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Graphical
Models

Bioinformatics Financial Modeling Image Processing Social Networks Analysis

Graphical Models
At the intersection of Probability Theory and Graph Theory, graphical models are a
well-studied representation framework with various applications.
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Graphical Models
Encoding high-dimensional distributions in a compact and intuitive way:

Qualitative uncertainty (interdependencies) is captured by the structure

Quantitative uncertainty (probabilities) is captured by the parameters
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Graphical
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Bayesian
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Markov
Networks

Sparse Bayesian
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Bayesian
Polytrees

Bayesian
Forests

Sparse Markov
Networks

Bounded
Tree-width MNs

Markov
Forests

Classes of Graphical Models
For an outcome space X ⊆Rn, a class of graphical models is a pair M = G×Θ, where G is
space of n-dimensional graphs, and Θ is a space of d-dimensional vectors.

G captures structural constraints (directed vs. undirected, sparse vs. dense, etc.)

Θ captures parametric constraints (binomial, multinomial, Gaussian, etc.)
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(Multinomial) Markov Forests
Using [m] = {0, · · · ,m−1}, the class of Markov Forests over [m]n is given by Fn ×Θm,n, where

Fn is the space of all acyclic graphs of order n;

Θm,n is the space of all parameter vectors mapping

Ï a probability table θi ⊆ [0,1]m to each candidate node i, and
Ï a probability table θij ⊆ [0,1]m×m to each candidate edge (i, j).
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(Multinomial) Bayesian Forests
The class of Bayesian Forests over [m]n is given by Fn ×Θm,n, where

Fn is the space of all directed forests of order n;

Θm,n is the space of all parameter vectors mapping

Ï a probability table θi ⊆ [0,1]m to each candidate node i, and
Ï a conditional probability table θj|i ⊆ [m]× [0,1]m to each candidate arc (i, j).
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Call
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Example: The Alarm Model

Markov tree representation

Bayesian tree representation
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Call
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P(A | E)

Example: The Alarm Model

Markov tree representation

Bayesian tree representation
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Learning
Given a class of graphical models M = G×Θ, the learning problem is to extract from a
sequence of outcomes x1:T = (x1, · · · ,xT ),

the structure G ∈ G, and

the parameters θ ∈Θ
of a generative model M = (G,θ) capable of predicting future, unseen, outcomes.
A natural loss function for measuring the performance of M is the log-loss:

`(M ,x) =− lnPM (x)
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Training Set

M = (G,θ)

Graphical Model

Batch Learning
A two-stage process:

A model M ∈M is first extracted from a training set.

The average loss of the model M is evalued using a test set.
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Batch Learning
A two-stage process:

A model M ∈M is first extracted from a training set.

The average loss of the model M is evalued using a test set.



Online Learning 12/34

Environment Learner

Online Learning
A sequential process, or repeated game between the learner and its environment. During each
trial t = 1, · · · ,T ,

the learner chooses a model Mt ∈M ;

the environment responds by an outcome xt ∈X , and the learner incurs the loss
`(Mt ,xt ).
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Environment LearnerMt = (
Gt ,θt)

Online Learning
A sequential process, or repeated game between the learner and its environment. During each
trial t = 1, · · · ,T ,
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the environment responds by an outcome xt ∈X , and the learner incurs the loss
`(Mt ,xt ).
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Environment LearnerMt+1 = (
Gt+1,θt+1)

Online Learning
A sequential process, or repeated game between the learner and its environment. During each
trial t = 1, · · · ,T ,

the learner chooses a model Mt ∈M ;

the environment responds by an outcome xt ∈X , and the learner incurs the loss
`(Mt ,xt ).
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Environment LearnerMt+1 = (
Gt+1,θt+1)
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Online Learning
A sequential process, or repeated game between the learner and its environment. During each
trial t = 1, · · · ,T ,

the learner chooses a model Mt ∈M ;

the environment responds by an outcome xt ∈X , and the learner incurs the loss
`(Mt ,xt ).
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Online vs. Batch

In batch (PAC) learning, it is assumed that the data (training set + test set) is generated
by a fixed (but unknown) probability distribution.

In online learning, there is no statistical assumption about the data generated by the
environment.

Online learning is particularly suited to:

* Adaptive environments, where the target distribution can change over time;

* Streaming applications, where all the data is not available in advance;

* Large-scale datasets, by processing only one outcome at a time.
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Regret
Let M be a class of graphical models over an outcome space X , and A be a learning
algorithm for M .

The minimax regret of A at horizon T , is the maximum, over every sequence of out-
comes x1:T = (x1, · · · ,xT ), of the cumulative relative loss between A and the best model
in M , i.e.

R(A,T) = max
x1:T∈X T

[
T∑

t=1
`(Mt ,xt )− min

M∈M

T∑
t=1

`(M ,xt )

]

Learnability
A class M is (online) learnable if it admits an online learning algorithm A such that:

1 the minimax regret of A is sublinear in T , i.e.

lim
T→∞R(A,T) = 0

2 the per-round computational complexity of A is polynomial in the dimension of M .
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Does there exist an efficient online learning algorithm for Markov forests?
How can we efficiently update at each iteration both the structure F t and the parameters θt in
order to minimize the cumulative loss

∑
t `(F t ,θt ,xt )?



Online Learning of Markov Forests 16/34

X1

X2

X3

X4

X5

X6

X7
X8

X9

X10
X11X12

X13

X14

X15
0.05 0.45
0.45 0.05

X2

X3

0.65
0.35

Does there exist an efficient online learning algorithm for Markov forests?
How can we efficiently update at each iteration both the structure F t and the parameters θt in
order to minimize the cumulative loss

∑
t `(F t ,θt ,xt )?
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Two key properties
For the class Fm,n = Fn ×Θm,n of Markov forests,

The probability distribution associated with a Markov forest M = (F ,θ) can be factor-
ized into a closed-form:

PM (x) =
n∏

i=1
θi(xi)

∏
(i,j)∈F

θij(xi,xj)

θi(xi)θj(xj)

The space Fn of forest structures is a matroid; minimizing a linear function over Fn
can be done in quadratic time using the matroid greedy algorithm.
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Log-Loss
Let M = (f ,θ) be a Markov forest, where f is the characteristic vector of the structure.

`(M ,x) =− lnPM (x)

=− ln

∏
i=1

θi(xi)
∏
(i,j)

(
θij(xi,xj)

θi(xi)θj(xj)

)fij


So, the log-loss is an affine function of the forest structure:

`(M ,x) =ψ(x)+〈f ,φ(x)〉

where

ψ(x) = ∑
i∈[n]

ln
1

θi(xi)
and φij(xi,xj) = ln

(
θi(xi)θj(xj)

θij(xi,xj)

)
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Regret Decomposition
Based on the linearity of the log-loss, the regret is decomposable into two parts:

R
(
M1:T ,x1:T

)
= R

(
f 1:T ,x1:T

)
+R

(
θ1:T ,x1:T

)
where

R
(
f 1:T ,x1:T

)
=

T∑
t=1

`(f t ,θt ,xt )−`(f ∗,θt ,xt ) (Structural Regret)

R
(
θ1:T ,x1:T

)
=

T∑
t=1

`(f ∗,θt ,xt )−`(f ∗,θ∗,xt ) (Parametric Regret)
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Parametric Regret
Based on the closed-form expression of Markov forests, the parametric regret is
decomposable into local regrets:

R
(
θ1:T ,x1:T

)
=

n∑
i=1

ln
θ∗i (x1:T

i )

θ1:T
i (x1:T

i )
(Univariate estimators)

+ ∑
(i,j)∈F

ln
θ∗ij(x1:T

ij )

θ1:T
ij (x1:T

ij )
(Bivariate estimators)

+ ∑
(i,j)∈F

ln
θ1:T

i (x1:T
i )

θ∗i (x1:T
i )

θ1:T
j (x1:T

j )

θ∗j (x1:T
j )

(Bivariate compensation)

where

θ∗i (x1:T
i ) =

T∏
t=1

θ∗i (xt
i ), θ1:T

i (x1:T
i ) =

T∏
t=1

θt
i (xt

i )

θ∗ij(x1:T
ij ) =

T∏
t=1

θ∗ij(xt
i ,xt

j ), θ1:T
ij (x1:T

ij ) =
T∏

t=1
θt

ij(xt
i ,xt

j )
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Local regrets
Expressions of the form

θ∗(x1:T )

θ1:T (x1:T )

have been extensively studied in literature of universal coding (Grünwald, 2007).

Use Dirichlet Mixtures

Dirichlet Mixtures
Using symmetric Dirichlet mixtures for the parametric estimators,

θ1:T (x1:T ) =
∫ T∏

t=1
Pλ(xt )pµ(λ)dλ= Γ(mµ)

Γ(µ)m

∏m
v=1Γ(tv +µ)

Γ(t +mµ)

If µ= 1
2 , we get the Jeffreys mixture.
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Jeffreys Strategy (An extension of Xie and Barron (2000) to forest parameters)
For each trial t,

1 Set θt+1
i (u) = tu + 1

2

t + m
2

for all i ∈ [n],u ∈ [m]

2 Set θt+1
ij (u,v) = tuv + 1

2

t + m2

2

for all (i, j) ∈ ([n]
2

)
,u,v ∈ [m]

Performance

Minimax regret:
n(m−1)+ (n−1)(m−1)2

2
ln T

2π +Cm,n +o(m2n)

Per-round time complexity: O(m2n2)
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Structural Regret
Based on the linear form of the log-loss, the structural learning problem can be cast as a
sequential combinatorial optimization problem (Audibert et al., 2011).

Minimize

T∑
t=1

[
t∑

s=1
〈f s,φ(xs)〉

]

subject to

f 1, · · · , f T ∈ Fn
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Structural Regret
Based on the linear form of the log-loss, the structural learning problem can be cast as a
sequential combinatorial optimization problem (Audibert et al., 2011).

Minimize

T∑
t=1

[
t∑

s=1
〈f s,φ(xs)〉

]

subject to

f 1, · · · , f T ∈ Fn

Use the greedy algorithm
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Follow the Perturbed Leader (Kalai and Vempala, 2005)
For each trial t,

1 Draw rt in
[

0, 1
αt

]
uniformly at random

2 Set f t+1 = argminf ∈F n
〈f ,Lt + rt〉

where Lt =∑t
s=1φ(xs)

Performance

Minimax regret: n2 ln(T/2+m2/4)
p

2T

Per-round time complexity: O(n2 logn)
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Experiments
The average log-loss is measured on the test set at each iteration.
The online learner (FPL + Jeffreys) rapidly converges to the batch learner (Chow-Liu for
Markov trees, and Thresholded Chow-Liu for Markov forests).
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