
On Translations between ML Models for XAI Purposes

Alexis de Colnet1 and Pierre Marquis2
1 Algorithms and Complexity Group, TU Wien, Vienna, Austria

2 Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France
2Institut Universitaire de France

decolnet@ac.tuwien.ac.at, marquis@cril.univ-artois.fr

Abstract
In this paper, the succinctness of various ML mod-
els is studied. To be more precise, the existence
of polynomial-time and polynomial-space transla-
tions between representation languages for classi-
fiers is investigated. The languages that are con-
sidered include decision trees, random forests, sev-
eral types of boosted trees, binary neural networks,
Boolean multilayer perceptrons, and various logi-
cal representations of binary classifiers. We pro-
vide a complete map indicating for every pair
of languages C, C′ whether or not a polynomial-
time / polynomial-space translation exists from C
to C′. We also explain how to take advantage of the
resulting map for XAI purposes.

1 Introduction
During the past decades, the main motivation for designing
new ML models was to improve the learning performance.
More recently, the quest for eXplainable AI (XAI) [Goodman
and Flaxman, 2017; Gunning, 2019] has led to consider an-
other goal than pure learning performance when opting for an
ML model, namely its ability to offer XAI facilities (see e.g.,
[Adadi and Berrada, 2018; Miller, 2019; Samek et al., 2019;
Guidotti et al., 2019; Srinivasan and Chander, 2020; Molnar,
2019; Lundberg et al., 2020; Rudin et al., 2021]). Beyond
predictions, explanations of the predictions are sought for. In
the same vein, verification queries enabling to check whether
the predictor under consideration behaves as expected are
looked for.

A major concern is that the two objectives (accuracy and
XAI) can be antagonistic. Thus, predictors with high predic-
tion performance are usually considered as poorly intelligi-
ble (see e.g., [Molnar, 2019; Arrieta et al., 2020; Caruana et
al., 2020]), even if the lack of algorithms for answering XAI
queries in practice does not always come with strong argu-
ments against the existence of such algorithms (the absence
of efficient algorithms not implying their impossibility). That
mentioned, the need for explanation and verification hampers
the further applications of ML machinery, especially when
those applications directly affect human beings. Our society
now calls for trustworthy AI, hence it is important to investi-
gate approaches for providing ML models with XAI facilities.

In this perspective, our work falls under the so-called for-
mal XAI umbrella [Marques-Silva and Ignatiev, 2022] and
is relevant to the model-specific approach to post-hoc ex-
planation. Thus, a predictor is supposed to have been
learned and the goal is to equip it with XAI methods, al-
lowing users to reason about the behavior of the predic-
tor, and to understand why instances have been classified
as they have been, or not classified as the user would ex-
pect. We assume that the learned predictor can be associ-
ated with a circuit that has precisely the same behaviour in
terms of inputs/outputs (see e.g., [Narodytska et al., 2018;
Shih et al., 2018; Shih et al., 2019]). Then, the XAI
facilities that are required can be delegated to the corre-
sponding circuit (automated reasoning techniques are usu-
ally leveraged to achieve them) [Darwiche and Hirth, 2020;
Barceló et al., 2020; Parmentier and Vidal, 2021]. Using such
an approach, no approximation of the predictor is performed
and as a consequence, rigorous explanations [Ignatiev, 2020]
can be derived (i.e., the predictor itself is explained, not a sur-
rogate). This is of utmost importance when ML techniques
are considered in safety-critical applications.

For the past few years, many XAI algorithms have been
designed and evaluated for various ML models, and the col-
lection of such algorithms is ever-increasing (see [Marques-
Silva, 2022] for a recent survey). The research question con-
sidered in the present work is about the existence of transla-
tions between ML models. The goal is to determine whether
or not one can take advantage of XAI algorithms when deal-
ing with ML models other than that for which they have been
conceived, provided that a sufficiently efficient translation be-
tween the models exists. Addressing this issue amounts to de-
termining how computationally demanding it is to translate a
predictor from an input ML model into a predictor from an-
other (output) model for which XAI facilities are available. In
this paper, we are interested in equivalence-preserving trans-
lations (i.e., the output predictor is equivalent to the input pre-
dictor) since we want to guarantee that the explanations com-
puted when rigorous for the output predictor are also rigorous
for the input predictor.

To make things concrete, suppose that a predictor fC from
a given ML model C (e.g., C is the class BT of boosted trees)
has been learned and that we want to derive contrastive expla-
nations (see e.g., [Miller, 2019; Guidotti, 2022]) for instances
x classified by fC , but we do not have an XAI algorithm to

perform this task. Suppose that a translation τ exists from C
to another ML model C′ (e.g., C′ is the class BMP of Boolean
multilayer perceptrons), and that an XAI algorithm xai (e.g.,
to derive a contrastive explanation for an instance x) suited to
any predictor fC′ from C′ is available. Then we immediately
get an XAI algorithm for the same task but now suited to any
predictor fC from C: just compute xai(τ(fC),x).

Computationally speaking, we are interested in two types
of translation: polynomial-time translations, and polynomial-
space translations. A polynomial-time translation from an
ML model C to an ML model C′, noted C ≤p C′, ensures that
any polynomial-time XAI algorithm for C′ can be turned into
a polynomial-time XAI algorithm for C. Polynomial-space
translations, noted C ≤s C′, guarantee that the output pre-
dictor from C is of size polynomial in the size of the input
predictor from C′. Clearly, if C ≤p C′ holds then C ≤s C′
holds as well, but the converse is false in general. Indeed, no
assumptions are made on the time needed to produce the out-
put predictor when C ≤s C′ holds. Polynomial-space trans-
lations can be nevertheless useful when no XAI algorithms
are available for C, or when the computation time required
for achieving the translation can be balanced by considering
sufficiently many queries (and explanation queries can indeed
be numerous since instances to be explained are numerous as
well). When no polynomial-space translation exists from C′
to C, there is no way to turn the polynomial-time XAI algo-
rithms for C′ into polynomial-time XAI algorithms for C.

In this work, we initiate a systematic comparison of ML
models, viewed as classes of binary classifiers, with respect to
the≤p and the≤s relationships. Thus, for the classifiers con-
sidered, input variables are over {0, 1} and a classifier maps
every assignment to its variables to either 0 or 1. We con-
sider well-known models of binary classifiers, that are con-
veniently summarized together in [Audemard et al., 2021].
These models are briefly described in this paragraph and in
more details in Section 2. Our contributions are spread in the
paper as follows. In Section 3, we consider tree-based classi-
fiers that are linear predictors over decision trees (DT). These
are sets of decision trees T1, . . . , Tm such that an assignment
is mapped to 1 if and only if the sum of the outputs of the
decision trees exceeds a certain threshold. We compare ran-
dom forests (RF): every tree can return +1 or −1; boosted
trees with trees Ti associated with weights wi ∈ Q (BT): ev-
ery tree Ti can return +wi or −wi; and boosted regression
trees (BRT), where weights are associated with tree leaves,
and every tree can return any number inQ. We show a strong
separation between RF and BT (and BRT), in the sense that
BT ≤p RF but RF �s BT. We also describe a, perhaps un-
expected, polynomial-time translation from BRT to BT. In
Section 4, we look at network models, with binary neural
networks (BNN) and Boolean multilayer perceptrons (BMP).
There, we show a close connection between these models
and threshold circuits using “small” integer weights (T̂H)
and threshold circuits using any integer weights (TH). We
lean on this connection to strongly separate BNN and BMP
from tree-based classifiers, and to show that BNN ≤p BMP.
In Section 5, we add to the analysis a few other classes of
representations of Boolean functions (which can be seen as
classes of binary classifiers). Those classes include the well-

BMP

BNN

TH

T̂H

DT

BRT

RF

BT

CNFDNFDNNF

Figure 1: The≤p,≤s-map for different classes of binary classifiers.

known formulas in conjunctive normal form (CNF) and in
disjunctive normal form (DNF), and the (less well-known)
circuits in decomposable negation normal form (DNNF).
These circuits have recently been suggested as useful repre-
sentations for answering XAI queries [Audemard et al., 2020;
Darwiche and Hirth, 2020]. Other related work are discussed
in Section 6.

Our results are summarized in Figure 1, presenting a Hasse
diagram that can be read as follows for both ≤∈ {≤p,≤s}:
• an arrow C → C′ means that C′ ≤ C but that C � C′,
• a double harpoon C
 C′ means that C ≤ C′ and C′ ≤ C,
• no link between C and C′ means either that the relationship

can be derived by transitivity, or that C � C′ and C′ � C.
Notably, most polynomial-time translations pointed out in

the following can be envisioned in practice since they run in
linear time in the size of the initial classifier. A notable ex-
ception is the translation from BMP to BNN, that runs in time
at least quadratic in the size of the classifier. Our results are
discussed in Section 7. Many proofs are deferred to a final
appendix.

2 Preliminaries
A Boolean variable is a variable over {0, 1}. A literal is a
Boolean variable x or its negation x. An assignment a to a set
X of Boolean variables is a mapping from X to {0, 1}. We
denote by {0, 1}X the set of all assignments toX . A Boolean
function over X is a mapping from {0, 1}X to {0, 1}. The
symbols ∧, ∨ are used to denote conjunction and disjunction,
respectively. A clause is a disjunction of literals and a term is
a conjunction of literals. A formula in CNF is a conjunction
of clauses and a formula in DNF is a disjunction of terms.

2.1 Tree-Based Models
Let X be a finite set of Boolean variables and let a be an
assignment to X . A decision node labelled by x ∈ X is a
node of the form x interpreted as follows: if x is

set to 0 (resp. 1) then follow the dashed (resp. plain) arrow.
Decision tree. A decision tree over X and about a set Y
[Breiman et al., 1984; Quinlan, 1986] represents a mapping
from {0, 1}X to Y . It is a rooted tree where internal nodes
are decision nodes labelled by variables in X , and leaves are
elements in Y . We assume wlog that any variable labels at
most one node of every root-to-leaf path. DTY denotes the
set of decision trees over X about Y . For convenience we
write DT = DT{0,1} and DT± = DT{−1,1}. The label of

the leaf obtained when following the path consistent with a
complete assignment a in the tree T is denoted by T (a).

Random forest. Decision trees can be generalized to tree
ensembles, using ensemble learning techniques, such as bag-
ging and boosting. Notably, the random forest method gener-
ates multiple decision trees according to a variant of bagging.
Thus, a random forest over X [Breiman, 2001] is a finite set
of binary decision trees over X in DT±. The random forest
classifier composed of the trees T1, T2, . . . , Tm represents the
Boolean function over X that evaluates to 1 on a if and only
if
∑m
i=1 Ti(a) ≥ 0. RF denotes the class of random forests.

Boosted tree. Tree ensembles can also be trained using the
boosting technique. Thus, a boosted tree is a random for-
est whose trees Ti or tree leaves are associated with weights
wi in Q. When weights are associated with trees, the classi-
fier corresponding to (T1, w1), . . . , (Tm, wm) represents the
Boolean function that evaluates to 1 on a if and only if∑m
i=1 wi · Ti(a) ≥ 0. When the weights are not associated

with the trees but with their leaves, we end up with a for-
est whose trees are from DTQ (equivalently, one can view
them as regression trees). The classifier corresponding to
T1, . . . , Tm ∈ DTQ represents the Boolean function that eval-
uates to 1 on a if and only if

∑m
i=1 Ti(a) ≥ 0. BT denotes

the class of boosted trees with trees associated with weights,
and BRT the class of boosted trees with tree leaves associated
with weights (aka “boosted regression trees”).

Standard learning algorithms for generating boosted trees
output predictors from BT (e.g., this is the case of AdaBoost
[Freund and Schapire, 1997; Schapire and Freund, 2014])
or they output predictors from BRT (e.g., this is the case of
XGBoost [Chen and Guestrin, 2016], LightGBM [Ke et al.,
2017] and CatBoost [Prokhorenkova et al., 2018]).

We denote by |T | the number of nodes (including leaves)
of the decision tree T . More generally, the size of a classifier
C is written |C|. If C is a random forest T1, . . . , Tm, then
|C| =

∑m
i=1 |Ti|. If C is a boosted tree T1, . . . , Tm, then

|C| is
∑m
i=1 |Ti| plus the space needed to store the weights

in memory. We will often assume that the weights are in Z
and are encoded in binary with no limit on the number of bits
(note by the way that |wi| denotes the absolute value of wi
and not the number of bits in its encoding).

2.2 Network Classifiers
Boolean multilayer perceptrons. A (feedforward) neural
network is a directed acyclic graph whose edges are labeled
with weights in Q, and nodes (alias neurons) correspond to
input variables overQ when their fan-in is 0, and to functions
over their weighted inputs otherwise. In a multilayer neural
network, the nodes are partitioned in sets L1, . . . , Ld called
layers such that any edge is directed from a node of Li to a
node of Li+1 for some i < d. The input layer L1 contains
only the input variables. The nodes of the output layer Ld
all have fan-out 0 and compute the output vector of the net-
work. For every i < d, the layers Li and Li+1 are supposed
fully connected in the sense that all nodes of Li are connected
to all nodes of Li+1. A Boolean multilayer perceptron (see
e.g., [Anthony, 2001]) is a multilayer neural network whose
input variables are Boolean, whose output layer contains a

single node, and whose non-input nodes are threshold gates.
Formally, a threshold gate over inputs x1, . . . , xn, associated
respectively to rational numbers (weights) w1, . . . , wn, is a
function

sgn
(n∑
i=1

wi · xi − θ
)

where sgn(k) = −1 if k < 0 and sgn(k) = 1 otherwise, and θ
is a fixed number inQ. If the inputs are variables over {0, 1},
then the function is equivalent to sgn(

∑n
i=1 w

′
i ·x′i−θ′) where

w′i = −wi, θ′ = 2θ −
∑n
i=1 wi and x′i = 1 − 2xi takes

value in {−1, 1}. So we will often assume that the inputs of
the circuits are over {−1, 1}. We denote by BMP the class
of all Boolean multilayer perceptrons. We view BMP as a
class of representations for Boolean functions: we just have
to assume that the output gate returns 0 or 1 instead of 1 or
−1 (respectively). 1

Binarized neural network. Binarized neural networks
(BNN) [Hubara et al., 2016] can be seen as Boolean multi-
layer perceptrons whose weights range in {−1, 1}, that is,
all threshold gates are of the form yj = sgn(

∑n
i=1 si,j ·

xi − θj) where si,j ∈ {−1, 1}. For completeness, we
nevertheless consider as well the following more technical
but more standard description. Let x = (x1, . . . , xn) and
y = (y1, . . . , ym) be respectively the input vector and the
output vector of a layer Lwhere all variables xi and yi ranges
in {−1, 1}. In a BNN, it is usual to break the threshold gates
into three parts, in particular yj is computed as follows, where
bj , αj , µj , νj , γj ∈ Q and νj 6= 0:

1. Linear transformation: compute y′j =
∑n
i=1 si,j · xi + bj

2. Batch normalization: compute y′′j = αj
(y′j−µj)

νj
+ γj

3. Binarization: yj = sgn(y′′j).

Assuming αj 6= 0, one indeed has yj = sgn(
∑n
i=1 si,j ·

xi − θj) where θj = µj − bj − νjγj/αj (if αj = 0, then
yj is a constant and the gate can be removed from L while
modifying parameters of the next layer). It will be simpler
to consider that the nodes of a BNN are threshold gates with
weights in {−1, 1} than to use the three-step computation.
Just as for Boolean multilayer perceptrons, we assume when-
ever it is convenient that the inputs of the circuits are variables
in {−1, 1} and not variables in {0, 1}. We denote by BNN the
class of all binarized neural networks, which we again view
as a class of representations for Boolean functions.

The size of a BMP or of a BNN classifierC is its number of
edges, plus the number of bits needed to write all the weights
and thresholds used in threshold gates.

2.3 Translations
A class C of representations for Boolean functions is fully
expressive when every Boolean function over finitely many
variables has a representation in C. In the following, the
classes C and C′ are fully expressive.

1An important research strand on Boolean functions considers
variables over {−1, 1} instead of {0, 1}. The usual translation is “1
becomes 0, and−1 becomes 1”, see for instance [O’Donnell, 2014].

Polynomial-time translations. We say that there is a
polynomial-time translation from C′ to C, denoted by C ≤p
C′, when there is a polynomial-time algorithm that, for every
C ′ ∈ C′ returns some C ∈ C representing the same function
as C ′. When C ≤p C′ and C′ ≤p C hold, we note C 'p C′.
Polynomial-space translations. We say that there is a
polynomial-space translation from C′ to C (or, equivalently,
that C is at least as succinct as C′), denoted by C ≤s C′, when
there is a polynomial p such that, for every C ′ ∈ C′, there ex-
ists a representationC ∈ C of the same function whose size is
|C| ≤ p(|C ′|). We say that C is strictly more succinct than C′
when C ≤s C′ but C′ �s C. We say that C and C′ are equally
succinct, denoted by C 's C′, when C ≤s C′ and C′ ≤s C.

Clearly enough, ≤p and ≤s are reflexive and transitive.
Furthermore, C′ ⊆ C implies C ≤p C′ and C ≤p C′ im-
plies C ≤s C′.

3 Translations between Tree-Based Models
In this section, we describe the ≤p and ≤s relationships be-
tween the classes of binary classifiers DT, RF, BT, BRT. For
most pairs of classes, one side of the relationship is trivial.
In particular, it is clear that BRT ≤p BT ≤p RF ≤p DT. It
remains to study the other direction. Using a function as sim-
ple as majorityn over n variables that evaluates to 1 if and
only if at least bn/2c variables are set to 1, we can separate
RF from DT in terms of succinctness:
Proposition 1. We have RF ≤p DT and DT �s RF.

3.1 Comparing BT and RF
Weights used in boosted trees can, in theory, be arbitrary
numbers inQ, but they can all be multiplied by the least com-
mon multiple of their denominators without modifying the
function represented by the classifier. For reasonable repre-
sentations of rationals, this only results in a polynomial-size
increase on the space needed to store the weights. So, from
now on, we assume that all weights are in Z \ {0}.

When the weights w1, . . . , wn are integers, w1 · T1 +
· · · + wm · Tm can be turned into an unweighted sum of
decision trees by creating, for every i ≤ m, |wi| clones
T 1
i , T

2
i , . . . , T

|wi|
i of Ti where the sign of a leaf is switched

when wi < 0. Indeed, we have that wi · Ti =
∑|wi|
j=1 T

j
i so

the boosted tree (T1, w1), . . . , (Tm, wm) is equivalent to the
random forest

⋃m
i=1{T 1

i , . . . , T
|wi|
i }. Clearly this translation

is useful only when maxi|wi| is small, but it teaches us that
the encoding of integer weights in memory is important. In
particular, if the weights were encoded in unary, or if they
were encoded in binary with a fixed number of bits, then BT
and RF would be equally succinct, even though the transla-
tion from BT to RF is impractical. But because we assume
that weights are represented in binary with no limit on the
number of bits, it turns out that RF �s BT. To see this, we
lean on a result of Goldmann, Håstad and Razborov [Gold-
mann et al., 1992]. Consider the Boolean variablesX ∪Y :=
{xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 4n} ∪ {yj | 1 ≤ j ≤ 2n} and let:

p(X,Y) =

{
0 if 1 +

∑
i,j 2iy′j(x

′
i,2j + x′i,2j+1) ≥ 0

1 otherwise

where x′ = 1 − 2x. Goldmann et al. show that p(X,Y) is
hard to represent with depth-2 threshold circuits (a circuit that
has two levels of threshold gates) using small weights.

Proposition 2. [Goldmann et al., 1992, Corollary 7] If
p(X,Y) is computed by a depth-2 threshold circuit with
weights bounded by w and size s then sw2 ≥ Ω(2n/2

n5/2).

We use p(X,Y) to separate BT and RF in terms of suc-
cinctness. First, it is easy to represent y′jx

′
i,2j and y′jx

′
i,2j+1

by decision trees, so it is easy to represent p(X,Y) in BT.

Proposition 3. There exists a set of boosted trees of size
O(n2) that represents p(X,Y).

But we can also show that, if there was a small random for-
est representing p(X,Y), then there would be a small depth-
2 threshold circuit computing p(X,Y) using only small
weights which, by Proposition 2, cannot be.

Proposition 4. Every random forest representing p(X,Y)

has size Ω(2n/2

n5/2).

Combining Proposition 3 and Proposition 4, we obtain the
following.

Proposition 5. We have BT ≤p RF and RF �s BT.

3.2 Comparing BRT and BT
We now give a polynomial-time translation from boosted re-
gression trees to boosted trees.

Proposition 6. There is a quadratic-time translation from
BRT to BT. Thus BT ≤p BRT.

Proof. Let T1, . . . , Tm be the trees composing C ∈ BRT.
Recall that their leaves are labelled by integers. Let Wi be
the set of integers distinct from 0 that label leaves of Ti. Note
that |Wi| ≤ |Ti|. For every w ∈ Wi, let Ti,w be the decision
tree obtained from Ti by changing to 0 the weight of every
leaf that is not w. Observe that Ti =

∑
w∈Wi

Ti,w. Next
let T−i,w be the decision tree obtained from Ti,w by replacing
every weight 0 by −1 and by replacing every weight w by 1,
and let T+

i,w be a decision tree that consists of a single leaf
labelled by 1. Note that T−i,w and T+

i,w are in DT± and that
Ti,w = w

2 (T−i,w + T+
i,w). Thus

∑m
i=1 Ti ≥ 0 is equivalent to

m∑
i=1

∑
w∈Wi

Ti,w ≥ 0 ⇔
m∑
i=1

∑
w∈Wi

w

2
(T−i,w + T+

i,w) ≥ 0

⇔
m∑
i=1

∑
w∈Wi

wT−i,w +

(m∑
i=1

∑
w∈Wi

w

)
T0 ≥ 0

where T0 is the tree consisting of a single leaf labelled by 1.
The last inequality corresponds to a classifier C ′ in BT com-
posed of 1 +

∑m
i=1 |Wi| trees. For every Ti with i ≥ 1 and

every w ∈ Wi, T−i,w is constructed in time O(|Ti|). So con-
structing the trees in C ′ takes time O(

∑
i(|Wi| × |Ti|)) ≤

O(
∑
i |Ti|2). Finally, the weights ofC ′ are exactly those ofC

except for the weight of T0 which is a sum of integers com-
puted in time linear in the number of bits needed to write all
weights.

x1

x2 x3

3 2 43

=

x1

x2 x3

0 2 00

+

x1

x2 x3

0 0 40

+

x1

x2 x3

3 0 03

= 2× (x1 ∧ x2) + 4× (x1 ∧ x3) + 3× (x1 ∧ x2) + 3× (x1 ∧ x3)

Figure 2: Decomposition of a decision tree as a weighted sum of terms

To illustrate the translation used in the proof above, con-
sider the tree Ti in Figure 2 and its decomposition. The first
line corresponds to the decomposition Ti = Ti,2 +Ti,4 +Ti,3.
We have that Ti,3 is equivalent to

3

2
×

(x1

x2 x3

1 −1 −11

+

x1

x2 x3

1 1 11

)

which corresponds to the decomposition Ti,3 = 3
2 × (T−i,3 +

T+
i,3) where T+

i,3 is equivalent to 1.

4 Translations between Network Classifiers
In this section, we describe a close connection between BMP,
BNN and the following classes of threshold circuits over X ,
i.e., Boolean circuits where internal nodes consist only of
threshold gates:

• TH: the class of threshold circuits whose weights are inte-
gers.

• T̂H: the subclass of TH using only weights whose absolute
value is at most polynomial in the number of variables.

• T̂H±: the subclass of T̂H using only weights 1 and −1.

It is folklore that T̂H and T̂H± are equally succinct. Indeed,
on the one hand, T̂H± ⊂ T̂H so T̂H ≤p T̂H±. On the other
hand, for every edge labelled by w > 0 connecting the output
of a gate g to the input of a gate p in a circuit C ∈ T̂H, one
can remove the edge and insert |w| dummy gates between g
and p as in Figure 3; the resulting circuit is in T̂H± and its
number of gates is at most maxw |w| times the number of
gates in C. This translation can be done in linear time in the
sum of weights in C, so T̂H± ≤p T̂H. More surprisingly per-
haps, every threshold circuit of depth d can be simulated by
a threshold circuit of depth 2d in T̂H with only a polynomial
size increase. We owe this result to Goldmann, Håstad and
Razborov [Goldmann et al., 1992]. It follows that TH, T̂H
and T̂H± are equally succinct.

4.1 BMP and Threshold Circuits
By definition, a Boolean multilayer perceptron is a threshold
circuit whose particularity is to be layered, that is, its gates
are partitioned into sets L1, . . . , Ld such that, for every 1 ≤
k ≤ d−1, the inputs of every gate inLk+1 are only connected
to the output of gates in Lk. Recall that the layers are fully

g

p

w

g

g1 · · · g|w|

p

1 1

sgn(w) sgn(w)

Figure 3: Introducing clone gates to reduce the weights.

connected. It is readily verified that any threshold circuit C
can be turned in polynomial time into an equivalent threshold
circuit that is layered and fully connected: denoting by d the
depth of C and by e its number of edges, we add at most d×e
gates computing functions the form y = sgn(x) to make C
layered, then we add edges with weight 0 to fully connect
successive layers. Thus, the following holds:
Proposition 7. We have BMP 'p TH.
Interestingly, polynomial-time translations exist also between
BMP and T̂H± due to the following:

Proposition 8. We have TH 'p T̂H 'p T̂H±.
The main difficulty in the proof of Proposition 8 is the re-
lationship T̂H ≤p TH. Indeed, the proof that T̂H ≤s TH
by Goldmann et al. does not directly extend from ≤s to
≤p, partly because it involves probabilistic arguments. We
have found a polynomial-time translation from TH to T̂H
that, unfortunately, does not guarantee that the depths of cir-
cuits before and after translation stay within a constant factor
(as in the proof of T̂H ≤s TH). Thus, our polynomial-time
translation may be impractical. Improvements are left for fu-
ture work, in this paper we only prove the existence of the
polynomial-time translation.

4.2 BNN and Small-Weights Threshold Circuits
Consider an internal layer of a BNN whose input is a vec-
tor x = (x1, . . . , xn) over {−1, 1} and whose output is a
vector of size y = (y1, . . . , ym) over {−1, 1}. Recall that
the computation of yj reduces to a single threshold function
sgn(

∑n
i=1 si,jxi − θj) for some si,j ∈ {−1, 1} and some

integer θj . So a BNN is a particular threshold circuit that is
layered, that is fully connected, and that uses only weights
+1 and −1. Now, we show the following proposition:
Proposition 9. There is a polynomial-time procedure that,
given a circuit in T̂H± of depth d, returns an equivalent BNN
composed of at most d+ 1 layers. Hence BNN 'p T̂H±.
We need several intermediate results to prove Proposition 9.
First, we can easily render a threshold circuit in T̂H± layered

g1 g2 g3

sgn(
∑

(·)− θ)

w1 w2

g1 g′1 g2 g′2 g3 g′3

sgn(
∑

(·)− 2θ)

w1 w1 w2 w2 1 −1

Figure 4: Clone gates to fully connect layers.

in polynomial time using the procedure previously described
for circuits in TH. So, we have the following proposition:

Proposition 10. Every threshold circuit C ∈ T̂H± can be
transformed in polynomial time into an equivalent layered
threshold circuit C ′ ∈ T̂H±.
But then it remains to make the layers fully connected, a task
which, since weights 0 are not allowed, requires a bit more
work. Consider a layer Lk with k > 1 that is not the last
layer (so Lk+1 exists). For every gate g ∈ Lk, we add a clone
g′ of g to Lk. We call g an original gate and g′ its clone gate.
We ensure that g′ ≡ g by connecting g′ to Lk−1 exactly as
g. For every gate p ∈ Lk+1 and every original g ∈ Lk, if g
is already connected to p with weight w, then we connect g′
to p with the same weight. If g is not connected to p, then
we connect both g and its clone g′ to p with opposite weights.
Since g ≡ g′, gates that were not originally connected to p
still contribute 0 to p, while those that were already connected
to p now contribute twice their weight. So it only remains to
double the value of the threshold of p to preserve the function
it computes. This simple trick, illustrated in Figure 4, allows
us to fully connect every layer Lk to Lk+1 for k > 1, in
exchange for doubling the size of the layers. This leads to the
following proposition:

Proposition 11. Every layered circuit C ∈ T̂H± whose first
layer is fully connected to the second can be transformed in
polynomial time into an equivalent layered circuit C ′ ∈ T̂H±
whose layers are all fully connected.

We cannot proceed as before to fully connect L1 to L2

since cloning input variables is forbidden. So, before using
Proposition 11, we insert a new layer between L1 and L2,
that is fully connected to L1 and does not modify the func-
tion represented. The construction is more complicated than
the “clone gates” technique, so it is deferred to the appendix.

Proposition 12. Every circuit C ∈ T̂M± containing k lay-
ers can be transformed in polynomial time into an equivalent
circuit C ′ ∈ T̂M± that contains k + 1 layers and whose first
layer is fully connected to the second.
Proposition 9 directly follows from Propositions 10, 11 and
12. A first consequence of Proposition 9 is that a polynomial-
time translation exists between BNN and BMP.
Proposition 13. We have BNN 'p BMP.
A second consequence is that a polynomial-time translation
exists between BT and BNN or BMP. Indeed, it is easy to
transform a decision tree into a Boolean circuit using ∨-gates
and ∧-gates which, in turn, using that (a ∨ b) ≡ (a+ b ≥ 1)
and (a ∧ b) ≡ (a+ b ≥ 2), is transformed in linear time into

a threshold circuit. So, to construct a threshold circuit equiv-
alent to a boosted tree classifier, it suffices to put a threshold
gate using the weights of the trees on top of the threshold
circuits representing the trees.

Proposition 14. We have BMP ≤p BT and BNN ≤p BT.

However, we also have that BMP and BNN are exponen-
tially more succinct than BT. To prove this, we use the func-
tion parityn over n variables that evaluates to 1 if and only
if the number of variables set to 1 is odd. On the one hand,
there is a linear-time translation between BT and threshold
functions over terms (i.e., conjunctions of literals): it suffices
to rewrite every decision tree as a weighted sum of terms as
shown in Figure 2. From this translation and the following
result of Goldmann, one can prove that parityn is hard to
represent in BT.

Proposition 15. [Goldmann, 1997, Theorem 5] Any circuit
computing parityn that is a threshold gate over ∧-gates con-
tains at least 1

4

(
4
3

)n/2 ∧-gates for n sufficiently large.

Proposition 16. Every classifier in BT representing parityn
has size 2Ω(n).

On the other hand, parityn can be computed by a threshold
circuit using only two layers of O(n) gates and unit weights
(see for instance [Jukna, 2014, Exercise 11.10]). So we have:

Proposition 17. We have BT �s BMP and BT �s BNN.

5 Translations w.r.t. Compilation Languages
The existence of (polynomial-time or polynomial-space)
translations between classes of representations is one of the
key concerns of knowledge compilation [Darwiche and Mar-
quis, 2002], a research line developed for more than 30 years
in AI. The significance of compilation languages pushed the
community to confront them to XAI queries (this is dis-
cussed in Section 6). Thus, in order to complete the pic-
ture, we briefly discuss the feasibility of translations connect-
ing compilation languages to ML models. One of the most
important compilation language is the class DNNF of cir-
cuits in decomposable negation normal form. We omit the
definition of circuits in DNNF (see [Darwiche, 2001]), and
only recall that DNNF is strictly more succinct than many
other compilation languages [Darwiche and Marquis, 2002;
Bova et al., 2016]. In particular, it is known that DNNF ≤p
DNF, DNF �s DNNF, CNF �s DNNF and DNNF �s
CNF [Darwiche and Marquis, 2002; Bova et al., 2014].

A first separation follows from Proposition 16 and the fact
that parityn admits representations of size O(n) in DNNF .

Proposition 18. We have that BT �s DNNF.

The separation holds in the other direction as well using a
trick to turn any formula in CNF (or DNF) into an equiva-
lent random forest in polynomial time (see [Audemard et al.,
2022, Proposition 2]). Thus, we have DNNF �s RF.

Finally, for completeness, we can show that RF is expo-
nentially more succinct that the classes of formulas in CNF
and DNF by considering the function majorityn (see Propo-
sition 2 in [Audemard et al., 2022]). This function is trivial
to represent with a random forest, but requires exponential

size formulas in CNF or DNF (see [Håstad et al., 1995]). As
a consequence, we get that CNF �s RF and DNF �s RF.
When the forest is a single tree however, it is known that
CNF ≤p DT, DNF ≤p DT, DT �s CNF and DT �s DNF.

6 Other Related Work
In order to achieve useful accuracy/explainability trade-offs
when designing ML models, many strategies have been envi-
sioned so far. Explanation by design [Du et al., 2020] is about
learning predictors that are considered as intrinsically inter-
pretable, like decision trees or linear models. The key limita-
tion of this approach is that the predictors that are considered
are typically not very accurate. In model-agnostic approaches
to XAI, the predictor under consideration is associated with a
proxy from another ML model, which is considered more ex-
plainable in essence. Very popular approaches to XAI includ-
ing LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee,
2017], Anchors [Ribeiro et al., 2018], and LORE [Guidotti
et al., 2019] are relevant to this research line and approxi-
mate the decision surface of a model using an explainable
one. The main drawback of such model-agnostic approaches
(compared to model-specific ones) is that the explanations
they furnish are not rigorous: one can find “counterexamples”
for them, i.e., pairs of instances that share the same explana-
tion but are nevertheless classified differently by the predictor
[Ignatiev et al., 2019]. Besides, the amount of “counterexam-
ples” can be high when the approaches listed above are used
[Ignatiev, 2020].

Leveraging knowledge compilation techniques for XAI
purposes has been considered so far in a couple of papers.
[Audemard et al., 2020] list a number of XAI queries for
multi-label classifiers. On such a basis, the XAI level of an
ML model can be represented as the subset of the XAI queries
for which polynomial-time algorithms exist (this tractability
assumption is standard in AI to separate tasks that are likely
to be feasible in practice to those that are not). When such
an algorithm exists, the ML model is said to offer the XAI
query. [Audemard et al., 2020] and [Huang et al., 2022]
present sufficient conditions on the representation language
used to encode the predictor that ensure that XAI queries are
offered, and they identify a number of compilation languages
for which such conditions are satisfied (thus, the predictor
can be compiled into them). [Shi et al., 2020] consider the
compilation of the decision function of binary neural net-
works into compiled representations from OBDD [Bryant,
1986] or SDD [Darwiche, 2011] (two subsets of DNNF).
Among other things, the authors show how to compute the
expected robustness of a neural network (a specific veri-
fication query), given an OBDD/SDD representation of it.
[Darwiche and Hirth, 2020; Darwiche and Marquis, 2021;
Darwiche and Ji, 2022] show how answering various XAI
queries can be facilitated when the classifier under consider-
ation has been turned into compiled forms, especially from
Decision-DNNF [Huang and Darwiche, 2005] or from SDD
(Decision-DNNF is another subset of DNNF). In [Audemard
et al., 2021], the XAI level (or “computational intelligibility”)
of several families of ML models (including decision trees,
random forests, decision lists, multi-layer Boolean percep-

trons, binary neural networks) has been evaluated. Roughly,
this paper has shown that none of the ML models considered
in this evaluation, but decision trees, satisfies any XAI queries
among those identified; on the opposite, every such query is
offered by the decision tree model. [de Colnet and Marquis,
2022] investigates the complexity of enumerating sufficient
reasons from representations in Decision-DNNF. However,
the issue of determining the existence of sufficiently efficient
translations between ML models, which is the core of the cur-
rent paper, has not been considered in any of those works.

7 Conclusion & Perspectives
In this paper, we have studied the existence of polynomial-
time translations and polynomial-space translations between
ML models (and other representations) for binary classifiers.
For the eleven languages considered, we have drawn the com-
plete map for the relationships ≤p and ≤s.

Let us now explain how one can take advantage of the
results above for XAI purposes. Most of the time, when
C ≤p C′ holds, whatever the XAI query, any dedicated al-
gorithm that is efficient enough in practice for predictors in
C′ can be turned into an algorithm for the same query that is
efficient enough in practice for predictors in C. Indeed, al-
most all the polynomial-time translations pointed out in the
paper are in fact linear-time translations.2 The existence of
polynomial-time translations between languages for binary
classifiers can also be exploited to derive intractability results
for XAI queries: if C ≤p C′ holds, then every XAI query
that is NP-hard (in the broad sense) for C′ also is NP-hard
for C. For instance, since every of the nine XAI queries con-
sidered in [Audemard et al., 2021] have been shown NP-hard
for RF, we can conclude that they are also NP-hard for BT,
BRT, BNN, T̂H, BMP, TH (the classes BRT, T̂H, and TH
were not taken into account in [Audemard et al., 2021]). In
such a case, when the computational complexities of the XAI
queries that are considered are “mild enough”, the scalabil-
ity of the corresponding XAI algorithms may be sufficient in
practice. Finally, the “negative results” of the form C �s C′
that we identified are also useful. Indeed, whenever C �s C′,
using algorithms suited to XAI queries for C′ in order to ad-
dress the same XAI queries for C is an approach that offers
no guarantee of success. Looking for XAI algorithms that are
specific to C appears as a better option.

A perspective for future work would be to draw a version of
the map for ML models that are not fully expressive. Indeed,
limiting the expressiveness of the model is a way to prevent
the learned predictor from overfitting the training data. In par-
ticular, for random forests, it is common to bound the depth
of the decision trees used, and for boosted trees, to consider
only decision stumps. We plan on studying RF and BT clas-
sifiers based on trees with bounded depth. A first direction is
to compare RF classifiers to BT classifiers when both models
use trees with depth bounded by a common bound. Another
direction is to compare classifiers relevant to the same model
but that use trees with different depths.

2Translations that are more than linear-time (for instance that be-
tween BMP and BNN) must be considered more carefully to deter-
mine whether they are efficient enough in practice.

Acknowledgments
Many thanks to the anonymous reviewers for their comments
and insights. This work has benefited from the supports of the
PING/ACK project (ANR-18-CE40-0011), of the AI Chair
EXPEKCTATION (ANR-19-CHIA-0005-01) of the French
National Research Agency, and of the Austrian Science Fund
(FWF) via grant ESP 235 ESPRIT-Programm. It was also
partially supported by TAILOR, a project funded by EU Hori-
zon 2020 research and innovation programme under GA No
952215.

References
[Abı́o et al., 2012] Ignasi Abı́o, Robert Nieuwenhuis, Albert

Oliveras, Enric Rodrı́guez-Carbonell, and Valentin Mayer-
Eichberger. A New Look at BDDs for Pseudo-Boolean
Constraints. J. Artif. Intell. Res., 45:443–480, 2012.

[Adadi and Berrada, 2018] A. Adadi and M. Berrada. Peek-
ing Inside the Black-Box: A Survey on Explainable Ar-
tificial Intelligence (XAI). IEEE Access, 6:52138–52160,
2018.

[Anthony, 2001] M. Anthony. Discrete Mathematics of Neu-
ral Networks: Selected Topics. SIAM Monographs on Dis-
crete Mathematics and Applications, 2001.

[Arrieta et al., 2020] A. Barredo Arrieta, N. Dı́az R., J. Del
Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcı́a, S. Gil-
Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Her-
rera. Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward respon-
sible AI. Inf. Fusion, 58:82–115, 2020.

[Audemard et al., 2020] Gilles Audemard, Frédéric Koriche,
and Pierre Marquis. On Tractable XAI Queries based on
Compiled Representations. In Proc. of KR’20, pages 838–
849, 2020.

[Audemard et al., 2021] Gilles Audemard, Steve Bellart,
Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez,
and Pierre Marquis. On the Computational Intelligibility
of Boolean Classifiers. In Proc. of KR’21, pages 74–86,
2021.

[Audemard et al., 2022] Gilles Audemard, Steve Bellart,
Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez,
and Pierre Marquis. Trading Complexity for Sparsity in
Random Forest Explanations. In Proc. of AAAI’22, pages
5461–5469. AAAI Press, 2022.

[Barceló et al., 2020] P. Barceló, M. Monet, J. Pérez, and
B. Subercaseaux. Model Interpretability through the lens
of Computational Complexity. In Proc. of NeurIPS’20,
2020.

[Bova et al., 2014] Simone Bova, Florent Capelli, Stefan
Mengel, and Friedrich Slivovsky. Expander CNFs have
Exponential DNNF Size. CoRR, abs/1411.1995, 2014.

[Bova et al., 2016] Simone Bova, Florent Capelli, Stefan
Mengel, and Friedrich Slivovsky. Knowledge Compilation
Meets Communication Complexity. In Proc. of IJCAI’16,
pages 1008–1014, 2016.

[Breiman et al., 1984] L. Breiman, J. H. Friedman, R. A. Ol-
shen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984.

[Breiman, 2001] L. Breiman. Random Forests. Machine
Learning, 45(1):5–32, 2001.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for Boolean function manipulation. IEEE Transactions on
Computers, C-35(8):677–692, 1986.

[Caruana et al., 2020] R. Caruana, S. M. Lundberg, M. Túlio
Ribeiro, H. Nori, and S. Jenkins. Intelligible and Explain-
able Machine Learning: Best Practices and Practical Chal-
lenges. In Proc. of KDD’20, pages 3511–3512. ACM,
2020.

[Chen and Guestrin, 2016] T. Chen and C. Guestrin. XG-
Boost: A Scalable Tree Boosting System. In Proc. of
KDD’16, page 785–794, 2016.

[Darwiche and Hirth, 2020] A. Darwiche and A. Hirth. On
the Reasons Behind Decisions. In Proceedings of the 24th
European Conference on Artificial Intelligence (ECAI’20),
pages 712–720, 2020.

[Darwiche and Ji, 2022] Adnan Darwiche and Chunxi Ji. On
the Computation of Necessary and Sufficient Explana-
tions. In Proc. of AAAI’22, pages 5582–5591, 2022.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A Knowledge Compilation Map. J. Artif. Intell.
Res., 17:229–264, 2002.

[Darwiche and Marquis, 2021] Adnan Darwiche and Pierre
Marquis. On Quantifying Literals in Boolean Logic and
its Applications to Explainable AI. J. Artif. Intell. Res.,
72:285–328, 2021.

[Darwiche, 2001] Adnan Darwiche. Decomposable negation
normal form. Journal of the Association for Computing
Machinery, 48(4):608–647, 2001.

[Darwiche, 2011] A. Darwiche. SDD: A New Canonical
Representation of Propositional Knowledge Bases. In
Proc. of IJCAI’11, pages 819–826, 2011.

[de Colnet and Marquis, 2022] Alexis de Colnet and Pierre
Marquis. On the Complexity of Enumerating Prime Impli-
cants from Decision-DNNF Circuits. In Proc. of IJCAI’22,
pages 2583–2590, 2022.

[Du et al., 2020] Mengnan Du, Ninghao Liu, and Xia Hu.
Techniques for interpretable machine learning. Commun.
ACM, 63(1):68–77, 2020.

[Freund and Schapire, 1997] Y. Freund and R.E. Schapire.
A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting. J. Comput. Syst. Sci.,
55(1):119–139, 1997.

[Goldmann et al., 1992] Mikael Goldmann, Johan Håstad,
and Alexander A. Razborov. Majority Gates VS. General
Weighted Threshold Gates. Comput. Complex., 2:277–
300, 1992.

[Goldmann, 1997] Mikael Goldmann. On the Power of a
Threshold Gate at the Top. Inf. Process. Lett., 63(6):287–
293, 1997.

[Goodman and Flaxman, 2017] Bryce Goodman and Seth
Flaxman. European union regulations on algorithmic
decision-making and a “right to explanation”. AI Maga-
zine, 38(3):50–57, Oct. 2017.

[Guidotti et al., 2019] R. Guidotti, A. Monreale, S. Ruggieri,
F. Turini, F. Giannotti, and D. Pedreschi. A Survey of
Methods for Explaining Black Box Models. ACM Com-
puting Surveys, 51(5):93:1–93:42, 2019.

[Guidotti, 2022] R. Guidotti. Counterfactual explanations
and how to find them: literature review and benchmark-
ing. Data Mining and Knowledge Discovery, 2022.

[Gunning, 2019] D. Gunning. DARPA’s explainable artifi-
cial intelligence (XAI) program. In Proc. of IUI’19, 2019.

[Håstad et al., 1995] Johan Håstad, Stasys Jukna, and Pavel
Pudlák. Top-Down Lower Bounds for Depth-Three Cir-
cuits. Comput. Complex., 5(2):99–112, 1995.

[Huang and Darwiche, 2005] Jinbo Huang and Adnan Dar-
wiche. DPLL with a Trace: From SAT to Knowledge
Compilation. In Proc. of IJCAI’05, pages 156–162, 2005.

[Huang et al., 2022] Xuanxiang Huang, Yacine Izza, Alexey
Ignatiev, Martin C. Cooper, Nicholas Asher, and João
Marques-Silva. Tractable Explanations for d-DNNF Clas-
sifiers. In Proc. of AAAI’22, pages 5719–5728, 2022.

[Hubara et al., 2016] Itay Hubara, Matthieu Courbariaux,
Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-
rized Neural Networks. In Advances in Neural Information
Processing Systems 29 (NeurIPS’16), pages 4107–4115,
2016.

[Ignatiev et al., 2019] A. Ignatiev, N. Narodytska, and
J. Marques-Silva. On Validating, Repairing and Refining
Heuristic ML Explanations. CoRR, abs/1907.02509, 2019.

[Ignatiev, 2020] A. Ignatiev. Towards Trustable Explainable
AI. In Proc. of IJCAI’20, pages 5154–5158, 2020.

[Jukna, 2014] Stasys Jukna. Boolean Function Complexity
Advances and Frontiers. Bull. EATCS, 113, 2014.

[Ke et al., 2017] G. Ke, Q. Meng, Th. Finley, T. Wang,
W. Chen, W. Ma, Q. Ye, and T. Liu. LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. In Proc. of
NeurIPS’17, pages 3146–3154, 2017.

[Lundberg and Lee, 2017] S. Lundberg and S-I. Lee. A Uni-
fied Approach to Interpreting Model Predictions. In Proc.
of NIPS’17, pages 4765–4774, 2017.

[Lundberg et al., 2020] S. M. Lundberg, G. G. Erion,
H. Chen, A. J. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, and S. Lee. From local explana-
tions to global understanding with explainable AI for trees.
Nat. Mach. Intell., 2(1):56–67, 2020.

[Marques-Silva and Ignatiev, 2022] J. Marques-Silva and
A. Ignatiev. Delivering Trustworthy AI through Formal
XAI. In Proc. of AAAI’22, pages 12342–12350, 2022.

[Marques-Silva, 2022] João Marques-Silva. Logic-
Based Explainability in Machine Learning. CoRR,
abs/2211.00541, 2022.

[Miller, 2019] Tim Miller. Explanation in artificial intelli-
gence: Insights from the social sciences. Artificial Intelli-
gence, 267:1–38, 2019.

[Molnar, 2019] Christoph Molnar. Interpretable Machine
Learning - A Guide for Making Black Box Models Explain-
able. Leanpub, 2019.

[Narodytska et al., 2018] Nina Narodytska, Shiva Prasad
Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby
Walsh. Verifying Properties of Binarized Deep Neural
Networks. In Proc. of AAAI’18, pages 6615–6624, 2018.

[O’Donnell, 2014] Ryan O’Donnell. Analysis of Boolean
Functions. Cambridge University Press, 2014.

[Parmentier and Vidal, 2021] A. Parmentier and T. Vidal.
Optimal Counterfactual Explanations in Tree Ensembles.
In Proc. of ICML’21, volume 139 of Proceedings of Ma-
chine Learning Research, pages 8422–8431, 2021.

[Prokhorenkova et al., 2018] L. O. Prokhorenkova, G. Gu-
sev, A. Vorobev, A. V. Dorogush, and A. Gulin. CatBoost:
unbiased boosting with categorical features. In Proc. of
NeurIPS’18, pages 6639–6649, 2018.

[Quinlan, 1986] J. R. Quinlan. Induction of Decision Trees.
Machine Learning, 1(1):81–106, 1986.

[Ribeiro et al., 2016] M. T. Ribeiro, S. Singh, and
C. Guestrin. ”Why Should I Trust You?”: Explain-
ing the Predictions of Any Classifier. In Proc. of KDD’16,
pages 1135–1144, 2016.

[Ribeiro et al., 2018] M. T. Ribeiro, S. Singh, and
C. Guestrin. Anchors: High-Precision Model-Agnostic
Explanations. In Proc. of AAAI’18, pages 1527–1535,
2018.

[Rudin et al., 2021] C. Rudin, C. Chen, Z. Chen, H. Huang,
L. Semenova, and C. Zhong. Interpretable Machine Learn-
ing: Fundamental Principles and 10 Grand Challenges.
CoRR, abs/2103.11251, 2021.

[Samek et al., 2019] W. Samek, G. Montavon, A. Vedaldi,
L.K. Hansen, and K.R. Müller. Explainable AI: Interpret-
ing, Explaining and Visualizing Deep Learning. Springer,
2019.

[Schapire and Freund, 2014] R.E. Schapire and Y. Freund.
Boosting: Foundations and Algorithms. MIT Press, 2014.

[Shi et al., 2020] W. Shi, A. Shih, A. Darwiche, and A. Choi.
On Tractable Representations of Binary Neural Networks.
In Proc. of KR’20, pages 882–892, 2020.

[Shih et al., 2018] Andy Shih, Arthur Choi, and Adnan Dar-
wiche. Formal verification of Bayesian network classifiers.
In Proc. of PGM’18, pages 427–438, 2018.

[Shih et al., 2019] Andy Shih, Arthur Choi, and Adnan Dar-
wiche. Compiling Bayesian Networks into Decision
Graphs. In Proc. of AAAI’19, pages 7966–7974, 2019.

[Srinivasan and Chander, 2020] R. Srinivasan and A. Chan-
der. Explanation Perspectives from the Cognitive Sciences
- A Survey. In Proc. of IJCAI’20, pages 4812–4818, 2020.

Appendix
Proposition 1. We have RF ≤p DT and DT �s RF.

Proof. Every decision tree whose leaves are labelled by 0 or
1 is turned into an equivalent random forest by replacing its
weights 0 by −1. Thus RF ≤p DT. As for DT �s RF, con-
sider the function majorityn that, given n Boolean variables,
returns 1 if and only if at least bn2 c variables are set to 1. The
function is easily represented by a random forest containing
only n trees of depth 1, yet it is known that the size of every
decision tree representing majorityn is exponential in n.

Proposition 3. There exists a set of boosted trees of size
O(n2) that represents p(X,Y).

Proof. For every i, j and k, we can easily represent −y′jx′i,k
as a decision tree Tj,i,k over {yj , xi,k} containing only 3 de-
cision nodes. So we have that p(X,Y) = 1 if and only if

−2 +

n∑
i=1

2n∑
j=1

(2iTj,i,2j + 2iTj,i,2j+1) ≥ 0

Using an additional decision tree made of a single leaf −1
and whose weight is 2 to represent the −2 constant, we get a
set ofO(n2) boosted trees of constant size and whose weights
are powers of 2 that can be written with n bits in binary.

Proposition 4. Every random forest representing p(X,Y)

has size Ω(2n/2

n5/2).

Proof. Suppose p(X,Y) = 1 if and only if
∑m
i=1 Ti ≥ 0

where every Ti is a tree in DT±. We construct a weighted
sum of terms (i.e., conjunctions of literals) equivalent to Ti as
shown in Figure 2. Since Ti ∈ DT±, the weights of the terms
are only +1 and −1. Every term can be represented using a
single threshold gate as follows:∧

j∈J
xj ∧

∧
k∈K

xk ⇔
∑
i∈J

xj −
∑
k∈K

xk ≥ |J |.

Note that we only have weights +1 and −1. Let li be
the number of leaves of Ti. We now have

∑m
i=1 Ti writ-

ten as a weighted sum of
∑m
i=1 li threshold functions using

only weights +1 and −1. So the function
∑m
i=1 Ti > 0

can be computed by a depth-2 threshold circuit containing
1 +

∑m
i=1 li ≤

∑m
i=1 |Ti| gates and using only weights

+1 and −1. By Proposition 2, it follows that
∑m
i=1 |Ti| ≥

Ω(2n/2

n5/2).

Proposition 5. We have BT ≤p RF and RF �s BT.

Proof. BT ≤p RF is clear. RF �s BT directly follows from
Propositions 3 and 4.

Proposition 7. We have BMP 'p TH.

Proof. TH ≤p BMP follows from BMP ⊂ TH. To prove
BMP ≤p TH, we explain how to turn C ∈ TH into an equiv-
alent C ′ ∈ BMP in polynomial time.

If C is already layered, that is, if its gates can be split into
sets L1, L2, . . . , Ld such that, for every 1 ≤ i ≤ d − 1 the

outputs of gates in Li are connected only to inputs of gates
in Li+1, then we just need to make C fully connected to ob-
tain C ′ ∈ BMP. This is achieved by adding edges labelled
by weights 0 between all gates of Li and all gates Li+1 to
which they are not connected. This operation is done in time
quadratic in the number of gates and does not modify the
function computed by the circuit.

If C is not layered, then we make it layered as follows. Let
d be the length of the longest path from the output of C to
one of its input. Create d empty sets L1, L2, . . . , Ld. Put the
output gates ofC in Ld and put all inputs ofC in L1. Let g be
a gate. Call successors of g the gates of C that have one input
fed by the output of g. Put in Ld−1 all gates whose successors
are all in Ld, next put in Ld−2 all gates whose successors are
all in Ld∪Ld−1, next put in Ld−3 all gates whose successors
are all in Ld ∪ Ld−1 ∪ Ld−2, and so on. At some point every
gate of C is in a unique set Li. Finally, for every pair (g, p)
where g ∈ Li for some i, and where p is a successor of g such
that g ∈ Lj for j > i+ 1, do as follows:

• Remove the edge between g and p and keep its label w in
memory.

• Create j− i− 1 threshold gates g1, g2, . . . , gj−i−1 and call
their outputs y1, . . . , yj−i−1, respectively. Put g1 in Li+1,
g2 in Li+2, and so on.

• Let y0 be the output of g. Connect g, g1, g2, . . . , gj−i−1 in
serie so that yk = sgn(yk−1) for every 1 ≤ k ≤ j − i− 1.

• Connect the output of gj−i−1 to the input of p with
weight w.

With this construct we have y0 = y1 = · · · = yj−i−1 so
w × y0 is still a weighted input of p. Thus the construct does
not modify the function computed by the circuit, and renders
the circuit fully connected. Less than d gates and edges must
be introduced for every edge of C so the construct takes time
O(d× |C|) = O(|C|2).

Proposition 8. We have TH 'p T̂H 'p T̂H±.

Proof. We have already explained in Section 4 that T̂H 'p
T̂H±. Here we focus on TH 'p T̂H.

T̂H ⊂ TH so TH ≤p T̂H is clear. We prove T̂H ≤p TH
in two steps. First, we give a polynomial-time translation
from threshold circuits whose weights are powers of two to
threshold circuits with small weights. Second, we give a
polynomial-time translation from general threshold circuits
to threshold circuits whose weights are powers of two.

Claim 1. There is a polynomial-time algorithm transforming
every threshold circuit whose weights are powers of two into
a threshold circuit in T̂H±.

Proof. In [Abı́o et al., 2012, Corollary 15], Abı́o, Nieuwen-
huis, Oliveras, Rodrı́guez-Carbonell and Mayer-Eichberger
show that every inequality pseudo-Boolean constraint of the

form

20δ0,1x0,1 + · · ·+ 20δ0,nx0,n+

21δ1,1x1,1 + · · ·+ 21δ1,nx1,n+

. . .

2mδm,1xm,1 + · · ·+ 2mδm,nxm,n op K

where the δi,j are constants in {0, 1} and where op ∈ {≤,≥},
can be represented by an OBDD of size O(n2m) using the
variable ordering x0,1, . . . , x0,n, x1,1, . . . , xm,n. Moreover,
[Abı́o et al., 2012, Theorem 19] gives an algorithm that, given
an inequality pseudo-Boolean constraint, returns an OBDD
representing that constraint in time polynomial in the num-
ber of variables plus the size of the output (so the number of
nodes of the OBDD). It follows that every inequality pseudo-
Boolean constraint over n variables and that uses only powers
of two fewer than 2m can be transformed into an equivalent
OBDD in time polynomial in n+m.

Every decision node in the OBDD is represented in a
threshold circuit with small weights as shown in the following
figure:

x

B0 B1

sgn(
∑

(·))

sgn(
∑

(·)− θ) sgn(
∑

(·)− θ)

B0 x B1

w0 w11 1

1 1

where θ = 1, w0 = −2, w1 = 2 if x ∈ {0, 1} and θ = 2,
w0 = −1, w1 = 1 if x ∈ {−1, 1} (in this case, in the left
figure, the dashed arrow is followed if and only if x is set to
−1).

Given a circuit C ∈ TH whose weights are powers of two,
we first transform all threshold gates ofC into equivalent OB-
DDs in polynomial-time, then we transform these OBDDs
into equivalent circuits in T̂H in linear time. The resulting
circuit is in T̂H and computes the same function as C. We
use that T̂H 'p T̂H± to conclude.

Now we move to the second claim.

Claim 2. There is a polynomial-time algorithm transform-
ing every threshold circuit into an equivalent threshold circuit
whose weights are powers of two.

Proof. Let C ∈ TH, let g be a threshold gate of C and let e
be an edge labelled by w ∈ N that connects the output of y to
an input of g (y takes value in {−1, 1} and can be a threshold
gate or an input of the circuit). If w is a not power of two,
then let w = 2j1 + 2j2 + · · · + 2jb be the decomposition of
w in powers of two with j1 < j2 < · · · < jb. We replace
the edge e by b intermediate gates in parallel that serve as
bridges between y and g, as shown in the following figure:

y

g

w

y

sgn(
∑

(·)) · · · sgn(
∑

(·))

g

1 1

2j1 2jb

The weight on the edge connecting the kth intermediate gate
to g is 2jk . This modification clearly preserves the function
represented by the gate g. We do this for every edge labelled
by a weight that is not a power of two. The resulting circuit
computes the same function as C and contains only weights
that are powers of two.

We denote by E the set of edges in C and by ||we||
the number of bits required to encode in binary the weight
we labelling the edge e. The procedure takes time
O(
∑
e∈E ||we||) = O(|E| ×maxe∈E ||we||) = O(poly(|C|)

since the number of bits required to write any weight of C in
binary is taken into account in |C| .

Combining the two claims yields that T̂H± ≤p TH.

Proposition 9. There is a polynomial-time procedure that,
given a circuit in T̂H± of depth d, returns an equivalent BNN
composed of at most d+ 1 layers. Hence BNN 'p T̂H±.

Proof. Directly follows from Propositions 10, 11 and 12.

Proposition 10. Every threshold circuit C ∈ T̂H± can be
transformed in polynomial time into an equivalent layered
threshold circuit C ′ ∈ T̂H±.

Proof. Follow the construct described in the proof of Propo-
sition 7 to make C layered. The construct introduces edges
whose weights are either 1 or weights already used inC. Thus
if C ∈ T̂H±, then so is the new circuit.

Proposition 11. Every layered circuit C ∈ T̂H± whose first
layer is fully connected to the second can be transformed in
polynomial time into an equivalent layered circuit C ′ ∈ T̂H±
whose layers are all fully connected.

Proof. Consider a layer Lk with k > 2 such that Lk−2 is
fully connected to Lk−1. Let x = (x1, . . . , xn) be the input
vector of Lk and let y = (y1, . . . , ym) be its output vector.
Let yj = sgn(

∑
i∈Ij si,j · xi − θj) be the threshold gate for

yj where si,j ∈ {−1, 1} and Ij is a subset of {1, . . . , n}.
Let z be the output vector of Lk−1. By assumption, every

xi is the output of a gate gi ∈ Lk−1 over all variables of
z. For every 1 ≤ i ≤ n we add a gate g′i to Lk−1 that is a
clone of gi and we call x′i its output (in particular, the inputs
of g′i are exactly the inputs of gi). We call L′k−1 the resulting
layer. Lk−2 is fully connected to L′k−1 since the new gates
are clones of gates over all variables of z. Clearly x′i = xi so
we have

∑
i∈Ij si,j · xi ≥ θj if and only if∑
i∈Ij

si,j(xi + x′i) +
∑
i 6∈Ij

(xi − x′i) ≥ 2θj

So we can replace the gate computing yj by another threshold
gate that depends on all outputs of L′k−1 and that uses only
+1 and −1 weights on its inputs. We call L′k the new layer.
L′k is fully connected to L′k−1 and its outputs are the same as
those of Lk. Importantly, observe that |L′k−1| = 2|Lk−1| and
that |L′k| = |Lk|.

Since L1 is fully connected to L2, we apply the construct
described above from the deepest to the highest layer of C.
By induction on k, we obtain a circuit C ′ that is fully con-
nected and equivalent to C.

Proposition 12. Every circuit C ∈ T̂M± containing k lay-
ers can be transformed in polynomial time into an equivalent
circuit C ′ ∈ T̂M± that contains k + 1 layers and whose first
layer is fully connected to the second.

Proof. We use the notations introduced in Proposition 11.

Claim 3.
∑
i∈Ij si,j · xi ≥ θj if and only if∨

−n≤h≤n

((∑
i∈Ij

si,j · xi +
∑
i6∈Ij

xi ≥ θj + h

)

∧
(∑
i∈Ij

si,j · xi −
∑
i6∈Ij

xi ≥ θj − h
))

evaluates to 1.

Proof. For the first direction, consider any {−1, 1} assign-
ment a to x1, . . . , xn and let ha =

∑
i 6∈Ij a(xi). If∑

i∈Ij si,ja(xi) ≥ θj , then the component of the disjunc-
tion corresponding to h = ha evaluates to 1. For the second
direction, consider any {−1, 1} assignment a to x1, . . . , xn
and suppose that for some h we have

∑
i∈Ij si,ja(xi) +∑

i 6∈Ij a(xi) ≥ θj +h and
∑
i∈Ij si,ja(xi)−

∑
i6∈Ij a(xi) ≥

θj − h. Then summing the two inequalities yields
2
∑
i∈Ij si,ja(xi) ≥ 2θj so a satisfies the threshold func-

tion.

Claim 4. Let z+
j,h = sgn(

∑
i∈Ij si,j ·xi+

∑
i 6∈Ij xi−(θj+h))

and let z−j,h = sgn(
∑
i∈Ij si,j · xi −

∑
i 6∈Ij xi − (θj + h)),

then yj = 1 if and only if
∑
−n≤h≤n(z+

j,h + z−j,h) ≥ 2.

Proof. By Claim 3, yj = 1 if and only if
∨
−n≤h≤n((z+

j,h =

1) ∧ (z−j,h = 1)).
First, suppose the disjunction evaluates to 0. Then for ev-

ery h we have z+
j,h = −1 or z−j,h = −1, so z+

j,h + z−j,h ≤ 0,
so
∑
−n≤h≤n(z+

j,h + z−j,h) ≤ 0.
Second, suppose the disjunction evaluates to 1 on the

assignment a to x1, . . . , xn. Then there is h∗ such that∑
i∈Ij si,j · a(xi) +

∑
i6∈Ij a(xi) ≥ θj + h∗ and

∑
i∈Ij si,j ·

a(xi)−
∑
i 6∈Ij a(xi) ≥ θj − h∗. So z+

j,h∗ = z−j,h∗ = 1. Now
let us consider some h 6= h∗.

• If h > h∗, then
∑
i∈Ij si,j · a(xi) −

∑
i 6∈Ij a(xi) ≥

θj − h∗ > θj − h, so z−j,h = 1.

• If h < h∗ then
∑
i∈Ij si,j · a(xi) +

∑
i6∈Ij a(xi) ≥ θj +

h∗ > θj + h, so z+
j,h = 1.

Thus for any h 6= h∗, we have z+
j,h + z−j,h ≥ 0, and therefore∑

−n≤h≤n(z+
j,h + z−j,h) = 2 +

∑
h6=h∗(z

+
j,h + z−j,h) ≥ 2.

Recall that L1 is the layer of C containing the input. Say
that L2 contains m gates, and so has m output y1, . . . , ym.
We will replace L2 by a layer L′2 and we will insert a layer L
between L1 and L′2. For every threshold gate σi∈Ijsi,j · xi ≥
θj of L2, we put in L the threshold gates sgn(

∑
i∈Ij si,jxi +∑

i 6∈Ij xi − (θj + h)) and sgn(
∑
i∈Ij si,jxi −

∑
i 6∈Ij xi −

(θj − h)) for every −n ≤ h ≤ n. The input layer L1 is
fully connected to L and |L| ≤ n × m = |var(C)| × |L2|.
The outputs of L are the z+

j,h and the z−j,h. Next, the layer
L′2 contains the gates

∑
−n≤h≤n(z+

j,h + z−j,h) ≥ 2 for every
1 ≤ j ≤ m. By Claims 3 and 4 the new circuit, that we call
C ′, computes the same function as C. C ′ has one additional
layer, its first layer is fully connected to the second, and it can
be obtained in polynomial time from C.

Proposition 13. We have BNN 'p BMP.

Proof. T̂H± ≤p BNN is clear from BNN ⊂ T̂H±. Moreover
Proposition 9 states that BNN ≤p T̂H±. So T̂H± 'p BNN.
Proposition 7 gives us that TH 'p BMP and we know that
TH 'p T̂H 'p T̂H± so by transitivity we have BMP 'p
BNN.

Proposition 14. We have BMP ≤p BT and BNN ≤p BT.

Proof. The decision node represented below – where T0 and
T1 are in DT± (and not DT) – computes the same function as
the following threshold circuit:

x

T0 T1

sgn(
∑

(·))

sgn(
∑

(·)− θ) sgn(
∑

(·)− θ)

T0 x T1

w0 w11 1

1 1

where θ = 1, w0 = −2, w1 = 2 if x ∈ {0, 1} and θ = 2,
w0 = −1, w1 = 1 if x ∈ {−1, 1} (in this case, in the left
figure, the dashed arrow is followed if and only if x is set to
−1). So given a classifier in BT computing

∑
i wiTi ≥ 0,

we transform each Ti into a threshold circuit Ci ∈ T̂H in
linear time, and we add an output threshold gate computing∑
i wiCi ≥ 0. The resulting circuit is in T̂H and computes

the same function as the set of boosted trees. This shows
that T̂H ≤p BT and the proposition follows from T̂H 'p
BNN 'p BMP.

Proposition 16. Every classifier in BT representing parityn
has size 2Ω(n).

Proof. Given a classifier in BT computing
∑m
i=1 wiTi, we

decompose each Ti as a weighted sum of terms (i.e., a
weighted sum of conjunctions of literals) as in Figure 2.
This is done in linear time since there is only one term per
leaf. So

∑m
i=1 wiTi is transformed in linear time into a sum

of weighted terms. With this it is straightforward to turn

∑m
i=1 wiTi ≥ 0 into a circuit made of a single threshold gate

over ∧-gates. Since this circuit is constructed in polynomial
time from the classifier, by Proposition 15, any classifier in
BT representing parityn has size at least 2Ω(n).

Proposition 17. We have BT �s BMP and BT �s BNN.

Proof. parityn is easy to represent in a small threshold cir-
cuit. For instance it is well-known that parityn can be repre-
sented as an OBDD of sizeO(n). Every OBDD can be turned
into a threshold circuit in linear time using the translation of
decision nodes to threshold circuits shown in Claim 3. Com-
bining this result with Proposition 16 yields that BT �s TH.
Since BNN ≤p BMP ≤p TH, the proposition follows.

Proposition 18. We have that BT �s DNNF.

Proof. This is due to parityn being computed by an OBDD
of size O(n) and OBDD ≤p DNNF [Darwiche and Marquis,
2002], while parityn can only be computed by classifiers in
BT of exponential size by Proposition 16.

	Introduction
	Preliminaries
	Tree-Based Models
	Network Classifiers
	Translations

	Translations between Tree-Based Models
	Comparing BT and RF
	Comparing BRT and BT

	Translations between Network Classifiers
	BMP and Threshold Circuits
	BNN and Small-Weights Threshold Circuits

	Translations w.r.t. Compilation Languages
	Other Related Work
	Conclusion & Perspectives

