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@ Modelling Constraint Problems
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A number of human activities requires dealing with the concept of constraints. A
constraint limits the field of possibilities in a certain universe/context.

Example

When a school timetable must be set at the beginning of the school year, the
person in charge of this task has to take into account many kinds of constraints.
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08:00-10:00
10:00-12:00
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16:00-18:00
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Constraint programming (CP) is a general framework whose objective is to
propose simple, general and efficient algorithmic solutions to constraint problems.

They are then two main issues that need to be addressed when this framework is
used to deal with a combinatorial problem:

1 In a first modelling stage, the problem must be represented by introducing

2 In a second solving stage, the problem modelled by the user must be tackled
by a software tool in order to automatically obtain one solution, all solutions
or an optimal solution.

So




The constraint satisfaction problem (CSP) resides at the core of constraint
programming. An instance of this problem is represented by a constraint
network (CN).

Note that SAT is closely related to CSP:
@ variables are Boolean
@ constraints are clauses (disjunctions of variables and their negations)

Remark
SAT and CSP are NP-complete problems

Warning

We shall only deal with discrete variables




Definition (Variable)

A variable (with name) x is an unknown entity that must be given a value from a
set called the current domain of x and denoted by dom(x).

Definition (Constraint)

A constraint (with name) c is defined over a (totally ordered) set of variables,
called scope of ¢ and denoted by scp(c), by a mathematical relation that
describes the set of tuples allowed by c for the variables of its scope.

Remark
The arity of a constraint c is the number of variables involved in ¢, i.e. |scp(c)].




Formally, a constraint is defined a mathematical relation. In practice there are
three different ways of representing a constraint:

@ in intension, by using a Boolean formula (predicate),
o implicitly by referring to a so-called global constraint,

@ in extension, by listing tuples.




Definition (Intensional Constraint)

A constraint c is intensional (or defined in intension) iff it is described by a
Boolean formula (predicate) that represents a function that is defined from
Myesep(c)dom(x) to {false, true}.

Example
A binary constraint:

Cw Vw2

A ternary constraint:
Coyz XFEYNXFEZNYy # 2




Definition (Global Constraint)

A global constraint is a constraint pattern that captures a precise relational
semantics and that can be applied over an arbitrary number of variables.

For example, the semantics of AllDifferent is that all variables must take a
different value.

Example
Our previous ternary constraint can be defined by:
Cxyz & AllDifferent(x, y, z)




Definition (Extensional Constraint)

A constraint c is extensional (or defined in extension) iff it is explicitly described,
either positively by listing the tuples allowed by ¢ or negatively by listing the
tuples disallowed by c.

Example

If dom(x) x dom(y) x dom(z) = {0,1,2}3 , then our ternary constraint can be
defined positively by:

(0,1,2),
(0,2,1),
o (1,0,2),
e (1,2,0)
(2,1,0),
(2,0,1)




Definition
A Constraint Network (CN) P is composed of:
@ a finite set of variables, denoted by vars(P),

@ a finite set of constraints, denoted by cons(P).
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We will call a pair (x,a) with x € vars(P) and a € dom(x) a value of P.

Warning J
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We can simply define a CN P such that:

e vars(P) =
{x11, X125, X0,
X215 X225+ ,X2.0,
} with dom(x; ;) = {0,1,...,9},Vi,j € 1.9
e cons(P) =
{AllDifferent(x1,1,X1,2, - . .,X1,9),
A//Different(xz’l, X225+ ,Xzyg),
}
Remark

For each hint, add unary constraints
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Problem: assigning frequencies to radio-links while avoiding interferences

Model:
@ a set of variables to represent unidirectional radio links
@ a set of binary constraints of the form
> xi— x| = dj
> |xi — x| > dj

@ several criteria to optimize (minimum span, minimum cardinality, etc.)



Structure of CSP instances: scenll, scenll-f12, scenll-f6, scen11-f1
680 variables, 4,103 binary constraints



Complete search
Depth-first exploration
Backtracking mechanism
Interleaving of

» decisions (e.g. variable assignments)
> constraint propagation
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Algorithm 1: backtrackSearch(P: CN): Boolean

P« ¢(P)

if Ix € vars(P), dom(x) = () then
L return false

if Vx € vars(P), |dom(x)| =1 then
L return true

select a value (x, a) of P such that |[dom(x)| > 1
return backtrackSearch(P|x—,) \V backtrackSearch(P|,-,)

Remark

¢ denotes the process of constraint propagation



Instances nodes CPU
scenll > 10,000
scenl1-f12 > 10,000
scenl1-f8 > 10,000
scenl1-f8 > 10,000
scenll-f4 > 10,000
scenll-f2 > 10,000
scenll-f1 > 10,000




General principles:

@ It is better to start assigning those variables that belong to the most difficult
part(s) of the problem instance: “to succeed, try first where you are most
likely to fail” (fail-first principle).

@ To find a solution quickly, it is better to select a value that belongs to the
most promising subtree.

@ The initial variable/value choices are particularly important.

Some classical variable ordering heuristics :
e dom
e dom/deg
@ dom-+deg

23



Instances nodes CPU (2) CPU (1)
scenll 31,816 5.42 > 10,000
scenl1-f12 > 10,000 > 10,000
scenl1-f8 > 10,000 > 10,000
scenll-f6 > 10,000 > 10,000
scenll-f4 > 10,000 > 10,000
scenl1-f2 > 10,000 > 10,000
scenl1-f1 > 10,000 > 10,000
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The heuristic dom/wdeg is a generic state-of-the-art variable ordering heuristic.

The principle is the following:
@ a weight is associated with each constraint,

@ everytime a conflict occurs while filtering through a constraint ¢, the weight
associated with c is incremented,

@ the weight of a variable is the sum of the weights of all its involving
constraints.

The interest is that this heuristic is adaptive, with the expectation to focus on
the hard part(s) of the instance.



Instances nodes CPU (3) CPU (2)
scenll 912 1.47 5.42
scenl1-f12 699 1.49 > 10,000
scenl1-f8 14,077 2.8 > 10,000
scenll1-f6 252,557 25.2 > 10,000
scenll-f4 3,477,514 292 > 10,000
scenll-f2 38,263,495 3,158 > 10,000
scenl1-f1 96,066,349 7,805 > 10,000
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Restarting search may help the constraint solver to find far quicker a solution
because :

@ it permits diversification of search

@ it avoids being stuck in a large unsatisfiable subtree after some bad initial
choices

@ it can be combined with nogood recording

O



Instances nodes CPU (4) CPU (3)

scenll 882 1.48 1.47
scenl1-f12 353 1.39 1.49
scenl1-f8 1,264 1.56 2.80
scenll-f6 33,542 4.45 25.20
scenll-f4 421,097 37.2 292.0
scenl1-f2 4,310,576 356 3,158
scenll-f1 11,096,549 921 7,805




Definition

Let P be a CN with vars(P) = {x1,...,x,}. A variable symmetry o of P is a
bijection on vars(P) such that {x; = a1,...,x, = a,} is a solution of P iff
{o(x1) = a1,...,0(x,) = a,} is a solution of P.

First step to break symmetries automatically: construction of a colored graph.

A

X1

2

Xo Xp\ X
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Second step to break symmetries automatically: execution of a a software tool
such as Nauty or Saucy to compute an automorphism group.

Third step to break symmetries automatically: post a constraint /ex for every
generator of the group.

Definition

A laxicographic constraint /ex is defined on two vectors 7 and Y of variables.

We have:
% -
= <X17X27"'7XI’> SIEX Y = <y1ay2a""yf>
iff
_>
X=Y= () (both vectors are empty)

orx; <y
orxy =y and (xo,.... %) <jex (Y2, ¥Vr)




Instances nodes CPU (5) CPU (4)
scenll 1,103 1.59 1.48
scenl1-f12 571 1.51 1.39
scen11-f8 654 1.56 1.56
scenll-f6 1,388 1.69 4.45
scenll-f4 2,071 1.86 37.20
scenl1-f2 12,027 2.96 356.00
scenll-f1 13,125 3.03 921.00
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The principle is the
following: after each
conflict (dead-end), keep
selecting the last assigned
variable as long as no
consistent value can be
found.

This looks like a lazy form
of intelligent backtracking

priority = z;
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Instances nodes CPU (6) CPU (5)
scenll 1,173 1.57 1.59
scenl1-f12 187 1.48 1.51
scenl1-f8 191 1.48 1.56
scenll-f6 273 1.51 1.69
scenll-f4 957 1.82 1.86
scenl1-f2 5,101 2.19 2.96
scenll-f1 11,305 2.84 3.03

34



Before search, one can try to make the CN more explicit.

For example, this can be achieved by enforcing some properties that identify
inconsistent pairs of values.

Here, strong Conservative Dual Consistency (sCDC) combined with symmetry
breaking is enough to solve instances scenl1l-fx without any search.

o 30
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Instances nodes CPU (7) CPU (6)
scenll 680 (83435) 7.82 1.57
scenl1-f12 0 (1474) 1.59 1.48
scen11-f8 0 (3793) 1.86 1.48
scen11-6 0 (4391) 1.96 1.51
scen11-f4 0 (16207) 2.88 1.82
scenll-f2 0 (29044) 3.78 2.19
scenll-f1 0 (43808) 4.95 2.84
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Every constraint represents a “sub-problem” from which some inconsistent values

can be eliminated, i.e., some values that belong to no solutions (of the constraint).

Several levels of filtering can be defined:
o AC (Arc Consistency): all inconsistent values are identified and eliminated

e BC (Bounds Consistency): only inconsistent values corresponding to bounds
of domains are identified and eliminated



Example

Constraint ¢, : x < y with
e dom(x) = [10..20]
e dom(y) = [0..15]

After filtering (either AC or BC), we get:

e dom(x) = [10..14]
e dom(y) = [11..15]

Example
Constraint ¢,, : w + 3 = z with
e dom(w) = {1,3,4,5}
e dom(z) = {4,5,8}
After filtering (AC), we get:
e dom(w) = {1,5}
e dom(z) = {4,8}

39



Warning

For non-binary constraints, AC is often referred to as GAC.

Proposition
A constraint AllDifferent(X) is GAC iff
VX' C X, |dom(X")| = |X'| = Vx € X\ X', dom(x) = dom(x)\ dom(X")

where X denotes the scope of the constraint and dom(X') = Uy exdom(x")

See (Régin, 1994)



dom(z) = {2,5}

dom(y) = {2,5}
dom(z) ={2,5,7, 9}—/



dom(z) = {2,5}

dom(y) = {2,5}
dom(z) ={2,5,7, 9}—/



dom(z) = {2,5}

dom(y) = {2,5}



dom(z) = {2,5}

dom(y) = {2,5}



dom(z) = {2,5}

dom(y) = {2,5}



When a constraint filters out one or several inconsistent values, this may trigger
the possibility for some other constraints to filter too (and again). This process of
iterative filtering operations, led constraint per constraint, is called constraint
propagation.

Algorithm 2: runConstraintPropagationOn(P: CN): Boolean

Q <« cons(P)

while Q # () do

pick and delete ¢ from Q

Xovt < c.filter() // Xenr denotes the set of variables with reduced
domains (after filtering by means of ¢)

if Ix € Xo: such that dom(x) = () then

L return false // global inconsistency detected
foreach ¢’ € cons(P) such that ¢’ # ¢ and Xe,: Nscp(c’) # 0 do
L add ¢’ to @

return true




domino-6-6

Example :
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Generalized Arc Consistency (GAC)

@ A constraint ¢ of P is GAC iff Vx € scp(c), Va € dom(x), there exists a
support for (x,a) on c.

e P is GAC iff every constraint of P is GAC.

e If there is a constraint ¢ involving a variable x such that there is no support
for (x, a) on ¢, then (x, a) is not GAC.



Generalized Arc Consistency (GAC)

Definition
Let P be a CN.

@ A constraint ¢ of P is GAC iff ¥x € scp(c), Va € dom(x), there exists a
support for (x,a) on c.

@ P is GAC iff every constraint of P is GAC.

If there is a constraint ¢ involving a variable x such that there is no support
for (x, a) on ¢, then (x, a) is not GAC.



Generalized Arc Consistency (GAC)

Definiton
Let P be a CN.

@ A constraint ¢ of P is GAC iff Vx € scp(c), Va € dom(x), there exists a
support for (x,a) on c.

@ P is GAC iff every constraint of P is GAC.

@ If there is a constraint ¢ involving a variable x such that there is no support
for (x, a) on ¢, then (x, a) is not GAC.



Generalized Arc Consistency (GAC)

Let P be a CN.

@ A constraint ¢ of P is GAC iff Vx € scp(c), Va € dom(x), there exists a
support for (x,a) on c.

@ P is GAC iff every constraint of P is GAC.

@ If there is a constraint ¢ involving a variable x such that there is no support
for (x, a) on ¢, then (x, a) is not GAC.



Definition
Let P be a CN.

@ A constraint ¢ of P is GAC iff Vx € scp(c), Va € dom(x), there exists a
support for (x, a) on c.

@ P is GAC iff every constraint of P is GAC.

@ If there is a constraint ¢ involving a variable x such that there is no support
for (x, a) on c, then (x, a) is not GAC.



Definition
Let P be a CN.

@ A constraint ¢ of P is GAC iff ¥x € scp(c), VYa € dom(x), there exists a
support for (x, a) on c.

@ P is GAC iff every constraint of P is GAC.

@ If there is a constraint ¢ involving a variable x such that there is no support
for (x, a) on c, then (x, a) is not GAC.

@ A GAC algorithm is an algorithm that removes all values from a CN P that
are not GAC.



Definition
Let P be a CN.

@ A constraint ¢ of P is GAC iff ¥x € scp(c), VYa € dom(x), there exists a
support for (x, a) on c.

P is GAC iff every constraint of P is GAC.

@ If there is a constraint ¢ involving a variable x such that there is no support
for (x, a) on c, then (x, a) is not GAC.

@ A GAC algorithm is an algorithm that removes all values from a CN P that
are not GAC.

A GAC algorithm computes the so-called GAC-closure of P by propagating
constraints until a fixed-point is reached.



Definition
Let P be a CN.

@ A constraint ¢ of P is GAC iff ¥x € scp(c), VYa € dom(x), there exists a
support for (x, a) on c.

@ P is GAC iff every constraint of P is GAC.

@ If there is a constraint ¢ involving a variable x such that there is no support
for (x, a) on c, then (x, a) is not GAC.

@ A GAC algorithm is an algorithm that removes all values from a CN P that
are not GAC.

@ A GAC algorithm computes the so-called GAC-closure of P by propagating
constraints until a fixed-point is reached.

@ A GAC algorithm is generic iff it can be applied to any CN (set of
constraints).



Algorithm Time Grain Author(s)
AC3 O(ed®) gros (Mackworth, 1977)
AC4 O(ed?) fin | (Mohr & Henderson, 1986)
AC6 O(ed?) fin (Bessiere, 1994)
AC7 O(ed?) fin (Bessiere et al. , 1999)
AC3y4 O(ed?) gros (van Dongen, 2002)

AC2001/3.1 O(ed?) gros (Bessiere et al. , 2005)

AC3.2/3.3 O(ed?) gros (Lecoutre et al. , 2003)
AC3™ O(ed?/ed?) gros | (Lecoutre & Hemery, 2007)

AC3bit(Hm) O(ed?) gros (Lecoutre & Vion, 2008)

Complexities for binary CNs

(e: number of constraints, d: greatest domain size, n: number of variables)




Instances AC2001  AC3 AC3™ AC3bt AC3bittm
800-800 CPU 48.4 2,437 34.5 13.4 8.7

mem 49M 33M 41M 33M 33M

1000-1000 CPU 89.5 5,911 62.4 25.1 14.3
mem 66 M 2M 54 M 42M 46M

2000-2000 CPU 678 > b5h 443 289 91
mem 210M 156M 117M 132M

3000-3000 CPU 2,349 >5h 1,564 1,274 278
mem 454 M 322M  240M 275M

Results on instances domino-n-d

(n variables, domain size d).
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GAC Algorithms for Table Constraints

A table constraint is a a constraint defined in extension. Is is said to be:
@ positive if allowed tuples are given

@ negative if forbidden tuples are given

48



A table constraint is a a constraint defined in extension. Is is said to be:

positive if allowed tuples are given

negative if forbidden tuples are given

Many schemes/algorithms proposed in the literature:

GAC-valid: iterating the list of valid tuples

GAC-allowed: iterating the list of allowed tuples (Bessiere & Régin, 1997)
GAC-valid+allowed: visiting both lists (Lecoutre & Szymanek, 2006)
Nextln Indexing (Lhomme & Régin, 2005)

NextDiff Indexing (Gent et al. , 2007)

Tries (Gent et al. , 2007)

Compressed Tables (Katsirelos & Walsh, 2007)

MDDs (Cheng & Yap, 2010)

STR (Ullmann, 2007; Lecoutre, 2008)



A constraint ¢ such that:
o scp(c) = {x1,x, X3, Xs, X5 }

@ c is positive

Allowed Tuples

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




Allowed Tuples

(0,0,0,0,0)

The current domains:

e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)

The current domains:
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e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)

The current domains:

e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)

The current domains:
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)
3
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X
SN—r
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—~—
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—

e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)
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e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)

The current domains:

(]
)
3
—~
X
SN—r
Il
—~—
o
—

e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)

The current domains:

(]
)
3
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X
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o
—

e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)

XXX XX XX XX XX XXX

The current domains:

(]
)
3
—~
X
SN—r
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—~—
o
—

e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)

XXX XX XX XX XX XXX

The current domains:

(]
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—

e dom(xp) = {1,2}
e dom(x3) ={1,2}
e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c?



Allowed Tuples

(0,0,0,0,0)

Is there a support for (x1,0) on c?

X

X

X

X The current domains:
X e dom(xi) = {0}
X e dom(xp) = {1,2}
§ o dom(xs) = {1,2}
X e dom(xs) = {1,2}
X o dom(xs) = {1,2}
X

X

X

X

X

= 2" — 1 operations (validity checks)



The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,1,1,1,1)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,1,1,1,1)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,1,1,1,1)
(0,1,1,1,2)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,1,1,1,1)
(0,1,1,1,2)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,1,1,1,1)
(0,1,1,1,2)
(0,1,1,2,1)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
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(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
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The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,1,1,1,1)
(0,1,1,1,2)
(0,1,1,2,1)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
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The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

(0.1,1,1,1)
(0,1,1,1,2)
(0,1,1,2,1)
(0,1,1,2,2)
(0,1,2,1,1)
(0,1,2,1,2)
(0,1,2,2,1)
(0,1,2,2,2)
(0,2,1,1,1)
(0,2,1,1,2)
(0,2,1,2,1)
(0,2,1,2,2)
(0,2,2,1,1)
(0,2,2,1,2)
(0,2,2,2,1)

XXX XXX XXX XX XX XX

Allowed Tuples

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on ¢?

Valid Tuples

(0.1,1,1,1)
(0,1,1,1,2)
(0,1,1,2,1)
(0,1,1,2,2)
(0,1,2,1,1)
(0,1,2,1,2)
(0,1,2,2,1)
(0,1,2,2,2)
(0,2,1,1,1)
(0,2,1,1,2)
(0,2,1,2,1)
(0,2,1,2,2)
(0,2,2,1,1)
(0,2,2,1,2)
(0,2,2,2,1)
(0,2,2,2,2)

XXX XXX XXX XX XX XX

Allowed Tuples

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




The current domains:
dom(x;) = {0}
° dom(xz) ={1,2}
e dom(x3) = {1,2}
(xa)
(x5)

e dom(xs) = {1,2}
e dom(xs) = {1,2}

Is there a support for (x1,0) on c? (021,22)

Valid Tuples
(0,1,1,1,1)
(0,1,1,1,2)
(0,1,1,2,1)
(0,1,1,2,2)
(0,1,2,1,1)
(0,1,2,1,2)
(0,1,2,2,1)
(0,1,2,2,2)
(0,2,1,1,1)
(0,2,1,1,2)
(0,2,1,2,1)

(0,2,2,1,1)
(0,2,2,1,2)
(0,2,2,2,1)
(0,2,2,2,2)

XXX XXX XXX XX XXXXX

= 2" operations (constraint checks)

Allowed Tuples

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)




At the heart of the algorithm, we have the procedure:

Algorithm 3: seekSupportGACva(c: Constraint, x: Variable, a: Value) : Tuple

T < setFirstValidTuple(c, x, a)
while 7 # T do
7' < binarySearch(allowed Tuples(c, x, a), )
if 7/ =T then return T
J < seeklnvalidPosition(c, ")
if j = NO then return 7/
T < setNextValid(c, x, a, 7', j)
return T




[llustration of GAC-valid-+allowed

Valid Tuples Allowed Tuples

T2

T4
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[llustration of GAC-valid-+allowed
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[llustration of GAC-valid-+allowed
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[llustration of GAC-valid-+allowed
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The current domains:
dom(x;) = {0}

(]

° dom(xz) ={1,2}
e dom(xs) = {1,2}
° m(X4) {1,2}
e dom(xs) = {1,2}

A support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)
nil




The current domains:
dom(x;) = {0}

(]

° dom(xz) ={1,2}
e dom(xs) = {1,2}
° m(X4) {1,2}
e dom(xs) = {1,2}

A support for (x1,0) on ¢?

Valid Tuples

Allowed Tuples

(0,1,1,1,1)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)
nil




Valid Tuples

Allowed Tuples

(0,11,1,1)

The current domains:
dom(x;) = {0}

° dom(xz) ={1,2}
e dom(xs) = {1,2}
° m(X4) {1,2}
e dom(xs) = {1,2}

A support for (x1,0) on ¢?

N

= 1 operation (constraint check)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,1,0)
(0,0,1,1,1)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,1,0)
nil




There exist r-ary positive table constraints such that, for some current domains of
variables,

e applying GAC3v is O(2'71).
e applying GAC3a is O(271).
e applying GAC3va is O(r?)

However, the previous schemes proceed gradually: a support is sought for each
value in turn: (x1,0), (x2,1), (x2,2), ...

Other (more recent) schemes proceed globally: GAC is enforced by traversing
(once) the structure of the constraint. For example :

e STR
e MDD



Simple tabular reduction (STR)
@ original approach introduced by J. Ullmann
@ principle: to dynamically maintain tables (only keeping supports)

o efficiency obtained by using a sparse set data structure

Versions of STR:
@ STR(1) (Ullmann, 2007)
e STR2 (Lecoutre, 2008)
@ STR3 (Lecoutre et al., 2012)



Algorithm 4: STR(c: constraint): set of variables

Output: the set of variables in scp(c) with reduced domain

foreach variable x € scp(c) do
| gacValues|x] + 0

foreach tuple T € table[c| do
if isValid(c,7) then
foreach variable x € scp(c) do
if 7[x] ¢ gacValues[x] then
L | add 7[x] to gacValues|x]

else
L remove Tuple(c, T)

// domains are now updated and X, computed

Xevt — (Z)
foreach variable x € scp(c) do
if gacValues[x] C dom(x) then
dom(x) < gacValues[x]
L Xevt ¢ Xevt U {X}

return X.,;




[llustration with STR

table[cyy.]
Ty =z

a,a,c)
a,b,a
a,c,b
b,a,a
b,b,c
c,a,b
C,C,C)
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[llustration with STR

ERCEE

e,

tablelcyy:]

T y P C C C
a,a,c)
a,b,a
a,c,b
b,a,a
b,b,c
c,a,b

C,C,C)
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[llustration with STR

tablelcyy:]
Ty z

a,a,c)
a,b,a
a,c,b
b,a,a
b,b,c
c,a,b
C,C,C)

gacValues[z] = {}
gacValues[y] = {}
gacValues[z] = {}
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[llustration with STR

tablelcyy:]
Ty z

a,a,c)/
a,b,a
a,c,b
b,a,a
b,b,c
c,a,b
C,C,C)

gacValues[z] = {a}
gacValuesy] = {a}
gacValues[z] = {c}

58



[llustration with STR
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tablelcyy:] E ﬁ
Ty z ¢ €

gacValues[z] = {a}
gacValuesy] = {a}
gacValues[z] = {c}
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[llustration with STR

tablelcyy:] E ﬁ

gacValues[z] = {a}
gacValues[y] = {a, c}
gacValues[z] = {b, c}
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[llustration with STR

tablelcyy:] E ﬁ

gacValues[z] =
gacValues[y] = {a, c}
gacValues[z] = {b, c}
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[llustration with STR

tablelcyy:] E ﬁ

gacValues[z] =
gacValues[y] = {a, c}
gacValues[z] = {b, c}

58



[llustration with STR

tablelcyy:] E ﬁ
Ty z ¢ €

gacValues[z] = {a,c}
gacValues[y] = {a, c}
gacValues[z] = {b, c}
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[llustration with STR

tablelcyy:] E ﬁ
C

gacValues[z] = {a,c}
gacValues[y] = {a, c}
gacValues[z] = {b, c}

58



[llustration with STR

tablelcyy:] ( P'{

gacValues[z] = {a,c}
gacValues[y] = {a, c}
gacValues[z] = {b, c}

58



A Table Constraint as a MDD Constraint

table[cyy.]

SO TDAUTT =W

—

(a) A table (b) A MDD
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Algorithm 5: enforceGAC-mdd(c: constraint): set of variables

Output: the set of variables in scp(c) with reduced domain

ztrue — @

Zfalse — @

foreach variable x € scp(c) do
L gacValues[x] + ()

exploreMDD(mdd(c))  // gacValues is updated during exploration
// domains are now updated and X, computed

Xevt — (Z)
foreach variable x € scp(c) do
if gacValues[x] C dom(x) then
dom(x) < gacValues[x]
L Xevt — Xevt U {X}

return X,




Algorithm 6: exploreMDD(node: Node): Boolean
Output: true iff node is supported

if node = then

L return true // since we are at a leaf
if node € X" then
L return true // since already proved to be supported
if node € ¥/ then
L return false // since already proved to be unsupported

X < node.variable ; supported + false
foreach arc € node.outs do
if arc.value € dom(x) then
if exploreMDD(arc.destination) then
supported <+ true
L gacValues[x] < gacValues|x] U {arc.value}

if supported = true then X'“¢ «+ Yt {node}
else Yk « ke |y fnode}
return supported

61



Event: z=0

Domains before filtering:
dom(x) < {a, b, c}
dom(y) < {a, b, c}
dom(z) < {b}

Collected values:
gacValues[x] < {a, b}
gacValues[y] < {a, b}
gacValues[z] «+ {b}

Domains after filtering:
dom(x) < {a, b}
dom(y) < {a, b}
dom(z) < {b}

level

A~ W

mdd(cyy.)
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The general form of a regular constraint (Pesant, 2004) is regular(X, A) where:

@ X denotes the scope of the constraint (an ordered set of variables)

@ A denotes a deterministic finite automata

An instantiation / of X satisfies the constraint iff the word formed by the
sequence of values in [ is recognized by the automata A.

Remark

The constraint regular is a generalization of the stretch constraint.
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The general form of a stretch constraint (Pesant, 2001) is stretch(X, L, U, P)
where:

@ X denotes the scope of the constraint (an ordered set of variables)
e L and U are mappings from Uycxdom(x) to N

@ P is a set of pairs of distinct values chosen in Uy¢cxdom(x)

An instantiation / of X satisfies the constraint iff
@ every stretch in /, with value v, has a length comprised between L(v) and
U(v),
@ every two consecutive stretches in | form a pair of values contained in P.

Remark

A stretch is a a maximal sequence of consecutive variables that take the same
value.




We have a set X of variables for representing the successive shifts of an employee:
e Vx € X,dom(x) = {d,o0,n} // working d(ay), o(ff), n(ight)
e Vv e {d,on} L(v)=2and U(v)=3
e P={(d,0),(0,d),(0,n),(n,0)}

Sunday Monday Tuesday ‘Wednesday Thirsday Friday Saturday

d(ay)
n(ight)

is not satisfying the stretch constraint

Sunday Monday Tuesday Wednesday Thirsday Friday Saturday

d(ay)
n(ight)

is satisfying the stretch constraint
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Here is the automata for the stretch constraint introduced previously :

/\\°
N

O—0—0

66



Here is the MDD developed from the automata over a scope of 7 variables :

O°~0O~0-0 4

/ o KN

O~0*%~0 00

e

i
\\



Converting the Stretch constraint into a MDD or Table constraint:

Scope MDD Table
7 variables 15 nodes 12 tuples
14 variables 58 nodes 176 tuples
28 variables 170 nodes 72,800 tuples
42 variables 282 nodes ? tuples
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Table: Nonogram Puzzle to be solved (see Chapter 14 in Gecode Documentation)



4 4/m|m |0 ©®

2

Table: Solution to the Nonogram Puzzle



Each hint corresponds to a regular expression.

Example

0
The hint 2 1 corresponds to

0
O

0
0*120*10* jle Ql QO Ql O

When considering the instances of the benchmarks proposed by G.
o tables are very large (over 1,000,000 tuples for some of them)
@ MDDs are rather compact (a few hundreds of nodes, at most)

Pesant,



Table for Kakuro Puzzles

Table: Kakuro puzzle to be solved (see Chapter 18 in Gecode Documentation)



23

16

29

24

17

29

10

16

10

21

11

10

28

21

Table: Solution to the Kakuro Puzzle



For a maximal sequence of variables X, we can post two distinct constraints:
o allDifferent(X)
@ sum(X) = v (i.e., yex = v) where v is the value of the hint

and we can benefit from sophisticated filtering algorithms for these constraints.
However, we deal with separate constraints sharing the same scope.
One solution (Simonis, 2008) is to build table constraints by computing solutions

to pairs of constraints “allDifferent-sum”. In the worst-case, 362,880 tuples (but
far less, most of the time)



Table constraints:
@ universal representation (but space complexity to be considered)

@ simple solution to end-users of CP systems

MDD constraints:
@ compact representation

@ can be derived from automata

What about decomposition approaches of automata-based constraints (Beldiceanu
et al., 2005)?



o
o
o
o
© Strong Inference
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Filtering through Consistencies

A consistency is a property defined on CNs. Typically, it reveals some nogoods.

7



A consistency is a property defined on CNs. Typically, it reveals some nogoods.

A first-order consistency (or domain-filtering consistency) allows us to identify
inconsistent values (nogoods of size 1). For example:

o Generalized Arc Consistency (GAC)
@ Path Inverse Consistency (PIC)
@ Singleton Arc Consistency (SAC)




A consistency is a property defined on CNs. Typically, it reveals some nogoods.

A first-order consistency (or domain-filtering consistency) allows us to identify
inconsistent values (nogoods of size 1). For example:

o Generalized Arc Consistency (GAC)
@ Path Inverse Consistency (PIC)
@ Singleton Arc Consistency (SAC)

A second-order consistency allows us to identify inconsistent pairs of values
(nogoods of size 2). For example:

@ Path Consistency (PC)
@ Dual Consistency (DC)

@ Conservative variants of PC and DC




- MaxRPC |  MaxRPWC
: : means
¢ is strictly stronger than v

PIC = PIC g0

g

Bmary Networks Non-binary Networks



25SAC «— s2SAC —— > sC25AC

— -

C2SAC ---- 3C=DC=PC «—— $3C=sDC=sPC

\ g

CDC — sCDC=SAC+CDC — SAC

PPC ¢—— sPPC

C3C «— sCPC=sC3C

CPC

—> strictly stronger - - - incomparable

MaxRPC

AC=2C

= equivalent



25AC «— s25AC

—

SAC+CDC

CPC «—— sCPC

—> strictly stronger -- - incomparable = equivalent

80



A focus on SAC

Let P be a CN.
e A value (x, a) of P is singleton arc-consistent (SAC) iff AC(P|x=.) # L.
A variable x of P is SAC iff Ya € dom(x), (x, a) is SAC.
P is SAC iff any variable of P is SAC.
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A focus on SAC

Let P be a CN.
e A value (x, a) of P is singleton arc-consistent (SAC) iff AC(P|x=.) # L.
@ A variable x of P is SAC iff Ya € dom(x), (x, a) is SAC.
P is SAC iff any variable of P is SAC.
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A focus on SAC

Let P be a CN.
@ A value (x, a) of P is singleton arc-consistent (SAC) iff AC(P|x=5) # L.
@ A variable x of P is SAC iff Ya € dom(x), (x, a) is SAC.
@ P is SAC iff any variable of P is SAC.
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A focus on SAC

Let P be a CN.
@ A value (x, a) of P is singleton arc-consistent (SAC) iff AC(P|x=5) # L.
@ A variable x of P is SAC iff Va € dom(x), (x, a) is SAC.
@ P is SAC iff any variable of P is SAC.
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Definition (Singleton Arc Consistency)

Let P be a CN.
@ A value (x, a) of P is singleton arc-consistent (SAC) iff AC(P|x=5) # L.
@ A variable x of P is SAC iff Va € dom(x), (x, a) is SAC.
@ P is SAC iff any variable of P is SAC.




Definition (Singleton Arc Consistency)
Let P be a CN.

o A value (x, a) of P is singleton arc-consistent (SAC) iff AC(P|x=,) # L.

@ A variable x of P is SAC iff Va € dom(x), (x, a) is SAC.
@ P is SAC iff any variable of P is SAC.

Remark
SAC is stronger than (G)AC
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Algorithm SAC-1
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Exploiting Incrementality of GAC Algorithms
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Algorithms SAC-opt and SAC-SDS
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Algorithms SAC-3
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Algorithm Time Space Author(s)

SAC-1 O(en?*d*) O(ed) (Debruyne & Bessiere, 1997)
SAC-2 | O(en*d*) O(n*d?) (Bartak & Erben, 2004)
SAC-Opt | O(end?®) O(end?) (Bessiere & Debruyne, 2004)
SAC-SDS | O(end*) O(n*d?) (Bessiere & Debruyne, 2005)
SAC-3 O(bed?) O(ed) (Lecoutre & Cardon, 2005)
SAC-3+ | O(bed?) | O(bmaxnd + ed) | (Lecoutre & Cardon, 2005)




SAC-1 | SAC-SDS | SAC-3 | SAC-3+
cc-20-3 CPU 23 22 7 7
(#x=0) | #Fscks | 1,200 1,200 1,200 1,200
gr-34-9 CPU 111 31 91 32
(#x=513) | ##scks | 8,474 4,720 11,017 2,013
ga-6 CPU 27 14 8.4 4.3
(#x=48) | #scks | 2,523 1,702 2,855 1,448
scen05 CPU 11 20 15(1) 1.8
(# x =13814) #SCkS 6, 513 4, 865 4-7 241 2, 389
graph03 CPU 215 136 74 39
#x=1212) | F£scks | 20,075 17,069 22,279 | 8,406




A focus on DC

Let P be a constraint network.

o A pair of values {(x, a), (y,b)} on P is DC-consistent iff (y, b) € AC(P|x=a)
and (x, a) € AC(P|y=p).

P is DC-consistent iff every pair of values {(x, a), (v, b)} on P is
DC-consistent.
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A focus on DC

Let P be a constraint network.

o A pair of values {(x, a), (y,b)} on P is DC-consistent iff (y, b) € AC(P|x=a)
and (x, a) € AC(P|y=p).

e P is DC-consistent iff every pair of values {(x, a), (y, b)} on P is
DC-consistent.
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A focus on DC

Let P be a constraint network.
o A pair of values {(x, a), (v, b)} on P is DC-consistent iff (y, b) € AC(P|x=a)
and (x,a) € AC(P|y—s).
@ P is DC-consistent iff every pair of values {(x, a), (y, b)} on P is
DC-consistent.

88



Definition (Dual Consistency - DC)
Let P be a constraint network.

o A pair of values {(x, a), (v, b)} on P is DC-consistent iff (y, b) € AC(P|x=a)
and (x, a) € AC(P|y=p).

e P is DC-consistent iff every pair of values {(x, a), (y, b)} on P is
DC-consistent.
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Definition (Dual Consistency - DC)
Let P be a constraint network.

o A pair of values {(x, a), (v, b)} on P is DC-consistent iff (y, b) € AC(P|x=a)
and (x, a) € AC(P|y=p).

e P is DC-consistent iff every pair of values {(x, a), (y, b)} on P is
DC-consistent.

Remark
CDC (Conservative DC) is DC restricted on existing binary constraints.
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Proposition
e DC is strictly stronger than PC
@ On binary CNS, DC is equivalent to PC

Proposition

For any constraint network P, we have:

@ GAC o DC(P) = sDC(P)

@ GAC o CDC(P) = sCDC(P)
But

o AC o CPC(P) # sCPC(P)

o AC o PPC(P) # sPPC(P).

s¢ is ¢ + (G)AC



Algorithm 7: sCDC1

P+ GAC(P)
finished < false
repeat
finished < true
foreach x € vars(P) do
if revise-sCDC1(x) then
P+ GAC(P)
L finished < false

until finished

// GAC is initially enforced

// GAC is maintained




Algorithm 8: revise-sCDC1(var x: variable): Boolean

modified < false

foreach value a € dom(x) do

P+ GAC(P|x=2)

if P = 1 then

remove a from dom(x)

modified < true

else

foreach constraint c,, € cons(P) do

foreach value b € dom(y) do
if b ¢ dom” (y) then
remove (a, b) from rel(c,,)

L modified < true

return modified

// Singleton check on (x,a)

// SAC-inconsistent value

// CDC-inconsistent values
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Example
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Instance MAC sCDC1-MAC
scen11-f8 nE:eli, " (;362 4’19442
scenl1-f6 nEdPeLi, 322: 12?;

P 2
scenll-f4 ngd:s 3 82568K . 83545}?
scen11-f3 ng:eli 27137\3 ; 2,6732:
scenl1-f2 nE:eli, 7357’3\; 5,2:817\/2,
scenl1-f1 nEdPeLi, 17;:(1)\3 13,55\;)




Figure: Relationships between general classes of consistencies.

1-AC —> E{¢

T\

sDC —>BiSAC—> SAC —>BoundSAC —>AC

e

Figure: Relationships when ¢ = AC and A = A~.
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