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Graphical
Models

Bioinformatics Financial Modeling Image Processing Social Networks Analysis

Graphical Models
At the intersection of Probability Theory and Graph Theory, graphical models are a
well-studied representation framework with various applications.
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Graphical Models
Encoding high-dimensional distributions in a compact and intuitive way:

Qualitative uncertainty (interdependencies) is captured by the structure

Quantitative uncertainty (probabilities) is captured by the parameters
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Graphical
Models

Bayesian
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Markov
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Sparse Bayesian
Networks

Bayesian
Polytrees

Bayesian
Forests

Sparse Markov
Networks

Bounded
Tree-width MNs

Markov
Forests

Classes of Graphical Models
For an outcome space X ⊆Rn, a class of graphical models is a pair M = G×Θ, where G is
space of n-dimensional graphs, and Θ is a space of d-dimensional vectors.

G captures structural constraints (directed vs. undirected, sparse vs. dense, etc.)

Θ captures parametric constraints (binomial, multinomial, Gaussian, etc.)
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(Multinomial) Markov Forests
Using [m] = {0, · · · ,m−1}, the class of Markov Forests over [m]n is given by Fn ×Θm,n, where

Fn is the space of all acyclic graphs of order n;

Θm,n is the space of all parameter vectors mapping

Ï a probability table θi ⊆ [0,1]m to each candidate node i, and
Ï a probability table θij ⊆ [0,1]m×m to each candidate edge (i, j).
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(Multinomial) Bayesian Forests
The class of Bayesian Forests over [m]n is given by Fn ×Θm,n, where

Fn is the space of all directed forests of order n;

Θm,n is the space of all parameter vectors mapping

Ï a probability table θi ⊆ [0,1]m to each candidate node i, and
Ï a conditional probability table θj|i ⊆ [m]× [0,1]m to each candidate arc (i, j).
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Call
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Example: The Alarm Model

Markov tree representation

Bayesian tree representation
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AlarmRadio

Call
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P(A | E)

Example: The Alarm Model

Markov tree representation

Bayesian tree representation
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Learning
Given a class of graphical models M = G×Θ, the learning problem is to extract from a
sequence of outcomes x1:T = (x1, · · · ,xT ),

the structure G ∈ G, and

the parameters θ ∈Θ
of a generative model M = (G,θ) capable of predicting future, unseen, outcomes.
A natural loss function for measuring the performance of M is the log-loss:

`(M ,x) =− lnPM (x)
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Training Set

M = (G,θ)

Graphical Model

Batch Learning
A two-stage process:

A model M ∈M is first extracted from a training set.

The average loss of the model M is evalued using a test set.
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Batch Learning
A two-stage process:

A model M ∈M is first extracted from a training set.

The average loss of the model M is evalued using a test set.
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Environment Learner

Online Learning
A sequential process, or repeated game between the learner and its environment. During each
trial t = 1, · · · ,T ,

the learner chooses a model Mt ∈M ;

the environment responds by an outcome xt ∈X , and the learner incurs the loss
`(Mt ,xt ).
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Environment LearnerMt = (
Gt ,θt)

Online Learning
A sequential process, or repeated game between the learner and its environment. During each
trial t = 1, · · · ,T ,
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the environment responds by an outcome xt ∈X , and the learner incurs the loss
`(Mt ,xt ).
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Environment LearnerMt+1 = (
Gt+1,θt+1)

Online Learning
A sequential process, or repeated game between the learner and its environment. During each
trial t = 1, · · · ,T ,

the learner chooses a model Mt ∈M ;

the environment responds by an outcome xt ∈X , and the learner incurs the loss
`(Mt ,xt ).
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Environment LearnerMt+1 = (
Gt+1,θt+1)
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Online Learning
A sequential process, or repeated game between the learner and its environment. During each
trial t = 1, · · · ,T ,

the learner chooses a model Mt ∈M ;

the environment responds by an outcome xt ∈X , and the learner incurs the loss
`(Mt ,xt ).



Online Learning 13/34

Online vs. Batch

In batch (PAC) learning, it is assumed that the data (training set + test set) is generated
by a fixed (but unknown) probability distribution.

In online learning, there is no statistical assumption about the data generated by the
environment.

Online learning is particularly suited to:

* Adaptive environments, where the target distribution can change over time;

* Streaming applications, where all the data is not available in advance;

* Large-scale datasets, by processing only one outcome at a time.
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Regret
Let M be a class of graphical models over an outcome space X , and A be a learning
algorithm for M .

The minimax regret of A at horizon T , is the maximum, over every sequence of out-
comes x1:T = (x1, · · · ,xT ), of the cumulative relative loss between A and the best model
in M , i.e.

R(A,T) = max
x1:T∈X T

[
T∑

t=1
`(Mt ,xt )− min

M∈M

T∑
t=1

`(M ,xt )

]

Learnability
A class M is (online) learnable if it admits an online learning algorithm A such that:

1 the minimax regret of A is sublinear in T , i.e.

lim
T→∞R(A,T) = 0

2 the per-round computational complexity of A is polynomial in the dimension of M .
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Does there exist an efficient online learning algorithm for Markov forests?
How can we efficiently update at each iteration both the structure F t and the parameters θt in
order to minimize the cumulative loss

∑
t `(F t ,θt ,xt )?
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Does there exist an efficient online learning algorithm for Markov forests?
How can we efficiently update at each iteration both the structure F t and the parameters θt in
order to minimize the cumulative loss

∑
t `(F t ,θt ,xt )?
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Two key properties
For the class Fm,n = Fn ×Θm,n of Markov forests,

The probability distribution associated with a Markov forest M = (F ,θ) can be factor-
ized into a closed-form:

PM (x) =
n∏

i=1
θi(xi)

∏
(i,j)∈F

θij(xi,xj)

θi(xi)θj(xj)

The space Fn of forest structures is a matroid; minimizing a linear function over Fn
can be done in quadratic time using the matroid greedy algorithm.
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Log-Loss
Let M = (f ,θ) be a Markov forest, where f is the characteristic vector of the structure.

`(M ,x) =− lnPM (x)

=− ln

∏
i=1

θi(xi)
∏
(i,j)

(
θij(xi,xj)

θi(xi)θj(xj)

)fij


So, the log-loss is an affine function of the forest structure:

`(M ,x) =ψ(x)+〈f ,φ(x)〉

where

ψ(x) = ∑
i∈[n]

ln
1

θi(xi)
and φij(xi,xj) = ln

(
θi(xi)θj(xj)

θij(xi,xj)

)
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Regret Decomposition
Based on the linearity of the log-loss, the regret is decomposable into two parts:

R
(
M1:T ,x1:T

)
= R

(
f 1:T ,x1:T

)
+R

(
θ1:T ,x1:T

)
where

R
(
f 1:T ,x1:T

)
=

T∑
t=1

`(f t ,θt ,xt )−`(f ∗,θt ,xt ) (Structural Regret)

R
(
θ1:T ,x1:T

)
=

T∑
t=1

`(f ∗,θt ,xt )−`(f ∗,θ∗,xt ) (Parametric Regret)
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Parametric Regret
Based on the closed-form expression of Markov forests, the parametric regret is
decomposable into local regrets:

R
(
θ1:T ,x1:T

)
=

n∑
i=1

ln
θ∗i (x1:T

i )

θ1:T
i (x1:T

i )
(Univariate estimators)

+ ∑
(i,j)∈F

ln
θ∗ij(x1:T

ij )

θ1:T
ij (x1:T

ij )
(Bivariate estimators)

+ ∑
(i,j)∈F

ln
θ1:T

i (x1:T
i )

θ∗i (x1:T
i )

θ1:T
j (x1:T

j )

θ∗j (x1:T
j )

(Bivariate compensation)

where

θ∗i (x1:T
i ) =

T∏
t=1

θ∗i (xt
i ), θ1:T

i (x1:T
i ) =

T∏
t=1

θt
i (xt

i )

θ∗ij(x1:T
ij ) =

T∏
t=1

θ∗ij(xt
i ,xt

j ), θ1:T
ij (x1:T

ij ) =
T∏

t=1
θt

ij(xt
i ,xt

j )
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Local regrets
Expressions of the form

θ∗(x1:T )

θ1:T (x1:T )

have been extensively studied in literature of universal coding (Grünwald, 2007).

Use Dirichlet Mixtures

Dirichlet Mixtures
Using symmetric Dirichlet mixtures for the parametric estimators,

θ1:T (x1:T ) =
∫ T∏

t=1
Pλ(xt )pµ(λ)dλ= Γ(mµ)

Γ(µ)m

∏m
v=1Γ(tv +µ)

Γ(t +mµ)

If µ= 1
2 , we get the Jeffreys mixture.
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Jeffreys Strategy (An extension of Xie and Barron (2000) to forest parameters)
For each trial t,

1 Set θt+1
i (u) = tu + 1

2

t + m
2

for all i ∈ [n],u ∈ [m]

2 Set θt+1
ij (u,v) = tuv + 1

2

t + m2

2

for all (i, j) ∈ ([n]
2

)
,u,v ∈ [m]

Performance

Minimax regret:
n(m−1)+ (n−1)(m−1)2

2
ln T

2π +Cm,n +o(m2n)

Per-round time complexity: O(m2n2)
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Structural Regret
Based on the linear form of the log-loss, the structural learning problem can be cast as a
sequential combinatorial optimization problem (Audibert et al., 2011).

Minimize

T∑
t=1

[
t∑

s=1
〈f s,φ(xs)〉

]

subject to

f 1, · · · , f T ∈ Fn
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Structural Regret
Based on the linear form of the log-loss, the structural learning problem can be cast as a
sequential combinatorial optimization problem (Audibert et al., 2011).

Minimize

T∑
t=1

[
t∑

s=1
〈f s,φ(xs)〉

]

subject to

f 1, · · · , f T ∈ Fn

Use the greedy algorithm
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Follow the Perturbed Leader (Kalai and Vempala, 2005)
For each trial t,

1 Draw rt in
[

0, 1
αt

]
uniformly at random

2 Set f t+1 = argminf ∈F n
〈f ,Lt + rt〉

where Lt =∑t
s=1φ(xs)

Performance

Minimax regret: n2 ln(T/2+m2/4)
p

2T

Per-round time complexity: O(n2 logn)
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Experiments
The average log-loss is measured on the test set at each iteration.
The online learner (FPL + Jeffreys) rapidly converges to the batch learner (Chow-Liu for
Markov trees, and Thresholded Chow-Liu for Markov forests).
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