[xk ← v] has value v.



recognized as both yk and yl among those which are rec-
ognized as belonging to at least one of the two classes.
J(yk, yl) varies between 0 and 1, the higher the more similar
yk and yl. When classes are not given explicitly as the sets
of their elements but represented implicitly using a circuit Σ
as done in our setting, we get:

J(yk, yl) =
‖Σ ∧ (yk ∧ yl)‖
‖Σ ∧ (yk ∨ yl)‖

Clearly, when the classes yk and yl are pairwise disjoint (as
it should be for apples and bananas, ideally) one must have
J(yk, yl) = 0. In the running example, we can check from
Table 1 that J(BAN, GRA) = 1

5 while J(APP, GRA) = 0.
Thus, from the point of view of Jaccard index, bananas are
viewed as closer to grape fruits than apples, which can be
considered as counter-intuitive by the user and reflect a prob-
lem in the predictor.

Sometimes, it makes sense to evaluate the distance be-
tween two classes yk and yl as an aggregation of a more el-
ementary distance between the elements of the two classes.
For example, we can take the Hamming distance between
an element of yk and an element of yl.4 In doing so, let
dH(x,x′) denote the number of bits that differ between the
inputs x and x′ from X . This distance can be easily lifted
to propositional representations Σ1 and Σ2 overX encoding
sets of such inputs:5

dH(Σ1,Σ2) = min
ω1∈[Σ1]

min
ω2∈[Σ2]

dH(ω1, ω2)

and then the cardinal similarity H between classes can be
defined as follows:

H(yk, yl) =
n− dH(∃X.(Σ | yk),∃X.(Σ | yl))

n

Thus, H(yk, yl) gives the proportion of (Boolean) features
that do not need to be switched to go from an element of yk
to an element of yl. In the running example, we can check
from Table 1 that H(BAN, GRA) = 1 (since both classes
share an element) while H(APP, GRA) = 2

3 . From the point
of view of H similarity, bananas are also viewed as closer to
grape fruits than apples.

Proposition 6.
• MCJ: computing J(yk, yl) is in P when L satisfies CD

and CT.
• MCH: computing H(yk, yl) is in P when L satisfies CD,
∧BC, ∧DC, OPT, and ME.

Proof.
• As to J(yk, yl), it is enough to observe that J(yk, yl) is

also equal to
‖Σ | (yk ∧ yl)‖

‖Σ | (yk ∧ yl)‖+ ‖Σ | (yk ∧ yl)‖+ ‖Σ | (yk ∧ yl)‖
.

4Note that the Hamming distance between two assignments of a
feature xi over a finite, yet non-Boolean domain, can be computed
as the weighted Hamming distance between the corresponding as-
signments of the Boolean variables xj

i obtained using the direct
encoding (just consider a weight of 1

2
for each xj

i ).
5We define dH(Σ1,Σ2) = +∞ whenever Σ1 is inconsistent or

Σ2 is inconsistent.

• The computation of H(yk, yl) is a bit more subtle. Con-
sider a representation Σ in L and a “clone” Σ′ of it ob-
tained by renaming (in a uniform way) every variable v
occurring in Σ into v′. Then condition Σ by yk and Σ′ by
y′l, and compute a representation α in L of the conjunc-
tion of the resulting representations. This can be done in
time polynomial in the size of Σ when L satisfies CD
and ∧BC. The next step consists in computing a rep-
resentation in L of each formula zi ⊕ (xi ⇔ x′i) where
i ∈ {1, · · · , n} and zi is a fresh variable of PS . This can
be done in constant time since every such formula has a
fixed size and involves only 3 variables. Then since L sat-
isfies ∧DC, a representation β in L of

∧n
i=1(zi ⊕ (xi ⇔

x′i)) can be computed in polynomial time. Finally, a rep-
resentation γ in L of α ∧ β can be computed in polyno-
mial time when L satisfies ∧BC. Consider now a linear
function f over Var(α ∧ β) associating with every vari-
able in it the weight 0, except the variables z1, · · · , zn
that have weight 1. Since L satisfies OPT, a represen-
tation δ in L having for models those of γ minimizing
the value of f can be computed in polynomial time from
γ and f . By construction, every such model contains a
minimum number of variables zi set to 1, and this num-
ber is equal to dH(∃X.(Σ | yk),∃X.(Σ | yl)) (note the
the projection onto the variables of X is done implic-
itly by the optimization transformation when the variables
out of X are given a null weight in the linear function).
Because L satisfies ME, a model ω of δ can be gener-
ated in polynomial time. Once computed, it is enough
to count the number of variables zi set to 1 in it to get
dH(∃X.(Σ | yk),∃X.(Σ | yl)), from which H(yk, yl)
can be easily derived.

Computing how far a class is from a given prototype
(MCP). In many cases, the user has in mind a prototyp-
ical element of the class. For instance, she may believe that
an apple has a round shape, is not green, and has a sweet
taste, which yields to the prototype SW∧GR∧ RO. Based on
this background information, it is interesting to determine
how much each class (as it is recognized by C) complies
with this prototype, which can be evaluated by computing
the Hamming distance between every element of the class
and the prototype, and considering the maximal distance. In
our running example, the instance SW∧GR∧RO classified as
an apple by R coincides with the prototype, while the other
instance SW ∧ GR ∧ RO classified as an apple by R is at a
distance of 2 from the prototype SW ∧ GR ∧ RO. Thus the
distance of the class of apples (as they are recognized by R)
to the corresponding prototype is 2. A large value of this
distance can be considered as unacceptable, as it may reflect
a bias in the data used to train C.

Proposition 7. Computing how far a given class yj is from
a given prototype x is in P when L satisfies CD, OPT, and
ME.

Proof. The approach for computing this value is as follows.
One first generates a representation α in L of Σ | yj , which



is feasible in polynomial time when L satisfies CD. Assum-
ing that x = (x1 = v1, · · · , xn = vn), one then considers
a linear function fx that associates a null weight with every
variable from Y ∪ Z, and with every xi (i ∈ {1, · · · , n}), a
weight equal to −1 if vi = 1 and a weight equal to 1 when
vi = 0. Accordingly, for every truth assignment ω over
X ∪ Y ∪ Z, we have that fx(ω) + Σni=1vi is equal to the
Hamming distance between the projection of ω onto X and
x. Since Σni=1vi does not depend on ω, the projections onto
X of the interpretations ω maximizing the value of fx are
those maximizing the Hamming distance to x. Obviously
enough, they are also (precisely) the projections onto X of
the interpretations ω minimizing the value of −fx, which is
a linear function as well. When L satisfies OPT, a repre-
sentation β from L of the models of α minimizing the value
of −fx can be computed in polynomial time. Finally, when
L satisfies ME, a model ω′ of β can be generated in poly-
nomial time; the Hamming distance between the projection
of ω′ onto X and x is the maximal distance between an ele-
ment of the class yj and x, i.e., the value we look for.

4.2 Explanation Queries
We now turn to explanation queries, which are related to a
specific input x and the way it has been classified by C. Of-
ten, the reason why x has been classified as an element of
a class yj does not depend on all features over X but only
on some of them. This leads to the two following notions
of minimum-cardinality explanations and of prime impli-
cant explanations introduced in (Shih, Choi, and Darwiche
2018b). When the prediction achieved by C is somewhat
unexpected, the user may also ask for counterfactual expla-
nations. Whatever the type of explanation that is looked for
(minimum-cardinality, prime implicant, counterfactual), an
input instance can have exponentially many explanations.

Enumerating minimum-cardinality explanations
(EMC). Given an input x such that C(x) = y with
yj = 1, a minimum-cardinality explanation of x classified
as an yj is an input instance x′ such that C(x′) = y′ with
y′j = 1 (i.e., x′ is classified as an yj as well), x′ coheres
with x on the ones in the sense that for any k ∈ {1, . . . , n},
if x′k = 1 then xk = 1, and x′ has a minimal number of
coordinates set to 1. Roughly speaking, the features that
are set to 1 in x′ are enough to explain why x has been
classified by C as an element of yj . In our running example,
a minimum-cardinality explanation of input SW ∧ GR ∧ RO
(classified as an element of BAN by R) is RO.

Proposition 8. The minimum-cardinality explanations of x
can be enumerated with polynomial delay from Σ given yj
as soon as L satisfies CD, OPT, and ME.

Proof. First, one computes in polynomial time a representa-
tion α in L of Σ | yj . Then one considers the linear function
f associating with every variable in Y ∪Z the weight 0, ex-
cept the variables of X that have weight 1. Since L satisfies
OPT, a representation β in L having for models those of α
minimizing the value of f can be computed in polynomial
time from β and f . By construction, the projection of every
such model onto X is a minimum-cardinality explanation of

x. Furthermore, since every variable from Y ∪ Z is defined
from X in Σ, two distinct models of β over Var(β) neces-
sarily have two distinct projections onto X . Thus, enumer-
ating the models of β and projecting each of them ontoX as
soon as it is generated leads to enumerating the minimum-
cardinality explanations of x. The fact that L satisfies ME
is therefore enough to conclude the proof.

The above proposition extends a result from (Shih, Choi,
and Darwiche 2018b), where it was shown that the enumer-
ation of minimum-cardinality explanations is feasible with
a polynomial delay when L = OBDD. Indeed, OBDD satis-
fies CD, OPT, and ME, but many other languages in the
DNNF family (including DNNF itself) are strictly more suc-
cinct than OBDD and also satisfy those properties.

Note that mandatory features are relevant to minimum-
cardinality explanations in the sense that every minimum-
cardinality explanation of x necessarily contains every fea-
ture that is mandatory for being recognized as an element of
yj by C. Similarly, no irrelevant feature for yj participates
in any minimum-cardinality explanation.

Deriving a prime implicant explanation (DPI). Given
an input x such that C(x) = y with yj = 1, a prime im-
plicant explanation is a subset-minimal partial assignment
x′ which is coherent with x (i.e., x and x′ give the same
values to the variables that are assigned in x′) and which
satisfies the property that for every extension x′′ of x′ over
X , we have C(x′′) = y′′ with y′′j = 1. The features as-
signed in x′ (and the way they are assigned) can be viewed
as explaining why x has been classified as an element of yj .
Thus, in the running example, a prime implicant explanation
of input SW ∧ GR ∧ RO (classified as an element of GRA by
R) is SW∧GR. The fact that RO holds or not does not matter.

Proposition 9. Deriving a prime implicant explanation of x
from Σ given yj is in P when L satisfies CD, FO, and IM.

Proof. The computation of a prime implicant explanation
of x is a follows. First, compute a representation α in L
of ∃X.(Σ | yj). This is feasible in polynomial time since
L is supposed to satisfy CD and FO. Then, the problem
amounts to computing a prime implicant of α. This can be
done in polynomial time using a greedy algorithm when L
satisfies IM: start with x, which is a model (hence an im-
plicant) of α, and for every literal of x, test in polynomial
time whether x deprived from this literal is still an implicant
of the formula (this is feasible in polynomial time when L
satisfies IM); if the resulting term still is an implicant of α,
then remove the literal, otherwise keep it and resume.

Prime implicant explanations are also referred to as suffi-
cient reasons for a decision in (Darwiche and Hirth 2020).
Interestingly, the explanations of classifications as produced
by Anchor (Ribeiro, Singh, and Guestrin 2018) can be
viewed as approximations of prime implicant explanations
(Narodytska et al. 2019). Note that every prime implicant
explanation of x contains every feature that is mandatory
for being recognized as an element of yj by C. Furthermore,
no prime implicant explanation of x contains a feature that is
forbidden or irrelevant for being recognized as an element of



yj by C (if ∃X.(Σ | yj) is independent from xk, xk does not
occur in any prime implicant of ∃X.(Σ | yj)). Finally, it can
be noted that discrete, yet non-Boolean features raise some
representation issues when dealing with prime implicant ex-
planations (it turns out that the prime implicants over the
Boolean features obtained using the direct encoding do not
capture the intended explanations, see (Choi et al. 2020)).

From a computational point of view, the enumeration of
prime implicant explanations looks as a much more demand-
ing issue than the enumeration of minimum-cardinality ex-
planations. Though algorithms for computing the set of
prime implicant explanations exist (see (Shih, Choi, and
Darwiche 2018b; Darwiche and Hirth 2020)), the question
of the existence of an algorithm with polynomial delay for
enumerating the elements of this set from a representation
Σ ∈ L is open for many L (e.g., L = OBDD) as far as we
know. Especially, though the enumeration of the models of
Σ with a polynomial delay is possible as soon as L satisfies
CD and CO (Darwiche and Marquis 2002), those condi-
tions on L do not appear as sufficient for ensuring the ex-
istence of an enumeration algorithm with polynomial delay
for the prime implicants of Σ. Indeed, it is known that unless
P = NP there is no input-output polynomial time algorithm
for generating the prime implicants of a monotone formula
(Goldsmith, Hagen, and Mundhenk 2005), and the language
of monotone formulae satisfies CD and CO.

Enumerating counterfactual explanations (ECO). Oc-
casionally, the user may be surprised by the way C has clas-
sified a given instance x1. She was expecting the input in-
stance to be recognized as an apple (yk), but it has been clas-
sified as a grape fruit (yj). In such a case, the user is likely
to ask for a counterfactual explanation: one is interested in
identifying an instance x2 which is classified as an apple
(and not as a grape fruit), and is as close as possible to x1

in terms of the number of common values of the features
in the two inputs (alias the Hamming distance dH(x1,x2)).
Indeed, the set of features that differ in x1 and x2 can be
viewed as an explanation of why x1 has not been classi-
fied as yk. In the running example, an input classified as
an element of APP and that is as close as possible to x1 =
SW ∧ GR ∧ RO w.r.t. dH is SW ∧ GR ∧ RO (it is at Ham-
ming distance 2 of SW ∧ GR ∧ RO). Another counterfactual
explanation for x1 is SW ∧ GR ∧ RO.

Proposition 10. The counterfactual explanations of x can
be enumerated with polynomial delay from Σ given yj and
yk as soon as L satisfies CD, OPT, and ME.

Proof. One first generates a representation α in L of Σ |
(yk ∧ yj), which is feasible in polynomial time when L sat-
isfies CD. Then one considers the same function fx as in
the proof of Proposition 7. For every truth assignment ω over
X ∪ Y ∪ Z, the value fx(ω) + Σni=1vi is equal to the Ham-
ming distance between the projection of ω onto X and x.
Since Σni=1vi does not depend on ω, the projections onto X
of the interpretations ω minimizing the value of fx are those
minimizing the Hamming distance to x. When L satisfies
OPT, a representation β from L of the models of α mini-
mizing the value of fx can be computed in polynomial time.

In addition, when L satisfies ME, starting from β, those
models can be enumerated with a polynomial delay. Since
every variable from Y ∪ Z is defined from X in Σ, two dis-
tinct models of β over Var(β) necessarily have two distinct
projections onto X . Hence the counterfactual explanations
of x can be enumerated with a polynomial delay.

As a direct consequence of Proposition 10, when L satis-
fies CD, OPT, and ME, one can easily compute the ro-
bustness (Shih, Choi, and Darwiche 2018a) of the classifi-
cation of x as an yj defined as mink=1,...,m|k 6=jdH(x,Σ |
(yk∧yj)), i.e., the Hamming distance between x and a clos-
est instance that has been recognized by C as belonging to
a class distinct from yj . In essence, this amounts to com-
puting in sequence a counterfactual explanation of x for ev-
ery yk distinct from yj , and for each of them to compute
its Hamming distance to x while memorizing the minimum
distance. The computation of this robustness can clearly be
done in polynomial time, extending to the Boolean case a
result from (Shih, Choi, and Darwiche 2018a) in which it
is shown that this is indeed the case for L = OBDD (which
satisfies CD, OPT, and ME).

5 Discussion
The XAI queries considered in the paper correspond to
computation problems of various types: decision problems
(IMA, IIR, IMO), counting problems (CIN, CAM), func-
tion problems (DPI, MFR, MCJ, MCH, MCP), enumera-
tion problems (EMC, ECO, EIN, EA). Whatever its type,
each of those queries is NP-hard in the broad sense (Garey
and Johnson 1979) when no restrictions are imposed on the
circuit Σ (i.e., when one just assumes that Σ is a circuit
with inputs in X , outputs in Y , and intermediate variables
in Z). More precisely, we can prove that for any of the
queries associated with decision, counting, or function prob-
lems, if a polynomial-time algorithm for solving the query
existed, then we would have P = NP. In addition, we can
also prove that for any of the queries associated with an enu-
meration problem, if an algorithm for enumerating solutions
with polynomial delay existed, then we would have P = NP.
Thus, making additional assumptions on Σ looks as manda-
tory to make tractable any of the 14 XAI queries listed in
Table 2. This is the path followed in the paper. Indeed, the
results reported in the previous propositions identify condi-
tions under which the XAI queries are tractable, those condi-
tions taking the form of queries and transformations offered
by the language L used to represent Σ.

To make such results significant from the practical side,
two conditions must be fulfilled. On the one hand, some
encoding schemas associating a circuit with a given clas-
sifier must be available. This is already the case for sev-
eral families of classifiers, including Bayes classifiers (Chan
and Darwiche 2003; Shih, Choi, and Darwiche 2019), bi-
nary neural networks (Narodytska et al. 2018; Shih, Dar-
wiche, and Choi 2019; Shi et al. 2020), and random forests
(as shown in the paper). On the other hand, languages L sat-
isfying the queries and transformations supporting the XAI
queries under consideration must exist and translators (alias



compilers) for generating representations in L of Σ must be
implemented. Hopefully, this is also the case.

In this respect, the family of DNNF languages (Darwiche
2001; Huang and Darwiche 2007; Pipatsrisawat and Dar-
wiche 2008; Oztok and Darwiche 2014) appears as partic-
ularly interesting. A DNNF representation Σ is a Boolean
circuit with a single root, internal nodes labelled by connec-
tives in {∧,∨}, leaves labeled by literals over PS or Boolean
constants, and satisfying the following decomposability con-
dition: the DNNF representations rooted at any ∧-node in Σ
do not share any variable. A d-DNNF representation is a
DNNF representation Σ that satisfies the following determin-
ism condition: the d-DNNF representations rooted at any
∨-node in Σ are pairwise inconsistent.

A Decision-DNNF representation Σ is a Boolean circuit
with a single root, leaves are labeled by literals over PS or
Boolean constants, and internal nodes are decomposable ∧-
nodes or decision nodes of the form ite(x, n1, n2), where
ite stands for ”if ... then ... else ...”. In a decision node
ite(x, n1, n2), x is any propositional variable of PS (the de-
cision variable), and the Decision-DNNF representations Σ1

and Σ2 rooted (respectively) at n1 and n2 do not contain
any occurrence of x. ite can be considered as a ternary con-
nective so that every node of the form ite(x, n1, n2) can be
viewed as a short for (x̄ ∧ Σ1) ∨ (x ∧ Σ2). Since in the
latter statement, the ∧-nodes are decomposable nodes, and
the ∨-node is a deterministic one, every Decision-DNNF cir-
cuit can be considered as a d-DNNF circuit. Formally, there
exists a linear-time equivalence-preserving translation from
Decision-DNNF to d-DNNF. Structural restrictions on DNNF
circuits based on a concept of vtree can also be imposed,
leading to languages of structured DNNF representations that
offer additional queries and transformations.

Thanks to the decomposability/determinism/structure
conditions, languages of the DNNF family offer many
queries and transformations of interest.6 Thus, DNNF sat-
isfies CD, CO, FO, OPT, ∧DC, and d-DNNF offers
all the queries and transformations listed in the paper, ex-
cept SE, EQ, FO, ∧BC (Darwiche and Marquis 2002;
Darwiche and Marquis 2004). Structured d-DNNF circuits
(given a fixed vtree) offers in addition SE, EQ, and ∧BC.
Accordingly, under the restriction when Σ is given as a
DNNF circuit (resp. a d-DNNF circuit), the XAI queries
EMC, ECO, EIN, IMA, and MCP (resp. CIN, MFR, and
MCJ) are tractable. MCH is tractable when Σ is given as a
structured d-DNNF circuit. Finally, though Decision-DNNF
does not offer FO in the general case, wherever the forget-
ting transformation is used for solving the XAI queries con-
sidered above, it concerns variables that are defined from
unforgotten ones (those of X). In such a case, applying the
forgetting algorithm that consists in replacing every deci-
sion node labelled by a variable from X by a ∨-node (while
keeping the same two children) turns the Decision-DNNF cir-

6In addition, DNNF languages are quite succinct – actually,
more than other candidates like OBDD or FBDD (Darwiche and
Marquis 2002; Bova et al. 2016) – , and there exist compilers
targeting those languages when Σ is given at start as a CNF for-
mula (Darwiche 2001; Darwiche 2004; Pipatsrisawat and Dar-
wiche 2010; Muise et al. 2012; Lagniez and Marquis 2017).

XAI query Conditions on L making the query tractable

EMC CD, OPT, ME
DPI CD, FO, IM
ECO CD, OPT, ME
CIN CD, CT
EIN CD, ME

CAM CD, CT
EAM CD, ME
MFR CD, CT
IMA CD, CO
IIR CD, FO, EQ

IMO CD, FO, SE
MCJ CD, CT
MCH CD, ∧BC, ∧DC, OPT, ME
MCP CD, OPT, ME

Table 2: XAI queries and conditions on L that are sufficient to
make them tractable.

cuit at hand into a d-DNNF circuit (see (Lagniez, Lonca,
and Marquis 2020) for details). As a consequence, DPI is
tractable when Σ is given as a Decision-DNNF circuit, and
IIR and IMO are tractable when Σ is given as a structured
Decision-DNNF circuit.

6 Conclusion
In this paper, we have presented a number of XAI queries,
which are useful for explaining classifications achieved by a
predictor C (the queries are EMC, DPI, ECO) or for assess-
ing the robustness of C (the queries are CIN, EIN, CAM,
EAM, MFR, IMA, IIR, IMO, MCJ, MCH, MCP). All those
queries are delegated to a Boolean circuit Σ exhibiting the
same input-output behaviour as C.

We have shown how these XAI queries can be addressed
by combining operations on Boolean circuits. Especially,
taking advantage of previous results reported in the knowl-
edge compilation literature, we have identified some condi-
tions on the language L used for representing Σ that prove
enough for ensuring the tractability of the XAI queries. Ta-
ble 2 summarizes the XAI queries considered in the paper
and associates with each of them some conditions on L that
are sufficient to make it tractable. Several subsetsL of DNNF
appear as valuable, ensuring that many XAI queries from the
table are tractable whenever Σ is represented in L.

This work calls for many perspectives. Designing encod-
ing schemas suited to other types of classifiers (e.g., other
ensemble methods) is one of them. From the theory side,
deriving bounds on the size of the compiled representations
in various target languages of the corresponding encodings
is an interesting issue we would like to address. From a more
practical point of view, we plan to make experiments to de-
termine the scalability of the compilation-based approach to
XAI for several encoding schemas (associated with classi-
fiers of various types) and for several target languages for
knowledge compilation.
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