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Abstract

Belief revision games (BRGs) are concerned with the dyna-
mics of the beliefs of a group of communicating agents.
BRGs are “zero-player” games where at each step every agent
revises her own beliefs by taking account for the beliefs of
her acquaintances. Each agent is associated with a belief st
defined on some finite propositional language. We provide a
general definition for such games where each agent has her
own revision policy, and show that the belief sequences of
agents can always be finitely characterized. We then define a
set of revision policies based on belief merging operaitfes.
point out a set of appealing properties for BRGs and investi-
gate the extent to which these properties are satisfied by the
merging-based policies under consideration.

Introduction

In this paper, we introduce belief revision games (BRGS),
that are concerned with the dynamics of the beliefs of a
group of communicating agents. BRGs can be viewed as
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the topics which will be considered by their teacher for
this exam. At start, Alice believes that "Binary search” lwil
not be among the topics of the final exam, unlike "Bubble
sort”; Bob believes that "Binary search” will be kept by
the teacher, and that if "Bubble sort” is kept then "Quick
sort” will be chosen as well by the teacher; finally, Charles
just feels that "Binary search” will not be considered by
the teacher. Each pair of friends exchange their opinions
by sending e-mails in the evening. Each student is ready
to make her opinion evolve by adopting the opinions of her
friends when this does not conflict with hers, and by conside-
ring as most plausible any state of affairs which is as close
as possible to the set of opinions at hand (her own one plus
her friends’ ones) in the remaining case. At the end of each
day, Alice e-mails to Bob with her feelings, Bob to both Alice
and Charles, and Charles to Bob. One is asked now about
what can be inferred from this description. Some of the key
guestions are: (1) How beliefs must be updated? (2) Will
agents always agree on some pieces of belief if they agree

“zero-player” games: at each step of the game each agenton it at the beginning of the game? (3) Will they eventually

revises her current beliefs (expressed in some finite propos
tional language) by taking account for the beliefs of her ac-
guaintances. The aim is to study the dynamics of the game
i.e., the way the beliefs of a group of agents evolve depen-
ding on how agents are ready to share their beliefs. BRGs
could be useful to model the evolution of beliefs in a group
of agents in social networks, and to study several intergsti
notions such as influence, manipulation, gossip, etc. B thi
paper we mainly focus on the definition of BRGs, using for-
mal tools coming from belief change theory, and investigate
their behavior with respect to a set of expected logical pro-
perties. Let us introduce a motivating example of a BRG.

Example 1 Consider a group of three undergraduate stu-
dents, Alice, Bob and Charles, following the same CS cur-
riculum. Bob is a friend of both Alice and Charles, but
Alice and Charles do not know each other. Alice, Bob and
Charles want to prepare the final exam of the "Basics of pro-
gramming” course. Each student has some feelings about

Copyright(© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

stop changing their beliefs?
In the following, we present a formal setting for BRGs.

' Our very objective is to provide some answers to the ques-

tions above. Thus, we address question (1) by putting for-
ward a set of revision policies which are based on exis-
ting belief merging operators from the literature and the in
duced belief revision operators. We identify a set of valeab
properties for BRGs. They include unanimity preservation
which models question (2) and convergence which models
question (3). For each revision policy under consideration
we determine whether such properties are satisfied or not.
The proofs of propositions are given in an appendix.

Belief Revision Games

Belief sets are represented using a propositional language
Lp defined from a finite set of propositional variabf@snd

the usual connectived. (resp.T) is the Boolean constant
always false (resp. true). An interpretation is a total fiorc

from P to {0, 1}. The set of all interpretations is denoted
W. An interpretationw is a model of a formulap € Lp



if and only if it makes it true in the usual truth functional
way. Mod(y) denotes the set of models of the formuyla
i.e., Mod(p) = {w € W | w = ¢}. = denotes logi-
cal entailment and:= logical equivalence, i.ep | o iff
Mod(y) C Mod(v) andp = 9 iff Mod(p) = Mod(1). A
profile C = (1, ..., ¢n) is a finite vector of propositional
formulae. Two profiles of formuladC, (o, ... L)
andKy = (¢?,...,02) are said to be equivalent, denoted
K1 = K. if there is a permutatiorf over{1,...,n} such
that for everyi € 1,...,n, p! = gpfc(i). Let us now intro-
duce the formal definition of a Belief Revision Game.

Definition 1 (Belief Revision Game)A Belief Revision
Game (BRG)s a 5-tupleG = (V, A, Lp, B, R) where

V ={1,...,n}is afinite set;

A CV x Vis anirreflexive binary relation ofv’;

Lp is a finite propositional language;

B is a mapping fron¥/ to Lp;

R {Ri,...,R,}, where eachR; is a mapping

from Lp x c ) g Lp with in(i) = [{j |
(7,3) € A}| the in- degree ofz such that for aII for-

mulae @5, 1, - -, Pingyr 90, P Pinyr I 06 =
(10(2) and <(}9%559011n(1)> - <(‘D%779912n(1)>1 then
Ri(00, %15+ Piny) = Riled, o1, 05,;)), and

such that ifin(i) = 0, thenR; is the identity function.

LetG = (V, A, Lp, B,R) be a BRG. The se¥ repre-
sents the set of agents under consideratiof.iThe setA
represents the set atquaintancesetween the agents. In-
tuitively, if (i,j) € A then agentj is “aware” of the be-
liefs of agent; in the sense that agehtommunicates her
beliefs to ageny during the game. The sd® represents
each agent's beliefs expressed by a formula f&m for
eachi € V, the formulaB(i) (notedB; for short) is called
a belief stateand represents the initial beliefs of agent
Lastly, each elemenk; € R is called therevision policy
of agenti. Let us denot&; the contextof 4, defined as the
sequenc€; = B;,, ..., B;, ,, wherei; < - <) and
{il, e ,’Lm(z)} = {ij | (’L'j,i) S A} ThenRi(Bi,Ci) is the
belief state of agernitonce revised by taking into account her
own current beliefd3; and her current context. It is assumed
by definition that all beliefs are considered up to equiveden
(i.e., the syntactical form of the beliefs does not mattag a

that an agent’s beliefs do not evolve spontaneously when she

has no neighbor.
Playing a BRG consists in determining how the beliefs of

each agent evolve each time a revision step is performed.

This calls for a notion of "belief sequence”, which makes
precise the dynamics of the game:

Definition 2 (Belief Sequence)Given a BRGG = (V, A,
Lp, B, R) and an agent € V, thebelief sequencef i,
denoted(B;?)scn, states how the beliefs of agehevolve
while moves take placéB;)scn is inductively defined as
follows:

° B0 B;;

e Bt = Ry(B:,Cs

context of at steps.

) for everys € N, whereC;? is the

B? denotes the belief state of agérifter s moves.

Since Lp is a finite propositional language, there exists
only finitely many formulae up to equivalence, hence only
finitely many belief states can be reached. To make it formal,
we need the concept of belief cycle:

Definition 3 (Belief Cycle) A sequence(K®)cn of for-
mulae from Lp is cyclic if there exists a finite subse-
quenceK” , K¢ such that for everyj > ¢, we have
Ki = Kb+((G-bmod(e=b+1) | this case, the (characte-
ristic) belief cycleof (K*®)en is defined by the subsequence
K?, ..., K¢ forwhichb ande are minimal.

By the above argument, it is easy to prove that:

Proposition 1 For every BRGG = (V, A, Lp, B, R) and
every agent € V, the belief sequence ofs cyclic.

As a consequence, each ageig associated with a be-
lief cycle which we simply denot€'yc(B;): the belief se-
quence of every agent(which is an infinite sequence) can
always be finitely described, since it is entirely charazest
by its initial segmenB?, B} ...,Bffl and its belief cycle
Cyc(B;) = BY, BV, ..., B, which will be repeated (up
to equivalence) ad infinitum in the sequence.

While there is no winner in a BRG, such agame ABRG
G can be "stopped” after a finite number of stepsp(G) =
max;ey ({e | Cye(B;) = BY,...,B¢}), since when this
stepstop(G) is reached the belief cycles of all agents can
be determined up to equivalence and the future evolution of
the agents’ beliefs can be predicted from the sequences of
beliefs reached beforgop(G).

In the following, we are interested in determining the
pieces of beliefs which result from the interaction of the
agents in a BRG, focusing on the agents’ belief cycles. A
formulay is considered accepted by an agent when it holds
in every state of its belief cycle, which means that from some
steps, ¢ will always hold. Then we define the notion of ac-
ceptability at the agent level and at the group level:

Definition 4 (Acceptability) LetG = (V, A, Lp, B, R) be
aBRG andy € Lp. pisaccepted by € V if and only if for
everyB; € Cyc(B;), we haveB; = ¢. ¢ is unanimously
acceptedn G if and only if p is accepted by all € V.

A case of interest is whel@'yc(B;)| = 1, i.e., the belief
cycle of agent has lengthl. In such a case, the beliefs of
agent “stabilize” once the belief cycle is reached. A specific
case is achieved kstableBRGs:

Definition 5 (Stability) Let G (V,A,Lp,B,R) be a
BRG. A belief stateB; € B is said to bestablein G if
|Cye(B;)] = 1. The BRGG is said to bestableiff each
B; € Bis stable inG.

Stability of a game is an interesting property, since it says
in a sense that we reach some equilibrium point, where no
agent further changes her belief. These two concepts will
take part of some further properties on BRGs which we will
introduce and investigate in the following.



Merging-Based Revision Policies

While all kinds of possible revision policies are allowed fo
BRGs, we now focus on revision policig? that are ra-
tionalized by theoretical tools from Belief Change Theory
(see e.g. (Alchourron, Gardenfors, and Makinson 1985)),
particular belief merging and belief revision operators: B
fore introducing specific classes of revision policies of in

terest, let us introduce some necessary background on be-

lief merging and belief revision. Formally, given a propo-
sitional languageC» a merging operatoA is a mapping
from Lp x Lp™ to Lp. It associates any formuja(thein-
tegrity constrainty and any profilekl = (Ky,..., K,) of
belief states with a new formula , (XC) (themerged state

A merging operato aims at defining the merged state as
the beliefs of a group of agents represented by the profile,
under some integrity constraints. A set of nine standard pro
perties denotedC0)—(IC8) are expected for merging ope-

[w [ K [ K> | K [| dy(w,K) || di"™(w,K) |
o] 2] 2 4 0,2,2)
0111 3 (1,1,1)
oL 1T [ 11 3 (1,1,1)

Table 1: The merging operatafs#:* and Ad#-CMin,

sum X)) and the GMin operatorsA%¢Min  GMin opera-
tors' associate with every formula and every profilekC
a belief stateA®-/(K) which satisfiesM od(A57(K)) =
min(Mod(p), <x ), where<®:®" is the total preorder over

K :
interpretations induced bi¢ defined byw g%GM'“ w' if

and only if d°Min(w, k) <ler gCMin(y’ ) (where<!e®
is the lexicographic ordering induced by the natural order)
and d°Min(w, K) is the vector of numberd,, ..., d, ob-
tained by sorting in a non-decreasing order the multiset

rators (Konieczny and Pino Pérez 2002). Such operators are (d(w, K;) | K; € K).

calledIC merging operatorsFor space reasons, we just re-
call those used in the rest of the paper:

(IC0) AL (K) = s
(IC1) If p - L, thenA,(K) = L;
(IC2) If Agex KAplE L thenA (K) = Agexe KA s
(|C3) If ’Cl ’CQ and 1751 12, then A#l (’Cl) =
AM2 (ICQ)v
(|C4) If K1 lZ Iy K2 lZ M andAH(<K1,K2>) A K1 [# 1,
thenA“(<K1, K2>) A Ko 17& 1.
A couple of additional postulates have been investigated
in the literature, which are appropriate for some merging

scenarios. We recall below one of them, Disjunction (Ev-
eraere, Konieczny, and Marquis 2010):

(Disj) If \/ IC A pis consistent, ther ,(K) = \/ K.
(Disj) is not satisfied by all IC merging operators but is

expected in the case when it is assumed that (at least) one of

the agent is right (her beliefs hold in the actual world), but
we do not know which one.

Distance-based merging operattw$/ are characterized
by a pseudo-distancé (i.e., triangular inequality is not
mandatory) between interpretations and an (aggregation)
function f from R x --- x RT to R* (some basic con-
ditions are required ory, including symmetry and non-
decreasingness conditions, see (Konieczny, Lang, and Mar-
quis 2004) for more details). They associate with every for-
mula . and every profiléC a belief stateA -/ (K') which sa-
tisfies Mod(A%S (KC)) = min(Mod (), <g'), where<y:/
is the total preorder over interpretations inducedkbye-
fined byw <&/ o’ if and only if df (w, k) < d/ (W', K),
where df (w,K) = frex{d(w,K)} and d(w, K)
min,—x d(w,w’). Usual distances arép, the drastic dis-
tance (p(w,w’) = 0if w = w’ and1 otherwise), andly
the Hamming distancelf; (w, w’) = n if w andw’ differ on
n variables).

IC merging operators include some distance-based ones.

We mention here two subclasses of them: the summa-
tion operatorsA®* (i.e., the aggregation function is the

Example 2 Let P {a,b}, K = (K1, K2, K3) where
Ki=aANb Ky = K3 = -aA-b andy = a Vb We
consider both summation ari&Min operators based on the
Hamming distance. Table 1 shows for each interpretation
w € Mod(u) the distancesiy (w, K;) for i € {1,2,3},
and the distancegy; (w, K) and d$M"(w, K) (interpreta-
tionsw are denoted as binary sequences following the or-
deringa < b). We get that\##-*(K) = (a A=b) V (—a A b)
andAZH=GMi"(IC) =aAb.

Noteworthy, summation operators aMin operators
satisfy all (IC0)—(IC8) postulates (whatever the pseudo-
distance under consideration), and additiondlly)in ope-
rators satisfy(Disj), as well as the operatopA?>> =
Adp-GMin ((Disj) is not satisfied byA?# ).

Belief revision operators can be viewed as belief merging
operators restricted to singleton profiles: the revision
K o Ky of a belief state/; by another belief staté(,
consists in “merging” the singleton profilg(;) under the
integrity constraintd(s. Accordingly, if A is an IC merging
operator then the revision operator induced byA defined

for all states K1, Ky as Ky oan Ko = Ag,((K1))
satisfies the standard AGM revision postulates
(Alchourrén,  Gardenfors, and Makinson  1985;

Katsuno and Mendelzon 1992).

We are now ready to introduce several classes of revision
policies R; which are parameterized by an IC merging ope-
rator A and for some of them, by the corresponding revi-
sion operatopa.? LetG = (V, A, Lp, B,R) be a BRG. In
the following, we assume for the sake of simplicity that all
agentsi € V apply the same revision policy, i.e., given an
IC merging operatoA, for all R; € R, R; = Ra. Then let
us consider the following revision policies, defined at each
steps for any agent who has a non-empty conte&t

'Here we give an alternative definition &°Mi" by means of
lists of numbers. However using Ordered Weighted Averages,
could fit the definition of a distance-based operator (Kamgc
Lang, and Marquis 2004).

2When using a merging operator without integrity constesaint
we just noteA (K) instead ofA+(K) for improving readibility.



Definition 6 (Merging-Based Revision Policies) [stepi | Bf ] Bi | Bl ]

1/ps (s — 5\Y.- 0 -$AD sA(b=q) -8
* Ba(BLCD =AU \ . I bhqg | sAbhq | b=g4
o RA(B;.CY) = Anqesn((B)  [=Bjoa ACH))]; S2 || sAbAqg| —sADAg | —sADAg
o RA(B;,C}) = A((B;,CY)); . .
o RA(B:,C3) = A((BS, AUCI)))); Table 2: The belief sequences of Alice, Bob and Charles.
R3 (B?,C?) = Aps(A((C? = A((C? B3, ) . _ i
* GA( " l) B (S< i) 1= A ea Bl that if "Bubble sort” is kept then "Quick sort” will be cho-
o RA(B;],C7) = Ap: ((C7)). sen from Bob's view since this does not conflict with her
be syntax-independent (i.e., profiles and integrity casts "Binary search” will not be considered since Bob disagrees
are considered up to equivalence), these revision pobicies ~ With it. Thus Alice’s beliefs evolve froms A bt0 b A g. Si-
all consistent with the conditions given in Definition 1. milarly, Bob’s beliefs evolve fromA (b = ¢) to =s Ab A g.

Intuitively, these strategies are ranked according toghe r ~ Note here that since both friends Of Bob agree aboyBob
lative importance given to each agent's beliefs compared to changes his mind aboutit. Charles’ beliefs evolve frasnto
her neighbors’ opinion. FakY, , only the aggregated opinion b = q. Atthe end of the day, a further e-mail exchange pro-
of the neighbors is relevant. F&2 , the current opinion of cess takes place. It makes the three f(le_nds modifying their
the agent is revised by the aggregated opinion of the neigh- Peliéfs and now sharing the same opinion about the exam
bors; doing so, an agent is ready to adopt the part of the tOPICS, namely-s Ab A g. Their opinions then do not change
merged beliefs of her neighbors which are as close as pos- 2Ny longer. _ o
sible to her own current beliefs. F&2 the agent considers The belief sequences are graphically represented in Fi-
that her opinion is as important as each one of her neighbors. guré 1. At each time step, blue nodes are agents accep-
For R4 the agent considers that her opinion is as important NG ¢ = s A b A ¢, red nodes denote agents accepting
as the aggregated opinion of her neighbors.RRrandRS,, —p = —s V 7b vV ~g and gray nodes stand for agents ac-
the agent does not give up her current beliefs and just ascept CePting neitherp nor —e.
additional information compatible with them. Noteworthy, _
R3, and RS are not equivalent: foRR% the agent first ag- step 0 step 1 steps i> 2

gregates her neighbors’ opinion, and then revise the merged

result by her own opinion; foRS the agent proceeds with

her neighbors’ opinion and her own one in a single step. > g :D
Example 1 (continued) We formalize the example pre-

sented in the introduction as the BRG= (V, A, Lp, B, R)
defined as follows. LeV = {1,2,3} wherel cor- Figure 1: A graphical representation of belief sequences.
responds to Alice2 to Bob, and3 to Charles. A =
{(1,2),(2,1),(2,3),(3,2)} expresses that Alice and Bob
are connected, and that Bob and Charles are connected.

Lp is built up from the set of propositional variablés = Logical Properties for Belief Revision Games

{s.0, ¢}, wheres stands for “Binary Search "} for “Bubble We introduce now some expected logical properties for
Sort” and ¢ for “Quick Sort”. The initial beliefs of agents BRGs, and investigate which BRGs satisfy them depending
are expressed aB; = -s A b, By = s A (b = ¢) and on the chosen revision policy. While the properties here-

B3 = —s. Since in the case of conflicting beliefs, each after are relevant to all BRGs, we focus on BRGs which
agent considers to merge her friends’ opinions and her own are instantiated with revision policies from the six classe

one together, revision policieR% are appropriate candi- defined in the previous section, and assume that the same
dates for each agent. Let us consider the summation opera- revision policy is applied for each agent. Given a revision
tor based on the Hamming distance. We h&je= Ry = policy R, G(RX) is the set of all BRGSV, C, Lp,C, R)

R3 = RZdH,E. The belief sequences associated with the \here for each?;, € R, R; = R% . Additionally, R is

three agents are given in Table 2: the belief cycle of agent gaid to satisfy a given properfy on BRGs if all BRGs from

1 (resp.2, 3) is given by(B7) (resp.(B3), (B3)). G is a G(RX) satisfyP.

stable game. Note thats A b A ¢ is unanimously accepted We start with a set of “preservation” properties which are

in G (as well as all formulae entailed by it). counterparts of some postulates on belief merging operator
At flrSt, Alice believes that “Blnary Search” will be con- (Cf previous Section)_ These properties express the idga t

sidered, unlike “Bubble Sort”. On the next day, she still  the interaction between agents should not lead them to “de-
believes that "Bubble sort” will be considered (since this  grade” their belief states.

does not conflict with Bob’s view), but she now believes that o ) .
"Quick sort” will be considered as well (she adopts the fact Definition 7 (Consistency Preservation (CP))A  BRG
G =(V, A, Lp, B, R) satisfieCP) if for eachB; € B, if
3Consider for instanc€; = p A ¢, —p, —p A =g and B; = p. B, is consistent then all beliefs fro(B; ) ;e are consistent.
ThenR? (B;,C;) = pA—qwhereask’ (Bi,C;) = pAg.

AdDZ AdDZ



(CP) requires that agents with consistent initial beliefs
never become self-conflicting in their belief sequences It i
the direct counterpart ¢fC1) for merging operators:

Proposition 2 For everyk € {1,...,6}, RX satisfieCP)
if A satisfieqIC1).

Definition 8 (Agreement Preservation (AP)) A BRGG =
(V, A, Lp, B, R) satisfieqAP) if given any consistent for-
mulay € Lp, if for eachB; € B, ¢ = B; then for each
B; € Bandatevery step > 0, ¢ = B;.

(AP) requires that if all agents initially agree on some al-
ternatives, then they will not change their mind about them.
It corresponds t¢IC2) for merging operators:

Proposition 3 For everyk € {1,...,6}, RX satisfieAP)
if A satisfieq1C2).

Definition 9 (Unanimity Preservation (UP)) A BRGG =
(V, A, Lp, B, R) satisfieUP) if given any formulay €
Lp, iffor eachB; € B, B; = ¢ then for eachB; € B and
atevery step > 0, B = .

(UP) states that every formula which is a logical con-
sequence of the initial agents’ beliefs should remain so in
their belief sequence; note that in such a case, the formula
is unanimously accepted in the BRG under consideration
(cf. Definition 4). It is interesting to note that the staterse
of (AP) and (UP) have quite a similar structure. However,
(AP) expresses a unanimity on models whei@#2) is con-
cerned with unanimity on formulae. The corresponding pro-
perties for merging operators have been presented in (Ev-
eraere, Konieczny, and Marquis 2010), where the authors
also showed that the corresponding postulate of unanimity
on formulae for merging operators is equivalent(Risj)

(cf. previous section).

Proposition 4 For everyk € {1,...,6}, RX satisfieqUP)
if A satisfies:

e (ICO)whenk € {5,6};

o (Dig) whenk € {1,3,4};

e (ICO) and(Dig) whenk = 2.

In the general case, revision policidgk with k €
{1,2,3,4} do not satisfy(UP) for merging operatorg\
which do not satisfy(Disj). This is because such merging
operators may produce new beliefs absent from the states of
the profile under consideration: some interpretationsdbat
not satisfy any of the input belief states can be models of the
merged state. However, fdtX and R4, A is not required
to satisfy(Disj) since in the presence ¢fCO) alone these
policies are the most change-reluctant ones: each agent who
acceptsp at some step will keep acceptipgat the next step
since she will only refine her own beliefs. We address pre-
cisely the behavior of all merging-based revision poliéies
terms of agents’ responsiveness to their neighbors:

Definition 10 (Responsiveness (Respp) BRG G = (V,
A, Lp, B, R) satisfies(Resp) if for each B, € B such
that C; is not empty, for every step > 0, if (i) for every
B; €C;, B] NB} = L, and (i) /\B; ccs B, ¥ L, then

BT~ By,

Informally, (Resp)demands that an agent should take into
consideration the beliefs of her neighbors whenever (i) her
beliefs are inconsistent with the beliefs of each one of her
neighbors, and (ii) her neighbors agree on some alterrsative
Accordingly,(Resp)is not satisfied byz andR4:

Proposition 5 If A satisfieq1C0), thenR% and R do not
satisfy(Resp).

But (Resp)is satisfied by most of the remaining revision
policiesR% under some basic conditions dn

Proposition 6 For everyk € {1,2,4}, Rk satisfiegResp)
if A satisfies:

e (IC2) whenk = 1;
e (1C0) and(I1C2) whenk = 2;
e (1C2) and(I1C4) whenk = 4.

Intuitively, Ré seems to be less change-reluctant than
R}, since forR} the agent considers her beliefs as being as
important as each one of her neighbors wherea&forshe
considers her beliefs as being as important as the aggtegate
beliefs of her neighbors. However, surprisingty does not
satisfy(Resp)even when some “fully rational” IC merging
operatorsA are used:

3
AdH,)D

Proposition 7 R does not satisfyResp).

Recall that the merging operatax®# > satisfies all the
standard IC postulatg$C0)—(IC8). Thus, the fact that\
satisfies those postulates is not enough Rjr to satisfy
(Resp) However, we show below that these postulates are
consistent with(Resp) in the sense that there exists a mer-
ging operatorA satisfying(IC0)—(IC8) (and(Disj)) which
makesR3 a responsive policy:

Proposition 8 For any aggregation functiorf, RidD,f sa-
tisfies(Resp).

In particular, the revision policy?deD,Z
satisfiegResp)

Given a BRGG = (V, A, Lp, B, R), a formulay and
an agent € V, let us denote~,_,, the BRG(V, A, Lp,
B’, R) defined asB] = B, A p and for everyj € V, j # 1,
B} = B;.

Definition 11 (Monotonicity (Mon)) A BRGG = (V, A,
Lp, B, R) satisfies(Mon) if whenevery is unanimously
accepted irGG, ¢ is also unanimously accepted@_. , for
every; € V.

(Mon) is similar to themonotonicity criterionin Social
Choice Theory. It is expressed in (Woodall 1997) as the
condition where a candidate should not be harmed if she is
raised on some ballots without changing the orders of the
other candidates. In the BRG context, a formulevhich is
unanimously accepted should still be unanimously accepted
if some agent’s initial beliefs were “strengthened” py

For each revision policy?%, k € {1,...,6}, (Mon) is
not guaranteed even when the merging operator under con-
sideration satisfies the postula{&s0)—(I1C8):

Proposition 9 For everyk € {1,...,6}, RZdH,z
satisfy(Mon).

— 3
= RAdD,GMm

does not



The existence of revision policie®% which satisfy Ranjbar-Sahraei et al. 2014). We focus here on related work
(Mon) remains an open issue. However, one conjectures that strongly connected to Belief Revision Games.
for everyk € {1,...,6}, RZdD,z satisfies(Mon). This In (Delgrande, Lang, and Schaub 2007), the authors in-
claim is supported by some empirical evidence. We have troduce a general framework for minimizing disagreements
conducted a number of tests when four propositional sym- among beliefs associated with points connected through a
bols are considered in the language, for various graph graph. They define a completion operator which consists in

topologies up to 10 agents and fore {1,...,6}. All the revising the belief state of each point with respect to the be

tested instances supported the claim. lief states of its “neighbors”. This operator outputs a new
The last property we provide concerns the stability issue: graph where each belief state is strengthened and resitricte

Definition 12 (Convergence)A BRG satisfie6Conv) if it is to the models which are the closest ones to the neighbor

states. Suitable applications include the case when piaints
N o o . the graph are interpreted as regions in space (Wirbel; Jean
Proposition 10 The revision policies?} and R} satisfy soulin, and Papini 2000). Though the idea of embedding be-
(Conv) if A satisfieq(IC0). lief states into a graph structure is similar to our approach
None of the remaining revision policie®%, k € it differs from BRGs on several aspects. First, only undi-
{1,2,3,4} satisfy (Conv) in the general case. In fact, for ~ rected graphs are considered. Second, their completion ope
these policies the stability of BRGs cannot be guaranteed as 'a10r is idempotent so it cannot be used iteratively. THoe,

soon as the merging operator under consideration satisfies!ief states are strengthened by the operation of completion
some basic IC postulates. whereas in BRGs agents can “give up” beliefs (e.g., when

considering responsive policies suchidls R? and R*).
In (Gauwin, Konieczny, and Marquis 2007), the authors
introduce and study families of so-called iterated merging

stable.

Proposition 11 For everyk € {1,2,3,4}, RX does not sa-
tisfy (Conv) if A satisfies:

e (IC2) whenk = 1; conciliation operators. Such operators are consideragéo r
¢ (1C0) and(IC2) whenk = 2; the dynamics of the profildC of belief states associated
o (IC1), (IC2) and(I1C4) whenk € {3,4}. with a group of agents. At each step the st&teof agent

i is modified, by revising the merged statgK) by B;
All the results are summarized in Table 3. For each class (skeptical approach), or by revisiig; by the merged state
R of revision policies and each property on revision poli- A(K) (credulous approach). Such merge-then-revise change
cies, for some (set of) postulate(®) on merging operators  functions are closely related to our merging-based rewisio

or directly for some merging operatorg(P) (resp. x (P)) policies R* (for the credulous one) an&t® (for the skep-
means thaR’ satisfies (resp. does not satisfy) the corres- tical one). They do not coincide with them nevertheless
ponding property wher satisfiegP) or is one of the mer-  since in our approach; does not belong to its conte&t;

ging operators which are specified. One can observe that un- clearly enough, this amounts to giving more importance to
der some basic conditions ah, for k € {1,2,4} the re- B; when majoritarian merging operators are considered, and

vision policiesRY are well-behaved in terms of responsive-  as a consequence the states obtained after the “revision” of
ness but do not guarantee the stability of all BRGs, while the B; may differ. Notwithstanding the merging-based revision
converse holds for the revision polici&, andRS, . p_o_I|C|es used, such conciliation processes corresponueto s

Before closing the section, we go further in the investiga- Cific BRGs where the topology is the clique one. One of the
tion of the convergence property by considering a subclass Main issues considered in (Gauwin, Konieczny, and Marquis
of so-calleddirected acycliBRGs(V, A, Lp, B, R) which 2007) is the stationarity of the process (i.e., the convezge
require the underlying grapl¥, 4) not to contain any cycle: ~ of the policies), which is proved in the skeptical approach;

. . . however, preservation issues, as well as responsivendss an

Proposition 12 For k£ € {1,2,3,4}, all directed acyclic

. ) monotonicity are not studied.
k _ .
BRGs fromG (k5 ) satisfy(Conv) whenk = 1 or if Our work also is relevant to the opinion dynamics pro-

e whenk = 2, A satisfieg1C0) and (I C2); blem, which raises an abundant literature in philosophy
e whenk = 3, A is a distance-based merging operator; for the last two decades. One of the most influential
e whenk = 4, A satisfie C2), (1C4) and (Dis)), or A is model to opinion dynamics is Hegselmann-Krause's one

a distance-based merging operator. (see e.g., (Hegselmann and Krause 2005)). In the original

Hegselmann-Krause’s model, a set of agents aims at deter-
mining the value of a given paramejee (0, 1]. Each agent
Related Work i has some belief;, her estimate of the riéht \Jaluep.fEach
Belief revision games are somehow related to many set- agent updates her beligf by replacing it by the average of
tings where some interacting "agents” are considered, in- p; with the beliefs of its "neighbors”, i.e., the set of all va-
cluding cellular automata (Wolfram 1983), Boolean net- luesp; which are sufficiently close tg;, i.e.,| p; —p; |[< €
works (Kauffman 1969; 1993; Aldana 2003), opinion dy- wheree is a preset constant. Available results take the form
namics (Hegselmann and Krause 2005; Riegler and Dou- of analytical results or of empirical results achieved gsin
ven 2009; Tsang and Larson 2014), and many complex sys- computer simulations and show the existence of diverging
tems (Latane and Nowak 1997; Kacpersky and Holyst 2000; converging groups in the basic model. Many extensions of it
Olshevsky and Tsitsiklis 2009; Bloembergen et al. 2014; have been pointed out so far, a closest one to our work being



| IHCEENANENCHE (Resp) | (Mon) | (Conv) |
R \/(|c1) \/(|c2) \/(Disj) \/(ICZ) X(adu:=y | X(c2)
R2A (c1) (IC2) (IC0) & (Disj) (IC0) & (IC2) X (A=) | X(ICo) & (IC2)
R (Ic1) (Ic2) (Disj) (AdD.S /X(AdeZ) X(admr-2) | X(IC1) & (1IC2) & (IC4)
Ri \/(|c1) \/(|c2) \/(Disj) \/(|c2) & (IC4) X a2y | X(IC1) & (IC2) & (IC4)
R \/(|c1) \/(|c2) \/(|c0) X(Ico) X (a2 \/(|c0)
R} (IC1) (IC2) (IC0) X (Ico) X(AdE =) (Ico)

Table 3: Properties satisfied by the revision polidigsfor k € {1,...,6}.

Riegler-Douven’s one (Riegler and Douven 2009). Indeed,
in Riegler-Douven’s model, the belief states take the form
of propositional theories. Proximity between belief state
evaluated as the minimal Hamming distance between their
propositional models. The objective of the agents is toktrac
the truth, which is rendered possible by incorporating ahea
update step some piece of evidergesupposed to be true

in the actual state of affairs. Update proceeds by a specific
way of averaging over the "neighbors” beliefs together with
the evidence. Thus, this work departs from our own one in
many dimensions; mainly the way beliefs are revised, the
handling of pieces of evidence, the concept of neighborhood
which depends on the proximity of the belief states and the
nature of the results (which mainly amounts here to deter-
mining using computer simulations for which values of the
parameters used in the model the beliefs are converging to
the truth).

Conclusion

In this paper, we formalized the concept of belief revi-
sion game (BRG) for modeling the dynamics of the be-
liefs of a group of agents. We pointed out a set of proper-
ties for BRGs which address several preservation issues, as
well as responsiveness, monotonicity and convergence. As
a first attempt to investigate the behavior of BRGs with re-
spect these properties, we introduced several classes of re
vision policies which are based on belief merging opera-

Perspectives include a further investigation of the ratess

of BRGs in terms of belief manipulation. For example, one
could investigate how “controllable” a BRG is with respect
to some piece of belief. An intuitive notion of controllabil
ity with respect to some piece of belief would consider the
minimal number of controlled agents the role of which is to
make this piece of belief unanimously accepted in the BRG.
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Appendix: proofs of propositions

Proposition 1
For every BRGG = (V, A, Lp, B, R) and every agent
1 € V, the belief sequence éfis cyclic.

Proof: Let us first introduce the notion of equivalence be-
tween BRGs which we will exploit in this proof. Two BRGs
G=(V,A Lp, B,R),G = (V' A, Lp', B',R') are
said to be equivalent, denotél= G, if V = V', A = A,

Lp = Lp', R = R’ and for everyi € V, B; = B.. Let

G = (V,A, Lp, B, R) be aBRG. Sinc&p is a proposi-
tional language defined on a finite set of propositional vari-
ables, the number of belief bases frdm which are distinct
up to logical equivalence is finite. Therefore, there arg/onl
finitely manyn-vectors of formulae fronCp up to equiv-
alence. According to Definition 1, ead®;, € R is a map-

ping from Lp x L™ to £ which considers formulae

e whenk € {5,6}, Bi™' is a belief base of the form
Ap:(K) for some profileXC. SinceB; is consistent by the
recursion hypothesis, we get 1) thatA - (K) is con-
sistent. HenceB; ™! is consistent.

This concludes the proof. ]

Proposition 3
For everyk € {1,...,
(1C2).

The proof uses the following lemma:

6}, RK satisfies(AP) if A satisfies

Lemmal Let A be a merging operator which satisfies
(IC2). Then for every consistent propositional formua
for every formula: and every non-empty profilé, if ¢ =
andy = K for everyK € I, theny = A, (K).

Proof: Let A be a merging operator which satisfig€2),
o be a consistent formula, be a formula and be a non-
empty profile such thgt = pandp = K foreveryK € K.
Sincey is consistent/ ;.- K A is consistent ang =
Akex K A p. Then by(IC2), AL (K) = Agex K A p.
Thereforep = A, (K). |

We now prove Proposition 3:

Proof: Let G = (V, A, Lp, B, R) be a BRG from any
of the classeg/(R% ) wherek € {1,...,6} and whereA
satisfieg(IC2). We must prove that’ satisfies(AP). Let ¢
be a consistent propositional formula frofs and assume
that for eachB; € B, ¢ = B;. We prove that for each

up to equivalence. This means that there are finitely many B; € B and at every step > 0, ¢ = B¢ by recursion on



s. This is trivial for eacht € {1,...,6} whens = 0. Now,
lets > 0 and assume that for eadj € G*, ¢ = B;. Then
using Lemma 1, for each € {1,...,6} sinceA satisfies
(ICZB it can be easily checked that for each agemt V,
Bt is consistent. This concludes the proof. |

Proposition 4
For everyk € {1,...,6}, RX satisfieUP)if A satisfies:

e (ICO) whenk € {5,6};
o (Disj) whenk € {1,3,4};
e (IC0) and(Disj) whenk = 2.

Proof: LetG = (V, A, Lp, B, R) be a BRG from any of
the classeg(RK) wherek € {1,...,6}. We must prove
thatG satisfie{UP) under the conditions oA given within
the statement of the proposition. Letbe a propositional
formula from£p» and assume that for eadh € B, B; =
. We prove that for eacl3; € B and at every step >

0, B = ¢ by recursion ors. This is trivial for eacht €
{1,...,6} whens = 0. Now, lets > 0 and assume that for
eachB; € G*, B} = ¢. Then:

e whenk € {1,3}, assume thaf\ satisfies(Disj). Now,
B: ™! is a belief base of the formA (K) = At (K) for some
profile K such that\/ K | ¢ (by the recursion hypothesis).
Yet by (Disj) we get thatA(K) | VK, thusA(K) | .
Hence,B: ™! = ¢;

e whenk = 4, assume thah satisfiedDisj). We know that
A((C?)) E ¢ (the proof is similar to the one given in the
preceding item). So herBf+1 is a belief base of the form
A((B;,K)) = At((B;, K)) whereK [ . Since we have
as well B; &= ¢ by the recursion hypothesis, we get from
(Disj) thatA((B;, K)) = ¢. Hence B! = ¢;

e whenk = 2, assume thaf\ satisfies(IC0O) and (Disj).
We haveB;*! = Anesy((B7)), and we already proved
that A(C?) [= . So by(IC0), we get thatB: ™! = A(Cy).
Hence, Bt = ¢;

e whenk € {5,6}, assume that\ satisfies(IC0). Here,
B;*!is a belief base of the form z; (K) for some profile

K. SinceB; = ¢ by the recursion hypothesis and since by

(IC0) we haveA: (K) = Bj, we get thatAp: (K) = .
Hence,B: ™! = .
This concludes the proof. ]

Proposition 5
If A satisfiegICO), thenR2 andR% do not satisfyResp)

Proof: Let R% be any revision policy wherk € {5,6} and
whereA satisfies(IC0). We must prove thak% does not

satisfy(Resp) That is to say, we must show that there exists

a BRG fromG(RX ) which does not satisfgResp) Then let
G = (V, A, Lp, B, R) be a BRG fromG (R ) defined as
V ={1,2},A={(1,2)}, Lp is the propositional language

But sinceA satisfies(ICO), for both revision policies?}
and RS, it is required thatBi = BY, which contradicts
B £ BS. Hence G does not satisfyResp) that concludes
the proof. ]

Proposition 6

For everyk € {1,2,4}, RK satisfie{Resp)if A satisfies:
e (IC2) whenk =1,

e (IC0) and(IC2) whenk = 2;

e (IC2) and(IC4) whenk = 4.

Proof: Let G = (V, A, Lp, B, R) be a BRG from any of
the classe§ (R% ) wherek € {1,2,4}. We must prove that
G satisfies(Resp)under the conditions oA given within
the statement of the proposition. LBt € B, s € N, and
assume that (iyj € V, if (j,i) € AthenB; A B} = L,
and (i) Aoy {Bj | (j,i) € A} = L. We must prove that
Bt £ By
e whenk = 1, assume that\ satisfies(IC2). By condi-
tion (i), A;jev{B; | (j,i) € A} is consistent, s¢IC2)
requires thatB;*' = A(C;) = A, {B; | (i) €
A} = Apsces Bj. By condition (i), we get thatB; A
J J

Apeces Bi = L, or equivalently, thai3; A Bj ™' = L.

J i
In particular, we get thaB; ™ |~ B,
e whenk = 2, assume thaf\ satisfies(IC0) and (IC2).
By the preceding item, by condition (ii) and froghC2)
we know thatA(C?) = /\B;ec; Bj. Now, (ICO) requires
that B{*" = A(C;), thus B! = Ap.cc. BS. Yet by

J J
condition (i) we have thaB; A A\ g..c: Bf = L. Hence,
B A BSt = L. In particular, we get thaB; ™! |~ B;.
e whenk = 4, assume that\ satisfies(IC2) and (IC4).
We know by the preceding items, by condition (ii) and
from (IC2) that A(C;) = Apgsecc: B;- So by definition
J J

of B;™" we have thatB;*' = A(B;, A\ pece: BS). To-
ward a contradiction, assume thaf*! = B. In partic-
ular, we have thaB3; A B:t' [~ L. Now, (IC4) requires
thatB; ! A Ap:ecs B; £ L. This contradicts condition (i)
which states thaB; A /\B;ecf Bj = L.

This concludes the proof. ]

Proposition 7
R3 does not satisfyResp)

AdH,Z
Proof: We must show that there exists a BRG from
G(R34,, =) which does not satisf{fResp) Then letG' = (V,
A, Lp, B, R) be a BRG fromG(R3,,, ) defined ag/ =
{1,2,3}, A = {(1,3),(2,3)}, Lp is the propositional lan-
guage defined fro® = {p,q,7}, B1 = B = pA(q & 1),
By =BY=qA(p&r)andB; = B = —p A =g A .

defined fronP = {p}, B; = BY = pandB; = B} = —p.
Note that conditions (i) and (ii) in the statement of the re-
sponsiveness definition (cf. Definition 10) are satisfied for
Bs: we have ()B{ A B = L and (i) A{B{} = BY |~ L.

Note that conditions (i) and (ii) in the statement of the re-
sponsiveness definition (cf. Definition 10) are satisfied for
Bs:we have ()B{ A BY = L andB9 A BY = L, and (ii)
BYABY = pAgAr = L. Yetone can verify that at step 1, we



getthatBi = Adx: E(<B?,BS,BO>) = —pA-gA-r = BY,
which contradictsB: = BY. Hence,G does not satisfy
(Resp) that concludes the proof. ]

Proposition 8
For any aggregation functiofy R3AdD,f satisfiegResp)

Proof: Let G = (V, A, Lp, B, R) be a BRG from the
classg(R3 ). We must prove thaGG satisfies(Resp)
Let B; € B s € N, and assume that (iyj € V, if
(4,9) € AthenBS AB; E Lyand (i) A\ 1B | (5,9) €
A} = L. We must prove thaB;*t! £ Bg, or equiva-
lently, that there exists an interpretatian = A(B;,Cy)

) K3
such that for every interpretatiom’ = B?, we have

df (w, (Bs,Cs)) < db (o', (B2, Cs)). Yet by condition (i),
/\jev{Bé | (j,i) € A} = /\Bfecf Bj i L. So on the one
hand, letw & /\B;ecg 2, sincew [= B for everyBs €
C;, we havelp(w, B5) = 0; and by condition (i)w = B;,

so dp(w Bf) = 1; thus we get thatlf( ,(B2,C8Y) =

f{1, 0,...,0 }. On the other hand, let’ be éﬁyl model

lcz| times
of BY, i.e.,,w’ | By; we havedp(w', Bf) = 0, and by
condition (i), w’ [~= B for every Bf € C;, so for ev-
ery B; € C;, we havedp(w’, Bj) = 1; thus we get that

dh (', (B;,C5)) = f{0,1,...,1}. From the symmetry
<

lcz| times
and non- decreasingnessfoﬂ@nieczny, Lang, and Marquis
2004), we get thatl] (w, (Bs,Cs)) < di (', (Bs,CE)).
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This concludes the proof ]

Proposition 9

For everyk € {1,...,6}, Rk does not satisfyMon).

AdHE
Proof:

We must show that for every € {1,...,6}, there exists
a BRG fromg(R" ;.= ) Which does not satlstIon) Let
us first provide a counter-example for the case whiere
{1,2,3,4}. LetG = (V, A, Lp, B, R) be a BRG from one
of the cIasse@(R"A’dH,z) wherek € {1,2,3,4}, defined
asV = {1,2,3,4,5}, A = {(1,2), (2,3), (2,4), (3,4),
(3,5), (4,3), (4,5), (5,3), (5,5)}, Lp is the propositional
language defined fror® = {p, ¢, r, s}, and the belief bases
B;,i€{1,2,3,4,5} are defined as follows:

Bi=pAgATAs,

By =(pAgATAS)V(=pA—gA-rA-s),
Bs=(pA—=gA-rA=s)V(pA-gATAS),
B, = Bs = Bs.

Lastly, lety be the formula fromC, defined as
e=(pPAgATAS)V

Then one can verify that for each € {1,2,3,4},
whenever each revision policl; € R is R; = RZdH -
the belief sequences associated with the five agents in
(respectively, inG2_,,,) correspond to the ones given in

(p A =g A= A —s).

B} B} B3
0 pAgATr | pA(geT) —p A —r
>1 PAGAT PAGAT —p A g AT

Table 6: The belief sequences of agentgin(cf. proof of
Proposition 9).

stepe B; B} B;
0 PAgGAT | DAGQAT -p A -r
>1 PAgAT | pAGAT | =pAg AT

Table 7: The belief sequences of agent&in, ., (cf. proof
of Proposition 9).

Table 4 (respectively, Table 5). Both BRGs are stable and
all agents reach their belief cycle by at most step 1 in both
cases. For both tables, blue cells are associated witifbelie
for which ¢ is a logical consequence; red cells are associ-
ated with beliefs for whichp is a logical consequence; and
white cells correspond to the remaining cases. Accordjngly
one can see that is unanimously accepted i@, whereas

in Ga—, ¢ is not accepted by agent 3, 4 and 5. This shows
that for everyk € {1,2,3,4}, RMH = does not satisfy
(Mon).

Now, let us provide a counter-example for the case where
ke {5,6}. LetG’' = (V’ A, Lp, B, R’") be a BRG from
one of the classe$(R%.,,. E) wherek € {5, 6}, defined as
V' ={1,2,3}, A" = {(1,2), (2,3)}, Lp: is the proposi-
tional language defined frol’ = {p, ¢, v}, and the belief
basesB!, i € {1, 2,3} are defined as follows:

Bi=pAgqAr,
Bé =pA (q And T)v
Bi =-pA-r.
Lastly, lety’ be the formula fronCp, defined as

¢ =@PAgAT)V (e Ag A -r).

Then one can verify that for eacghe {5 6}, whenever
each revision policyR; € Ris R; = RMH s, the belief

sequences associated with the three agenG’l(respec—
tively, in G,,_, _,) correspond to the ones given in Table 6
(respectlvely,@l' ble 7). Both BRGs are stable and all agents
reach their belief cycle by at most step 1 in both cases. The
cell colors of tables 6 and 7 follow similar rules as for ta-
bles 4 and 5: blue cells are associated with beliefs for which
¢’ is a logical consequence; red cells are associated with
beliefs for which—y’ is a logical consequence; and white
cells correspond to the remaining cases. Accordingly, one
can see thap’ is unanimously accepted ifi’, whereas in

G’Qﬂp,, © is not accepted by agent 3. This shows that for

everyk € {5,6}, R* , . does not satisfyMon).
This concludes the proof. ]

Proposition 10
The revision policies?} and R} satisfy(Conv)if A satis-
fies(1CO0).



step: B B B; =B} =B}
0 pAGATAs | DAgATAS)V (—pA-gA-1rA=8) | (pA-gA-TA=8)V (ZpA—gATAS)
>1 PAGATAS PAGATAS pA—=gA-—rA—s

Table 4: The belief sequences of agent&itcf. proof of Proposition 9).

step: Bj B B = B = B;
0 PAGATAS | pAgATAS | (DA=gA-TA=8)V (pA-gATAS)
>1 PAGATANS | DAGATAS pAgNAT NS

Table 5: The belief sequences of agent&in,, (cf. proof of Proposition 9).

Proof: LetG = (V, A, Lp, B, R) be a BRG from any of
the classe§/(RK ) wherek € {5,6} and whereA satisfies
(IC0). We must prove thaf? is stable. Toward a contradic-
tion, assume that for some agent V, |Cyc(B;)| > 2.
Then there exist two belief bas&, Bf' in Cyc(B;) such
that B (- Bf'. This contradict¢IC0) which requires that
at every step € N, we haveB; ! = Bg. This concludes
the proof. ]

Proposition 11
For everyk € {1,2,3,4}, RX does not satisfyConv) if A
satisfies:

e (IC2) whenk = 1;
e (IC0) and(IC2) whenk = 2;
e (IC1), (IC2) and(IC4) whenk € {3,4}.

Proof: For everyk € {1,2,3,4}, we must prove thakk
does not satisf{Conv) under the conditions od\ given
within the statement of the proposition. That is to say, for
each revision policy we must show that there exists a BRG
from G(RX ) which is not stable. Then le¥ = (V, A, Lp,

B, R) be aBRG fronG(R% ) definedad” = {1,2,3}, A =
{(1,2),(2,3),(3,1)}, Lp is the propositional language de-
fined fromP = {p}, B = B} = p, B, = BY = —p and

B3z = BY = T.Then:

e whenk = 1, assume thah satisfieq1C2). Then one can
verify that for every steps € N, we haveB;*! = B3,
Bs™ = Bj and Bi™' = Bs. This means that for each
agenti € V, |Cyc(B;)| = 3. Hence G is not stable;

e whenk = 2, assume thah satisfieqIC0) and(IC2). One
can verify that at step 13 = B = pandB} = —p. From
then, for every step > 1, we haveB; ™! = B3, B5™! = B
and B;*' = Bs. This means that for each agent V,
|Cye(B;)| = 3. Hence G is not stable;

e whenk € {3, 4}, assume thah satisfieqIC1), (IC2) and
(IC4). At step 1, one can verify that far € {3,4}, B} = p,

B3 = T andB} = —p. Similarly, the evolution of beliefs for
stepsm > 2 can be completely determined Doing so, one
can verify that fork € {3,4}, G° = G° and thatG*® # G°

for everys € {1,...,5}. This means that for each agent
i € V,|Cyc(B;)| = 6. HenceG is not stable.
This concludes the proof. ]

Proposition 12
Fork € {1,2,3,4}, all directed acyclic BRGs frorg(R% )

satisfy(Conv) whenk = 1 or if:
e whenk = 2, A satisfie1C0) and(IC2);
e whenk = 3, A is a distance-based merging operator;

e whenk = 4, A satisfiegIC2), (IC4) and(Disj), or A is
a distance-based merging operator.

Proof: Let G = (V, A, L, B, RK) be a directed acyclic
BRG wherek € {1,2,3,4}. We must prove thatr satisfies
(Conv)under the conditions oA given within the statement
of the proposition. Beforehand, since the grgphA) does
not contain any cycle, there must exist a non-empty subset
of agents/,.,,: C V such that for eache V,.,0t, in(i) = 0,
that is, such that there is np € V such that(j,i) € A.
Then one can associate with each agerst V' a number
depth(i) € N which corresponds to the highest number
such that the serieSo, j1), (41,52), - - s (Jr—1,Jr = 7) Sa-
tisfies for eachc € {0,...,r — 1}, (ju, jz+1) € A and
Jo € Vioot- FOr eachd € N, let us denotdy; = {i € V|
depth(i) = d}. Letdpmqar = max{d € N | V; # 0}. Note
that such a numbet,,, ., exists since each ageht V can
be associated with a numbéspth(i).

Now, it is enough to show that for every
d € {0,...,dma.} and for each agent € V;, we
have|Cyc(B;)| = 1. We prove it by recursion od. For
each ageni € V;, we havein(i) = 0. By Definition 1,
R; is the identity function, thus we trivially get that
|Cyce(B;)] = 1. Now, letd > 0 and assume that for each
agenti € V, we have|Cyc(B;)| = 1. Leti € Vi1 We
know that for eactB; € C;, j € Vy for somed’ < d, so
that|Cyc(B;)| = 1 by the recursion hypothesis. So let us
denotes, . € N the smaller (step) number which satisfies
ij’"am = Bj””“"_l for every B; € C;. We have that for
each step > s,,4., CS7! = C3. Then:
e whenk = 1, for each step > s,,4., We directly get that
B! = A(C#mar). Hence |Cyc(B;)| = 1;
e whenk = 2, assume that\ satisfies(IC0O) and (IC2).
We have B> ™' = Ap(comas)((B{™**)). By (ICO)
we get that Bime*t' |= A(C®me=). This means that
Bime=tl A A(Cmer) £ L. In this case, we have that
Bymast2 = Ap(comany ((Bi™=*1)) which is equiva-
lent to Bime=t1 A A(C®me) by (IC2). Then for each
8> Smax + 2, We have thaB; ! = Bfme=t2 A A(Coman),
Thus|Cyc(B;)| = 1;
e let k1 = 4 and assume thak satisfies(IC4) and (Disj).
We have Bim=t1 = A(Bme= A(C*me+)). By (Dis))



we get thatBime=t! = Bfmer v A(Cmes). Then by
(IC4) we have thatB;™=*! A A(C®ma=) £ L. Now, by
(IC2), Bime=*? = pgma=tt A A(C®ma=). Then for each
5> Spmax + 2, We have thaB: T = Bimer T2 A A(Comar).
Thus|Cyc(B;)| = 1;
e let k € {3,4} and assume thah is a distance-based
merging operator. That is to say = A%f for some
pseudo-distanced between interpretations and some
aggregation functionf. We prove that|Cyc(B;)] = 1
in the case wheré& = 3 (the proof is similar for the
case wherek = 4). Let us show that for each step
s > Spmar BiT' E Bf Letw | B We have
w = A%S((Bg,C*ma=)), which means that for every inter-
pretationw’, df (w, (B$,C%ma=)) < df (', (Bf,Coma=)).
In particular, for everyw’ | B?, we have that
df (w, (B;,Comen)) < df (o, (B;,Comer)), or equiva-
lently that f{d(w, B}), d(w, B;™**), .. .,d(w,Bfi:g} <
HdW', Bf), d(w, B ), ..., d(w, Bfﬂfj} (we de-
note Cj** = (Bjr**,..., B{™)). On the one hand,
sincew’ = B7, by the identity of indiscernibles prop-
erty of the pseudo-distancg we haved(w’, Bf) = 0.
Thus  f{d(w, B}),d(w, Bi"**), ... d(w, B; "} <
10, d(w, B;m™*), ..., d(w, Bfg(as}. Since the aggregation
function f is required to satisfy the non-decreasingness
condition, we get thadl(w, Bf) = 0. So by the identity of
indiscernibles property of the pseudo-distantewe get
thatw = Bf. We just proved that for each step> s;q.,
Bt = Bg. Then assume toward a contradiction that
|Cye(B;)| > 2. Then there must exist two belief bases
B, B € Cyc(B;) such thatBf |~ By . This contradicts
the fact that for each step > s,.q., Bi ™' = B:. Hence,
|Cyc(B;)| = 1.

This concludes the proof. ]



