1

The Top-*k* Frequent Closed Itemset Mining Using Top-*k* SAT Problem

Saïd Jabbour and Lakhdar Sais and Yakoub Salhi

CRIL CNRS - Univ. Artois

ECMLPKDD

Praha

26 septembre 2013

Context and objectives

Context

- Declarative data mining
- Top-k patterns mining

Goal

• General logic based framework

Contributions

- Top-k SAT problem
- Application to itemsets mining problem

< 同 > < 三 > < 三

Outline

- Boolean Satisfiability (SAT)
- Op-k SAT problem
- Application in Data Mining
- Experimental evaluation
- Onclusion & Perspectives

Boolean Satisfiability Problem (SAT)

A formula Φ in conjunctive normal form (CNF) : set of clauses

$$\Phi = \underbrace{(a \lor b \lor c)}_{clause} \land (\neg a \lor \neg b \lor \neg c) \land (\neg a \lor b) \land (\neg b \lor c)$$

• Yes : Return the model \mathcal{M} (e.g. $\mathcal{M} = \{\neg a, b, c\}$)

No : Proof of unsatisfiability

(日)

Boolean Satisfiability Problem (SAT)

- NP-Complete Problem [Cook 71]
- Used to prove the NP-Completeness of other problems
- Spectacular progress \rightarrow Modern SAT solvers
 - application instances with millions of variables and clauses
- Many applications
 - Formal Verification
 - Planning
 - Bioinformatics
 - Cryptography
 - . . .
- Around SAT

5

• Max-SAT, (Weighted) Partial Max-SAT, QBF, ...

(日)

- \overline{I} the complementary literal of *I*. If I = p then \overline{I} is $\neg p$ and if $I = \neg p$ then \overline{I} is p.
- For a set of literals *L*, \overline{L} is defined as $\{\overline{l} \mid l \in L\}$.
- *M* denotes the clause V_{p∈Var(Φ)} s(p), where s(p) = p if
 M(p) = 0, ¬p otherwise.
- $\mathcal{M}(\Phi)$ the set of clauses satisfied by \mathcal{M} .
- Let $X \subseteq Var(\Phi)$. $\mathcal{M}(X) = \mathcal{M} \cap X = \{p \in X | \mathcal{M}(p) = 1\}$.
- $\mathcal{M}_{|X}$ denotes the restriction of \mathcal{M} to X.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Top-k SAT problem Top-k SAT and Partial MAX-SAT Top-k SAT and X-minimal Model Generation Problem Algorithm(s) for Top-k SAT

Let Φ be a propositional formula and Λ_{Φ} the set of models of Φ .

Definition (Preference relation)

7

A preference relation \succeq over Λ_{Φ} is a reflexive and transitive binary relation (a preorder).

 $\mathcal{M} \succeq \mathcal{M}'$ means that \mathcal{M} is at least as preferred as \mathcal{M}' .

$$\boldsymbol{P}(\Phi,\mathcal{M},\succeq) = \{\mathcal{M}' \in \Lambda_{\Phi} \mid \mathcal{M}' \succ \mathcal{M}\}$$

where $\mathcal{M}' \succ \mathcal{M}$ means that $\mathcal{M}' \succeq \mathcal{M}$ holds but $\mathcal{M} \succeq \mathcal{M}'$ does not.

 Preferences and Top-k Models
 Top-k SAT problem

 An Application of Top-k SAT in Data Mining
 Top-k SAT and Partial MAX-SAT

 Experiments
 Top-k SAT and X-minimal Model Generation Problem

 Conclusion and Perspectives
 Algorithm(s) for Top-k SAT

 \approx_X an equivalence relation over $P(\Phi, \mathcal{M}, \succeq)$:

 $\mathcal{M}' \approx_X \mathcal{M}'' \text{ iff } \mathcal{M}' \cap X = \mathcal{M}'' \cap X$

 $[P(\Phi, \mathcal{M}, \succeq)]^X$ is a partition of $P(\Phi, \mathcal{M}, \succeq)$ w.r.t \approx_X .

Definition (Top-k Model)

8

 \mathcal{M} is a Top-*k* model w.r.t. \succeq and *X* iff $|[P(\Phi, \mathcal{M}, \succeq)]^X| \leq k - 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Top-k SAT problem Top-k SAT and Partial MAX-SAT Top-k SAT and X-minimal Model Generation Problem Algorithm(s) for Top-k SAT

(日)

Definition (Top-k SAT problem)

9

Compute the set \mathcal{L} of Top-*k* models of Φ w.r.t \succeq and *X* satisfying :

• for all \mathcal{M} Top-*k* model, there exists $\mathcal{M}' \in \mathcal{L}$ s.t. $\mathcal{M} \approx_{\mathcal{X}} \mathcal{M}'$;

2 for all \mathcal{M} and \mathcal{M}' in \mathcal{L} , if $\mathcal{M} \neq \mathcal{M}'$ then $\mathcal{M} \not\approx_X \mathcal{M}'$.

Top-k SAT problem Top-k SAT and Partial MAX-SAT Top-k SAT and X-minimal Model Generation Problem Algorithm(s) for Top-k SAT

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (δ -preference)

10

 \succeq is a δ -preference relation, if there exists a polytime function f_{\succeq} from Boolean interpretations to the set of CNF formulae such that, for all \mathcal{M} model of Φ and for all \mathcal{M}' Boolean interpretation, \mathcal{M}' is a model of $\Phi \wedge f_{\succeq}(\mathcal{M})$ iff \mathcal{M}' is a model of Φ and $\mathcal{M} \neq \mathcal{M}'$.

- add f_≥(M) together with M to Φ allows to find models M that are at least as preferred as M.
- → introduce a lower bound during the enumeration process.

Top-k SAT problem Top-k SAT and Partial MAX-SAT Top-k SAT and X-minimal Model Generation Problem Algorithm(s) for Top-k SAT

< 日 > < 回 > < 回 > < 回 > < 回 > <

Definition (\succeq_{Φ_s} preference relation)

Let $\Phi = \Phi_h \land \Phi_s$ be a partial MAX-SAT instance such that Φ_h is the hard part and Φ_s the soft part.

 \succeq_{Φ_s} is a preference relation : $\mathcal{M} \succeq_{\Phi_s} \mathcal{M}'$ if and only if $|\mathcal{M}(\Phi_s)| \ge |\mathcal{M}'(\Phi_s)|.$

 \succeq_{Φ_s} is a δ -preference relation. $f_{\succeq_{\Phi_s}}$ can be defined as :

$$f_{\succeq_{\Phi_{\mathcal{S}}}}(\mathcal{M}) = (\bigwedge_{C\in \Phi_{\mathcal{S}}} p_{C} \leftrightarrow C) \wedge \sum_{C\in \Phi_{\mathcal{S}}} p_{C} \geq |\mathcal{M}(\Phi_{\mathcal{S}})|$$

where p_C for $C \in \Phi_s$ are fresh propositional variables.

12

Top-k SAT problem **Top-k SAT and Partial MAX-SAT** Top-k SAT and X-minimal Model Generation Problem Algorithm(s) for Top-k SAT

(日)

- The Top-1 models of Φ_h with respect to ≽_{Φ_s} and Var(Φ) correspond to the set of all solutions of Φ in Partial Max-SAT.
- \rightarrow the Top-*k* SAT problem can be seen as a generalization of Partial MAX-SAT.

Top-k SAT problem Top-k SAT and Partial MAX-SAT Top-k SAT and X-minimal Model Generation Problem Algorithm(s) for Top-k SAT

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Definition (X-minimal Model)

 \mathcal{M} is said to be smaller than \mathcal{M}' w.r.t X, written $\mathcal{M} \preceq_X \mathcal{M}'$, if $\mathcal{M} \cap X \subseteq \mathcal{M}' \cap X$.

 $\mathcal{M} \preceq_X \mathcal{M}'$ means that \mathcal{M} is at least as preferred as \mathcal{M}' .

• \leq_X is a δ -preference relation :

$$f_{\preceq_X}(\mathcal{M}) = (igvee_{p\in\mathcal{M}\cap X}\overline{p}) \lor igwee_{p'\in X\setminus\mathcal{M}}\overline{p'}$$

Top-k SAT problem Top-k SAT and Partial MAX-SAT Top-k SAT and X-minimal Model Generation Problem Algorithm(s) for Top-k SAT

E k 4

Algorithm 1: Top-k SAT

14

Input: a CNF formula Φ , a preorder relation \succeq , an integer k > 1, and a set X of Boolean variables **Output:** A set of Top-k models L $\Phi' \leftarrow \Phi$: $\mathcal{L} \leftarrow \emptyset$: /* Set of all Top-k models */ while $(solve(\Phi'))$ do /* M is a model of Φ' */ if $(\exists \mathcal{M}' \in \mathcal{L}.\mathcal{M} \approx_X \mathcal{M}' \& \mathcal{M} \succ \mathcal{M}')$ then replace $(\mathcal{M}, \mathcal{M}', \mathcal{L})$; else if $(\forall \mathcal{M}' \in \mathcal{L}.\mathcal{M} \not\approx_X \mathcal{M}' \& | preferred(\mathcal{M},\mathcal{L}) | < k)$ then $S \leftarrow \min_{k, \mathcal{L}}$; $add(\mathcal{M},\mathcal{L});$ remove $(k, \mathcal{L});$ $S \leftarrow \min_{k, \mathcal{L}} \setminus S;$ $\Phi' \leftarrow \Phi' \land \bigwedge_{\mathcal{M}' \in S} f_{\succ}(\mathcal{M}');$ else $\Phi' \leftarrow \Phi' \wedge \overline{\mathcal{M}}$: return \mathcal{L} ;

Top-k SAT problem Top-k SAT and Partial MAX-SAT Top-k SAT and X-minimal Model Generation Problem Algorithm(s) for Top-k SAT

Algorithm 2: Top-k SAT for total preference relations

Input: a CNF formula Φ , a total preorder relation \succeq , an integer $k \ge 1$,and a set X of Boolean variables **Output**: the set of all Top-k models \mathcal{L}

$$\Phi' \leftarrow \Phi', \mathcal{L} \leftarrow \Psi; \qquad /* \text{ Set of all Top-K models }*/$$
for $(i \leftarrow 0 \text{ to } k - 1)$ do
$$if (\operatorname{solve}(\Phi')) \text{ then} \qquad /* \mathcal{M} \text{ is a model of } \Phi' */$$

$$else \qquad / * \Phi' \leftarrow \Phi' \land \overline{\mathcal{M}}_{|X}; else \qquad / * \Phi' \leftarrow \Phi' \land \overline{\mathcal{M}}_{|X}; else \qquad / * \mathcal{M} \text{ is a model of } \Phi' */$$

$$\Phi' \leftarrow \Phi \land \Lambda_{\mathcal{M} \in \mathcal{L}} \overline{\mathcal{M}} \land \Lambda_{\mathcal{M}' \in \min(\mathcal{L})} f_{\succeq}(\mathcal{M}'); \qquad / * \mathcal{M} \text{ is a model of } \Phi' */$$

$$if (\exists \mathcal{M}' \in \mathcal{L}.\mathcal{M} \approx_X \mathcal{M}' \And \mathcal{M} \succ \mathcal{M}') \text{ then} \qquad / * \mathcal{M} \text{ is a model of } \Phi' */$$

$$else if ($\forall \mathcal{M}' \in \mathcal{L}.\mathcal{M} \approx_X \mathcal{M}')$

$$f' \leftarrow \Phi' \land \Lambda_{\mathcal{M}' \in S} f_{\succeq}(\mathcal{M}'); \qquad else \qquad / \Phi' \leftarrow \Phi' \land \Lambda_{\mathcal{M}' \in S} f_{\succeq}(\mathcal{M}'); \qquad else \qquad / \Phi' \leftarrow \Phi' \land \Lambda_{\mathcal{M}' \in S} f_{\succeq}(\mathcal{M})$$$$

return \mathcal{L} ;

. /

 $\begin{array}{l} \mbox{Problem Statement} \\ \mbox{SAT-based Encoding for } \mathcal{FCIM}_{min}^k \\ \mbox{Some Variants of } \mathcal{FCIM}_*^k \end{array}$

Given $\mathcal{D} = \{(0, t_0), \dots, (n - 1, t_{n-1})\}$ a transaction database over a set of items \mathcal{I} and k and *min* positives integers.

Frequent Itemset Mining problem					
Compute					
$\mathcal{FIM}(\mathcal{D},\lambda) = \{I \subseteq \mathcal{I} \mid \mathcal{S}(I,\mathcal{D}) \geq \lambda\}$					

Closed Itemset : *I* an itemset $(I \subseteq I)$ such that $S(I, D) \ge 1$. *I* is closed if for all itemset *J* such that $I \subset J$, S(J, D) < S(I, D).

Top-*k* frequent closed itemsets \mathcal{FCIM}_{min}^{k} mining problem

Compute all closed itemsets of length at least *min* such that, for each one, there exist no more than k - 1 closed itemsets of length at least *min* with supports greater than its support.

17

Problem Statement SAT-based Encoding for \mathcal{FCIM}_{min}^k Some Variants of \mathcal{FCIM}_*^k

・ロ・ ・ 四・ ・ 回・ ・ 回・

- Associate to each item $a \in \mathcal{I}$ a boolean variable p_a .
 - Such boolean variables encode the candidate itemset $I \subseteq \mathcal{I}$, i.e., $p_a = true$ iff $a \in I$.
- ∀ *i* ∈ {0,..., *n* − 1}, associate to the *i*-th transaction a Boolean variable *b_i*.

18

Problem Statement SAT-based Encoding for \mathcal{FCIM}_{min}^k Some Variants of \mathcal{FCIM}_*^k

A constraint to consider only the itemsets of length at least min :

$$\sum_{a\in\mathcal{I}}p_{a}\geq min \tag{1}$$

A constraint to capture all the transactions where the candidate itemset does not appear :

$$\bigwedge_{i=0}^{n-1} (b_i \leftrightarrow \bigvee_{a \in \mathcal{I} \setminus t_i} p_a)$$
(2)

A constraint to force the candidate itemset to be closed :

$$\bigwedge_{a\in\mathcal{I}}(\bigwedge_{i=0}^{n-1}\overline{b_i}\to a\in t_i)\to p_a \tag{3}$$

(日)

 $\begin{array}{l} \mbox{Problem Statement} \\ \mbox{SAT-based Encoding for \mathcal{FCIM}_{min}^k} \\ \mbox{Some Variants of \mathcal{FCIM}_*^k} \end{array}$

SAT-based Encoding for \mathcal{FCIM}_{min}^{k}

Proposition

19

Computing the Top-k closed itemsets of length at least min corresponds to computing the Top-k models of (1), (2) and (3) with respect to \succeq_B and $X = \{p_a | a \in \mathcal{I}\}$, where

•
$$B = \{b_0, ..., b_{n-1}\}$$
 and \succeq_B :

• $\mathcal{M} \succeq_B \mathcal{M}'$ if and only if $|\mathcal{M}(B)| \leq |\mathcal{M}'(B)|$.

This preorder relation is a δ -preference relation :

•
$$f_{\succeq_B}(\mathcal{M}) = (\sum_{i=0}^{n-1} \overline{b_i} > |\mathcal{M}(B)|)$$

 $\begin{array}{l} \mbox{Problem Statement} \\ \mbox{SAT-based Encoding for } \mathcal{FCIM}_{min}^k \\ \mbox{Some Variants of } \mathcal{FCIM}_*^k \end{array}$

1 Mining Top-k closed itemsets of length at most max

 \rightarrow Add to (2) and (3) the following constraint :

$$\sum_{a\in\mathcal{I}}p_a\leq max \tag{4}$$

2 Mining Top-*k* closed itemsets of supports at least λ (minimal support threshold).

Add to (2) and (3) the constraint :

20

$$\sum_{i=0}^{n} \overline{b_i} \ge \lambda \tag{5}$$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

We use the δ -preference relation \succeq_B defined previously.

 $\begin{array}{l} \mbox{Problem Statement} \\ \mbox{SAT-based Encoding for } \mathcal{FCIM}_{min}^k \\ \mbox{Some Variants of } \mathcal{FCIM}_*^k \end{array}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3 Mining Top-*k* maximal itemsets of supports at least λ The encoding of this problem consists of (2) and (5).

Preference relation $\succeq_{\mathcal{I}} : \mathcal{M} \succeq_{\mathcal{I}} \mathcal{M}'$ iff $|\mathcal{M}(\mathcal{I})| \ge |\mathcal{M}'(\mathcal{I})|$.

 $\succeq_{\mathcal{I}}$ is a δ -preference :

$$f_{\succeq_\mathcal{I}}(\mathcal{M}) = \sum_{a \in \mathcal{I}} p_a \ge |\mathcal{M}(\mathcal{I})|$$

22

Datasets characteristics min = 1, k is varied Varying the minimum length min

- Algorithm 1 (Top-*k*) implemented on the top of the state-of-the-art SAT solver MiniSAT 2.2
- Sorting networks encoding to translate the cardinality Constraints [Een etal 06]
- A variety of datasets taken from the FIMI repository and CP4IM
- All the experiments were done on Intel Xeon quad-core machines with 32GB of RAM running at 2.66 Ghz.
- A timeout of 4 hours of CPU time used for each instance

Datasets characteristics min = 1, k is varied Varying the minimum length min

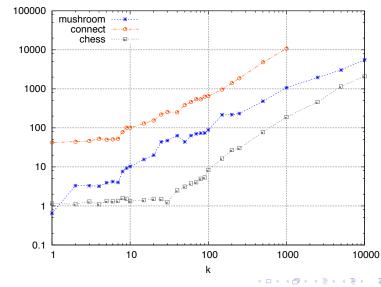
Conclusion and Perspectives

instance	#trans	#items	dens(%)	#vars	#clauses
zoo-1	101	36	44	173	2196
Hepatitis	137	68	50	273	4934
Lymph	148	68	40	284	6355
audiology	216	148	45	508	17575
Heart-cleveland	296	95	47	486	15289
Primary-tumor	336	31	48	398	5777
Vote	435	48	33	531	14454
Soybean	650	50	32	730	22153
Australian-credit	653	125	41	901	48573
Anneal	812	93	45	990	39157
Tic-tac-toe	958	27	33	1012	18259
german-credit	1000	112	34	1220	73223
Kr-vs-kp	3196	73	49	3342	121597
Hypothyroid	3247	88	49	3419	143043
chess	3196	75	49	3346	124797
splice-1	3190	287	21	3764	727897
mushroom	8124	119	18	8348	747635
connect	67558	129	33	67815	5877720

æ

Datasets characteristics min = 1, k is varied Varying the minimum length min

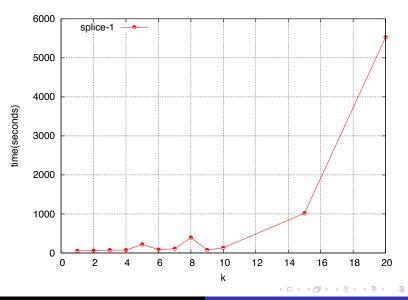
Conclusion and Perspectives



Said Jabbour and Lakhdar Sais and Yakoub Salt The Top-k Frequent Closed Itemset Mining Using Top-k SAT

Datasets characteristics min = 1, k is varied Varying the minimum length min

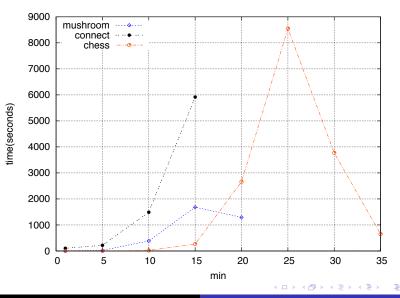
Conclusion and Perspectives



Said Jabbour and Lakhdar Sais and Yakoub Salf The Top-k Frequent Closed Itemset Mining Using Top-k SAT

Datasets characteristics min = 1, k is varied Varying the minimum length min

Conclusion and Perspectives



Said Jabbour and Lakhdar Sais and Yakoub Salt The Top-k Frequent Closed Itemset Mining Using Top-k SAT

Conclusion

- New problem Top-k SAT
- Application in data mining (Top-k itemsets mining)

Futures works

27

Other data mining problems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

28

Questions?

Said Jabbour and Lakhdar Sais and Yakoub Salt The Top-k Frequent Closed Itemset Mining Using Top-k SAT