
Journal of Artificial Intelligence Research 1 (2021) ?-? Submitted ?/?; published ?/?

On Quantifying Literals in Boolean Logic and Its
Applications to Explainable AI

Adnan Darwiche darwiche@cs.ucla.edu
Computer Science Department, UCLA,
Los Angeles, CA 90095 USA

Pierre Marquis marquis@cril.fr

CRIL, Université d’Artois & CNRS,

Institut Universitaire de France

F-62307, Lens Cedex, France

Abstract

Quantified Boolean logic results from adding operators to Boolean logic for existen-
tially and universally quantifying variables. This extends the reach of Boolean logic by
enabling a variety of applications that have been explored over the decades. The existen-
tial quantification of literals (variable states) and its applications have also been studied in
the literature. In this paper, we complement this by studying universal literal quantifica-
tion and its applications, particularly to explainable AI. We also provide a novel semantics
for quantification, discuss the interplay between variable/literal and existential/universal
quantification. We further identify some classes of Boolean formulas and circuits on which
quantification can be done efficiently. Literal quantification is more fine-grained than vari-
able quantification as the latter can be defined in terms of the former. This leads to a
refinement of quantified Boolean logic with literal quantification as its primitive.

1. Introduction

To quantify a variable from a Boolean formula is to eliminate that variable from the for-
mula. This quantification process can be performed either existentially or universally, each
leading to a different semantics and a different set of applications. The use of quantifi-
cation in Boolean logic dates back at least to George Boole’s work (Boole, 1854), where
he used universal quantification to perform some forms of logical deduction. Existential
quantification has a particularly intuitive interpretation as it can be viewed as a process
of removing from a formula all and only the information which pertains to the quantified
variable. Due to this semantics, which is referred to as forgetting (Lin & Reiter, 1994), ex-
istential quantification has received much attention in AI and database theory, particularly
in the management of inconsistent information. This use dates back at least to (Weber,
1986) who employed existential quantification to combine pieces of information that may
contradict each other. Variable quantification plays a prominent role in complexity the-
ory too since deciding the validity of quantified Boolean formulas (QBFs) is the canonical
PSPACE-complete problem; see, e.g., (Papadimitriou, 1994). The validity of QBFs has also
been used to characterize the polynomial hierarchy (Stockmeyer, 1977). In contrast to AI
where existential quantification has had a more dominant role than universal quantifica-
tion, the role of these two forms of quantification has been more symmetrical in other areas
of computer science particularly in complexity theory.

The interpretation of existential variable quantification as a process of forgetting infor-
mation prompted a refinement in which literals (states of variables) are also existentially

c©2021 AI Access Foundation. All rights reserved.



Darwiche & Marquis

quantified (Lang, Liberatore, & Marquis, 2003). With this advance, one can now remove
information that pertains to a literal from a formula. Existential literal quantification is
more fine-grained than existential variable quantification as the latter can be formulated
in terms of the former. This has led to further applications which we review later.

The dominance of existential quantification within AI is worth noting. We attribute
this to the lack of an intuitive enough interpretation of universal quantification, which
is a gap that we aim to address in this work. We started our study by an observation
that some recent work on explainable AI (Darwiche & Hirth, 2020) can be formulated
in terms of universal quantification, particularly universal literal quantification which has
not been discussed in the literature before this work. This prompted us to formalize this
notion and to elaborately investigate its connections to explainable AI. Our investigation
led us to interpret universal quantification as a selection process (in contrast to a forgetting
process), which gave rise to many implications. It also led us to some results on the efficient
computation of universal literal quantification (e.g., being tractable on CNFs) which has
further implications on the efficient computation of explainable AI queries.

In explainable AI, one is typically interested in reasoning about the behavior of classi-
fiers which make decisions on instances. For example, one may wish to understand why a
classifier made a particular decision. One may also wish to determine whether a decision
is biased (i.e., would be different if we were to only change some protected features of the
instance). Such classifiers can be represented using Boolean formulas, even in some cases
where they have a numeric form that is learned from data.1 In particular, one can use a
Boolean formula to represent positive instances and use its negation to represent negative
instances. A major insight underlying our results is that many explainable AI queries cor-
respond to a process of selecting instances with particular properties, where the Boolean
formula characterizing such instances constitutes the answer to the explainable AI query.
Moreover, the universal quantification of literals (and variables) can be used to select such
instances. We use this to formulate and generalize some of the recently introduced notions
in explainable AI. We also give examples of additional queries that have not been treated
earlier to emphasize the open ended applications that could be enabled by the new results.

Our formulation of universal literal quantification implies an alternate treatment of
existential literal quantification compared to the existing literature (due to the duality be-
tween them). It also implies a new treatment of variable quantification as this is subsumed
by literal quantification. Our treatment is based on the novel notion of boundary models.
These are models of a Boolean formula that can become models of its negation if we flip a
single variable. In the context of classifiers, these correspond to instances whose label may
change if we flip a single feature. We also provide a wealth of results on boundary models,
which furthers our understanding of Boolean logic; for example, that the boundary models
of a Boolean formula characterize all its models and can be exponentially fewer in count.

We start in Section 2 with some preliminaries on Boolean logic, where we also introduce
the notion of boundary models. We then review variable quantification and some of its
applications in Section 3. We study boundary models further in Section 4 where we develop
a number of additional results. Some of these results are used in our upcoming treatment
while others are of a more general interest to the study of Boolean logic. We then formalize
and study universal literal quantification in Section 5, where we also review existential lit-
eral quantification and some of its applications. We then turn our attention in Section 6 to

1. One can capture the input-output behavior of machine learning classifiers with discrete features using
Boolean formulas, either through an encoding or a compilation process. This has been shown for Bayesian
network classifiers, random forests and some types of neural networks. For some example works along
these lines, see (Chan & Darwiche, 2003; Narodytska, Kasiviswanathan, Ryzhyk, Sagiv, & Walsh, 2018;
Shih, Choi, & Darwiche, 2019; Ignatiev, Narodytska, & Marques-Silva, 2019a, 2019b; Shi, Shih, Darwiche,
& Choi, 2020; Audemard, Koriche, & Marquis, 2020; Choi, Shih, Goyanka, & Darwiche, 2020).

2



On Quantifying Literals in Boolean Logic

Notation Description
Σ A finite set of Boolean variables
ω A truth assignment (world) which maps Σ to {0, 1}
x,X Positive literals of Boolean variable X
x̄,¬X Negative literals of Boolean variable X
`, ¯̀ A literal (positive or negative) and its negation
ω[`] If ¯̀∈ ω, ω[`] is the result of replacing ¯̀ with ` in ω; otherwise, ω[`] = ω
ω |= ϕ World ω satisfies formula ϕ
ϕ |= ψ Formula ϕ implies formula ψ
M(ϕ) The set of models of formula ϕ
BM(ϕ) The set of boundary models of formula ϕ
R(ϕ) The set of b-rules for formula ϕ

Table 1: Some of the key notation adopted in this paper.

the computation of literal quantification on various types of formulas and circuits, including
CNFs, DNFs, Decision-DNNFs (Huang & Darwiche, 2007) and SDDs (Darwiche, 2011),
which include OBDDs (Bryant, 1986) as a special case. Section 7 constitutes a signifi-
cant portion of the paper and is dedicated to the interpretation of universal quantification
as a selection process and its applications to explainable AI. We finally close with some
concluding remarks in Section 8. Proofs of all results can be found in Appendixes B and C.

2. Boolean Logic Preliminaries

We start with some notational conventions; see also Table 1. We assume a finite set of
Boolean variables Σ where x and x̄ denote the positive and negative literals of Boolean
variable X. We may also use X and ¬X to denote these literals. We use > and ⊥ to
denote the Boolean constants true and false. A world, typically denoted by ω, is a truth
assignment (a mapping from Σ to {0, 1}), often represented as a set of literals that contains
exactly one literal for each Boolean variable in Σ. Alternatively, a world can be represented
by a sequence of literals, sometimes using commas as separators. When a world ω satisfies
a Boolean formula ϕ we say it is a model of the formula and write ω |= ϕ. Otherwise, ω is
a model of ¬ϕ, aka a counter model of ϕ. We use M(ϕ) to denote the models of formula ϕ.
Whenever M(ϕ) ⊆M(ψ) holds, formula ψ is said to be a logical consequence of formula ϕ
(or equivalently, ϕ implies ψ). Furthermore, when M(ϕ) = M(ψ) holds, ϕ and ψ are said
to be logically equivalent. For a literal ` of variable X, we use ω[`] to denote the world that
results from replacing the literal of variable X in ω with literal `. For example, if ω = xyz̄,
then ω[x̄] = x̄yz̄ and ω[x] = xyz̄.

The following novel definition is fundamental as it will play a critical role when defining
the semantics of literal quantification.

Definition 1. A world ω is said to be an `-boundary model of Boolean formula ϕ iff ω contains
literal `, ω is a model of ϕ and ω[¯̀] is a model of ¬ϕ.

That is, model ω of formula ϕ becomes a model of ¬ϕ once we flip literal ` in ω to ¯̀.
Consider the formula ϕ = (x⇒y) ∧ (y⇒x). World ω = {x, y} is an x-boundary model for
formula ϕ as it contains literal x, is a model of ϕ but becomes a model of its negation ¬ϕ
once we flip literal x to x̄. World ω is also a y-boundary model for formula ϕ. We will use
BM(ϕ) to denote the set of all boundary models of formula ϕ.

3



Darwiche & Marquis

Boundary models will be used to define the semantics of single-literal quantification.
The next, novel notion will be used to define the semantics of multiple-literal quantification.

Definition 2. Let α be a set of literals. A world ω is said to be an α-independent model of formula
ϕ iff α ⊆ ω and ω \ α |= ϕ.

Consider a world ω and literals α such that α ⊆ ω. If world ω is an α-independent
model of formula ϕ, we can flip any literals of α in world ω while maintaining the world as
a model of ϕ. In this case, the model ω cannot be `-boundary for any literal ` ∈ α. The
converse is not true though. Flipping a single literal ` ∈ α may maintain ω as a model of ϕ
for all ` ∈ α, yet flipping multiple literals in α may not. Consider formula ϕ = (x ∨ y) ∧ z
and its model ω = {x, y, z}. This model is not x-boundary since ω[x̄] = {x̄, y, z} is also a
model of ϕ. It is also not y-boundary since ω[ȳ] = {x, ȳ, z} is also a model of ϕ. However,
ω is not an {x, y}-independent model of ϕ since ω[x̄, ȳ] = {x̄, ȳ, z} is not a model of ϕ. On
the other hand, world {x, y, z̄} is an {x, y}-independent model of ¬ϕ as we can flip literals
x and y in any manner while maintaining the world as a model for ¬ϕ.

We next review a number of classical notions from Boolean logic. A term is a set of
literals over distinct variables and represents the conjunction of these literals. A term is
therefore consistent and the empty term represents >. We will sometimes denote a term
or a world such as {x, ȳ} using the tuple xȳ or (x, ȳ). A clause is a set of literals over
distinct variables and represents the disjunction of these literals. A clause is therefore
non-valid and the empty clause represents ⊥. A Disjunctive Normal Form (DNF) is a set
of terms representing the disjunction of these terms. A Conjunctive Normal Form (CNF)
is a set of clauses representing the conjunction of the clauses. A Negation Normal Form
(NNF) is a formula which contains only the constants >, ⊥, the connectives ∧, ∨, ¬ and
where negations appear only next to constants or variables. DNF and CNF are subsets of
NNF. An NNF circuit is a Boolean circuit satisfying the conditions of an NNF formula. A
formula/circuit is monotone iff it is equivalent to a formula in which literals x and x̄ cannot
both occur for any variable X.

An implicate of a formula ϕ is a clause implied by ϕ. A prime implicate of ϕ is an
implicate of ϕ that is not a superset of another implicate of ϕ. A implicant of ϕ is a term
that implies ϕ. A prime implicant of ϕ is an implicant of ϕ that is not a superset of another
implicant of ϕ. The resolution of clauses x∨α and x̄∨β on variable X leads to clause α∨β
when α and β share no complementary literals. Adding clauses to a CNF using resolution
does not change the models of the CNF. A CNF is closed under resolution on variable X
iff the result of each resolution on X is in the CNF. The consensus of terms x∧α and x̄∧β
on variable X leads to term α ∧ β when α and β share no complementary literals. Adding
terms to a DNF using consensus does not change the models of the DNF. A DNF is closed
under consensus on variable X iff the result of each consensus on X is in the DNF.

The occurrence of a variable in a Boolean formula is well defined, but the occurrence
of a literal in a formula can be ambiguous (e.g., whether the positive literal x occurs in
¬(x̄∨ y)). We will therefore refer to literal occurrence only with respect to NNF since this
is well defined. We conclude this section with three additional notions.

– The conditioning of formula ϕ on positive literal x, denoted ϕ|x, is obtained by replacing
every occurrence of variable X in ϕ with >. The conditioning of formula ϕ on negative literal
x̄, denoted ϕ|x̄, is obtained by replacing every occurrence of variable X in ϕ with ⊥. Hence,
variable X does not occur in ϕ|x or in ϕ|x̄.

– A formula ϕ is independent of variable X iff ϕ is equivalent to some formula in which variable
X does not occur. For instance, ϕ = (x ∧ y) ∨ (x̄ ∧ y) is independent of variable X since ϕ is
equivalent to y and the latter does not mention variable X.

4



On Quantifying Literals in Boolean Logic

– A formula ϕ is independent of literal ` iff ϕ is equivalent to some NNF in which literal ` does
not occur (Lang et al., 2003). Thus, ϕ = (x ∧ y) ∨ (x̄ ∧ y) is independent of literal ȳ since ϕ
is equivalent to y and the latter is an NNF that does not mention literal ȳ.

It follows that ϕ is independent of variable X iff ϕ is independent of literals x and x̄.

3. Variable Quantification

A variable X can be quantified either existentially or universally from a Boolean formula,
leading to another formula that does not depend on variable X. The result of existentially
quantifying variable X from formula ϕ is denoted by ∃X · ϕ and the result of universally
quantifying it is denoted by ∀X ·ϕ. Existential quantification received more attention in the
AI literature due to its more intuitive semantics which facilitated applications. According
to this semantics, the existential quantification of variable X from formula ϕ removes
information from ϕ but it only removes information that depends on variable X. Hence,
every logical consequence of formula ϕ is also a logical consequence of its quantification
∃X · ϕ as long as that consequence does not depend on variable X. We next provide the
formal definition of existential variable quantification and its semantics.

Definition 3. The existential quantification of variable X from Boolean formula ϕ, denoted ∃X ·ϕ,
is defined as any Boolean formula that is logically equivalent to (ϕ|x) ∨ (ϕ|x̄).

Proposition 1. ∃X · ϕ is a logically strongest formula that is both independent of variable X and
implied by formula ϕ. ∃X · ϕ is unique up to logical equivalence.

Consider the formula ϕ = (x⇒y) ∧ (y⇒z). Existentially quantifying variable Y yields
∃Y · ϕ = (x⇒z) which effectively removes only the information that ϕ has about variable
Y . This is why existential variable quantification is typically referred to as “forgetting”
in the AI literature, following (Lin & Reiter, 1994) who used existential quantification in
a first-order setting to forget facts and relations. Existential variable quantification was
employed earlier in (Weber, 1986) to maintain consistency between two conflicting formulas
(e.g., forgetting some of our current beliefs when they conflict with new observations).
A version of Proposition 1 appeared in (Katsuno & Mendelzon, 1989) who showed that
existential variable quantification (referred to as elimination) is the only operator satisfying
the properties stated in this proposition. Existential variable quantification corresponds to
a projection operation since the models of ∃X · ϕ are precisely the models of ϕ projected
onto Σ \ X. This operation has a number of applications in AI. For instance, it is a key
mechanism for modeling and implementing elementary tasks (progression, regression) when
reasoning about actions via transition formulas. As such, it has been considered for decades
in planning within nondeterministic domains; see e.g., (Cimatti, Roveri, & Traverso, 1998).

We next define the dual notion of universal variable quantification and its semantics.

Definition 4. The universal quantification of variable X from Boolean formula ϕ, denoted ∀X · ϕ,
is defined as any Boolean formula that is logically equivalent to (ϕ|x) ∧ (ϕ|x̄).

Proposition 2. ∀X · ϕ is a logically weakest formula that is both independent of variable X and
implies formula ϕ. ∀X · ϕ is unique up to logical equivalence.

The following duality relates existential and universal variable quantification.

Proposition 3. ∃X · ϕ = ¬(∀X · ¬ϕ) and ∀X · ϕ = ¬(∃X · ¬ϕ).

George Boole used universal variable quantification in Chapter VII of his book (Boole,
1854), which he also referred to as elimination (the chapter was titled “On Elimination”).

5



Darwiche & Marquis

Boole employed the property that ϕ is inconsistent only if ∀X · ϕ is inconsistent to devise
an inference rule which allowed him, for example, to infer y = y ∧ z from y = x ∧ z.2 He
also observed that the order in which we quantify multiple variables does not matter.

As mentioned earlier, existential quantification received more attention than universal
quantification in the AI literature. This is largely due to its semantics as a forgetting op-
erator and the central role that forgetting plays in managing inconsistent information and
other areas such as planning in nondeterministic domains. For example, a fairly general
framework for reasoning with inconsistent information was proposed in (Lang & Marquis,
2010). The framework was based on the notion of recoveries, which are sets of variables
whose forgetting enables one to restore consistency. Several criteria for defining preferred
recoveries were proposed, depending on whether the focus is laid on the relative relevance
of variables or the relative entrenchment of certain information (or both). Forgetting has
also been employed to resolve conflicts in logic programs including classical logic programs
with negation as failure (Zhang, Foo, & Wang, 2005; Zhang & Foo, 2006). Notions and
techniques for forgetting in logic programs were also adapted to forgetting concepts in
ontologies (Eiter, Ianni, Schindlauer, Tompits, & Wang, 2006). Forgetting has also been
widely used for defining update operators which incorporate the effect of an action (ex-
pressed as a “change formula”) into a base formula that represents current beliefs. Many
update operators use the “forget-then-conjoin” scheme where one forgets every variable
that the change formula depends on and then conjoins the resulting base formula with the
change formula; see, e.g,. (Winslett, 1990; Doherty, Lukasziewicz, & Madalińska-Bugaj,
1998, 2000; Herzig, 1996; Herzig & Rifi, 1998, 1999). Just as existential quantification can
be understood as a forgetting operator, we will later show that universal quantification can
be understood as a selection operator. We will also argue that the notion of selection is
central to explainable AI as forgetting is central to belief revision and update.

Variable quantification in Boolean logic can be considered from two distinct points
of view. According to one view, a quantifier is an elimination operator which transforms
one Boolean formula into another. According to the second view, quantifiers are connec-
tives which lead to a more general and succinct logical representation, known as Quantified
Boolean Formulas (QBFs). While quantifiers have been mostly used as elimination opera-
tors in AI, they have been mostly used as connectives in complexity theory, see e.g., (Pa-
padimitriou, 1994). Quantification plays a key role in this context as the validity problem
for QBFs is the canonical PSPACE-complete problem: there is a polynomial-space algorithm
for deciding the validity of a QBF, and every decision problem which has a polynomial-space
algorithm can be reduced efficiently into the validity problem for QBFs. QBFs are par-
ticularly important for characterizing the polynomial hierarchy (Stockmeyer, 1977), where
the notion of a prenex and closed QBF plays a central role. Consider a standard Boolean
formula ϕ and let X1, . . . ,Xn be a partition of its variables. A (prenex and closed) QBF
has the form Q1X1, . . . , QnXn · ϕ where Q1, . . . , Qn are alternating quantifiers in {∀,∃}.
This formula is said to be prenex because ϕ does not contain any quantifiers. Moreover, it
is said to be closed because every variable of ϕ belongs to some Xi. Since every variable
is quantified in a closed QBF, the QBF is either valid (equivalent to true) or inconsistent
(equivalent to false).3 A standard assumption of complexity theory is that the polynomial
hierarchy does not collapse. This is equivalent to saying that each addition of a block of

2. Boole operated in an algebraic setting where the equivalence between y and x ∧ z would be written as
y = xz and y−xz = 0. He viewed such an expression as a function of x, f(x) = y−xz = 0, and utilized
universal quantification to write: f(x) = 0 only if f(0)f(1) = 0. Applying this to the previous expression
gives f(0)f(1) = (y − 0 × z)(y − 1 × z) = 0. This simplifies to y(y − z) = 0 and can be expressed as
y = yz, which exemplifies how Boole used universal quantification to perform deduction.

3. For instance, the QBF ∀X · (∃Y · (X ⇔ Y )) is valid: whatever truth value is given to X, one can find a
truth value for Y that satisfies X ⇔ Y (we can give Y the same truth value given to X). Contrastingly,

6



On Quantifying Literals in Boolean Logic

quantifiers makes the validity problem computationally harder since the validity problem
for prenex and closed QBFs is Σpn-complete if Q1 = ∃ and Πp

n-complete if Q1 = ∀.
While QBFs can be harder to decide compared to standard (non-quantified) Boolean

formulas, they do allow for exponentially more succinct encodings of various problems in
domains such as planning, non-monotonic reasoning, formal verification and the synthesis
of computing systems; see e.g., (Giunchiglia, Marin, & Narizzano, 2009; Shukla, Biere,
Pulina, & Seidl, 2019). This explains the extensive efforts dedicated to developing QBF
solvers in the past few decades (see http://www.qbflib.org). QBFs with free variables
are also a valuable knowledge representation language for Boolean logic. As such, some
specific automated reasoning techniques have been designed for dealing with such formulas;
see e.g., (Klieber, Janota, Marques-Silva, & Clarke, 2013; Fargier & Marquis, 2014).

We will next present our treatment of literal quantification in Boolean logic which
subsumes variable quantification. The results we shall present on literal quantification
immediately translate into results on variable quantification as we can quantify a variable
by quantifying its two literals. Our treatment of literal quantification is based on the novel
notion of boundary models (Definition 1), which we investigate in the next section before
using it to define the semantics of literal quantification in later sections.

4. Boundary Models and Rules

According to Definition 1, an `-boundary model of formula ϕ becomes a model for its
negation ¬ϕ once we flip its literal `. As such, a model ω of ϕ can be boundary with
respect to multiple literals ` ∈ ω. We will next introduce the notion of a boundary rule to
describe both a model and a particular literal that it is boundary on. We will then show
that boundary rules encode certain knowledge that a formula ϕ has about literals. In fact,
we will show that such rules characterize all models of ϕ and hence they characterize its
logical content. In later sections, we will show that quantifying a literal ` from a formula ϕ
erases the knowledge that formula ϕ has about literal `, either by strengthening the formula
(universal quantification) or by weakening it (existential quantification).

Definition 5. Let Σ = {X1, . . . , Xn} be the set of all Boolean variables. A boundary rule has the
form `1, . . . , `i−1, `i+1, . . . , `n → `i where `i is a literal for variable Xi.

Boundary rules will be referred to as b-rules for short. We will say that a b-rule infers
the literal appearing in its consequent (`i). We will also say that a b-rule uses the literals
appearing in its antecedent (`1, . . . , `i−1, `i+1, . . . , `n). The set of legitimate b-rules depends
on the set of Boolean variables Σ. In the following examples, and unless stated otherwise,
we will assume that Σ is the set of Boolean variables in the formulas under consideration.

Definition 6. We say formula ϕ has b-rule α→ ` precisely when α, ` is an `-boundary model of ϕ.

This definition establishes b-rules as descriptors of boundary models. We will use R(ϕ)
to denote the set of b-rules for formula ϕ. Recall Definition 1 which says that α, ` is
an `-boundary model of ϕ precisely when α, ` |= ϕ and α, ¯̀ |= ¬ϕ. Consider now the
formula ϕ = (x∨ y)∧ (x∨ z)∧ (y ∨ z) which has four models M(ϕ) = {x̄yz, xȳz, xyz̄, xyz}
and six b-rules R(ϕ) = {x̄z → y, ȳz → x, x̄y → z, xȳ → z, yz̄ → x, xz̄ → y}. Figure 1
(left) visualizes all eight worlds over variables X,Y, Z using a hypercube. Figure 1 (right)
visualizes the models of formula ϕ (blue nodes) and its b-rules (highlighted edges). Consider
model ω = x̄yz. This is a y-boundary model and a z-boundary model, so it is described

∃X · (∀Y · (X ⇔ Y )) is inconsistent: whatever truth value we give to X, there is a truth value for Y that
falsifies X ⇔ Y (we can give Y the value not given to X).

7



Darwiche & Marquis

x̄ȳz̄ xȳz̄

x̄ȳz xȳz

x̄yz̄ xyz̄

x̄yz xyz

x̄ȳz̄ xȳz̄

x̄ȳz xȳz

x̄yz̄ xyz̄

x̄yz xyz

Figure 1: Left: Visualizing the worlds over variables X,Y, Z. Two worlds are connected by
an edge iff they disagree on a single variable. Right: Visualizing the models and b-rules
of formula ϕ = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z). Black nodes are models of ϕ and red nodes are
models of ¬ϕ. Each highlighted edge corresponds to a b-rule for ϕ.

by two b-rules: x̄z → y and x̄y → z. The first b-rule tells us that ω will become a model of
¬ϕ if we flip literal y (x̄ȳz |= ¬ϕ). The second b-rule tells us that ω will become a model
of ¬ϕ if we flip literal z (x̄yz̄ |= ¬ϕ). Since yz → x̄ is not a b-rule of formula ϕ we know
that flipping literal x̄ will maintain ω as a model (xyz |= ϕ). Interestingly, xyz is not a
boundary model of formula ϕ yet we were able to conclude that it is a model of ϕ using
only the b-rules of ϕ. The following theorem provides a stronger result: one can compute
all models of a consistent formula using its b-rules. That is, the b-rules of a consistent
formula characterize its logical content.

Theorem 1. Two consistent formulas ϕ1 and ϕ2 are equivalent iff they have the same set of b-rules:
M(ϕ1) = M(ϕ2) iff R(ϕ1) = R(ϕ2).

According to this result, the boundary models of a formula, as described by its b-rules,
form a generating set from which all models can be constructed. The proof of Theorem 1
provides an explicit construction.

The following proposition shows that b-rules capture certain knowledge about literals.

Proposition 4. Formula ϕ has b-rule α→ ` precisely when ϕ ∧ α is consistent and ϕ |= α⇒`.

That is, a b-rule α→ ` can be viewed as encoding a feasible scenario (α) under which literal
` can be inferred. Formula ϕ = x⇔ y has four b-rulesR(ϕ) = {x→ y, y → x, x̄→ ȳ, ȳ → x̄}
and formula φ = (x∨y)∧z has five b-rulesR(φ) = {ȳz → x, x̄z → y, xy → z, xȳ → z, x̄y → z}.
Even though literal z is implied by formula φ and literals x̄ȳ, the formula does not have
x̄ȳ → z as a b-rule since x̄ȳ is not consistent with φ. Similarly, literal z̄ is implied by
formula φ and literals x̄ȳ but the formula does not have x̄ȳ → z̄ as a b-rule.

A formula is independent of a literal (variable) precisely when the formula has no
b-rules for that literal (variable).

Proposition 5. Formula ϕ is independent of literal ` iff it has no b-rules of the form α→ `. It is
independent of variable X iff it has no b-rules of the form α→ x or α→ x̄.

Recall that formula ϕ is independent of literal ` precisely when it can be expressed as an
NNF that does not mention literal `. Similarly, formula ϕ is independent of variable X
precisely when it can expressed in a form that does not mention variable X.

While models are compositional, b-rules are not. However, the b-rules of a formula are
determined by the b-rules of its negation. This is shown by the next proposition.

8



On Quantifying Literals in Boolean Logic

Proposition 6. For formulas ϕ and ψ, we have:

(a) R(¬ϕ) = {α→ ` | α→ ¯̀∈ R(ϕ)}.

(b) R(ϕ) ∩R(ψ) ⊆ R(ϕ ∧ ψ) ⊆ R(ϕ) ∪R(ψ).

(c) R(ϕ) ∩R(ψ) ⊆ R(ϕ ∨ ψ) ⊆ R(ϕ) ∪R(ψ).

According to this proposition, conjoining or disjoining two formulas ϕ and ψ preserves only
their common b-rules. Moreover, R(ϕ ∧ ψ) and R(ϕ ∨ ψ) are not connected. Neither is
contained in the other and their intersection may be empty. Consider the formulas ϕ = x
and ψ = y. We have R(ϕ ∧ ψ) = {x→ y, y → x} and R(ϕ ∨ ψ) = {x̄→ y, ȳ → x}.

We will conclude this section with a result that relates the number of b-rules for a
Boolean formula to the number of its models, counter models and boundary models.

Proposition 7. For formula ϕ and n = |Σ|, we have

|R(ϕ)| ≤ n · |BM(ϕ)| ≤ n ·min(|M(ϕ)|, |M(ϕ)|).

The bound |R(ϕ)| ≤ n · |BM(ϕ)| is tight. For instance, ϕ = x1 ∧ . . . ∧ xn has a single
boundary model but n b-rules, R(ϕ) = {(

∧
j=1,...,n|j 6=i xj) → xi | i = 1, . . . , n}. We also

remark that |R(ϕ)| and |BM(ϕ)| can be exponentially smaller than |M(ϕ)|. Consider
the formula ϕ = x1 ∨ . . . ∨ xn which has 2n − 1 = |M(ϕ)| models. This formula has
only n b-rules, R(ϕ) = {(

∧
j=1,...,n|j 6=i x̄j)→ xi | i = 1, . . . , n}, and n boundary models,

BM(ϕ) = {xi∧
∧
j=1,...,n|j 6=i x̄j | i = 1, . . . , n}. Finally, the number of b-rules for a formula

can be exponential in the number of its variables. This also holds for the number of its
models and the number of its counter models. For instance, the formula ϕ = ⊕ni=1xi has
2n−1 models, 2n−1 counter models, and 2n−1 · (n− 1) b-rules.

5. Literal Quantification

We next discuss existential and universal literal quantification. We start by introducing
and studying universal literal quantification and then review and study further existential
literal quantification. The latter type of quantification was first introduced and studied
in (Lang et al., 2003) under the name of literal forgetting. Some of the results we shall
present on universal literal quantification follow from known results on existential literal
quantification due to a duality between the two notions. We will also present new and
fundamental results, based on boundary and independent models, which apply to both
types of literal quantification, again due to the duality between them. Our main goal of
the upcoming study is to develop an intuitive semantics for universal quantification (as
a selection process) and then use this semantics to show its central role in explainable
AI. Additionally, our treatment will reveal new results on the computation of universal
quantification which have complexity implications for explainable AI queries.

5.1 Universal Literal Quantification

Before we define the universal quantification of literal ` from a formula ϕ, we note that ϕ
can be expanded as ϕ = (` ∨ (ϕ|¯̀)) ∧ (¯̀∨ (ϕ|`)), which is equivalent to what is known as
Boole’s or Shannon’s expansion, ϕ = (` ∧ (ϕ|`)) ∨ (¯̀∧ (ϕ|¯̀)).

Definition 7. Universally quantifying literal ` from formula ϕ is defined as follows:

∀` · ϕ def
= (` ∨ (ϕ|¯̀)) ∧ (ϕ|`).

9



Darwiche & Marquis

That is, the operator ∀` drops literal ¯̀ from the expansion ϕ = (` ∨ (ϕ|¯̀)) ∧ (¯̀∨ (ϕ|`)).
Consider the formula ϕ = (x⇒y)∧(y⇒x) which says that variables X and Y are equivalent.
We have ∀x · ϕ = x ∧ y and ∀x̄ · ϕ = x̄ ∧ ȳ. Note, however, that ∀X · ϕ = ⊥. Moreover,
∀x(∀x̄·ϕ) = ∀x̄(∀x·ϕ) = ⊥. Consider now the formula φ = (x⇒y). We now have ∀x·φ = y,
∀x̄ · φ = (x⇒y) and ∀X · φ = y. Moreover, we have ∀x(∀x̄ · φ) = ∀x̄(∀x · φ) = y.

Since (`∨(ϕ|¯̀))∧(ϕ|`) is equivalent to (`∧(ϕ|`))∨((ϕ|¯̀)∧(ϕ|`)), and since (ϕ|¯̀)∧(ϕ|`)
is equivalent to ∀X ·ϕ, where X is the variable of literal `, we get ∀`·ϕ = (`∧(ϕ|`))∨(∀X ·ϕ).
This shows that ∀` · ϕ can be obtained by adding to ∀X · ϕ all models of ϕ that contain
literal ` and that are ruled out by variable quantification.

We next provide a number of results on universal literal quantification which have novel
counterparts for existential literal quantification that we present in Section 5.2.

The first result provides a semantical characterization of universal literal quantification
based on the notion of boundary models.

Theorem 2. For formula ϕ and literal `, we have M(∀` · ϕ) ⊆ M(ϕ). Moreover, ω ∈ M(ϕ) and
ω 6∈M(∀` · ϕ) iff ω is an ¯̀-boundary model of ϕ.

That is, universally quantifying literal ` from formula ϕ strengthens the formula by dropping
its ¯̀-boundary models. These models contain and depend on literal ¯̀: they cease to be
models of ϕ if we were to flip literal ¯̀. Hence, we can view the operator ∀` as a selection
operator which picks models of ϕ that do not depend on literal ¯̀. The selected models
either contain literal ` or an irrelevant literal ¯̀. We will later present a more general result
that provides selection semantics when universally quantifying multiple literals.

Our second result provides a syntactic characterization of universal literal quantification
based on the notion of b-rules. In particular, it characterizes what gets added to a formula
upon strengthening it by universal quantification.

Theorem 3. For formula ϕ and literal `, we have ∀` · ϕ = ϕ ∧
∧
α→¯̀∈R(ϕ) ¬α.

That is, the operator ∀` adds ¬α to formula ϕ for each b-rule α→ ¯̀ of the formula. This
erases all these b-rules as their antecedents α will no longer be consistent with the quantified
formula, therefore erasing the knowledge that formula ϕ has about literal ¯̀. This also makes
the quantified formula independent of literal ¯̀, as shown by Proposition 5, which leads to
the elimination of literal ¯̀.

The third result says that the universal quantification of literal ` preserves implicants
that contain literal `.

Proposition 8. For formula ϕ, term γ |= ϕ and literal ` ∈ γ, we have γ |= ∀` · ϕ.

The next result says that universal literal quantification preserves logical implication.

Proposition 9. For formulas ϕ, φ and literal `, we have ϕ |= φ only if ∀` · ϕ |= ∀` · φ.

The following three results (Propositions 10-12) parallel ones that are known for exis-
tential quantification. The first result provides a semantical characterization of universal
literal quantification based on the notion of literal independence.

Proposition 10. ∀` ·ϕ is the logically weakest formula that is independent of literal ¯̀ and that also
implies formula ϕ.

The second result shows that a set of literals can be universally quantified in any order,
therefore justifying the notation ∀{`1, . . . , `n} · ϕ.

Proposition 11. For literals `1, `2 and formula ϕ, we have ∀`1(∀`2 · ϕ) = ∀`2(∀`1 · ϕ).

10



On Quantifying Literals in Boolean Logic

We should note that literals `1 and `2 can be for the same variable and hence conflicting.

The third result shows that universal literal quantification is more fine-grained than
universal variable quantification as we can universally quantify variable X by universally
quantifying literals x and x̄ in any order.

Proposition 12. For variable X and formula ϕ, we have ∀X · ϕ = ∀{x, x̄} · ϕ.

Together with Proposition 11, this result shows that we can universally quantify a set
of literals and variables in any order. For example, the following quantifications are all
legitimate and equivalent: ∀x, x̄, Y · ϕ, ∀x, Y, x̄ · ϕ and ∀Y,X · ϕ.

We are now ready to present our selection semantics for universally quantifying a
set of (possibly conflicting) literals. This result will play a major role when discussing the
applications of universal quantification to explainable AI in Section 7. It invokes the notion
of an α-independent model introduced in Definition 2. This is a model that contains term
α and that remains a model if we were to flip any literals of α.

Theorem 4. Let ϕ be a formula, `1, . . . , `n be literals, ω be a world and α = ω∩{¯̀1, . . . , ¯̀
n}. Then

ω |= ∀`1, . . . , `n · ϕ iff ω is an α-independent model of ϕ.

Consider ϕ = (x ∨ y ∨ z) ∧ (x̄ ∨ y ∨ t), literals x, y, z and world ω = x̄ȳzt, leading to
α = ω ∩ {x̄, ȳ, z̄} = x̄ȳ. Then ω is an α-independent model of ϕ since zt |= ϕ. Hence,
ω |= ∀x, y, z · ϕ which can be verified since ∀x, y, z · ϕ = (x ∨ y ∨ z) ∧ (y ∨ t). For literals
x, ȳ, z̄, we get α = ω ∩{x̄, y, z} = x̄z so ω is not an α-independent model of ϕ since ȳt 6|= ϕ
(indeed, x̄ȳz̄t |= ϕ). Hence, ω 6|= ∀x, ȳ, z̄ ·ϕ which can be verified since ∀x, ȳ, z̄ ·ϕ = x∧ t.

According to Theorem 4, when universally quantifying literals `1, . . . , `n from formula
ϕ, we are “selecting” all (and only) models of ϕ that do not depend on literals ¯̀

1, . . . , ¯̀
n.

That is, the models of ∀`1, . . . , `n · ϕ are precisely the models of ϕ which continue to be
models of ϕ if we were to flip any literals they may have in ¯̀

1, . . . , ¯̀
n.4 We will revisit

Theorem 4 in detail when we discuss explainable AI in Section 7, but we note here that
the presence of α-independent models indicates the absence of certain b-rules.5

Proposition 13. Let ω = α, β be a model of formula ϕ where α and β are disjoint terms. Then ω
is an α-independent model of ϕ iff ϕ has no b-rules of the form β, γ → `.

In Appendix A, we provide a complete characterization of which b-rules are deleted,
introduced or preserved when universally quantifying a literal. This allows us to define
quantification as a process of b-rule transformation.

5.2 Existential Literal Quantification

We next review and study further the existential quantification of literals which was first
introduced and studied in (Lang et al., 2003) under the name of literal forgetting. Before
we define the existential quantification of literal ` from a formula ϕ, we recall again the
well known Boole’s or Shannon’s expansion, ϕ = (` ∧ (ϕ|`)) ∨ (¯̀∧ (ϕ|¯̀)).

Definition 8. Existentially quantifying literal ` from formula ϕ is defined as follows:

∃` · ϕ def
= (ϕ|`) ∨ (¯̀∧ (ϕ|¯̀)).

4. Each model of ∀`1, . . . , `n · ϕ is also an α-independent model of ∀`1, . . . , `n · ϕ; see Lemma 9.
5. Let us say that term γ is an α-independent implicant of formula ϕ iff γ |= ϕ, α ⊆ γ and γ \α |= ϕ. Then

Theorem 4 will hold if we replace “world” by “term” and “model” by “implicant.”

11



Darwiche & Marquis

That is, the operator ∃` drops literal ` from the expansion ϕ = (` ∧ (ϕ|`)) ∨ (¯̀∧ (ϕ|¯̀)).
Consider the formula ϕ = (x⇒y) ∧ (y⇒x) which says that variables X and Y are

equivalent. We have ∃x · ϕ = (x⇒y) = (x̄ ∨ y) which is independent of literal x. We also
have ∃x̄ · ϕ = (y⇒x) = (ȳ ∨ x) which is independent of literal x̄. Note, however, that
∃X · ϕ = >. We finally have ∃x(∃x̄ · ϕ) = ∃x̄(∃x · ϕ) = >.

Existential and universal literal quantification are related by the following duality.

Theorem 5. For literal ` and formula ϕ, ∃` · ϕ = ¬(∀` · ¬ϕ) and ∀` · ϕ = ¬(∃` · ¬ϕ).

This is symmetric to the variable quantification duality: ∃X ·ϕ = ¬(∀X ·¬ϕ) and ∀X ·ϕ =
¬(∃X · ¬ϕ). In both cases, pushing a negation through a quantifier flips that quantifier.

The next three results come from (Lang et al., 2003). The first result provides a seman-
tical characterization of existential literal quantification using the notion of independence.

Proposition 14. ∃` · ϕ is the logically strongest formula that is independent of literal ` and that is
implied by formula ϕ.

Similar to existential variable quantification, existentially quantifying literal ` removes
information from formula ϕ but it only removes information that depends on literal `.
That is, every consequence of ϕ is also a consequence of ∃` · ϕ as long as that consequence
does not depend on literal `. Literal quantification provides a more fine-grained notion
of forgetting, which enables more refined treatments. This is particularly the case when
managing inconsistent information as we can now forget less information from one formula
to make it consistent with another. Literal forgetting was employed in extended logic
programs (Wang, Sattar, & Su, 2005) and disjunctive logic programs (Eiter & Wang, 2006,
2008). It was also used to define more refined update operators using the “forget-then-
conjoin” scheme that we discussed earlier (Herzig, Lang, & Marquis, 2013).

The second results from (Lang et al., 2003) shows that the order in which literals are
existentially quantified does not matter, which justifies the notation ∃{`1, . . . , `n} · ϕ.

Proposition 15. For literals `1, `2 and formula ϕ, we have ∃`1(∃`2 · ϕ) = ∃`2(∃`1 · ϕ).

The third result shows that existential literal quantification is more primitive than exis-
tential variable quantification as we can existentially quantify a variable X by existentially
quantifying its two literals x and x̄ in any order.

Proposition 16. For variable X and formula ϕ, we have ∃X · ϕ = ∃{x, x̄} · ϕ.

Together with Proposition 15, this result shows that we can existentially quantify a set of
literals and variables in any order.

The next set of results are new and follow from results we presented for universal literal
quantification using the duality between existential and universal literal quantification. The
first result provides a semantical characterization of existential literal quantification.

Theorem 6. For formula ϕ and literal `, we have M(ϕ) ⊆ M(∃` · ϕ). Moreover, ω ∈ M(∃` · ϕ)
and ω 6∈M(ϕ) iff ω is an ¯̀-boundary model of ¬ϕ.

That is, existentially quantifying literal ` from formula ϕ adds the ¯̀-boundary models of
¬ϕ. These models must contain literal ¯̀ so no model that contains literal ` is added.

The second result provides a syntactic characterization of existential literal quantifica-
tion using the notion of b-rules.

Theorem 7. For formula ϕ and literal `, we have ∃` · ϕ = ϕ ∨
∨
α→`∈R(ϕ) α.

12



On Quantifying Literals in Boolean Logic

That is, existentially quantifying literal ` from formula ϕ amounts to disjoining ϕ with the
antecedent α of each of its b-rules α→ `. Given b-rule α→ `, world α, ` is a model of ϕ
but world α, ¯̀ is not a model. Disjoining with the antecedent α adds α, ¯̀ as a model. This
erases b-rules α→ ` and the knowledge that ϕ has about literal `. This also makes the
quantified formula independent of literal `, therefore eliminating this literal.

The third result says that existentially quantifying literal ` preserves implicates that
contain literal ¬`.

Proposition 17. If formula ϕ implies clause β and literal ¯̀∈ β, then ∃` · ϕ |= β.

The last result says that existential literal quantification preserves logical implication.

Proposition 18. For formulas ϕ, φ and literal `, we have ϕ |= φ only if ∃` · ϕ |= ∃` · φ.

One can use the duality theorem to state further results such as the parallel of The-
orem 4. We will refrain from discussing these additional results though as our goal is to
focus more on universal literal quantification and its applications to explainable AI.

5.3 Is it Quantification or Elimination?

As mentioned earlier, variable quantification in Boolean logic can be viewed as an elimina-
tion process that transforms a formula so it becomes independent of the quantified variable.
In particular, quantifying a variable leads to a new formula that can be expressed with-
out mentioning the variable. In fact, George Boole used the term “elimination” but the
term “quantification” is now more commonly used. Moreover, “variable elimination” has
become a synonym for “existential variable quantification” in some parts of the literature,
including many works on satisfiability where existential variable quantification is used as a
preprocessing technique; see, e.g., (Eén & Biere, 2005; Subbarayan & Pradhan, 2005). The
distinction between elimination and quantification becomes more relevant though when
treating literals instead of variables as we show next. Let us consider variables first. ∃X.ϕ
eliminates variable X by weakening formula ϕ: It adds world ω as a model iff ω[`] is a
model of ϕ for some literal ` of variable X. ∀X.ϕ eliminates variable X by strengthening
formula ϕ: It keeps world ω as a model iff ω[`] is a model of ϕ for all literals ` of X.
The fundamental operation here is one of elimination, which can be achieved in a unique
way (up to logical equivalence) through either weakening (adding models) or strengthening
(dropping models). Moreover, the conditions for deciding which models to add or drop are
based on the two states of variable X, which are considered either existentially or univer-
sally. Eliminating literals is also done by weakening or strengthening a formula in a unique
way, but the conditions for deciding which models to add or drop consider only one state
of the variable. In particular, ∃`.ϕ eliminates literal ` by adding world ω as a model iff
ω[`] is a model of ϕ. Moreover, ∀`.ϕ eliminates literal ¯̀ by keeping world ω as a model iff
ω[`] is a model of ϕ. In a sense, the term elimination is perhaps more appropriate than
quantification in this case, and the symbols ∃ and ∀ are more indicative of elimination by
weakening and strengthening than anything else. One could have adopted different symbols
and terminology for literals, but we opted to keep the same ones used for variables as this
emphasizes the various symmetries between variable and literal elimination, as revealed by
the many results we discussed earlier.

6. Tractable Literal Quantification

We identify in this section some classes of Boolean formulas and circuits that allow one to
quantify literals efficiently. We consider CNFs, DNFs and some of their subsets. We also

13



Darwiche & Marquis

consider two circuit types: Decision-DNNFs (Huang & Darwiche, 2007) and SDDs (Dar-
wiche, 2011), which are strict supersets of OBDDs (Bryant, 1986). All of these circuit types
are subsets of NNF circuits (Darwiche & Marquis, 2002).

We start with two results which provide the foundation of further results. The first
shows how to quantify literals out of constants and literals. The second identifies conditions
under which literal quantification can be distributed through conjunctions and disjunctions.
When these conditions are met, quantification can be done in linear time on NNF formulas
and circuits. The second result corresponds to a well-known result for variable quantifica-
tion which we show does extend to the more fine-grained notion of literal quantification.

Proposition 19. For literal `, we have ∃` · > = ∀` · > = > and ∃` · ⊥ = ∀` · ⊥ = ⊥. Moreover, for
literals `1 and `2, we have:

∃`1 · `2 =

{
>, if `1 = `2
`2, otherwise.

and ∀`1 · `2 =

{
⊥, if `1 = ¯̀

2

`2, otherwise.

Proposition 20. Consider literal ` and formulas α and β. We then have

(a) ∃` · (α ∨ β) = (∃` · α) ∨ (∃` · β)

(b) ∀` · (α ∧ β) = (∀` · α) ∧ (∀` · β)

Moreover, if the variable of literal ` is not shared between α and β, then

(c) ∃` · (α ∧ β) = (∃` · α) ∧ (∃` · β)

(d) ∀` · (α ∨ β) = (∀` · α) ∨ (∀` · β)

This proposition holds also for variable quantification as it can be implemented through
successive literal quantification as shown by Propositions 12 and 16.

These propositions imply direct methods for quantifying literals out of clauses and
terms which can be useful when working with CNFs and DNFs. Existentially quantifying
literal ` from a clause leads to > if literal ` appears in the clause, otherwise the clause is
left intact. Universally quantifying literal ` drops literal ¯̀ from the clause. Existentially
quantifying a literal ` from a term drops literal ` from the term. Universally quantifying
literal ` leads to ⊥ if ¯̀ appears in the term, otherwise the term is left intact.

We now consider some classes of Boolean formulas and circuits that allow one to quan-
tify literals efficiently. We start by considering CNF, DNF and some of their subsets. Recall
that we do not allow trivial clauses or trivial terms that include complementary literals.
Hence, clauses cannot be valid and terms cannot be inconsistent.

We first consider CNFs while noting that the procedures discussed below guarantee
that the result of quantifying literals is also a CNF.

Proposition 21 (CNF). Consider a CNF ∆ = α1 ∧ . . . ∧ αn. We can obtain ∀` · ∆ by removing
literal ¯̀ from every clause αi in ∆. Moreover, if ∆ is closed under resolution on the variable of
literal `, then we can obtain ∃` ·∆ by removing from ∆ every clause αi that contains literal `.

Corollary 1.6 Consider a CNF ∆ = α1 ∧ . . . ∧ αn where each clause αi is a prime implicate of ∆.
We can obtain ∃` ·∆ by removing from ∆ clauses that contain literal `.

We next consider DNFs. The procedures discussed below also guarantee that the result
of quantifying literals is a DNF.

6. This corollary slightly extends Proposition 19 in (Lang et al., 2003), which focuses on the case when ∆
is given by the set of all its prime implicates.

14



On Quantifying Literals in Boolean Logic

∨

∧ ∧

d ∨ ∧ d

∧ ∧ g

h > h i

(a) Decision-DNNF ∆

∨

∧ ∧

d ∨ ∧ >

∧ ∧ g

h > h i

(b) ∃d ·∆

Figure 2: Existentially quantifying literal d from Decision-DNNF ∆. This amounts to
replacing every occurrence of literal d in the Decision-DNNF by >. The result is a DNNF.

Proposition 22 (DNF). Consider a DNF ∆ = α1 ∨ . . . ∨ αn. We can obtain ∃` ·∆ by removing
literal ` from every term αi in ∆. Moreover, if ∆ is closed under consensus on the variable of
literal `, then we can obtain ∀` ·∆ by removing from ∆ every term αi that contains literal ¯̀.

Corollary 2. Consider a DNF ∆ = α1 ∨ . . . ∨ αn where each term αi is a prime implicant of ∆.
We can obtain ∀` ·∆ by removing from ∆ terms that contain literal ¯̀.

To summarize, the following quantifications can be performed in linear time: universal literal

quantification on CNF, universal literal quantification on prime implicants, existential literal quan-

tification on DNF and existential literal quantification on prime implicates. These results parallel

ones that are well-known for variable quantification. To be more precise, the elimination of universal

variable quantifiers from a CNF is a special case of the so-called universal reduction rule for QBFs

(Kleine Büning, Karpinski, & Flögel, 1995). Moreover, the elimination of existential variable quan-

tifiers from a DNF is a special case of the so-called existential reduction rule for QBFs. Both rules

are used in search-based QBF solvers. Similarly, the use of consensus and resolution to eliminate

universal and existential quantifiers in CNFs and DNFs, respectively, has been known for a while.

We next show that existential and universal literal quantification can be performed in
linear time on Decision-DNNF circuits (Huang & Darwiche, 2007). These are NNF circuits
which satisfy two properties: decision and decomposability. The decision property says that
every or-node has the form (`∧α)∨(¯̀∧β), where ` is a literal. The decomposability property
says that for every and-node, the sets of variables of its children α1, . . . , αn are pairwise
disjoint. Figure 2a depicts an example Decision-DNNF ∆ for the CNF (h∨i)∧(d∨g)∧(d∨i)
over variables D,G,H, I. Decision-DNNF circuits are a strict superset of OBDD circuits.

We first discuss existential literal quantification which yields DNNF circuits (Darwiche,
2001). These are NNF circuits that satisfy only the decomposability property.

Proposition 23 (∃, Decision-DNNF). Literals can be existentially quantified from a Decision-
DNNF circuit in time linear in the circuit size while yielding a DNNF circuit.

The quantification algorithm follows directly from Propositions 19 and 20(a,c) since
existential quantification distributes through both the conjunctions and disjunctions of a
Decision-DNNF. Figure 2b depicts the DNNF circuit which results from existentially quan-
tifying literal d from the Decision-DNNF ∆ of Figure 2a.

15



Darwiche & Marquis

∧

∨ ∨

d ∧ ∧ d

∨ ∨ g

h > h i

(a) NNF circuit Γ

∧

∨ ∨

d ∧ ∧ ⊥

∨ ∨ g

h > h i

(b) ∀d · Γ

Figure 3: Universally quantifying literal d from the NNF circuit Γ, which is obtained
from the Decision-DNNF ∆ of Figure 2a using Proposition 24. The quantification process
amounts to replacing every occurrence of literal d̄ in Γ with ⊥. Proposition 24 guarantees
that the two circuits ∆ and Γ are equivalent.

We next show a similar result for universally quantifying literals in linear time, except
that the output is only guaranteed to be an NNF circuit in this case (i.e., not necessarily de-
composable). This is a two-step procedure, where each step requires linear time processing.
The first step is described by the following proposition. It transforms the Decision-DNNF
into a form that allows us to invoke Proposition 20(d) so we can distribute universal quan-
tification through disjunctions (this quantification always distributes through conjunctions).

Proposition 24. Let ∆ be a Decision-DNNF circuit and let Γ be the result of replacing
every fragment (` ∧ α) ∨ (¯̀∧ β) in ∆ with (` ∨ β) ∧ (¯̀∨ α). Then (1) Γ is an NNF circuit
that is equivalent to ∆; (2) Γ can be obtained from ∆ in time linear in the size of ∆; and
(3) for every disjunction α ∨ β in Γ, the disjuncts α and β do not share variables.

Figure 3a depicts an example of this first step. It shows an NNF circuit Γ which is
obtained by transforming the Decision-DNNF ∆ of Figure 2a. The resulting circuit Γ is not
a Decision-DNNF, yet no variables are shared between disjuncts in this circuit.

The second step directly applies Propositions 19 and 20(b,d) to the result of the first
step, now that disjuncts no longer share variables.

Proposition 25 (∀, Decision-DNNF). Literals can be universally quantified from a Decision-
DNNF circuit in time linear in the circuit size while yielding an NNF circuit.

Figure 3b depicts an example of this second step. It shows the result of universally
quantifying literal d from the NNF circuit Γ of Figure 3a. Given Propositions 19 and 20(b,d),
we obtain ∀d · Γ by simply replacing every occurrence of literal d̄ in Γ with ⊥ as shown in
the figure. We finally note that ∀d · Γ = i ∧ g in this case.

The two-step, linear-time procedure suggested by Propositions 24 and 25 was actually
used implicitly in (Darwiche & Hirth, 2020) for explaining the decisions made by Boolean
classifiers on instances—a process which corresponds to universally quantifying all literals
in the instance (see Section 7). The procedure proposed in (Darwiche & Hirth, 2020)
transformed fragments (`∧α)∨ (¯̀∧β) in the Decision-DNNF into (`∧α)∨ (¯̀∧β)∨ (α∧β),
calling this a consensus operation as it resembles the consensus operation on DNF. It then
transformed this further into (`∧α)∨(α∧β) when literal ` appeared in the instance, calling

16



On Quantifying Literals in Boolean Logic

this a filtering operation. This is equivalent to (`∨ β)∧α, which is the result of universally
quantifying literal ` from fragment (`∨β)∧(¯̀∨α) = (`∧α)∨(¯̀∧β). These transformations
correspond to the two-step procedure described above except that (Darwiche & Hirth, 2020)
did not realize that their algorithm was actually universally quantifying literals as such
quantification was not introduced yet. But (Darwiche & Hirth, 2020) did observe that
their procedure yields a monotone circuit, a property which is guaranteed to hold when
universally quantifying a literal for each variable.7

We next show that similar linear time algorithms can be used on SDD circuits (Darwiche,
2011). These are NNF circuits which are composed of fragments having the form (p1 ∧
s1) ∨ . . . ∨ (pn ∧ sn), where pi are called primes and si are called subs. SDDs satisfy
the decomposability property. Moreover, the primes p1, . . . , pn form a partition: pi 6= ⊥,
pi ∧ pj = ⊥ for i 6= j and p1 ∨ . . . ∨ pn = >. SDDs actually satisfy a stronger version of
decomposability, called structured decomposability (Pipatsrisawat & Darwiche, 2008), but
we do not need this stronger property for the following results. Like Decision-DNNFs, SDDs
are a strict superset of OBDDs. We note, however, that Decision-DNNF and SDD circuits
are not comparable in terms of succinctness; that is, neither is strictly more succinct than
the other (Bollig & Buttkus, 2019; Beame & Liew, 2015).

Proposition 26 (∃, SDD). One can existentially quantify a set of literals from an SDD
circuit in time linear in the circuit size, with the result being a DNNF circuit.

Again, the algorithm follows directly from Propositions 19 and 20(a,c) since existential
quantification can be distributed through both conjunctions and disjunctions in this case.

Universally quantifying literals from an SDD circuit is also based on a two-step proce-
dure, where each step requires linear time processing. Similar to Decision-DNNF circuits,
the first step transforms the SDD into an equivalent NNF circuit in which disjuncts do not
share variables, therefore making it directly amenable to Propositions 19 and 20(b,d).

Proposition 27. Let ∆ be an SDD circuit and Γ be the result of replacing every fragment
(p1 ∧ s1) ∨ . . . ∨ (pn ∧ sn) in ∆ with (¬p1 ∨ s1) ∧ . . . ∧ (¬pn ∨ sn). Then (1) Γ is an NNF
circuit that is equivalent to ∆; (2) Γ can be obtained from ∆ in time linear in the size of
∆; and (3) disjuncts in Γ do not share variables.

Proposition 28 (∀, SDD). One can universally quantify a set of literals from an SDD
circuit in time linear in the circuit size, with the result being an NNF circuit.

In summary, the existential and universal quantification of multiple literals can be per-
formed in linear time on Decision-DNNF and SDD circuits. Existential literal quantification
yields DNNF circuits, while universal literal quantification yields NNF circuits that may
not be decomposable. Hence, the above procedures on Decision-DNNF and SDD circuits
cannot be used to interleave literal quantifications of different types. This should not be
surprising though since the existence of a polynomial-time algorithm for applying a sequence
of quantifiers of different types to a tractable circuit (even an OBDD) would imply P =
NP; see (Coste-Marquis, Berre, Letombe, & Marquis, 2006). Nonetheless, it is worth noting
that for both types of literal quantification, the NNF circuit that results from applying the

7. The circuit is monotone since for every variable X, the literals x and x̄ cannot both appear in the circuit.

17



Darwiche & Marquis

above procedures is monotone, if we quantify a literal for each variable that appears in the
input circuit.8 Hence, one can test efficiently whether the resulting circuit is satisfiable, or
whether it is valid, which does not hold for either CNF or DNF unless P = NP (deciding the
satisfiability of a CNF is NP-complete and deciding the validity of a DNF is coNP-complete).

7. Universal Quantification for Explainable AI

We now consider a number of questions that arise in explainable AI and show how they
can be answered using universal literal and variable quantification. These questions include
(1) finding the culprit behind a decision (a minimal set of characteristics that can trigger
the decision); (2) assessing whether a decision is biased (depends on protected features);
and (3) identifying instances with some irrelevant features or characteristics (do not play a
role in the decisions made on these instances). Some of these questions have been treated in
the literature (e.g., (Shih, Choi, & Darwiche, 2018; Ignatiev et al., 2019a, 2019b; Ignatiev,
Narodytska, & Marques-Silva, 2019c; Darwiche & Hirth, 2020; Audemard et al., 2020)),
but we provide new formulations based on quantification which allow a more refined and
general treatment. Moreover, given the results in Section 6, our treatment will shed light on
the syntactic forms of classifiers that facilitate the computation of explainable AI queries.

7.1 Classifiers and Decisions

Our focus is on Boolean classifiers, which correspond to Boolean functions f(X1, . . . , Xn)
that map literals `1, . . . , `n of variables X1, . . . , Xn into {0, 1}. A set of literals `1, . . . , `n
will be called an instance, which is positive when f(`1, . . . , `n) = 1 and negative when
f(`1, . . . , `n) = 0. A term γ over some variables in X1, . . . , Xn will be called a population as
it characterizes a set of instances (those compatible with term γ). An instance corresponds
to a singleton population, so claims about populations apply to instances but the converse
is not true. For example, a classifier will always make a decision on an instance but it may
not be able to make a collective decision on a population as the population may contain
both positive and negative instances.

We will represent a Boolean classifier by a Boolean formula ∆, where the models of ∆
correspond to positive instances and the models of ¬∆ correspond to negative instances.
Hence, the syntactic forms of both ∆ and its negation ¬∆ are relevant when computing
explainable AI queries.

Definition 9. Let ∆ be a Boolean formula over variables X1, . . . , Xn. We call ∆ a classifier,
variable Xi a feature, literal `i a characteristic, and δ = {`1, . . . , `n} an instance. The
decision of classifier ∆ on instance δ is denoted ∆(δ). It is defined as ∆(δ) = 1 if δ |= ∆
(positive decision) and ∆(δ) = 0 if δ |= ¬∆ (negative decision). We further define ∆δ = ∆
when the instance δ is positive and ∆δ = ¬∆ when the instance δ is negative.

Since ∆ captures positive instances and its negation ¬∆ captures negative instances, we
usually work with ∆ when reasoning about positive decisions and with ¬∆ when reasoning
about negative decisions. This explains the significance of the notation ∆δ.

8. This follows because Proposition 19 tells us that ∃` ·` = > and ∃` · ¯̀= ¯̀; similarly ∀` ·` = ` and ∀` · ¯̀= ⊥.
Hence, the quantified NNF circuit will not contain complementary literals for any variable.

18



On Quantifying Literals in Boolean Logic

Consider the following classifier which decides whether an applicant should be granted
a loan based on four features: whether they defaulted on a previous loan (D), have a
guarantor (G), own a home (H) or have a high income (I). This classifier is specified by
the following formula ∆ and its negation ¬∆, both in CNF:

∆ = (h ∨ i) ∧ (d̄ ∨ g) ∧ (d̄ ∨ i) and ¬∆ = (d ∨ ī) ∧ (d ∨ h̄) ∧ (ḡ ∨ ī). (1)

Classifier ∆ will grant a loan to an applicant who never defaulted on a previous loan, owns
a home, has a high income but does not have a guarantor, ∆(d̄, ḡ, h, i) = 1. But it will
not grant a loan to such an applicant if they defaulted on a previous loan, ∆(d, ḡ, h, i) = 0.
Instance δ1 = d̄, ḡ, h, i is positive and instance δ2 = d, ḡ, h, i is negative. Using our notation,
we have ∆δ1 = ∆ since δ1 |= ∆ and ∆δ2 = ¬∆ since δ2 |= ¬∆.

The notion of a decision in Definition 9 can be extended to populations.

Definition 10. A population γ is decided by a classifier ∆ iff γ |= ∆ or γ |= ¬∆. In the
first case, the decision is positive and we write ∆(γ) = 1. In the second case, the decision
is negative and we write ∆(γ) = 0. Otherwise, the decision ∆(γ) is undefined.

Contrary to instances, it is possible that no decision is made on a population γ as we may
have neither γ |= ∆ nor γ |= ¬∆. Consider the population of applicants who have guarantors
and a high income, γ1 = g, i. All members of this population will be granted loans since
γ1 |= ∆, and hence ∆(γ1) = 1, making this a positive population. The population of
applicants who defaulted on a previous loan and do not have a high income, γ2 = d, ī, is
negative. No member of this population will be granted a loan since γ2 |= ¬∆ and hence
∆(γ2) = 0. Consider now the population of applicants who defaulted on a loan and are not
home owners, γ3 = d, h̄. This population cannot be decided as it contains some members
who will be granted loans (e.g., d, g, h̄, i) and others who will not (e.g., d, g, h̄, ī). We then
have γ3 6|= ∆ and γ3 6|= ¬∆, causing the decision ∆(γ3) to be undefined. This will never
happen for an instance δ as we must have either δ |= ∆ or δ |= ¬∆ since the instance δ
must contain a characteristic for each feature.

We will find it useful to talk about containment when analyzing the decisions made on
populations. We will say that population γ contains population β iff β |= γ. For example,
the population of home owners (γ = h) contains the population of home owners with a
high income (β = h, i). We say in this case that γ is a super-population of β and β is a
sub-population of γ. For example, when explaining the decision on an instance δ, one is
typically interested in finding all maximal super-populations of instance δ that are decided
similarly as δ. As we show later, this is precisely the approach proposed in (Shih et al.,
2018), which we will generalize to explain decisions on populations as well.

7.2 Decision Making and Universal Quantification

Before we start discussing explainable AI queries in Section 7.3, we will first provide some
insights on the fundamental role that universal literal quantification plays when reasoning
about decisions. We will interpret literal quantification as characteristic quantification and
show how such quantification selects instances in ways that can be useful for answering
various queries of interest to explainable AI.

When universally quantifying characteristic ` from classifier ∆, we are filtering out all
positive instances for which characteristic ¯̀ is essential for the decisions on these instances.

19



Darwiche & Marquis

We call these positive ¯̀-boundary instances as they are positive instances with characteristic
¯̀ but will become negative if this characteristic is flipped (Theorem 2). Universally quan-
tifying characteristic ` will not filter out any instance with characteristic ` (Proposition 8).
We can therefore view the application of operator ∀` to ∆ as a process of selecting all
positive instances that do not require characteristic ¯̀ for their positiveness. If any of these
instances has characteristic ¯̀ then that characteristic is irrelevant to the decision made on
the instance. These are precisely the instances characterized by ∀` ·∆. A complementary
situation arises when universally quantifying characteristic ` from ¬∆. The instances char-
acterized by ∀` · ¬∆ are precisely the negative instances characterized by ¬∆ which do not
require characteristic ¯̀ for their negativeness.

Consider again the classifier defined by Equation 1. The positive instance δ1 = d̄, ḡ, h, i
is not a model of ∀d · ∆ (which is equivalent to i ∧ g as discussed in Section 6). Thus,
characteristic d̄ of δ1 is essential for the positiveness of δ1 (instance d, ḡ, h, i is negative).
Contrastingly, the positive instance δ2 = d̄, g, h̄, i is a model of ∀d ·∆ so characteristic d̄ is
not essential for the positiveness of δ2 (instance d, g, h̄, i is also positive).

We now turn to interpreting b-rules as descriptors of boundary instances that get filtered
out by universal quantification. Each b-rule α→ ` for classifier ∆ identifies a positive
instance δ = α, ` which becomes negative if we flip its characteristic ` (Definition 6). That
is, b-rules α→ ` for ∆ identify positive `-boundary instances. Similarly, b-rules α→ ` for
¬∆ identify negative `-boundary instances. Hence, b-rules characterize instances that are
selected (or filtered out) when universally quantifying a characteristic.

Suppose now that we are universally quantifying a set of characteristics `1, . . . , `n from
∆ to yield ∀`1, . . . , `n · ∆. In this case, ∀`1, . . . , `n · ∆ captures all positive instances δ
where the characteristics they have in ¯̀

1, . . . , ¯̀
n are irrelevant to how these instances are

decided. That is, we can flip any of the characteristics in δ ∩ {¯̀1, . . . , ¯̀
n} without changing

the decision (Theorem 4). As we shall see later, when characteristics `1, . . . , `n define a
positive instance, ∀`1, . . . , `n ·∆ will characterize all super-populations of this instance that
are decided similarly to the instance. Moreover, these super-populations can be viewed as
explanations of the decision made on instance `1, . . . , `n. We will also see how selecting
instances based on quantifying both characteristics and features can be used to answer
further queries such as those relating to decision and classifier bias.

7.3 Irrelevant Features

The first application we shall consider for universal quantification concerns the selection of
instances which can be decided independently of a given set of features. For example, we
may wish to identify all individuals who will be granted a loan regardless of their income
and home ownership. These features may be relevant to some applicants but not others.
Our interest is therefore in identifying all instances that can be decided independently of
some given features while capturing these instances using a Boolean formula. We next show
how universal quantification can be used to achieve this.

Definition 11. To erase variables X1, . . . , Xn from term γ is to remove the literals of
variables X1, . . . , Xn from term γ. The resulting term is denoted γ↑X1,...,Xn.9

9. We can also define this operator using variable quantification since γ↑X1,...,Xn = ∃X1, . . . , Xn ·γ. We use
Definition 11 instead as it is more direct.

20



On Quantifying Literals in Boolean Logic

For example, if γ = xȳz̄w then γ↑Z,W = xȳ. When term γ represents an instance or a
population, the erase operator creates a super-population of γ.

Definition 12. Let γ be a population decided by classifier ∆. We say that decision ∆(γ)
is independent of features X1, . . . , Xn precisely when ∆(γ) = ∆(γ↑X1,...,Xn).

We also say in this case that features X1, . . . , Xn are irrelevant to the decision ∆(γ).
Consider again the loan classifier in (1) and the population of home owners who have a

high income but never defaulted on previous loan, γ = d̄, h, i. This is a positive population,
∆(γ) = 1, as all its members will be granted loans. The decision on this population is
independent of feature I though since ∆(γ↑I) = 1 where γ↑I = d̄h.

If our goal is to check whether a decision ∆(γ) is independent of features X1, . . . , Xn

then we can simply check whether ∆(γ) = ∆(γ↑X1,...,Xn). But universal quantification can
be used to characterize all instances that are decided independently of some features.

Theorem 8. Let ∆ be a classifier and δ be an instance. Decision ∆(δ) is independent of
features X1, . . . , Xn iff δ |= ∀X1, . . . , Xn · ∆δ.

According to this result, ∀X1, . . . , Xn · ∆ characterizes all instances that will be decided pos-
itively independently of features X1, . . . , Xn and ∀X1, . . . , Xn ·¬∆ characterizes all instances
that will be decided negatively independently of these features. For example, the following
Boolean formula characterizes all applicants who will be granted a loan independently of
whether they own a home or have defaulted on a previous loan:

∀D,H ·∆ = g ∧ i, where ∆ = (h ∨ i) ∧ (d̄ ∨ g) ∧ (d̄ ∨ i).

This formula captures applicants who have a guarantor and a high income. Each member
of this population will be granted a loan regardless of their featuresD andH. The expression
∀D,H ·∆ can be easily evaluated since ∆ is given as a CNF: we just remove literals d, d̄,
h and h̄ from every clause of the CNF (see Proposition 12 and 21).

It is possible that ∀X1, . . . , Xn · ∆ = ⊥, which means that every positive decision
must depend on features X1, . . . , Xn. Similarly, it is possible that ∀X1, . . . , Xn · ¬∆ = ⊥,
which means that every negative decision must depend on these features. Moreover, it is
possible that one decision type is independent of some features but the other is not. This
is illustrated by the following example:

∀D,G ·∆ = ⊥, where ∆ = (h ∨ i) ∧ (d̄ ∨ g) ∧ (d̄ ∨ i)
∀D,G · ¬∆ = h̄ ∧ ī, where ¬∆ = (d ∨ ī) ∧ (d ∨ h̄) ∧ (ḡ ∨ ī).

No applicant will be granted a loan without considering whether they defaulted on a previous
loan and whether they have a guarantor (features D and G). However, some applicants will
be denied a loan without considering these features. In particular, any applicant who does
not own a home and does not have a high income will be declined.

In contrast, we may have ∀X1, . . . , Xn ·∆ = ∆ indicating that every positive decision is
independent of features X1, . . . , Xn. This is equivalent to ∀X1, . . . , Xn · ¬∆ = ¬∆, which
means that all negative decisions will also be independent of these features.10 The loan
classifier depends on all its features.

10. To show this, observe that ∀X1, . . . , Xn ·∆ = ∆ is equivalent to ∆ being independent of X1, . . . , Xn. This
is equivalent to ¬∆ being independent of X1, . . . , Xn, which is equivalent to ∀X1, . . . , Xn · ¬∆ = ¬∆.

21



Darwiche & Marquis

7.4 Irrelevant Characteristics

We may also be interested in instances whose classification does not depend on some char-
acteristics (in contrast to features). For example, we may be interested in applicants who
will be granted a loan but not due to their high income or home ownership. These appli-
cants may not have any of these characteristics but if they do then these characteristics are
irrelevant to how their application is decided. We next show how universal literal quan-
tification can be used to select instances with irrelevant characteristics and then further
contrast irrelevant characteristics with irrelevant features.

Definition 13. Let γ be a population decided by classifier ∆ and α be a set of charac-
teristics. We say that decision ∆(γ) is independent of characteristics α precisely when
∆(γ) = ∆(γ \ α).

We also say in this case that characteristics α are irrelevant to decision ∆(γ). This def-
inition does not require every characteristic of α to appear in population γ. Moreover, a
characteristic ` and its negation ¯̀ may both appear in α.

Consider again the loan classifier and an applicant who defaulted on a previous loan,
owns a home, has a guarantor but does not have a high income, δ = d, h, g, ī. This applicant
will be denied a loan, ∆(δ) = 0, but the decision is independent of characteristics d̄ and h
since ∆(δ \ {d̄, h}) = 0. The decision is independent of characteristic d̄ since the applicant
did default on a previous loan. It is independent of characteristic h since the applicant will
still be denied a loan if they did not own a home, ∆(d, h̄, g, ī) = 0. Note, however, that
this decision is not independent of features D and H. For example, the applicant will be
granted a loan if they did not default on a previous loan, ∆(d̄, h, g, ī) = 1.

Theorem 9. Let ∆ be a classifier, `1, . . . , `n be characteristics and δ be an instance. Then
δ |= ∀`1, . . . , `n ·∆δ iff decision ∆(δ) is independent of characteristics ¯̀

1, . . . , ¯̀
n.

According to this result, ∀`1, . . . , `n ·∆ characterizes all instances that are decided positively
but not due to any characteristic they may have in ¯̀

1, . . . , ¯̀
n. An instance captured by

∀`1, . . . , `n · ∆ may not have any characteristic in ¯̀
1, . . . , ¯̀

n. But if it does, then those
characteristics are irrelevant: we can change them in any manner without changing the
decision. Similarly, ∀`1, . . . , `n · ¬∆ captures all instances that are decided negatively but
not due to any characteristic they may have in ¯̀

1, . . . , ¯̀
n.

For the loan classifier, there are four applicants who will be denied a loan independently
of characteristics d and h. These applicants are characterized by the following CNF:

∀d̄, h̄ · ¬∆ = h̄ ∧ ī, where ¬∆ = (d ∨ ī) ∧ (d ∨ h̄) ∧ (ḡ ∨ ī).

None of these applicants owns a home. Moreover, if any of them defaulted on a previous
loan they will still be denied if they did not default. But there are no applicants who will
be denied a loan independently of features D and H:

∀D,H · ¬∆ = ⊥.

That is, these features are relevant for every negative decision.

22



On Quantifying Literals in Boolean Logic

Again, expressions ∀d̄, h̄ · ¬∆ and ∀D,H · ¬∆ can be easily evaluated using Proposi-
tions 12 and 21 since ¬∆ is given as a CNF. For the first expression, we just remove literals
d and h from all clauses. For the second expression, we remove literals d, d̄, h and h̄.

It is possible that ∀`1, . . . , `n ·∆ = ⊥. This indicates that every positive instance with
some characteristics in ¯̀

1, . . . , ¯̀
n can become negative if we flip some of these characteristics

so these characteristics are relevant for all positive instances. Similarly, if ∀`1, . . . , `n ·¬∆ =
⊥, then any negative instance with some characteristics in ¯̀

1, . . . , ¯̀
n may become positive

if we flip some of these characteristics. A set of characteristics may be relevant for one type
of decision but irrelevant for the other type since ∀`1, . . . , `n · ∆ may be inconsistent but
∀`1, . . . , `n · ¬∆ may be consistent (and vice versa).

The following result relates irrelevant characteristics and features. It shows that if some
features are irrelevant to a decision then any corresponding characteristics are also irrelevant
to the decision. The converse is not true though as we have seen earlier.

Proposition 29. Let ∆ be a classifier, X1, . . . , Xn be features and `1, . . . , `n be correspond-
ing characteristics. Then ∀X1, . . . , Xn ·∆ |= ∀`1, . . . , `n ·∆.

7.5 Explaining Decisions

We will now consider the application of universal literal and variable quantification to
explaining the decisions of classifiers on both instances and populations.

Consider a decision ∆(δ) made by classifier ∆ on instance δ. One way to explain this
decision is to identify a minimal set of characteristics γ ⊆ δ that is sufficient to trigger the
decision, ∆(γ) = ∆(δ). This notion of explanation was introduced in (Shih et al., 2018)
under the name of a PI-explanation and was later called a sufficient reason for the decision
in (Darwiche & Hirth, 2020). We will next provide some examples of this notion using a
classifier from (Darwiche & Hirth, 2020) for admitting students into an academic program.

This classifier makes its decision based on five features: whether an applicant passed the
entrance exam (E), is a first time applicant (F ), has good grades (G), has work experience
(W ) and comes from a rich hometown (R). The classifier is specified by the following CNFs:

∆ = (e ∨ g) ∧ (e ∨ r) ∧ (e ∨ w) ∧ (f ∨ r) ∧ (f̄ ∨ g ∨ w)

¬∆ = (ē ∨ f ∨ r̄) ∧ (ē ∨ f̄ ∨ ḡ) ∧ (ē ∨ f̄ ∨ w̄) ∧ (ḡ ∨ r̄ ∨ w̄)

Consider now an applicant who does not come from a rich hometown but satisfies all other
requirements. This applicant will be admitted, ∆(e, f, g, w, r̄) = 1, and there are two
sufficient reasons for this decision, (e, f, g) and (e, f, w). Passing the entrance exam (e),
being a first time applicant (f) and having good grades (g) will guarantee admission but
no strict subset of these characteristics will. Having work experience instead of good grades
will also guarantee admission but again no strict subset of characteristics (e, f, w) provides
such a guarantee. If this applicant were to come from a rich hometown, then there would
be more sufficient reasons for the admission decision, ∆(e, f, g, w, r) = 1:

(e, f, g) (e, f, w) (e, g, r) (e, r, w) (g, r, w)

For example, passing the entrance exam and having good grades will guarantee admission
for an applicant who comes from a rich hometown.

23



Darwiche & Marquis

A decision may have an exponential number of sufficient reasons. Moreover, some ex-
plainable AI queries, such as ones relating to decision bias, are based on checking whether
the sufficient reasons for a decision satisfy some properties. These sufficient reasons can
sometimes be represented compactly using the notion of a complete reason introduced
in (Darwiche & Hirth, 2020), which showed a number of results relating to this notion.
These results include (1) The complete reason for a decision can be computed efficiently
when the classifier is represented using a tractable circuit of appropriate type; (2) The
sufficient reasons for a decision correspond to the prime implicants of its complete reason;
and (3) Some properties of sufficient reasons can be checked in time linear in the size of a
complete reason, again, when it is represented using a tractable circuit of appropriate type.

We will next show how the notion of a complete reason can be formulated using universal
quantification, particularly the selection semantics of such quantification. This formulation
has a number of implications, which include generalizing this notion to decisions on popu-
lations and opening new pathways for the efficient computation of complete reasons.

The main insight behind our formulation is to try to find a necessary and sufficient
condition for why a decision was made. Consider a decision on population γ = `1, . . . , `m
and let Xm+1, . . . , Xn be all features not mentioned in population γ. We will do this
by finding all instances that are decided similarly to population γ but based only on the
information used to decide γ; that is, characteristics `1, . . . , `m. We will first select instances
that are decided similarly to γ but independently of features Xm+1, . . . , Xn as these features
did not play a role in the decision on population γ. These instances are characterized by
the formula ∀Xm+1, . . . , Xn ·∆γ as shown in Section 7.3. From these instances, we will now
select those that are decided similarly to γ but independently of characteristics ¯̀

1, . . . , ¯̀
m as

these characteristics did not play a role in the decision either. As shown in Section 7.4, these
instances are characterized by the formula ∀`1, . . . , `m(∀Xm+1, . . . , Xn ·∆γ). This formula
can be thought of as a necessary and sufficient reason for the decision on population γ so
we shall call it the complete reason for the decision (more on this later).

Definition 14 (Complete Reason). Let γ = `1, . . . , `m be a population decided by classifier
∆ and Xm+1, . . . , Xn be all classifier features not mentioned in γ. The complete reason for
decision ∆(γ) is defined as the formula ∀`1, . . . , `m, Xm+1, . . . , Xn ·∆γ.

Definition 15 (Sufficient Reason). The sufficient reasons for a decision are defined as the
prime implicants of its complete reason.

We now have the following result, which establishes our definition of complete reason
as a generalization of the one given in (Darwiche & Hirth, 2020) and our definition of a
sufficient reason as a generalization of the PI-explanation introduced in (Shih et al., 2018).

Theorem 10. Let γ be a population decided by classifier ∆. Then γ? is a sufficient reason
for decision ∆(γ) iff γ? is a minimal subset of γ that satisfies ∆(γ?) = ∆(γ).

According to this result, the sufficient reasons for decision ∆(γ) are the maximal super-
populations of γ that are decided similarly to population γ. Moreover, these super-populations
are precisely the prime implicants of the complete reason for the decision. As mentioned
earlier, we may have an exponential number of such super-populations but they are now
encoded by the complete reason which may not be exponentially sized (depending on its

24



On Quantifying Literals in Boolean Logic

syntactic form). When the population is a singleton (instance), the complete reason for
decision ∆(γ) reduces to ∀`1, . . . , `m ·∆γ which provides an alternative definition to the one
given in (Darwiche & Hirth, 2020). This is an expression that we studied in Section 7.4,
except that we now have the condition `1, . . . , `m |= ∆γ which we did not assume in that
section. This additional condition provides further selection semantics for universal literal
quantification: the complete reason ∀`1, . . . , `m · ∆γ characterizes all instances δ that are
decided similarly to γ but due only to the characteristics they have in common with γ; that
is, independently of their characteristics δ ∩ {¯̀1, . . . , ¯̀

m}.
Consider the admission classifier and an applicant who passed the entrance exam, has

good grades and work experience, comes from a rich hometown but is not a first time
applicant. The classifier will admit this applicant, ∆(e, f̄ , g, r, w) = 1, due to the following
complete reason expressed as a CNF:

∀e, f̄ , g, r, w ·∆ = (e ∨ g) ∧ (e ∨ w) ∧ (r) ∧ (f̄ ∨ g ∨ w)

This formula has four prime implicants representing the sufficient reasons for this decision:

(e, g, r) (e, r, w) (e, f̄ , r) (g, r, w)

Consider now the population of applicants who are applying again but did not pass the
entrance exam and do not come from a rich hometown. Members of this population will be
denied admission, ∆(ē, f̄ , r̄) = 0, for the following complete reason

∀ē, f̄ , r̄, G,W · ¬∆ = (ē ∨ f̄) ∧ (r̄)

which has two sufficient reasons (ē, r̄) and (f̄ , r̄).
When a classifier ∆ and its negation ¬∆ are represented by CNFs, the complete reason

for a decision ∆(γ) can be computed in linear time using Propositions 12 and 21: We
just drop every characteristic from the CNF ∆γ if that characteristic does not appear in
population (term) γ. As a result, the complete reason will be a monotone CNF, allowing
one to enumerate sufficient reasons using a quasi-polynomial time algorithm (Gurvich &
Khachiyan, 1999).11 This also provides another characterization of the complete reason for
decision ∆(γ) as the weakest CNF Γ that contains only characteristics that appears in γ
and that satisfies γ |= Γ |= ∆γ . In this sense, the complete reason is the most general
abstraction of population γ that justifies the decision made on γ. Every aspect (set of
characteristics) of γ that can trigger decision ∆(γ) is an implicant of the complete reason Γ.
Moreover, every prime implicant of Γ is an aspect of γ. This justifies viewing the complete
reason for a decision as a necessary and sufficient condition for explaining the decision.

7.6 Decision Bias

We next show how universal quantification can be used to characterize biased decisions.
Following (Darwiche & Hirth, 2020), these are decisions that are made based on features

11. (Gurvich & Khachiyan, 1999) presented a quasi-polynomial time algorithm for the incremental enumer-
ation of the prime implicants of a monotone CNF formula. This algorithm is based on the algorithm
for the dualization problem (i.e., testing the duality of a pair of monotone DNF formulas) reported
in (Fredman & Khachiyan, 1996). These dualization algorithms have been implemented (Khachiyan,
Boros, Elbassioni, & Gurvich, 2006), evaluated (Hagen, Horatschek, & Mundhenk, 2009), and improved
recently (Sedaghat, Stephen, & Chindelevitch, 2018).

25



Darwiche & Marquis

some of which are designated as protected. A classifier is biased precisely when it makes at
least one biased decision. Hence, a biased classifier may still make some unbiased decisions.

Definition 16. Let ∆ be a classifier where some of its features are designated as protected.
A decision ∆(δ) on instance δ is biased iff ∆(δ) 6= ∆(δ?) for some instance δ? obtained
from δ by changing only the values of some protected features.

We next show how variable quantification can be used to characterize all biased decisions
that a classifier may make.

Theorem 11. Let ∆ be a classifier and let X1, . . . , Xn be its protected features. Then
∆ ∧ ¬(∀X1, . . . , Xn ·∆) characterizes all positive instances on which ∆ will make a biased
decision. Moreover, ¬∆∧¬(∀X1, . . . , Xn ·¬∆) characterizes all negative instances on which
∆ will make a biased decision.

(Darwiche & Hirth, 2020) provided an efficient procedure for deciding whether a decision
is biased, assuming the classifier is represented using an appropriate tractable circuit. The
above theorem suggests an efficient procedure for detecting decision bias assuming classifier
∆ and its negation ¬∆ are in CNF. To check whether a biased, positive decision is made
on instance δ, we just need to check whether δ |= ∆ ∧ ¬(∀X1, . . . , Xn · ∆). Since ∆ is a
CNF, ∀X1, . . . , Xn ·∆ can be computed in linear time so the previous test can be performed
efficiently. A similar procedure can be used to detect biased negative decisions.

Our treatment of decision bias extends the one in (Darwiche & Hirth, 2020) not only
computationally, but also in terms of scope. Instead of only testing whether a particular
decision is biased, we can now characterize all biased decisions which allows us to entertain
further questions relating to bias. Consider again the admission classifier and suppose that
feature R (rich hometown) is protected. The following expression will then characterize all
applicants on whom a biased, positive decision will be made:

∆ ∧ ¬(∀R ·∆) = (e ∨ g) ∧ (e ∨ w) ∧ (r) ∧ (f̄ ∨ g) ∧ (f̄ ∨ w) ∧ (ē ∨ f̄)

There are six classes of applicants that satisfy the above formula. All will be admitted but
they will be denied admission if they were not to come from a rich hometown. We can now
find out if any of these applicants could have failed the entrance exam by computing:

ē ∧ (∆ ∧ ¬(∀R ·∆)) = ē ∧ g ∧ r ∧ w

The answer is affirmative. Moreover, the above result tells us that admitted applicants
who fail the entrance exam and whose admission depends critically on coming from a rich
hometown must have good grades and a work experience.

8. Concluding Remarks

We formalized and studied the universal quantification of literals in Boolean logic, together
with its applications to explainable AI. Our treatment was based on the novel notion of
boundary models, which stands to have implications on the study of Boolean logic beyond
quantification. A major contribution of our work is the interpretation of universal quan-
tification as a selection process, which we hope will expand the applications of this form

26



On Quantifying Literals in Boolean Logic

of quantification in AI and beyond. Another major contribution is the complexity results
relating to the computation of existential and universal quantification on various logical
forms. While we were driven by understanding universal literal quantification, our findings
have furthered our understanding of Boolean logic quantification more broadly.

As to explainable AI, we have shown how to analyze classifiers and their decisions
through the systematic construction of Boolean formulas, using universal literal and variable
quantification. We provided some prototypical queries in earlier sections but one can go
further beyond them. In a sense, the combination of universal quantifiers with classical
Boolean connectives provides a query language for interrogating classifiers and for gathering
various insights about how they make decisions and why they make these decisions.

Our treatment of literal quantification can be extended to propositional formulas over
discrete variables (Miller & Thornton, 2008), allowing one to reason about the behavior of
discrete classifiers which arise in a number of contexts including decision trees and random
forests; see, e.g., (Ignatiev et al., 2019c; Audemard et al., 2020; Choi et al., 2020). Consider
a propositional formula ϕ over discrete variables and let X be a variable that has values
x1, . . . , xn. We can generalize Definitions 7 and 8 to quantify a literal xi as follows:12

∀xi · ϕ = (ϕ|xi) ∧
∧
j 6=i

(xi ∨ (ϕ|xj))

∃xi · ϕ = (ϕ|xi) ∨
∨
j 6=i

(xj ∧ (ϕ|xj)).

These quantifiers are also dual and have selection and forgetting semantics as in the Boolean
setting, therefore expanding the utility of our treatment beyond Boolean logic.

We close this section by a remark on further connections of our work to QBFs. Let ϕ be
a Boolean formula and  L1, . . . ,  Ln be a partition of all literals. One can define another class
of prenex and closed QBFs, Q1  L1, . . . , Qn  Ln ·ϕ, where Q1, . . . , Qn are alternating quantifiers
in {∀,∃}. These QBFs are also guaranteed to be either valid or inconsistent. It remains
to be explored though whether these QBFs will also admit the notion of a solution that is
normally defined for classical, prenex and closed QBFs. This is a subject for future work.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback. This work has benefited
from the support of the International Research Project MAKC (“Modern Approaches to
Knowledge Compilation”) shared between the Automated Reasoning Group of the Univer-
sity of California at Los Angeles (UCLA) and the Centre de Recherche en Informatique de
Lens (CRIL UMR 8188 CNRS - Artois University). The work has been partially supported
by NSF grant IIS-1910317, DARPA grant N66001-17-2-4032, AI Chair EXPEKCTATION
(ANR-19-CHIA-0005-01) of the French National Research Agency (ANR) and by TAILOR,
a project funded by EU Horizon 2020 research and innovation programme under GA No
952215.

12. The operator ∃xi drops literal xi from the expansion ϕ =
∨

j(xj ∧ (ϕ|xj)). The formula ϕ can also be
expanded as ϕ =

∧
j(
∨

k 6=j xk ∨ (ϕ|xj)); see the proof of Proposition 27. The operator ∀xi drops all
literals but xi from this expansion.

27



Darwiche & Marquis

Appendix A. Characterizing the Dynamics of Boundary Rules

We provide in this appendix a complete characterization of which b-rules are deleted, intro-
duced or preserved when universally quantifying a literal. This allows us to define universal
quantification as a process of b-rule transformation (one can use the duality theorem to
prove similar results for existential literal quantification). These results are mostly meant
for completeness as they are not essential for the main storyline in the paper.

To simplify notation, we will use the symbol in b-rules to denote any term such that
the result is a b-rule according to Definition 6. The operator ∀`i erases every b-rule of
the form → ¯̀

i. It also preserves all b-rules of the form → `i or , `i → . Finally, it
preserves b-rules of the form , ¯̀

i → `j as long as there are no b-rules of the form , `j → ¯̀
j .

We present this result formally next and then interpret it using boundary models.

Theorem 12. For formula ϕ and literals `i and `j where i 6= j, we have

(a) If α→ `i ∈ R(ϕ), then α→ `i ∈ R(∀`i · ϕ).

(b) α→ ¯̀
i 6∈ R(∀`i · ϕ).

(c) If α, `i → `j ∈ R(ϕ), then α, `i → `j ∈ R(∀`i · ϕ).

(d) If α, ¯̀
i → `j ∈ R(ϕ), then α, ¯̀

i → `j ∈ R(∀`i · ϕ) iff α, `j → ¯̀
i 6∈ R(ϕ).

According to this result, (a) `i-boundary models of ϕ are `i-boundary models of ∀`i · ϕ,
(b) ∀`i · ϕ does not have any ¯̀

i-boundary models and (c,d) `j-boundary models of ϕ are
`j-boundary models of ∀`i · ϕ iff they are not ¯̀

i-boundary models of ϕ.
We now turn to the introduction of new b-rules which leads to introducing boundary

models. The following result says that the operator ∀`i can only introduce b-rules of the
form , ¯̀

i → so it will only introduce `j-boundary models that contain literal ¯̀
i (i 6= j).

Theorem 13. If r 6∈ R(ϕ) and r ∈ R(∀`i · ϕ), then b-rule r has the form α, ¯̀
i → `j.

The next result provides a complete characterization for when universal literal quantification
will introduce new b-rules (of the above form).

Theorem 14. Let b-rule r = α, ¯̀
i → `j. We then have r 6∈ R(ϕ) and r ∈ R(∀`i · ϕ) iff

α, `i → `j ∈ R(ϕ), α, ¯̀
j → ¯̀

i ∈ R(ϕ), α, `j → `i 6∈ R(ϕ) and α, ¯̀
i → ¯̀

j 6∈ R(ϕ).

The proof of this theorem provides a characterization for when a model of ϕ that is not
`j-boundary will become an `j-boundary model of ∀`i ·ϕ: Flipping either literal ¯̀

i or literal
`j will preserve it as a model of ϕ but flipping both will not.

Appendix B. Lemmas

The following lemmas are used in proofs of propositions and theorems. The first lemma
says that an `-boundary model for a formula is preserved when dropping other models of
the formula (but some non-boundary models may become boundary).

Lemma 1. Let ϕ and φ be formulas and ω be a world. If ω |= ϕ and ϕ |= φ and ω is an
`-boundary model for φ, then ω is also an `-boundary model for ϕ.

28



On Quantifying Literals in Boolean Logic

Proof. Suppose ω |= ϕ and ϕ |= φ and ω is an l-boundary model for φ. Then ω has the form
α, ` where α, ¯̀ |= ¬φ. Then φ |= α⇒` and hence ϕ |= α⇒` and ϕ ∧ α ∧ ¯̀ is inconsistent.
Therefore α, ¯̀ is not a model of ϕ and hence ω = α, ` is an l-boundary model for ϕ.

This lemma says that universally quantifying a literal from a term keeps it intact if the
negation of that literal does not appear in the term.

Lemma 2. Let γ be a term and ` be a literal such that ¯̀ 6∈ γ. Then ∀` · γ = γ.

Proof. By Defintion 7, ∀` ·γ = (`∨(γ|¯̀))∧(γ|`). If ` 6∈ γ, (`∨(γ|¯̀))∧(γ|`) = (`∨γ)∧γ = γ.
If ` ∈ γ, (` ∨ (γ|¯̀)) ∧ (γ|`) = (` ∨ ⊥) ∧ (γ \ {`}) = γ. Hence, ∀` · γ = γ.

This lemma provides another syntactic characterization of universal literal quantification.

Lemma 3. For variable X and formula ϕ, we have ∀x · ϕ = (∀X · ϕ) ∨ (x ∧ ϕ) and
∀x̄ · ϕ = (∀X · ϕ) ∨ (x̄ ∧ ϕ).

Proof. ∀x · ϕ = (x∨ (ϕ|x̄))∧ (ϕ|x) = (x∧ (ϕ|x))∨ ((ϕ|x̄)∧ (ϕ|x)) = (x∧ ϕ)∨ (∀X · ϕ). We
can similarly show ∀x̄ · ϕ = (∀X · ϕ) ∨ (x̄ ∧ ϕ).

This lemma says that the α-independent models of a formula are preserved when adding
more models to the formula.

Lemma 4. Let ϕ and φ be formulas and ω be a world such that ω |= φ |= ϕ. If ω is an
α-independent model of φ, then ω is also an α-independent model of ϕ.

Proof. Suppose ω |= φ |= ϕ and ω is an α-independent model of φ. Then α ⊆ ω and
ω \ α |= φ. Hence, ω \ α |= ϕ which establishes ω as an α-independent model of ϕ.

Appendix C. Proofs

The next three results are folklore. We provide proof sketches for the sake of completeness.

Proof of Proposition 1. This result has been known. See for example Theorem 6.1
in (Katsuno & Mendelzon, 1989) and Corollary 6 in (Lang et al., 2003). Since ∃X · ϕ =
(ϕ|x) ∨ (ϕ|x̄), we get that ∃X · ϕ is independent of X since literals x and x̄ do not occur
in (ϕ|x) ∨ (ϕ|x̄). Suppose now that there exists a formula ψ such that ϕ |= ψ, ∃X · ϕ 6|= ψ
and variable X does not occur in ψ. We will next show a contradiction. Since any ψ can
be put into an equivalent CNF, we can assume without loss of generality that ψ is a clause.
Since ϕ |= ψ, every model of ϕ must satisfy a literal ` of ψ. Since ∃X · ϕ 6|= ψ, there must
be a model ω of ∃X · ϕ that does not satisfy any literal of ψ. The models of ∃X · ϕ are
the models of ϕ plus all those worlds that differ from a model of ϕ on X only. Since ω
cannot be a model of ϕ, there must be a model ω′ of ϕ such that ω and ω′ coincide on
every variable but X. Since ψ does not contain any occurrence of X, the variable of ` is
different from X, and as a consequence, since ω′ is a model of ϕ, ω satisfies ϕ as well. This
is a contradiction.

Proof of Proposition 2. Follows directly from Propositions 1 and 3.

Proof of Proposition 3. Follows from Definitions 3 and 4 using De Morgan’s law.

29



Darwiche & Marquis

Proof of Theorem 1.

(⇒) Suppose M(ϕ1) = M(ϕ2). Then R(ϕ1) = R(ϕ2) by Definition 6 (and Definition 1).

(⇐) It suffices to show that for a consistent formula ϕ, its models M(ϕ) are fully
characterized by its b-rules R(ϕ). We will show this by defining an operator L that depends
only on b-rules R(ϕ) and then show that M(ϕ) is the stationary point of the sequence
(Li(BM(ϕ)))i∈N, where L0(W ) = W and Li+1(W ) = L(Li(W )). Note that the boundary
models of ϕ also depend only on b-rules R(ϕ) since BM(ϕ) = {α, ` | α→ ` ∈ R(ϕ)}. The
operator L : S 7→ S is defined as follows, where S consists of all sets of worlds which contain
boundary models BM(ϕ):

S = {W | BM(ϕ) ⊆W ⊆ 2Σ}
L(W ) = W ∪ {α, ¯̀ | α, ` ∈W and α→ ` 6∈ R(ϕ)}

The operator L grows the set of worlds W as follows. For each world α, ` ∈W , it adds world
α, ¯̀ in case α→ ` 6∈ R(ϕ). This condition is equivalent to: α, ` ∈M(ϕ) only if α, ¯̀∈M(ϕ).
If we apply the operator L to the boundary models BM(ϕ), it will infer additional models
of ϕ and add them to W . Applying L again to the result will infer/add more models and
so on. This is precisely what the sequence (Li(BM(ϕ)))i∈N does. It suffices now to show
that M(ϕ) is the least fixed point of operator L. We need a few lemmas for this, the first
shows that L must have a least fixed point.

The pair (S,⊆) forms a complete lattice with BM(ϕ) as the least element and 2Σ as the
greatest element. If L is monotonic, then by the Knaster–Tarski Theorem (Knaster, 1928;
Tarski, 1955), the set of fixed points of L is not empty and also forms a complete lattice so
it does have a least element.

Lemma 5. L : S 7→ S is monotonic: W ⊆ W ′ only if L(W ) ⊆ L(W ′) for every
W,W ′ ∈ S.

Proof. Suppose W ⊆ W ′. If ω ∈ L(W ), then by definition of L we have either (1) ω ∈ W
or (2) ω = α, ¯̀ where α, ` ∈ W and α → ` 6∈ R(ϕ). Case (1) implies ω ∈ W ′ and hence
ω ∈ L(W ′). Case (2) implies α, ` ∈W ′ and hence ω = α, ¯̀∈ L(W ′) since α→ ` 6∈ R(ϕ).

The next two lemmas use the notion of a Hamming path (H-path). An H-path from
world ω1 to world ωd is a sequence of worlds ω1, . . . , ωd where world ωi, i > 1, is obtained
from world ωi−1 by flipping the value of a single variable. This H-path has length d.

Lemma 6. If ω1, . . . , ωd is a shortest H-path from BM(ϕ) to ωd ∈ M(ϕ), then ωi ∈
M(ϕ) for i = 1, . . . , d.

Proof. The lemma holds trivially for d ∈ {1, 2}. The proof for d ≥ 3 is by contradiction.
Let k be the largest index such that ωk 6∈M(ϕ). Then 1 < k < d. Since ωk+1 ∈M(ϕ) and
ωk is obtained by flipping a single variable in ωk+1, we have ωk+1 ∈ BM(ϕ). Moreover,
ωk+1, . . . , ωd is an H-path from BM(ϕ) to ωd which has length d− k < d, a contradiction.
Hence, ωi ∈M(ϕ) for i = 1, . . . , d.

30



On Quantifying Literals in Boolean Logic

Lemma 7. If ω1, . . . , ωd is a shortest H-path from BM(ϕ) to ωd ∈ M(ϕ), then ωd ∈
Ld−1(BM(ϕ)).

Proof. By induction on d. For d = 1 (base case), we have ω1 = ωd ∈ BM(ϕ), L0(BM(ϕ)) =
BM(ϕ) and hence ωd ∈ Ld−1(BM(ϕ)). For d > 1 (inductive step), the subsequence
ω1, . . . , ωd−1 is a shortest H-path from BM(ϕ) to ωd−1. Moreover, ωd−1 ∈ M(ϕ) by
Lemma 6. Hence, ωd−1 ∈ Ld−2(BM(ϕ)) by the induction hypothesis. Worlds ωd−1 and ωd
must have the forms α, ` and α, ¯̀. Since both are in M(ϕ), then α→ ` 6∈ R(ϕ). Hence
ωd ∈ Ld−1(BM(ϕ)) since Ld−1(BM(ϕ)) = L(Ld−2(BM(ϕ))).

We will now finish the proof by showing that M(ϕ) is the least fixed point of L.
By Lemma 7, M(ϕ) ⊆ Lk(BM(ϕ)) for some k ≥ 0. Suppose that BM(ϕ) ⊆ W and
L(W ) = W (a fixed point). Then Lk(W ) = W . Since L is monotonic (Lemma 5), we
have Lk(BM(ϕ)) ⊆ Lk(W ) and hence M(ϕ) ⊆ Lk(BM(ϕ)) ⊆ Lk(W ) = W . This implies
M(ϕ) ⊆ W so M(ϕ) is the least fixed point of L and therefore the stationary point of the
sequence (Li(BM(ϕ)))i∈N.

Proof of Proposition 4.

(⇒) Suppose ϕ has b-rule α→ `. By Definition 6, α, ` is an `-boundary model of ϕ. By
Definition 1, α, ` |= ϕ and α, ¯̀ |= ¬ϕ. From α, ` |= ϕ, we conclude that ϕ ∧ α is consistent.
From α, ¯̀ |= ¬ϕ, we conclude that α ∧ ¯̀∧ ϕ is inconsistent and hence ϕ |= ¬(α ∧ ¯̀) and
further ϕ |= α⇒`.

(⇐) Suppose ϕ∧α is consistent and ϕ |= α⇒`. From ϕ∧α being consistent, we conclude
that α, ` |= ϕ or α, ¯̀ |= ϕ. From ϕ |= α⇒`, we conclude α, ¯̀ |= ¬ϕ and hence α, ` |= ϕ.
We now have that α, ` is an `-boundary model of ϕ by Definition 1, and hence ϕ has b-rule
α→ ` by Definition 6.

Proof of Proposition 5.

The literal case. (⇒) Suppose ϕ is independent of literal `. There must exist some NNF
ψ = ϕ that does not contain literal `. Let α be a term that does not mention the variable
X of ` and is such that ψ ∧ α is consistent. Then ψ ∧ α is a consistent NNF that does not
mention literal ` so (ψ ∧ α)|¯̀ is also consistent and hence ψ ∧ α 6|= `. This means ϕ cannot
have a b-rule of the form α→ `.

(⇐) Suppose ϕ has no b-rule of the form α→ `. If ϕ has a model of the form α, `, it
also has α, ¯̀ as a model; otherwise, ϕ will have rule α→ `. Since (α, `)∨ (α, ¯̀) = α, we can
express ϕ as a DNF that does not contain literal `. Hence, ϕ is independent of literal `.

The variable case. Follows from the above case given that ϕ is independent of variable
X iff it is independent of literal x and independent of literal x̄.

Proof of Proposition 6. This proof invokes Definition 6 frequently.

(a) We have α→ ` ∈ R(ϕ) iff α, ` |= ϕ and α, ¯̀ |= ϕ iff α→ ¯̀∈ R(ϕ).

(b) – If α → ` ∈ R(ϕ) ∩ R(ψ), then α, ` |= ϕ, α, ¯̀ |= ϕ, α, ` |= ψ and α, ¯̀ |= ψ. Thus,
α, ` |= ϕ ∧ ψ and α, ¯̀ |= ϕ ∨ ψ. Since ϕ ∨ ψ = ϕ ∧ ψ, we get α→ ` ∈ R(ϕ ∧ ψ)
and therefore R(ϕ) ∩R(ψ) ⊆ R(ϕ ∧ ψ).

31



Darwiche & Marquis

– If α → ` ∈ R(ϕ ∧ ψ), then α, ` |= ϕ ∧ ψ and α, ¯̀ |= ϕ ∨ ψ. Hence, α, ` |= ϕ
and α, ` |= ψ. Moreover, α, ¯̀ |= ϕ or α, ¯̀ |= ψ. This gives α→ ` ∈ R(ϕ) or
α→ ` ∈ R(ψ), and therefore R(ϕ ∧ ψ) ⊆ R(ϕ) ∪R(ψ).

(c) – If α → ` ∈ R(ϕ) ∩ R(ψ), then α, ` |= ϕ, α, ¯̀ |= ϕ, α, ` |= ψ and α, ¯̀ |= ψ. Thus,
α, ` |= ϕ ∨ ψ and α, ¯̀ |= ϕ ∧ ψ. Since ϕ ∧ ψ = ϕ ∨ ψ, we get α→ ` ∈ R(ϕ ∨ ψ)
and therefore R(ϕ) ∩R(ψ) ⊆ R(ϕ ∨ ψ).

– If α → ` ∈ R(ϕ ∨ ψ), then α, ` |= ϕ ∨ ψ and α, ¯̀ |= ϕ ∧ ψ. Hence, α, ` |= ϕ
and α, ` |= ψ. Moreover, α, ` |= ϕ or α, ` |= ψ. This gives α→ ` ∈ R(ϕ) or
α→ ` ∈ R(ψ), and therefore R(ϕ ∨ ψ) ⊆ R(ϕ) ∪R(ψ).

Proof of Proposition 7. By Definition 6, a boundary model can generate at most n b-
rules, hence |R(ϕ)| ≤ n · |BM(ϕ)|. The bound n · |BM(ϕ)| ≤ n · |M(ϕ)| is trivial since
BM(ϕ) ⊆ M(ϕ). Considering ϕ instead of ϕ, we have |R(ϕ)| ≤ n · |BM(ϕ)| ≤ n · |M(ϕ)|.
Finally, Proposition 6(a) shows that |R(ϕ)| = |R(ϕ)|.

Proof of Theorem 2. By Boole’s expansion, we have ϕ = (` ∧ (ϕ|`)) ∨ (¯̀∧ (ϕ|¯̀)), which
can be expanded using consensus into ϕ = (` ∧ (ϕ|`)) ∨ (¯̀∧ (ϕ|¯̀)) ∨ ((ϕ|`) ∧ (ϕ|¯̀)). By
Definition 7, we have ∀` · ϕ = (` ∨ (ϕ|¯̀)) ∧ (ϕ|`), which can be expanded into ∀` · ϕ =
(` ∧ (ϕ|`)) ∨ ((ϕ|`) ∧ (ϕ|¯̀)). This gives ∀` · ϕ |= ϕ and hence M(∀` · ϕ) ⊆ M(ϕ). We next
prove the two directions of the second part of the theorem using the expansions:

ϕ = (` ∧ (ϕ|`)) ∨ (¯̀∧ (ϕ|¯̀)) (2)

ϕ = (` ∧ (ϕ|`)) ∨ (¯̀∧ (ϕ|¯̀)) ∨ ((ϕ|`) ∧ (ϕ|¯̀)) (3)

∀` · ϕ = (` ∧ (ϕ|`)) ∨ ((ϕ|`) ∧ (ϕ|¯̀)) (4)

(⇒) Suppose ω ∈ M(ϕ) and ω 6∈ M(∀` · ϕ); that is, ω |= ϕ and ω 6|= ∀` · ϕ. Given
Expansions (2) and (4), this implies ω |= ¯̀∧ (ϕ|¯̀). Suppose ω is not an ¯̀-boundary model
of ϕ. Then ω[`] |= ϕ and hence ω[`] |= `∧ϕ and ω[`] |= `∧ (ϕ|`). We now have ω |= ϕ|¯̀ and
ω[`] |= ϕ|`. Since ϕ|` does not mention the variable of literal `, we also have ω |= (ϕ|`)∧(ϕ|¯̀)
which implies ω |= ∀` · ϕ by Expansion (4). This is a contradiction with the supposition
ω 6∈M(∀` · ϕ) so ω must be an ¯̀-boundary model of ϕ.
(⇐) Suppose ω is an ¯̀-boundary model of ϕ. Then ¯̀∈ ω, ω |= ϕ and ω[`] 6|= ϕ. We then
have ω ∈M(ϕ) so we just need to show that ω 6∈M(∀` · ϕ). Suppose ω ∈M(∀` · ϕ). Since
¯̀∈ ω, we have ω |= (ϕ|`) ∧ (ϕ|¯̀) by Expansion (4). Since ϕ|` and ϕ|¯̀ do not mention the
variable of literal ¯̀, we also have ω[`] |= (ϕ|`)∧ (ϕ|¯̀) and hence ω[`] |= ϕ by Expansion (3).
This is a contradiction so ω 6∈M(∀` · ϕ).

Proof of Theorem 3. We first prove ∀`.ϕ |= ϕ∧
∧
α→¯̀∈R(ϕ) α. By Theorem 2, ∀`.ϕ |= ϕ.

We next show that ∀`.ϕ |= α whenever α → ¯̀∈ R(ϕ). If α → ¯̀∈ R(ϕ), we have α, ` |= ϕ
by Definition 6 and hence ϕ |= α ∨ ¯̀. By Proposition 9, ∀`.ϕ |= ∀`.(α ∨ ¯̀). Since α
does not contain the variable of literal ` by construction, ∀`.(α ∨ ¯̀) = (∀`.α) ∨ (∀`.¯̀) by
Proposition 20(d). Since ∀`.¯̀ = ⊥ we get ∀`.ϕ |= ∀`.α. By Theorem 2, ∀`.α |= α so
∀`.ϕ |= α and therefore ∀`.ϕ |= ϕ ∧

∧
α→¯̀∈R(ϕ) α.

32



On Quantifying Literals in Boolean Logic

We now prove ϕ ∧
∧
α→¯̀∈R(ϕ) α |= ∀`.ϕ. By Definition 7, ∀`.ϕ = (` ∨ (ϕ | ¯̀)) ∧ (ϕ | `).

Consider a model ω |= ϕ ∧
∧
α→¯̀∈R(ϕ) α. We will next show that ω |= ∀`.ϕ. If ω |= `,

then ω |= ϕ ∧ `. Since ϕ ∧ ` |= ϕ | `, we now have ω |= ϕ | ` and hence ω |= ∀`.ϕ. If
ω |= ¯̀, then ω |= ϕ ∧ ¯̀ and hence ω |= ϕ | ¯̀. We next show ω |= ϕ | ` which gives us
ω |= ∀`.ϕ, therefore concluding the proof. Let ω = α′, ¯̀. We must have α′, ` |= ϕ, otherwise
α′ → ¯̀ ∈ R(ϕ) and then ω |= α′ which is a contradiction. We now have α′ |= ϕ. Since
ϕ = (` ∨ (ϕ | ¯̀)) ∧ (¯̀∨ (ϕ | `)), we have α′ |= ¯̀∨ (ϕ | `). Since ¯̀∨ (ϕ | `) is independent of
`, we also have α′ |= ∀`.(¯̀∨ (ϕ | `)). Since ¯̀ and ϕ | ` do not share variables, ∀`.(¯̀∨ (ϕ |
`)) = (∀`.¯̀) ∨ (∀`.(ϕ | `)) by Proposition 20(d). Moreover, (∀`.¯̀) ∨ (∀`.(ϕ | `)) = ϕ | ` since
∀`.¯̀ = ⊥ and ϕ | ` is independent of `. We now have α′ |= ϕ | ` and hence ω |= ϕ | `.
Therefore ϕ ∧

∧
α→¯̀∈R(ϕ) α |= ∀`.ϕ.

Proof of Proposition 8. By Lemma 3, we have ∀` · ϕ = (∀X · ϕ) ∨ (` ∧ ϕ), where X is
the variable of literal `. Any implicant of ϕ that contains literal ` will also be an implicant
of ` ∧ ϕ and hence an implicant of ∀` · ϕ.

Proof of Proposition 9. By Theorem 4, ∀`·ϕ |= ϕ. Given ϕ |= φ, we now have ∀`·ϕ |= φ.
Let ω be a model of ∀` ·ϕ. Then ω |= ∀` ·ϕ |= ϕ |= φ. If ω 6|= ∀` ·φ then ω is an ¯̀-boundary
model of φ by Theorem 4 and hence ω is an ¯̀-boundary model of ϕ by Lemma 1. By
Theorem 4, ω 6|= ∀` · ϕ which is a contradiction. We then have ω |= ∀` · φ and therefore
∀` · ϕ |= ∀` · φ.

Proof of Proposition 10. Proposition 2(4) in (Lang et al., 2003) shows that ϕ does not
depend on literal ` if and only if ¬ϕ does not depend on literal ¯̀. Hence, the result
follows directly from Proposition 14 (Proposition 16 of (Lang et al., 2003)) and Theorem 5
(duality).

Proof of Proposition 11. Follows directly from Proposition 15 and Theorem 5 (duality).

Proof of Proposition 12. Follows directly from Proposition 16 and Theorem 5 (duality).

Proof of Theorem 4. The proof of this theorem is based on two lemmas that we state
and prove next. The first lemma says that the result of universally quantifying literals is
independent of their complements.

Lemma 8. Let ϕ be a formula, `1, . . . , `n be literals and ω be a world. If ω |= ∀`1, . . . , `n ·ϕ,
then ω \ {¯̀1, . . . , ¯̀

n} |= ∀`1, . . . , `n · ϕ.

Proof. Suppose ω |= ∀`1, . . . , `n · ϕ. By Proposition 10, ∀`1, . . . , `n · ϕ is independent of
literals ¯̀

1, . . . , ¯̀
n. Thus, by Proposition 14, ∃¯̀

1, . . . , ¯̀
n ·ω |= ∀`1, . . . , `n ·ϕ. Since ∃¯̀

1, . . . , ¯̀
n ·

ω = ω \ {¯̀1, . . . , ¯̀
n}, we finally have ω \ {¯̀1, . . . , ¯̀

n} |= ∀`1, . . . , `n · ϕ.

The second lemma identifies a class of α-independent models that are preserved by
universal literal quantification.

33



Darwiche & Marquis

Lemma 9. Let ϕ be a formula, `1, . . . , `n be literals, ω be a world and α = ω∩{¯̀1, . . . , ¯̀
n}.

If ω is an α-independent model of ϕ, then ω is an α-independent model of ∀`1, . . . , `n · ϕ.

Proof. Suppose ω is an α-independent model of ϕ. Then α ⊆ ω and ω \ α |= ϕ. By
Proposition 9, ∀`1, . . . , `n · (ω \ α) |= ∀`1, . . . , `n · ϕ. Since ¯̀

i 6∈ (ω \ α) for i = 1, . . . , n, we
get ∀`1, . . . , `n · (ω \ α) = ω \ α by Lemma 2. Hence, ω \ α |= ∀`1, . . . , `n · ϕ so ω is an
α-independent model of ∀`1, . . . , `n · ϕ.

We are now ready to prove the theorem. Let ω be a world and α = ω ∩ {¯̀1, . . . , ¯̀
n}.

(⇒) Suppose ω |= ∀`1, . . . , `n · ϕ. By Lemma 8, ω \ {¯̀1, . . . , ¯̀
n} |= ∀`1, . . . , `n · ϕ and

hence ω \ α |= ∀`1, . . . , `n · ϕ. Since α ⊆ ω, we get that ω is an α-independent model of
∀`1, . . . , `n ·ϕ. By Theorem 2, ∀`1, . . . , `n ·ϕ |= ϕ. By Lemma 4 and ω |= ∀`1, . . . , `n ·ϕ |= ϕ,
we get that ω is an α-independent model of ϕ.

(⇐) Suppose ω is an α-independent model of ϕ. By Lemma 9, ω is an α-independent
model of ∀`1, . . . , `n · ϕ and hence ω |= ∀`1, . . . , `n · ϕ.

Proof of Proposition 13. Let ω = α, β be a model of formula ϕ where α and β are
disjoint terms.

(⇒) Suppose ω is an α-independent model of ϕ. Then β |= ϕ. Moreover, for every
world β, γ, ` (where β, γ and ` are disjoint) we must have β, γ, ` |= ϕ and β, γ, ¯̀ |= ϕ. By
Definition 6, ϕ cannot then have a b-rule of the form β, γ → ` or β, γ → ¯̀.

(⇐) Suppose ϕ has no b-rules of the form β, γ → `. By Definition 6, for every world of
the form β, γ, `, we have β, γ, ` |= ϕ only if β, γ, ¯̀ |= ϕ. Any world ω? ⊇ β can be obtained
from world ω = β, α by a sequence of single flips to the variables of α. Hence, any such
world ω? is a model of ϕ, which implies β |= ϕ. Therefore, ω must be an α-independent
model of ϕ.

Proof of Theorem 5. We have ¬(∀` ·¬ϕ) = ¬((`∨(¬ϕ|¯̀))∧(¬ϕ|`)) = (¯̀∧(ϕ|¯̀))∨(ϕ|`) =
∃` · ϕ. We can similarly show ∀` · ϕ = ¬(∃` · ¬ϕ).

Proof of Proposition 14. See Proposition 16 of (Lang et al., 2003).

Proof of Proposition 15. See footnote 4 in (Lang et al., 2003).

Proof of Proposition 16. See Proposition 20 of (Lang et al., 2003).

Proof of Theorem 6. By Proposition 14, M(ϕ) ⊆ M(∃` · ϕ). By Theorem 5 (duality),
ω ∈ M(∃` · ϕ) iff ω 6∈ M(∀` · ϕ). Moreover, ω 6∈ M(ϕ) iff ω ∈ M(ϕ). Thus, ω ∈ M(∃` · ϕ)
and ω 6∈M(ϕ) iff ω 6∈M(∀` ·ϕ) and ω ∈M(ϕ) iff ω is an ¯̀-boundary model of ϕ (by second
part of Theorem 2).

Proof of Theorem 7. By Theorem 3, ∀`.ϕ = ϕ∧
∧
α→¯̀∈R(ϕ) α. Negating the two sides, we

get ¬(∀`.ϕ) = ϕ∨
∨
α→¯̀∈R(ϕ) α. By Theorem 5 (duality), ¬(∀`.ϕ) = ∃`.ϕ. By Proposition 6,

α→ ¯̀∈ R(ϕ) is equivalent to α→ ` ∈ R(ϕ). This concludes the proof.

Proof of Proposition 17. Suppose ϕ |= β and ¯̀∈ β. Let γ be the term containing the
complements of literals in clause β (γ = β). Then γ |= ϕ and ` ∈ γ. Moreover, γ |= ∀` · ϕ
by Proposition 8, and ∃` · ϕ |= β by contraposition and Theorem 5 (duality).

34



On Quantifying Literals in Boolean Logic

Proof of Proposition 18. From ϕ |= φ, we get φ |= ϕ. By Proposition 9, ∀` · φ |= ∀` · ϕ.
Finally, ∃` · ϕ |= ∃` · φ by contraposition and Theorem 5 (duality).

Proof of Proposition 19. The results for >/⊥ follow directly from Definitions 7 and 8.
Using Definition 8, ∃`1.`2 = (`2|`1) ∨ (¯̀

1 ∧ (`2|¯̀1)). If `1 = `2, we have `2|`1 = > and
then ∃`1.`2 = >. If `1 6= `2, then either `1 = ¯̀

2 or `1 6= ¯̀
2. If `1 = ¯̀

2, then `2|`1 = ⊥
and `2|¯̀1 = > leading to ∃`1.`2 = ¯̀

1 = `2. If `1 6= ¯̀
2, then `2|`1 = `2|¯̀1 = `2 and hence

∃`1.`2 = `2 ∨ (¯̀
1 ∧ `2) = `2.

The results for ∀`1.`2 follow from the results for ∃`1.`2 using Theorem 5 (duality).

Proof of Proposition 20.

(a) By Definition 8, we have

∃`(α ∨ β) = ((α ∨ β)|`) ∨ (¯̀∧ ((α ∨ β)|¯̀))
= (α|`) ∨ (β|`) ∨ (¯̀∧ ((α|¯̀) ∨ (β|¯̀)))
= (α|`) ∨ (β|`) ∨ (¯̀∧ (α|¯̀)) ∨ (¯̀∧ (β|¯̀))
= (∃`.α) ∨ (∃`.β)

(b) Follows from Part (a) and Theorem 5 (duality).

(c) Suppose literals ` and ¯̀ do not appear in β. By Definition 8, ∃`.β = β and also:

∃`(α ∧ β) = ((α ∧ β)|`) ∨ (¯̀∧ ((α ∧ β)|¯̀))
= ((α|`) ∧ β) ∨ (¯̀∧ (α|¯̀) ∧ β)

= ((α|`) ∨ (¯̀∧ (α|¯̀))) ∧ β
= (∃`.α) ∧ (∃`.β)

(d) Follows from Part (c) and Theorem 5 (duality).

Proof of Proposition 21. The first statement follows directly from Propositions 19 and 20(b,d).
By Proposition 20(b), universal literal quantification distributes over conjuncts (clauses).
By Proposition 20(d), it also distributes over disjuncts (literals) when they do not share
variables (the literals of a clause are over distinct variables). Hence, we just need to replace
each literal `′ in the CNF with ∀` · `′. By Proposition 19, ∀` · `′ = ⊥ if ¯̀= `′ and ∀` · `′ = `′.

As to the second statement, for literal `, the clauses of CNF ∆ can be partitioned into:

∆a = {α | α ∈ ∆ and ` ∈ α}
∆b = {α | α ∈ ∆ and ¯̀∈ α}
∆c = {α | α ∈ ∆ and ` 6∈ α, ¯̀ 6∈ α}

By Definition 8, ∃`.∆ = (∆|`) ∨ (¯̀∧ (∆|¯̀)) = (¯̀∨ (∆|`)) ∧ ((∆|`) ∨ (∆|¯̀)). We now have
these CNFs:

∆|` = {α \ {¯̀} | α ∈ ∆b} ∪∆c

∆|¯̀ = {α \ {`} | α ∈ ∆a} ∪∆c

∆A = {¯̀∨ α | α ∈ ∆|`} represents ¯̀∨ (∆|`)
∆B = {α ∨ β | α ∈ ∆|` and β ∈ ∆|¯̀} represents (∆|`) ∧ (∆|¯̀)
∃`.∆ = ∆A ∪∆B

35



Darwiche & Marquis

By construction, CNF ∆B does not contain the variable of literal ` and can be expressed
as follows:

∆B = ∆c ∪∆d

∆d = {(α \ {`}) ∪ (β \ {¯̀}) | α ∈ ∆, β ∈ ∆, ` ∈ α and ¯̀∈ β}

where ∆d contains the resolvents of ∆ on the variable of literal `. We can also express CNF
∆A as:

∆A = {¯̀∨ (α \ {¯̀}) | α ∈ ∆b} ∪ {¯̀∨ α | α ∈ ∆c}.

The first part is equivalent to ∆b and the second part is subsumed by ∆c so we now have:

∃`.∆ = ∆A ∪∆B = ∆b ∪∆c ∪∆d

That is, ∃`.∆ consists of all clauses of ∆ that do not contain literal ` (∆b and ∆c) in addition
to all resolvents of ∆ on the variable X of literal ` (∆d). When ∆ is closed under resolution
on variable X, we have ∆d ⊆ ∆c. In this case, ∃` ·∆ can be obtained from ∆ by keeping
only its clauses ∆b and ∆c, which is equivalent to removing clauses ∆a (containing literal
`) as claimed by the theorem.

Proof of Corollary 1. Follows directly from Proposition 21 given that a CNF ∆ in prime
implicate form is such that the resolvent of any two clauses of ∆ is subsumed by a clause
of ∆ (Quine, 1955). See also Proposition 19 in (Lang et al., 2003).

Proof of Proposition 22. Follows directly from Proposition 21 and Theorem 5 (duality).

Proof of Corollary 2. Follows directly from Proposition 22 given that a DNF ∆ in prime
implicant form is such that the consensus of any two terms of ∆ is subsumed by a term of
∆ (Quine, 1955).

Proof of Proposition 23. By Propositions 19 and 20(a,c), one can existentially quantify
literals from a Decision-DNNF circuit in linear time since conjuncts in these circuits do not
share variables. The result is a DNNF circuit as one would only be replacing some literals
with >, therefore preserving the decomposability property.

Proof of Proposition 24. (1) (`∨ β)∧ (¯̀∨ α) is equivalent to (`∧ α)∨ (¯̀∧ β)∨ (α∧ β),
which is equivalent to (` ∧ α) ∨ (¯̀∧ β) since α ∧ β is subsumed by (` ∧ α) ∨ (¯̀∧ β). (2) Γ
can be obtained from ∆ by flipping some ∨ to ∧ and vice versa. (3) Every disjunction in Γ
appears in a fragment (`∨ β)∧ (¯̀∨α). By definition of a Decision-DNNF circuit, we know
that ` shares no variables with β, and ¯̀ share no variables with α.

Proof of Proposition 25. Using Proposition 24, we can in linear time transform a Decision-
DNNF circuit into an NNF circuit in which disjuncts do not share variables. Using Propo-
sitions 19 and 20(b,d), we can then universally quantify literals in linear time, leading to
an NNF circuit since we only replace some literals with constants.

36



On Quantifying Literals in Boolean Logic

Proof of Proposition 26. By Propositions 19 and 20(a,c), one can existentially quantify
literals from an SDD circuit in linear time since conjuncts in these circuits do not share
variables. The result is guaranteed to be a DNNF circuit as one would only be replacing
some literals with >, therefore preserving the decomposability property.

Proof of Proposition 27.

(1) We first observe that primes p1, . . . , pn form a partition. Let N = {1, . . . , n}. Then∨
i∈N pi = >. Moreover, for S ⊆ N ,

∨
i∈S pi =

∧
i∈N\S ¬pi. We now have:

(¬p1 ∨ s1) ∧ . . . ∧ (¬pn ∨ sn) =
∨
S⊆N

 ∧
i∈N\S

¬pi

 ∧
∧
j∈S

sj


=

∨
S⊆N

[∨
i∈S

pi

]
∧

∧
j∈S

sj

 .
We will consider the above disjuncts according to the set S. When S = {}, the disjunct
is⊥. When S = {i}, the disjunct is (pi∧si). When S = N , the disjunct is (s1∧. . .∧sn).
Otherwise, 1 < |S| < N and the disjunct is equivalent to

∨
i∈S(pi ∧

∧
j∈S sj). Each

term (pi ∧
∧
j∈S sj) is subsumed by the disjunct (pi ∧ si) generated by S = {i}.

Moreover, the term (s1∧ . . .∧sn) is subsumed by (p1∧s1)∨ . . .∨(pn∧sn) since primes
pi form a partition. Hence, (¬p1 ∨ s1) ∧ . . . ∧ (¬pn ∨ sn) = (p1 ∧ s1) ∨ . . . ∨ (pn ∧ sn).

(2) An SDD circuit is an NNF circuit. We can construct a negation for each node in an
NNF circuit while at most doubling the size of the NNF circuit, a process that can be
done in time linear in the NNF circuit size. This can be done by traversing the NNF
circuit bottom, while constructing a negation for each encountered node. The process
is trivial for constants and literals. For a disjunction α1 ∨ . . . ∨ αn, the negation is
¬α1 ∧ . . . ∧ ¬αn and we already have nodes for all ¬αi. A similar process is applied
to conjunctions. We can therefore replace each fragment (p1 ∧ s1)∨ . . .∨ (pn ∧ sn) by
the fragment (¬p1 ∨ s1) ∧ . . . ∧ (¬pn ∨ sn) in time linear in the size of SDD circuit.

(3) Every disjunction in Γ appears in a fragment (¬p1∨s1)∧ . . .∧(¬pn∨sn). By definition
of SDDs, prime pi shares no variables with sub si and hence ¬pi shares no variables
with si.

Proof of Proposition 28. Using Proposition 27, we can in linear time transform an SDD
circuit into an NNF circuit in which disjuncts do not share variables. Using Propositions 19
and 20(b,d), we can then universally quantify literals in linear time, leading to an NNF
circuit since we only replace some literals with constants.

Proof of Theorem 8. Given Definition 12, we need to show ∆(δ) = ∆(δ↑X1,...,Xn) iff
δ |= ∀X1, . . . , Xn · ∆δ. We next show both directions of the theorem.

(⇒) Suppose ∆(δ) = ∆(δ↑X1,...,Xn). Then δ↑X1,...,Xn |= ∆δ. By Propositions 9 and 12,
we have ∀X1, . . . , Xn · δ↑X1,...,Xn |= ∀X1, . . . , Xn · ∆δ. Since variables X1, . . . , Xn are not
mentioned in δ↑X1,...,Xn , we also have δ↑X1,...,Xn |= ∀X1, . . . , Xn · ∆δ. Since δ |= δ↑X1,...,Xn ,
we finally get δ |= ∀X1, . . . , Xn · ∆δ.

37



Darwiche & Marquis

(⇐) Suppose δ |= ∀X1, . . . , Xn·∆δ. Then ∃X1, . . . , Xn·δ |= ∃X1, . . . , Xn(∀X1, . . . , Xn·∆δ)
by Proposition 18. Moreover, ∀X1, . . . , Xn · ∆δ is independent of variables X1, . . . , Xn

by Proposition 1, so we have ∃X1, . . . , Xn(∀X1, . . . , Xn · ∆δ) = ∀X1, . . . , Xn · ∆δ. Since
∃X1, . . . , Xn ·δ = δ↑X1,...,Xn , we get δ↑X1,...,Xn |= ∀X1, . . . , Xn · ∆δ. Since ∀X1, . . . , Xn · ∆δ |=
∆δ, we have δ↑X1,...,Xn |= ∆δ. Hence, ∆(δ) = ∆(δ↑X1,...,Xn).

Proof of Theorem 9. Let α = δ ∩ {¯̀1, . . . , ¯̀
n}. It suffices to show that decision ∆(δ) is

independent of characteristics ¯̀
1, . . . , ¯̀

n iff δ is an α-independent model of ∆δ. If this holds,
Theorem 9 will then follow directly from Theorem 4.

(⇒) Suppose decision ∆(δ) is independent of characteristics ¯̀
1, . . . , ¯̀

n. By Definition 13,
∆(δ) = ∆(δ \{¯̀1, . . . , ¯̀

n}) and hence δ \{¯̀1, . . . , ¯̀
n} |= ∆δ. By definition of α, we now have

δ \ α |= ∆δ. Since α ⊆ δ, then δ is an α-independent model of ∆δ.
(⇐) Suppose δ is an α-independent model of ∆δ. Then δ \ α |= ∆δ and hence δ \

{¯̀1, . . . , ¯̀
n} |= ∆δ. By definition, δ |= ∆δ so ∆(δ) = ∆(δ \ {¯̀1, . . . , ¯̀

n}). By Definition 13,
decision ∆(δ) is independent of characteristics ¯̀

1, . . . , ¯̀
n.

Proof of Proposition 29. By Proposition 12, ∀X1, . . . , Xn · ∆ = ∀`1, ¯̀
1, . . . , `n, ¯̀

n · ∆.
By Proposition 11, ∀`1, ¯̀

1, . . . , `n, ¯̀
n · ∆ = ∀¯̀

1, . . . , ¯̀
n(∀`1, . . . , `n · ∆). By Theorem 2,

∀¯̀
1, . . . , ¯̀

n(∀`1, . . . , `n ·∆) |= ∀`1, . . . , `n ·∆. Hence, ∀X1, . . . , Xn ·∆ |= ∀`1, . . . , `n ·∆.

Proof of Theorem 10. Let γ = {`1, . . . , `m}, Xm+1, . . . , Xn be all classifier features not
mentioned in γ and let Γ be the complete reason ∀`1, . . . , `m, Xm+1, . . . , Xn ·∆γ . By defi-
nition, ∆(γ?) = ∆(γ) is equivalent to γ? |= ∆γ . Moreover, Γ |= ∆γ by Proposition 2 and
Theorem 2. We next prove both directions of the theorem.

(⇒) Suppose γ? is a sufficient reason for decision ∆(γ). By definition, γ? is a prime
implicant of the complete reason Γ: γ? |= Γ and no strict subset of γ? satisfies this prop-
erty. We now have γ? |= Γ |= ∆γ and need to show that no strict subset of γ? satisfies
γ? |= ∆γ . Suppose to the contrary: α ⊂ γ? and α |= ∆γ . By Propositions 9 and 12,
we have ∀`1, . . . , `m, Xm+1, . . . , Xn · α |= ∀`1, . . . , `m, Xm+1, . . . , Xn · ∆γ . Since variables
Xm+1, . . . , Xn do not appear in α and α ⊆ {`1, . . . , `m}, we have ∀`1, . . . , `m, Xm+1, . . . , Xn ·
α = α and then α |= ∀`1, . . . , `m, Xm+1, . . . , Xn · ∆γ . Since α ⊂ γ?, then γ? cannot be a
prime implicant of Γ which is a contradiction. Hence, γ? is a minimal subset of γ that
satisfies γ? |= ∆γ (and ∆(γ?) = ∆(γ)).

(⇐) Suppose γ? is a minimal subset of γ that satisfies ∆(γ?) = ∆(γ). Then γ? is a
prime implicant of ∆γ . We need to show that γ? is a sufficient reason for decision ∆(γ)
which by definition is equivalent to γ? being a prime implicant of the complete reason Γ.
Since γ? |= ∆γ , we can use Propositions 9 and 12 as in the first part to get γ? |= Γ (γ? is
an implicant of Γ). Since γ? |= Γ |= ∆γ , then γ? must be a prime implicant of Γ, otherwise
it cannot be a prime implicant of ∆γ .

Proof of Theorem 11. By Theorem 8, ∀X1, . . . , Xn ·∆ characterizes all positive instances
with decisions that are independent of protected features X1, . . . , Xn; that is, positive in-
stances with unbiased decisions. Therefore, ∆∧¬(∀X1, . . . , Xn ·∆) characterizes all positive
instances with biased decisions. One can similarly show the second part of the theorem,
which characterizes negative instances with biased decisions.

Proof of Theorem 12. The following proof invokes Definition 6 frequently.

38



On Quantifying Literals in Boolean Logic

(a) Suppose α→ `i ∈ R(ϕ). Then α, `i |= ϕ and α, ¯̀
i 6|= ϕ. We have α, `i |= ∀`iϕ by

Proposition 8 and α, ¯̀
i 6|= ∀`i · ϕ by Theorem 2. Hence, α→ `i ∈ R(∀`i · ϕ).

(b) Suppose α→ ¯̀
i ∈ R(∀`i · ϕ). Then α, ¯̀

i |= ∀`i · ϕ and α, `i 6|= ∀`i · ϕ. Since α, ¯̀
i |=

∀`i · ϕ, we get α, ¯̀
i |= ϕ by Theorem 2. Consider two cases: α, `i |= ϕ or α, `i 6|= ϕ.

The first case is impossible since it implies α, `i |= ∀`i ·ϕ by Proposition 8 so we must
have α, `i 6|= ϕ. Since α, ¯̀

i |= ϕ, then α, ¯̀
i is an ¯̀

i-boundary model for ϕ so it cannot
be a model of ∀`i ·ϕ by Theorem 2, which is a contradiction. We must therefore have
α→ ¯̀

i 6∈ R(∀`i · ϕ).

(c) Similar to Part (a).

(d) Suppose α, ¯̀
i → `j ∈ R(ϕ). Then α, ¯̀

i, ¯̀
j 6|= ϕ and hence α, ¯̀

i, ¯̀
j 6|= ∀`i · ϕ by

Theorem 2.
(⇒) Suppose α, ¯̀

i → `j ∈ R(∀`i · ϕ). Then α, ¯̀
i, `j |= ∀`i ·ϕ and α, ¯̀

i, ¯̀
j 6|= ∀`i ·ϕ. To

show α, `j → ¯̀
i 6∈ R(ϕ), it suffices to show α, `i, `j |= ϕ. Suppose α, `i, `j 6|= ϕ. Then

α, `i, `j 6|= ∀`i ·ϕ by Theorem 2. Since α, ¯̀
i, `j |= ∀`i ·ϕ, we have α, `j → ¯̀

i ∈ R(∀`i · ϕ)
which contradicts (b). Hence, α, `i, `j |= ϕ and α, `j → ¯̀

i 6∈ R(ϕ).
(⇐) Suppose α, `j → ¯̀

i 6∈ R(ϕ). To show α, ¯̀
i → `j ∈ R(∀`i · ϕ), we need to show that

we have α, ¯̀
i, `j |= ∀`i ·ϕ and α, ¯̀

i, ¯̀
j 6|= ∀`i ·ϕ. The latter follows from the supposition

α, ¯̀
i → `j ∈ R(ϕ). The former also holds since supposition α, `j → ¯̀

i 6∈ R(ϕ) implies
that α, ¯̀

i, `j is not an ¯̀
i-boundary model for ϕ (Definition 6) so it is not dropped when

universally quantifying literal `i (Theorem 2). Hence, α, ¯̀
i → `j ∈ R(∀`i · ϕ).

Proof of Theorem 13. Let b-rule r = β → `k, world ω = β, `k and suppose r 6∈ R(ϕ) and
that r ∈ R(∀`i · ϕ). We next show that k 6= i and ¯̀

i ∈ β, which is sufficient to prove the
theorem. By Theorem 12(b), `k 6= ¯̀

i. By r ∈ R(∀`i · ϕ) and Definition 6, ω ∈M(∀`i · ϕ) and
ω[¯̀k] 6∈M(∀`i · ϕ). By ω ∈M(∀`i · ϕ) and Theorem 2, ω ∈M(ϕ). By ω ∈M(ϕ), r 6∈ R(ϕ)
and Definition 6, ω[¯̀k] ∈M(ϕ). By ω[¯̀k] ∈M(ϕ), ω[¯̀k] 6∈M(∀`i · ϕ) and Theorem 2, world
ω? = ω[¯̀k] must be an ¯̀

i-boundary model of ϕ; that is, ¯̀
i ∈ ω? and ω?[`i] 6∈ M(ϕ). To

show i 6= k, suppose the contrary i = k. Then ω?[`i] = (ω[¯̀k])[`i] = (ω[¯̀k])[`k] = ω[`k] = ω.
This conflicts with ω ∈ M(ϕ) and ω?[`i] 6∈ M(ϕ) so i 6= k. Since ¯̀

i ∈ ω? we must have
¯̀
i ∈ β.

Proof of Theorem 14. Let world ω = α, ¯̀
i, `j and let

(A) α, `i → `j ∈ R(ϕ)

(B) α, ¯̀
j → ¯̀

i ∈ R(ϕ)

(C) α, `j → `i 6∈ R(ϕ)

(D) α, ¯̀
i → ¯̀

j 6∈ R(ϕ)

(⇒) Suppose r 6∈ R(ϕ) and r ∈ R(∀`i · ϕ). By r ∈ R(∀`i · ϕ) and Definition 6, ω ∈
M(∀`i · ϕ) and ω[¯̀j ] 6∈ M(∀`i · ϕ). By ω ∈ M(∀`i · ϕ) and Theorem 2, ω ∈ M(ϕ). By
ω ∈ M(ϕ), r 6∈ R(ϕ) and Definition 6, ω[¯̀j ] ∈ M(ϕ). By ω[¯̀j ] ∈ M(ϕ), ω[¯̀j ] 6∈ M(∀`i · ϕ)
and Theorem 2, world ω? = ω[¯̀j ] must be an ¯̀

i-boundary model of ϕ; that is, ¯̀
i ∈ ω? and

ω?[`i] 6∈ M(ϕ). By ω ∈ M(ϕ), ω ∈ M(∀`i · ϕ) and Theorem 2, ω is not an ¯̀
i-boundary

model of ϕ and hence ω[`i] ∈M(ϕ). We now have

39



Darwiche & Marquis

(1) α, ¯̀
i, `j = ω ∈M(ϕ),

(2) α, `i, `j = ω[`i] ∈M(ϕ),

(3) α, ¯̀
i, ¯̀

j = ω[¯̀j ] = ω? ∈M(ϕ) and

(4) α, `i, ¯̀
j = ω?[`i] 6∈M(ϕ).

By Definition 6, (2) and (4) imply (A); (3) and (4) imply (B); (1) implies (C) and (D).
(⇐) Suppose (A), (B), (C) and (D). By Definition 6, (A) implies (2) and (4); (B) implies

(3) and (4); (C) and (2) imply (1); (D) and (3) imply (4). We have now established (1), (2),
(3) and (4)—we only need (A) and (B) together with either (C) or (D) to establish this. By
(3) and Definition 6, we get r 6∈ R(ϕ). By (1) and (2), α, ¯̀

i, `j is not an ¯̀
i-boundary model of

ϕ and hence α, ¯̀
i, `j ∈M(∀`i · ϕ) by Theorem 2. By (3) and (4), α, ¯̀

i, ¯̀
j is an ¯̀

i-boundary
model of ϕ and hence α, ¯̀

i, ¯̀
j 6∈ M(∀`i · ϕ) by Theorem 2. By ω = α, ¯̀

i, `j ∈ M(∀`i · ϕ),
α, ¯̀

i, ¯̀
j 6∈M(∀`i · ϕ) and Definition 6, we get r ∈ R(∀`i · ϕ).

References

Audemard, G., Koriche, F., & Marquis, P. (2020). On tractable XAI queries based on
compiled representations. In Proc. of KR’20, pp. 838–849.

Beame, P., & Liew, V. (2015). New limits for knowledge compilation and applications to
exact model counting. In Proc. of UAI’15, pp. 131–140. UAI Press.

Bollig, B., & Buttkus, M. (2019). On the relative succinctness of sentential decision dia-
grams. Theory Comput. Syst., 63 (6), 1250–1277.

Boole, G. (1854). An investigation of the laws of thought. Walton and Maberley, London.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers, 35 (8), 677–691.

Chan, H., & Darwiche, A. (2003). Reasoning about Bayesian network classifiers. In Proc.
of UAI’03, pp. 107–115.

Choi, A., Shih, A., Goyanka, A., & Darwiche, A. (2020). On symbolically encoding the
behavior of random forests. In Proc. of FoMLAS’20, 3rd Workshop on Formal Methods
for ML-Enabled Autonomous Systems.

Cimatti, A., Roveri, M., & Traverso, P. (1998). Strong planning in non-deterministic do-
mains via model checking. In Proc. of AIPS’98, pp. 36–43.

Coste-Marquis, S., Berre, D. L., Letombe, F., & Marquis, P. (2006). Complexity results
for quantified Boolean formulae based on complete propositional languages. J. Satisf.
Boolean Model. Comput., 1 (1), 61–88.

Darwiche, A. (2001). Decomposable negation normal form. J. ACM, 48 (4), 608–647.

Darwiche, A. (2011). SDD: A new canonical representation of propositional knowledge
bases. In Proc. of IJCAI’11, pp. 819–826.

Darwiche, A., & Hirth, A. (2020). On the reasons behind decisions. In Proc. of ECAI’20,
pp. 712–720.

40



On Quantifying Literals in Boolean Logic

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. J. Artif. Intell. Res.,
17, 229–264.

Doherty, P., Lukasziewicz, W., & Madalińska-Bugaj, E. (1998). The PMA and relativizing
change for action update. In Proc. of KR’98, pp. 258–269.

Doherty, P., Lukasziewicz, W., & Madalińska-Bugaj, E. (2000). The PMA and relativizing
change for action update. Fundamenta Informaticae, 44 (1-2), 95–131.

Eén, N., & Biere, A. (2005). Effective preprocessing in SAT through variable and clause
elimination. In SAT, Vol. 3569 of Lecture Notes in Computer Science, pp. 61–75.
Springer.

Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., & Wang, K. (2006). Forgetting in manag-
ing rules and ontologies. In Proc. of WI’06, 2006 IEEE / WIC / ACM International
Conference on Web Intelligence, pp. 411–419.

Eiter, T., & Wang, K. (2006). Forgetting and conflict resolving in disjunctive logic pro-
gramming. In Proc. of AAAI’06.

Eiter, T., & Wang, K. (2008). Semantic forgetting in answer set programming. Artif. Intell.,
172 (14), 1644–1672.

Fargier, H., & Marquis, P. (2014). Disjunctive closures for knowledge compilation. Artif.
Intell., 216, 129–162.

Fredman, M. L., & Khachiyan, L. (1996). On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms, 21 (3), 618–628.

Giunchiglia, E., Marin, P., & Narizzano, M. (2009). Reasoning with quantified Boolean
formulas. In Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook
of Satisfiability, Vol. 185 of Frontiers in Artificial Intelligence and Applications, pp.
761–780. IOS Press.

Gurvich, V., & Khachiyan, L. (1999). On generating the irredundant conjunctive and
disjunctive normal forms of monotone Boolean functions. Discret. Appl. Math., 96-
97, 363–373.

Hagen, M., Horatschek, P., & Mundhenk, M. (2009). Experimental comparison of the
two Fredman-Khachiyan-algorithms. In In Proc. of ALENEX’09, 11th Workshop on
Algorithm Engineering and Experiments, pp. 154–161.

Herzig, A. (1996). The PMA revisited. In Proc. of KR’96, pp. 40–50.

Herzig, A., Lang, J., & Marquis, P. (2013). Propositional update operators based on for-
mula/literal dependence. ACM Transactions on Computational Logic, 14 (3), 24.

Herzig, A., & Rifi, O. (1998). Update operations: a review. In Proc. of ECAI’98, pp. 13–17.

Herzig, A., & Rifi, O. (1999). Propositional belief update and minimal change. Artif. Intell.,
115, 107–138.

Huang, J., & Darwiche, A. (2007). The language of search. J. Artif. Intell. Res., 29, 191–219.

Ignatiev, A., Narodytska, N., & Marques-Silva, J. (2019a). Abduction-based explanations
for machine learning models. In Proc. of AAAI’19, pp. 1511–1519.

41



Darwiche & Marquis

Ignatiev, A., Narodytska, N., & Marques-Silva, J. (2019b). On relating explanations and
adversarial examples. In Proc. of NeurIPS’19, pp. 15857–15867.

Ignatiev, A., Narodytska, N., & Marques-Silva, J. (2019c). On validating, repairing and
refining heuristic ML explanations. CoRR, abs/1907.02509.

Katsuno, H., & Mendelzon, A. O. (1989). A unified view of propositional knowledge base
updates. In Proc. of IJCAI’89, pp. 1413–1419.

Khachiyan, L., Boros, E., Elbassioni, K. M., & Gurvich, V. (2006). An efficient implemen-
tation of a quasi-polynomial algorithm for generating hypergraph transversals and its
application in joint generation. Discret. Appl. Math., 154 (16), 2350–2372.

Kleine Büning, H., Karpinski, M., & Flögel, A. (1995). Resolution for quantified Boolean
formulas. Inf. Comput., 117 (1), 12–18.

Klieber, W., Janota, M., Marques-Silva, J., & Clarke, E. M. (2013). Solving QBF with free
variables. In Proc. of CP’13, Vol. 8124, pp. 415–431.

Knaster, B. (1928). Un théorème sur les fonctions d’ensembles. Ann. Soc. Polon. Math, 6,
133–134.

Lang, J., & Marquis, P. (2010). Reasoning under inconsistency: A forgetting-based ap-
proach. Artif. Intell., 174 (12-13), 799–823.

Lang, J., Liberatore, P., & Marquis, P. (2003). Propositional independence: Formula-
variable independence and forgetting. J. Artif. Intell. Res., 18, 391–443.

Lin, F., & Reiter, R. (1994). Forget it!. In Proc. of AAAI Fall Symposium on Relevance,
pp. 154–159.

Miller, D. M., & Thornton, M. A. (2008). Multiple Valued Logic: Concepts and Representa-
tions, Vol. 12 of Synthesis lectures on digital circuits and systems. Morgan & Claypool
Publishers.

Narodytska, N., Kasiviswanathan, S. P., Ryzhyk, L., Sagiv, M., & Walsh, T. (2018). Verify-
ing properties of binarized deep neural networks. In Proc. of AAAI’18, pp. 6615–6624.

Papadimitriou, C. H. (1994). Computational complexity. Addison–Wesley.

Pipatsrisawat, K., & Darwiche, A. (2008). New compilation languages based on structured
decomposability. In Proc. of AAAI’08, pp. 517–522.

Quine, W. V. (1955). A way to simplify truth functions. American Mathematical Monthly,
62, 627–631.

Sedaghat, N., Stephen, T., & Chindelevitch, L. (2018). Speeding up dualization in the
Fredman-Khachiyan algorithm B. In In Proc of SEA’18, 17th International Sympo-
sium on Experimental Algorithms, Vol. 103 of LIPIcs, pp. 6:1–6:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.

Shi, W., Shih, A., Darwiche, A., & Choi, A. (2020). On tractable representations of binary
neural networks. In Proc. of KR’20, pp. 882–892.

Shih, A., Choi, A., & Darwiche, A. (2018). A symbolic approach to explaining Bayesian
network classifiers. In Proc. of IJCAI’18, pp. 5103–5111.

42



On Quantifying Literals in Boolean Logic

Shih, A., Choi, A., & Darwiche, A. (2019). Compiling Bayesian network classifiers into
decision graphs. In Proc. of AAAI’19, pp. 7966–7974.

Shukla, A., Biere, A., Pulina, L., & Seidl, M. (2019). A survey on applications of quantified
Boolean formulas. In Proc. of ICTAI’19, pp. 78–84.

Stockmeyer, L. J. (1977). The polynomial-time hierarchy. Theoretical Computer Science,
3, 1–22.

Subbarayan, S., & Pradhan, D. K. (2005). NiVER: non-increasing variable elimination
resolution for preprocessing sat instances. In Hoos, H. H., & Mitchell, D. G. (Eds.),
Theory and Applications of Satisfiability Testing, pp. 276–291, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5 (2), 285–309.

Wang, K., Sattar, A., & Su, K. (2005). A theory of forgetting in logic programming. In
Proc. of AAAI’05, pp. 682–688.

Weber, A. (1986). Updating propositional formulas. In Proc. of EDS’86, 1st Int. Conf. on
Expert Database Systems, pp. 487–500.

Winslett, M. (1990). Updating Logical Databases. Cambridge University Press, Cambridge,
England.

Zhang, Y., & Foo, N. Y. (2006). Solving logic program conflict through strong and weak
forgettings. Artif. Intell., 170 (8-9), 739–778.

Zhang, Y., Foo, N. Y., & Wang, K. (2005). Solving logic program conflict through strong
and weak forgettings. In Proc. of IJCAI’05, pp. 627–634.

43


