NANJING UNIVERSITY

An Empirical Study on Detecting and
Fixing Buffer Overflow Bugs

Linzhang Wang
Joint work with Tao Ye , Xuandong Li, Nanjing University, China
Lingming Zhang,University of Texas at Dallas, USA

XS B

June 6, 2016

% AR5 = AL 1 [E) €1 T P D

Collaborative Innovation Center of Novel Software Technology and Industrialization

Outline

= Background and motivation

= Empirical study

= Experimental results

= Take home messages

Background and motivation

m Careless programming with unmanaged C/C++
languages may result in security vulnerabilities

O
O
O

O

Inappropriate memory manipulation
Mistaken assumptions about size
Makeup of a piece of data

Misuse of API

= Buffer overflow is one of the best known security
vulnerabilities.

O

Missing Input validation or bound checking before
memory manipulation or API calling may overwrite the

allocated bounds of buffers.

4)) Background and motivation

m Statistics of buffer overflows in CVE

o 14.6% of all, 39 most popular

o Prevalent attacks against legacy or newly deployed

systems
Vulnerabilities by type

B Denial of
Service

B Execute Code

® QOverflow

XSS

Others

Background and motivation

m Buffer overflow

void func (char *str) {
char buf[4];
strcpy(buf, str);

< | | Stack grows

al|b |c | d

- _\ J
v v) 4 Y

Pointer Return

to address
previous

frame

str | ... Stack top

Local variables Arguments

= str="abc”
= str="abcdef...”

Background and motivation

= Buffer overflow causes severe damage

o system crash
o endless loop
o executing arbitrary code

= What can we do to deal with buffer overflow?
o Detection
o Repair
o Prevention/mitigation

Background and motivation

= Dynamic testing versus static analysis
o Dynamic approach (Stackguard[1], CCured[2]):

= Inserting special code into software to monitor buffer status

= Advantage: few false-positives é’
= Disadvantage: performance overhead, false-negatives |
o Static approach (Fortify, Checkmarx, Splint): NAY

m scanning source code

= Advantage: discovering buffer overflow before software
deployment, highly automated and scalable

= Disadvantage: many false-positives

[1] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang, and H.
Hinton, “Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks.” in
USENIX Security, vol. 98,1998, pp. 63—78.

[2] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe retrofitting of legacy code,” in ACI\f
SIGPLAN Notices, vol. 37, no. 1, 2002, pp. 128—-139.

Background and motivation

= Static techniques are widely used

= Few studies on effectiveness and efficiency of
static techniques (Kratkiewicz[1])

= Conducting a study on static techniques

o Effectiveness and efficiency of detecting buffer
overflow

[1] K. J. Kratkiewicz, “Evaluating static analysis tools for detecting
buffer overflows in ¢ code”, Master’s thesis, Harvard University, 2005

Outline

= Background and motivation

= Empirical study

= Experimental results

= Take home messages

Empirical Study

= Research questions

= Subject system

= Selected techniques

= Experimental setup

= Experimental steps

10

Research questions

= RQ1. Effectiveness?
o False positive and false negative

= RQ2. Efficiency?

o Resource consumption

= RQ3. API?

o Root cause of buffer overflow vulnerabilites

= RQ4. Manual fix patterns?
o Official repair

11

Subject systems

m Selection criterion

o Open-source
o Buffer overflow

= 100 buffer overflow bugs
from 63 real-world projects,
totaling 28MLoc, ranging
from CVE-1999 to CVE-
2014

Randomly

select bo

bugs from
CVE website

If it is from
open sourcg

Yes

No

Obtain buggy
and fixed
versions

If we have
100 bugs

J(Yes

(o)

12

Subject systems

Description Size(LoC) | # BO bugs
(#Versmns)

mapserver

libzip

man

libthai

Total

Platform for
publishing data to
web

Library for handling
Zip archives

Command used to
display user
manual

Thai language
support routines

276K

10K

10K

6K

28M

1(1)

3(2)
1(1)

100(81)
13

Static techniques

= Representative static techniques: Fortify,
Checkmarx, and Splint
o According to Gartner Group report, Fortify and

Checkmarx are leading commercial products in
application security market.

o Splint is one of the first open-source tools that
concern safety issues, and it is widely used.

14

Static techniques

= Fortify (version 5.10.1.0043) FDRT":Y

O

O
O
O

Code compiled
Data flow analysis — source and sink
Control flow analysis -- a set of operations

Semantic analysis — dangerous use of functions and
APIs

http://www8.hp.com/us/en/software-
solutions/application-security/index.html

15

Static techniques

m Checkmarx (version 7.1.6) 4CHECKMARX

O

O
O
O

Un-compiled, incomplete code
Meticulous model between users and other data

Tracking data and logic flows

|dentifying vulnerabilities according to static analysis
rules

https://www.checkmarx.com

16

Static techniques

= Splint (version 3.1.1)

o Modeling buffer and annotating buffer size
o Precondition and postcondition of buffer access
o Constraint solver

o http://www.splint.org

17

Experimental setup

= Fortify and Splint:

o on a server with Intel Xeon CPU E5-2603 (1.80GHz)
and 128GB RAM on Ubuntu Linux 12.04

m Checkmarx

o on a server with Intel Xeon CPU E5-2650 (2.30GHz)
and 384GB RAM on Windows Server 2008

18

Experimental steps

= Apply all techniques to the C st)

subjects Aplp -

o buggy version-> find the bugs that | techniaueste _%nganﬁés /
cannot be detected ->false- versions and fime
negatives. y

o fixed version->find the fixed bugs | wechmmssto _7/pE§i't?Vee'S /
that are still identified as bugs- xed Vier“S and time
>false-positives. oot AP —

m Categorize the root cause of s —fpanems%

BO->API l

= Categorize the manual fix =D

pattern. N

An example

gcc - GNU project C and C++ compiler

SYNOPSIS
gcc [-c|-S|-E] [-std=standard]

[-9] [-pg] [-Olevel]
[-Wwarn...] [-Wpedantic]
[-Idir...] [-Ldir...]
[-Dmacro[=defn]...] [-Umacro]
[-foption...] [-mmachine-option...]
[-0 outfile] [@file] infile...

Only the most useful options are listed here; see below for the
remainder. g++ accepts mostly the same options as gcc.

DESCRIPTION
When you invoke GCC, it normally does preprocessing, compilation,
assembly and linking. The "overall options" allow you to stop this
process at an intermediate stage. For example, the -c option says not
to run the linker. Then the output consists of object files output by
the assembler.
line 1 (press h for help or g to quit

CVE information

= ID: CVE-2001-1028

= Description: Buffer overflow in ultimate source
function of man 1.5 and earlier allows local

users to gain privileges.

21

Buggy code (man-1.5i2):

286
287
297
298
299

Source code

static const char*
ultimate_source(const char*
name0) {

static char
ultname[BUFSIZE];

strcpy(ultname, name0);

Fixed code (man-1.5p):

291
292
302
303
304

305
306

static const char*
ultimate_source(const
char* name0) {

static char
ultname[BUFSIZE];

if (strlen(name0) >=
sizeof(ulthame))
return name0;
strcpy(ultname, name0);

22

Results

= On the buggy version
o Forfity: detected, 3m50s
o Checkmarx: detected, 2m25s
o Splint: preprocess error

= On the fixed version

o Fortify: undetected (fixed), 3mS8s
o Checkmarx: detected (not fixed), 2m25s
o Splint: preprocess error

= API: strcpy
= Fix pattern: add boundary check

23

Outline

= Background and motivation

= Empirical study

= EXxperimental results

= Take home messages

24

RQ1: Effectiveness

Techs # Identified #
Bugs Identified
Fixes

By combining these techniques, we can get a lower
false-negative rate.)

The cost is a relatively higher false-positive rate.

NV

Checkmarx can detect most buffer overflow bugs.

W

Splint performs best in terms of false-negative rate.

N O
S— N '

Fortify performs best in terms of false-positive rate.

25

RQ2: Efficiency

(s) Checkmarx tends to be the most costly techniqé to
1600 apply, followed by Fortify.

1400
1200

1000

= Fortify
800

B Checkmarx
600 ® Splint
400
200 1
0 _l " -I_ L

10 11

26

10 -
. I I I
O I I I |I |I |I |- |. | |
s e & @ N U
& K& 0 R \\0 » &L & & & @
2 S SIS A Y < P S RN OIS
6@& = < T & & & N ’ @0‘06\ ro\@ ©

27

APls and techniques

mmm

array 4/21 2/31 8/12
memcpy 15 0/5 9/15 0/1
sprintf 13 |Sglint works well on array.

Splint reports a warning when

pointer / _
strcpy 6 |t'E|: : _ : I :I ;E ::Z
strncpy S fivac |

Fortify and Checkmarx can find most

bugs on APIs like sprintf and strcpy.

They tend to report a warning on unsafe

API.

Evidence: strncpy 1/4 1/5 o8

60
50 — Adding boundary check can fix nearly half
40 - of the studied bugs.
30
20
10
O II I I I . I . I - I - I - I - I — I — I ;
ol N QO P X &
C}QQ)O S 0(\@ \}\}}O c}(\@o c‘,(\@o QQQ 6{\@0 Qﬁé\ A(&O \(OQQ @(\Q \‘{\é
Q& E S &S @ \“;’\ L GF ,@\ O
A I PSR~ SR N S NI St >
RN NP I AP S RRARS
F & K @ o v o¥ & & P
AR, LA e N @
NS < ¥ Ny NG

29

Fix strategy and API

Most APls prefer ‘add boundary check’

For some of them, there may be a more
suitable way.

—

Add boundary
check

Use larger 3 1 4 10
buffer

API - 1 6 10

substitution
Total 31 15 13

30

Outline

= Background and motivation

= Empirical study

= Experimental results

= Take home messages

31

Take home messages

= Effectiveness:
o Use Fortify alone to achieve low false-positive rate.
o Use techniques together to achieve low false-
negative rate.
= Efficiency:

o Checkmarx is the most costly techniqgue among
studied techniques.

32

Take home messages

n API:

o Array, memcpy and sprintf are top three APIs
related to buffer overflow.

Splint has the lowest false-negative rate on array

o Fortify can find most bugs on APIs like sprintf and
strcpy, followed by Checkmarx.

33

Take home messages

= Fix strategy:

o Most buffer overflow bugs can be fixed using
strategy ‘adding boundary check'.

o If ‘adding boundary check’ fails, one can choose
other strategy according to the API involved.

34

Conclusions

= A quantitative study of the state-of-art static
techniques for buffer overflow detection on 100 bugs
from 63 real-world projects totaling 28 MLoC

= A qualitative analysis of the false-positives and false-
negatives of studied static detection techniques,
which can guide the design and implementation of
more advanced buffer overflow detection techniques.

= A categorization on the fix patterns of buffer overflow
bugs to guide both manual and automated buffer
overflow repair techniques.

35

Ongoing and Future Work

= Automatic static Buffer Overflow Warning Inspection

o Manual inspection of static report is time consuming and
lab intensive

o Static warning + dynamic symbolic execution

= Automatic Buffer Overflow Bug Repair

o Manual repair needs programming expertise and may
iIntroduce new bugs.

o For validated true buffer overflow vulnerabilities, we
automatically generate fix suggestions according to the
predefined templates which are created based on human
repair patterns.

36

= More info

o Tao Ye, Lingming Zhang, Linzhang Wang and
Xuandong Li. An Empirical Study on Detecting and
Fixing Buffer Overflow Bugs, in proceedings of
ICST2016, Aril 9-16, 2016, Chicago, US.

o http://bo-study.github.io/Buffer-Overflow-Cases/

= Contact
o lzwang@nju.edu.cn

37

= Questions?

38

