
Symmetries in Itemset Mining
Said Jabbour and Lakhdar Sais and Yakoub Salhi and Karim Tabia1

Abstract. In this paper, we describe a new framework for break-
ing symmetries in itemset mining problems. Symmetries are permu-
tations between items that leave invariant the transaction database.
Such kind of structural knowledge induces a partition of the search
space into equivalent classes of symmetrical itemsets. Our proposed
framework aims to reduce the search space of possible interest-
ing itemsets by detecting and breaking symmetries between items.
Firstly, we address symmetry discovery in transaction databases.
Secondly, we propose two different approaches to break symmetries
in a preprocessing step by rewriting the transaction database. This ap-
proach can be seen as an original extension of the symmetry breaking
framework widely used in propositional satisfiability and constraint
satisfaction problems. Finally, we show that Apriori-like algorithms
can be enhanced by dynamic symmetry reasoning. Our experiments
clearly show that several itemset mining instances taken from the
available datasets contain such symmetries. We also provide exper-
imental evidence that breaking such symmetries reduces the size of
the output on some families of instances.

1 Introduction

The problem of mining frequent itemsets is well-known and essen-
tial in data mining, knowledge discovery and data analysis. It has ap-
plications in various fields and becomes fundamental for data anal-
ysis as datasets and datastores are becoming very large. Since the
first article of Agrawal [15] on association rules and itemset mining,
the huge number of works, challenges, datasets and projects show
the actual interest in this problem (see [17] for a recent survey of
works addressing this problem). Note that several data mining tasks
are closely related to the itemset mining problem such as the ones of
association rule mining, frequent pattern mining in sequence data,
data clustering, episode mining, etc. Important progress has been
achieved for data mining and knowledge discovery in terms of im-
plementations, platforms, libraries, etc. Nevertheless, the majority of
works developed solutions and tools specifically tuned and designed
to achieve very specific goals on specific data mining tasks. The algo-
rithmic issues represent the most important problem for the majority
of works. As pointed out in [17], lot of works deal with designing
highly scalable itemset mining algorithms for large scale datasets.
The existing algorithms mainly differ in the way they explore the
itemset search space, how the anti-monotonicity property is used and
how the dataset is handled. Another important problem of itemset
mining and data mining problems in general, concerns the huge size
of the output, from which it is difficult to retrieve useful information.
Consequently, for practical data mining, it is important to reduce the
size of the output, by exploiting the structure of the itemsets data.
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Computing for example, closed, maximal, condensed, discriminative
itemset patterns are some of the well-known and useful techniques.

Symmetry between items is another kind of structural information
that might be recovered from the transaction databases and used to
further reduce the size of the output by limiting the search space.
Symmetries are a fundamental concept in computer science, mathe-
matics, physics and many other domains. Many human artifacts (e.g.
classroom in a university, aircraft seats, circuit patterns) and enti-
ties in nature (e.g. plants, molecules, DNA sequences, atoms) ex-
hibits symmetries. Such symmetries allow us to reason and to under-
stand more complex entities and systems. For example, this kind of
structures has been widely exploited in constraint satisfaction (CSP)
and propositional satisfiability (SAT) problems. As far as we know,
symmetry reasoning has been first introduced by Krishnamurthy [9]
to shorten resolution proofs in propositional logic. He shows that a
resolution proof system augmented with the symmetry rule is more
powerful than resolution. In [2], the authors showed how dynamic
symmetry detection and elimination can lead to significant improve-
ments of several automated deduction techniques. In constraint sat-
isfaction problems, a weaker form of symmetry called value inter-
changeability is first introduced by E. Freuder in [6], while variable
and value symmetry are studied in [14]. Symmetry breaking using
additional constraints has been proposed independently by James
Crawford in the context of first order [3] and propositional [4] logic
theories and by Jean-François Puget in CSP [14]. More recent contri-
butions clearly show that symmetry remains an active research area
in both CSP and SAT.

To the best of our knowledge, in the context of data mining and
particularly for the itemset mining problem, symmetries have not re-
ceived much attention. Let us mention two related works address-
ing a particular case of general symmetries considered in this paper
[13, 12]. Indeed, this restricted form of symmetry, called pairwise
items symmetry, is obtained by exchanging two items, while leaving
the remaining items unchanged. This is clearly a restriction of the
general symmetry principle. In [13], an efficient ZBDD algorithm for
detecting pairwise symmetries is proposed and the property of sym-
metric items in transaction database are discussed. Pairwise items
symmetries, called clone items, have been proposed by Medina and
Nourine [7] to explain why sometimes, the number of rules of a min-
imum cover of a relation is exponential in the number of items of the
relation. More recently, in the context of constraint programming for
k-pattern set mining, Guns et al. [8] used symmetry breaking con-
straints to impose a strict ordering on the patterns in the pattern set.

In this paper, we propose a theoretical framework for dealing
with general symmetries in itemset mining problems. We first pro-
pose an adaptation of the symmetry detection method usually used
in propositional satisfiability [3, 1] to transaction databases. As this
hidden structure can be very helpful for reducing the search space,
we show how they can be integrated dynamically in Apriori-like al-



gorithms to prune the set of possible candidate patterns. Then, we
propose two symmetry breaking approaches to eliminate symmetries
in transaction databases in a preprocessing step. Our proposed sym-
metry breaking methods eliminate items from the original transaction
database. The frequent itemsets generated using the new transaction
database together with the symmetry group can be used to retrieve the
whole set of frequent itemsets of the original transaction database.
This can be seen as a form of condensed representation of the output.
A condensed representation is originally proposed by Mannila and
Toivenen in [10]. For frequent itemsets, a condensed representation
is a collection of itemsets that still contains the same information.

On the practical side and to show the usefulness of exploiting sym-
metries in itemset mining problems, we present an experimental eval-
uation of both symmetry detection and symmetry breaking on some
benchmark instances.

2 Preliminary definitions and notations
Let I be a set of items. A set I ⊆ I is called an itemset. A transac-
tion is a couple (tid, I) where tid is the transaction identifier and I
is an itemset. A transaction database is a finite set of transactions
over I where for each two different transactions, they do not have the
same transaction identifier. We note Tid(D) = {tid| (tid, I) ∈ D}
the set of transaction identifiers associated to D. We use Iitems(O)
to denote the set of all the items appearing in the syntactic object O
(e.g. a transaction database, itemset, etc). We say that a transaction
(tid, I) supports an itemset J if J ⊆ I .

The cover of an itemset I in a transaction database D is
the set of identifiers of transactions in D supporting I:
C(I,D) = {tid | (tid, J) ∈ D and I ⊆ J}. The support of
an itemset I in D is defined by: Supp(I,D) =|C(I,D)|. Moreover,
the frequency of I in D is defined by: F(I,D) = Supp(I,D)

|D| .

Example 1 Let us consider the following trans-
action database over the set of items I =
{Spaghetti, Tomato, Parmesan,Beef,Olive oil,Mozzarella,
Chili pepper,Anchovies, Eggs}:

tid itemset
001 Spaghetti, Olive oil, Tomato, Mozzarella
002 Spaghetti, Parmesan, Olive oil, Beef
003 Chili pepper, Anchovies
004 Eggs

Table 1. An example of transaction database D

For instance, we have Supp({Spaghetti, Olive oil},D)=
|{001, 002}|=2 and F({Spaghetti, Olive oil},D)=0.5.

Let D be a transaction database over I and λ a minimal support
threshold.

Proposition 1 (Anti-Monotonicity) Let I1 and I2 be two itemsets
such that I1 ⊆ I2. If Supp(I2,D) ≥ λ then Supp(I1,D) ≥ λ.

Definition 1 (Frequent Itemset Mining Problem) The frequent
itemset mining problem consists in computing the following set:

FIM(D, λ) = {I ⊆ I | Supp(I,D) ≥ λ}

Definition 2 (Transaction Renaming) Let D be a transaction
database. A renaming f over Tid(D) is a bijective mapping from
Tid(D) to Tid(D).

We can extend a renaming f to D as follows: f(D) =
{(f(tid), I)|(tid, I) ∈ D}.

3 Symmetry in Frequent Itemset Mining
Definition 3 (Permutation) A permutation σ over I is a bijective
mapping from I to I.

Let D be a transaction database. We can extend a permutation
σ to D as follows: σ(D) = {(tid, σ(I))|(tid, I) ∈ D} where
σ(I) = {σ(a)|a ∈ I}.

We denote by P(I) the set of all the permutations over I and
◦ is the composition operation over the elements of P(I). It is easy
to see that (P(I), ◦) is a group where the identity permutation is a
neutral element. (S′, ◦) is a sub-group of the group (P(I), ◦) if and
only if (S′, ◦) is a group and S′ ⊆ P(I). A generating set of the
group (S, ◦) is a subset Σ of S such that every element of the group
can be obtained from the combination of finitely many elements of
Σ and their inverses, and we write S =< Σ >.

Each permutation σ can be represented by a set of cycles c1 . . . cn
where each cycle ci = (a1, . . . , ak) is a list of elements of I such
that σ(aj) = aj+1 for j = 1, . . . , k − 1, and σ(ak) = a1. In the
sequel, for clarity reasons, we omit cycles of the form (a, a) in the
description of permutations and symmetries,.

Definition 4 (Orbit) Let (S, ◦) be a sub-group of (P(I), ◦). The
orbit aS of an item a ∈ I on which (S, ◦) acts is aS = {σ(a)|σ ∈
S}.

When there is no ambiguity, we note aS simply [a].

Definition 5 (Symmetry) Let D be a transaction database. A sym-
metry of D is a permutation σ ∈ P(I) such that there exists
a transaction renaming f over Tid(D) where σ(D) = f(D) i.e.
f−1(σ(D)) = D.

Example 2 Let us consider again the transaction database given in
Table 1. σ = (Tomato, Parmesan)(Mozzarella,Beef)
(Chili pepper,Anchovies) is a symmetry because σ(D) = f(D)
where f is a transaction renaming defined as follows:

f(x) =

8<:
002 if x=001
001 if x=002
x otherwise

Let S(D) be the set of all the symmetries. One can see that (S(D), ◦)
is a sub-group of (P(I), ◦).

Definition 6 Let D be a transaction database. Two items a, b ∈
Iitems(D) are symmetric if there exists a symmetry σ ofD such that
σ(a) = b.

The following proposition is immediate:

Proposition 2 LetD be a transaction database and a ∈ Iitems(D).
All the items in aS(D) are symmetrical two by two.

Proposition 3 LetD be a transaction database, σ a symmetry ofD,
λ a minimal support threshold and I an itemset. I ∈ FIM(D, λ)
iff σ(I) ∈ FIM(D, λ).

Proof: Since there exists a transaction renaming f such that σ(D) =
f(D), it is easy to see that σ(I) ∈ FIM(f(D), λ) and conse-
quently σ(I) ∈ FIM(D, λ). 2



4 Symmetry Detection in Transaction Databases
In this section, we describe symmetry detection in transaction
databases. One of the most popular means of discovering symme-
tries of a problem is to first convert the problem into a graph, and
employ a general-purpose graph symmetry tool to uncover the sym-
metries [1]. These symmetries can then be reflected back into the
original problem. The oldest and most established graph symmetry
program is McKays Nauty [11]. Most of the available symmetry de-
tection tools convert the original problem into a colored undirected
graph, where vertices are labeled with colors. Such colored vertices
are considered when searching for automorphism on the graph (i.e.
vertices with different colors can not be permuted to each other).

Definition 7 A colored undirected graph is a triplet G = (V,E, η)
with vertex set V and edge set E ∈ V 2 and η is a function from V
to N that associates a positive integer (a color) to each vertex.

Definition 8 A permutation σ of V is a symmetry of G iff σ(G) = G
or equivalently σ(E) = E.

Definition 9 A symmetry σ of G respects a partition π of V if for
each v ∈ V , v and σ(v) belong to the same cell of π. The set of all
symmetries of G with respect to a partition π is called the automor-
phism group of G under π and is denoted A(G)π .

We now show how a transaction database can be encoded as a colored
undirected graph.

Definition 10 (From D to G) Let I be a set of items and D a trans-
action database over I. We define the colored undirected graph G
associated to D as G(D) = (V,E, η) where V = I ∪ Tid(D),
E = {(tid, i)|∃(tid, I) ∈ D, i ∈ I} and ∀v ∈ V ,

η(v) =


0 if v ∈ I
1 otherwise v ∈ Tid(D)

Let us note that π = {{v|v ∈ V, η(v) = 0}, {v|v ∈ V, η(v) =
1}} is the initial partition of V . Several refinements have been pro-
posed to improve the partition π. The goal of these refinements is to
reduce the search space by distinguishing as much as possible non
symmetric vertices using vertex invariant such as vertex degree (e.g.
[5]).

The conversion of the transaction database D given in Example 1
to a colored undirected graph G(D) is depicted in Figure 1. For sim-
plicity, we use the first letter of each item name in lower case (e.g. e
for Eggs). In the figure we distinguish two kinds of nodes, items rep-
resented by circles (color 1) and transaction identifiers represented
by rectangles (color 2).

002001 003 004

t

om

ecas

p b

Figure 1. From transaction database D to colored graph G(D)

With this construction, there is a one to one mapping between
symmetries in the transaction database and the automorphisms of

the colored undirected graph. Given G(D) and an initial partition
π, the goal is to compute A(G(D))π . Using NAUTY [11], one can
find the automorphisms that leave G(D) invariant. For example,
A = (t, p)(m, b)(c, a)(o)(s)(e) [(001, 002)(003)(004)] is an au-
tomorphism of G(D). The corresponding symmetry σ is obtained
from A by projection on the set of items I of D.

5 Symmetry Pruning

In this section, we show how symmetries can be used by classical
enumeration algorithms such as Apriori to reduce the set of possible
candidate patterns.

The Apriori algorithm is an algorithm for mining frequent item-
sets for association rules [15]. It proceeds by a level-wise search of
the elements of FIM(D, λ). Namely, it starts by computing the el-
ements of FIM(D, λ) of size one. Then, assuming the elements
of FIM(D, λ) of size n known, it computes a set of candidates of
size n + 1 so that I is a candidate if and only if all its subsets are
in FIM(D, λ). This procedure is iterated until no more candidate
is found. Let D be a transaction database such that Iitem(D) =
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Figure 2. Symmetry pruning of the search space

{A,B,C}, σ = (B,C) and σ′ = (A,C)(B,D) two symmetries
of D and λ a minimal support threshold. We consider that we are
in an intermediary step of an Apriori like algorithm and we have
{A}, {B}, {C}, {D} ∈ FIM(D, λ) and {A,B} /∈ FIM(D, λ).
Using the anti-monotonicity property (Proposition 1), we know that
for all itemset I containing {A,B}, I /∈ FIM(D, λ), then we ob-
tain {A,B,C}, {A,B,D}, {A,B,C,D} /∈ FIM(D, λ). More-
over, using the symmetries σ and σ′, we know that {A,C} /∈
FIM(D, λ) and {C,D} /∈ FIM(D, λ). Indeed, this is a conse-
quence of Proposition 3, σ({A,B}) = {A,C} and σ′({A,B}) =
{C,D}. Finally, using the anti-monotonicity property, we deduce
that also {A,C,D}, {B,C,D} /∈ FIM(D, λ). This is illustrated
in Figure 2 where the inclined dashed circles (nodes) correspond to
the itemsets pruned by symmetry.

6 Symmetry Breaking

In this section, we propose two approaches for breaking symmetries
in a preprocessing step. Our proposed symmetry breaking methods
eliminate items from the original transaction database. The frequent
itemsets generated using the new transaction database together with
the symmetry group can be used to retrieve the whole set of frequent
itemsets of the original transaction database. This can be seen as a
form of condensed representation of the output.



6.1 Orbit-based Symmetry Breaking

Definition 11 Let D be a transaction database and [a] an orbit fol-
lowing (S(D), ◦). Da is the transaction database obtained from D
as follows: ∀b ∈ [a] such that b 6= a and for every transaction
T = (tid, I) ∈ D, if b ∈ I and a /∈ I , then b is removed from
I in the transaction T .

Let D be a transaction database, a an item and λ a minimal
support threshold, we denote by FIMa(D, λ) all the elements of
FIM(D, λ) containing a.

Proposition 4 Let D be a transaction database, a, b ∈ Iitems(D)
such that they are in the same orbit following the group (S(D), ◦)
and λ a minimal support threshold. There exists a symmetry σ such
that FIMb(D, λ) = σ(FIMa(D, λ)).

Proof: Since a and b are in the same orbit, there exists a sym-
metry σ such that b = σ(a). Using Proposition 3, we have (1)
FIMb(D, λ) ⊇ σ(FIMa(D, λ)) and (2) FIMa(D, λ) ⊇
σ−1(FIMb(D, λ)). Using (2), we have σ(FIMa(D, λ)) ⊇
FIMb(D, λ). Therefore, FIMb(D, λ) = σ(FIMa(D, λ))
holds. 2

Proposition 5 Let D be a transaction database, [a] an orbit fol-
lowing (S(D), ◦) of size n and λ a minimal support threshold.
Then, there exist n symmetries σ1, . . . , σn such that FIM(D, λ) =
FIM(Da, λ) ∪ σ1(FIM(Da, λ)) ∪ . . . ∪ σn(FIM(Da, λ)).

Proof: By induction on n (it is a consequence of Proposition 4). 2

Let D be a transaction database, O = {[a1], . . . , [ak]} the set
of all the orbits following (S(D), ◦) and λ a minimal support
threshold. Then, the transaction database (. . . (Da1). . . )ak and
(S(D), ◦) are sufficient to compute FIM(D, λ). This is a direct
consequence of Proposition 5.

Let us take again the transaction database given in Example 1
and the associated symmetry σ given in section 2. Using the orbit
[Tomato]σ , we eliminate Parmesan in transaction 002 as it does
not contain the item Tomato. While using the orbit [Mozarella]σ ,
we eliminate the item Beef from transaction 002 as it does not con-
tain Mozarella. However, using the orbit [Chili pepper]σ the item
Anchovies can not be eliminated from the transaction 003 as both
items, Chili pepper and Anchovies, occur together in the same
transaction.

6.2 Itempair-Based Symmetry Breaking

In this section, we propose another method to reduce the search
space of possible interesting itemsets by detecting and breaking
symmetries between itempairs.

We only consider the particular case of the symmetries with binary
cycles in our description. Moreover, we fix an order � on I and we
denote by min(I), with I an itemset, the least item of I following
�.

Definition 12 (Ordered Symmetry) Let D be a transaction
database and σ = (a1, a

′
1) · · · (ak, a′k) be a symmetry of D. σ is

an ordered symmetry iff for all i, j ∈ {1, . . . , k} such that i ≤ j,
ai � a′i and ai � aj .

In the rest of this paper, we consider all symmetries as ordered.
Let D be a transaction database and σ = (a1, a

′
1) · · · (ak, a′k)

be a symmetry of D, the set of items L(σ) (L for Left) is
defined by L(σ) = {a1, . . . , ak}, R(σ) (R for Right) by
R(σ) = {a′1, . . . , a′k} and H(σ) by H(σ) = {{ai, a′j}|ai ∈
L(σ), a′j ∈ R(σ) and i ≤ j}. Moreover, let E be a set of
itempairs, we denote by E(σ) the following set of itempairs:
σ(E) = {{x, y} ∈ E|x, y /∈ R(σ) or {x, y} ∈ H(σ)}.
Intuitively, σ(E) is obtained from E by removing itempairs that can
be recovered using σ.

In the following two propositions, we particularly show how some
itempairs can be recovered from the others using symmetries. This
will allow us to reduce transaction databases by removing items.

Proposition 6 Let D be a transaction database, Σ = {σ1, . . . , σn}
a set of symmetries of D, EΣ = {{x, y}|x, y ∈ Iitems(Σ)}
and WΣ = σ1(σ2(· · · (σn(EΣ)) · · · )). Then, for all {x, y} ∈
Iitems(Σ), there exist {x′, y′} ∈ WΣ and a symmetry σ such that
σ({x′, y′}) = {x, y}.

Proof: One can easily prove that WΣ = σ1(EΣ) ∩ · · · ∩ σn(EΣ)
(by induction on the value of n). Let x′, y′ ∈ Iitems(Σ) such that
(1) there exists a symmetry σ where σ({x′, y′}) = {x, y}, (2) and
for all symmetry σ′, there are no x′′, y′′ ∈ Iitems(Σ) such that
x′′ ≺ x′ (that means in particular x′ ≺ y′) and σ′({x′′, y′′}) =
{x, y}. Intuitively, {x′, y′} is the smallest itempair allowing to re-
cover {x, y}. If {x′, y′} /∈ WΣ, then there exists σi ∈ Σ such
that x′, y′ ∈ R(σi) or {x′, y′} /∈ H(σi). In both cases, there ex-
ists {x′′, y′′} ∈ σi(EΣ) such that x′′ ≺ x′ and σi({x′′, y′′}) =
{x′, y′}. Thus, σ(σi({x′′, y′′})) = σ({x′, y′}) = {x, y} holds and
we get a contradiction. 2

Proposition 7 Let D be a transaction database, Σ = {σ1, . . . , σn}
be a set of symmetries of D, E = {{x, y}|x, y ∈ Iitems(D)} and
W = σ1(σ2(· · · (σn(EΣ)) · · · )). The three following properties are
satisfied:

1. there exists x ∈ Iitems(W ) such that for all y ∈
Iitems(D)\Iitems(Σ), {x, y} ∈W ;

2. for all x ∈ Iitems(D), there exists y ∈ Iitems(W ) and a symme-
try σ such that x = σ(y);

3. for all {x, y} ∈ E\W , there exists {x′, y′} ∈W and a symmetry
σ such that σ({x′, y′}) = {x, y}.

Proof: The first property is proved by taking x = min(Iitems(Σ)).
Indeed, by construction of W we have min(Iitems(Σ)) is in
Iitems(W ) and for all y ∈ Iitems(D)\Iitems(Σ), {x, y} ∈W .
The second property is proved by using the fact that the minimum of
each set of the items symmetrical two by two is in W .
Let us now prove the third property. If x /∈ Iitems(Σ) (resp.
y /∈ Iitems(Σ)) then by using the second property we know that
there exist y′ ∈ W (resp. x′ ∈ W ) and a symmetry σ such that
σ({x, y′}) = {x, y} (resp. σ({x′, y}) = {x, y}). Otherwise, x and
y are in Iitems(Σ) and, by using Proposition 6, the property is satis-
fied. 2

Definition 13 Let D be a transaction database, Σ = {σ1, . . . , σn}
a set of symmetries of D, E = {{x, y}|x, y ∈ Iitems(D)} and
W = σ1(σ2(· · · (σn(EΣ)) · · · )). D[W ] is the transaction database
obtained fromD as follows: for all a ∈ Iitems(D) and for all trans-
action T = (tid, I) ∈ D with |I| ≥ 2 and a ∈ I , if for all b ∈ I we
have {a, b} /∈W , then a is removed from I in the transaction T .



Let λ be a minimal support threshold. From Proposition 3 and
Proposition 7 (Property 3), we deduce that the transaction database
D[W ] and Σ are sufficient to compute FIM(D, λ).

Let us show an example where Itempair-Based Symmetry Break-
ing approach eliminates more items in the transaction database than
the Orbit-based Symmetry Breaking one. Let D be a transaction
database and σ1 = (a, b), σ2 = (b, c) and σ3 = (c, d) three sym-
metries of D. It is easy to see that a, b, c and d are in the same or-
bit. Thus, using orbit-based symmetry breaking, FIM(D, λ) can
be computed from the transaction database obtained from D by
removing b, c and d from all transactions that do not contain a.
However, using the itempair-based symmetry breaking, we can re-
move more items from D. Indeed, in D[σ1(σ2(σ3(E)))], with E =
{{x, y}|x, y ∈ Iitems(D)}, c and d are removed from all transac-
tions, and b is removed from all transactions that do not contain a.

7 Experimental evaluation
Our experimental studies are carried out on both real, public and sim-
ulated datasets widely used in the data-mining community. We pro-
vide several experiments in order to show the improvements that can
be achieved using our symmetry breaking-based itemset mining ap-
proach. In particular, we provide experiments on challenging high
dimensional data with thousands of items.

7.1 Experimentation setup
In our study, we carried out a series of three experimentations using
different datasets:
1. Simulated datasets: In this experimentation, we use the well-

known IBM itemset data generator to generate data with different
features (such as dataset size, density, etc.). Note that this gener-
ator is open source and publically available2. We generated dif-
ferent datasets with different parameters regarding the number of
transactions, average number of items per transaction, number of
different items, etc. In Table 2, we provide the features of each
simulated dataset.

2. Public datasets: The datasets used in this evaluation are from the
well-known itemset FIMI repository 3. However, the datasets from
FIMI are mostly simulated and not high dimensional. Therefore,
we used SIDO1, a dataset containing pharmacology real data
form the Causality challenge4. This dataset contains massive data
of 12678 transactions with 4932 items.

3. Real datasets: In this experimentation, we used real data regarding
intrusion detection alerts. The raw data is collected from real and
recent alert log files produced by Snort intrusion detection system
(IDS) 5 monitoring a university campus network. These alert logs
represent three months activity. The alert log files are preprocessed
into alert windows. Each alert window represents 1 hour of alerts
in datasetAlert1h and 8 hours in datasetAlert8h. In the obtained
datasets, each transaction represents the alerts triggered during an
alert window.

In our experiments, we exploit Saucy6, a new implementation of the
Nauty system. It is originally proposed in [1] and significantly im-
2 IBM Quest Market-Basket Synthetic Data Generator: http://
sourceforge.net/projects/ibmquestdatagen/

3 Frequent Itemset Mining Implementations Repository: http://fimi.
ua.ac.be/

4 http://www.causality.inf.ethz.ch/challenge.php
5 http://snort.org
6 Saucy2: Fast symmetry discovery http://vlsicad.eecs.umich.
edu/BK/SAUCY/

proved in [5]. The latest version of Saucy outperforms all the existing
tools by many orders of magnitude, in some cases improving runtime
from several days to a fraction of a second.

Because of lack of space, we only provide experiments using
itempair-based symmetry breaking approach.

In the sequel, we note, |D| (resp. |I|) the number of transactions
(resp. different items) in the dataset D. |Iocc| denotes the total num-
ber of item occurrences in D, while % dens represents the den-
sity of the input transaction dataset. time(s) denotes the cumulated
time in seconds required to search and break symmetries. |Irem|
represents the number of removed item occurrences from the initial
dataset. #sym denotes the number of symmetries discovered in the
dataset. Finaly, Iset and Isset corresponds to the number of fre-
quent itemsets obtained on the transaction dataset before and after
breaking symmetries respectively.

7.2 Results on simulated datasets
Table 2 provides details on the generated datasets and the results of
our symmetry breaking approach.

Dataset |D| |I| |Iocc| %dens time(s) |Irem| #sym
Dataset1 100 1006 1020 0.099% 1.29 894 899
Dataset2 778 3506 4089 0.011% 1.67 2774 2642
Dataset3 6110 13680 30886 0.014% 2.64 10577 8371
Dataset4 7822 17266 40506 0.023% 2.89 7520 9415
Dataset5 10000 26445 200102 0.075% 3.87 8330 9283
Dataset6 60808 27141 246817 0.073% 7.72 13396 9074
Dataset7 100 27151 199869 7.37% 8.5 13032 11607

Table 2. Details and results on simulated datasets

Table 2 clearly shows the significant improvements (in terms of
the number of removed item occurrences) that can be performed as
the number of symmetries grows. For instance, in experimentation
on Dataset3 with 6110 transactions, the number of symmetries is
8371. The second point to mention is that on the generated datasets,
the number of symmetries is important in datasets with low densities.

In Table 3, we provide results pointing out the correlation between
the size of the preprocessed datasets (in terms of item occurrences )
and the size of outputs (in terms of frequent itemsets) with the num-
ber of discovered symmetries. Note that this experiment is carried out
on datasets we simulated specifically to involve interesting symme-
tries. To compare the output size, we use theLCMv3 itemset mining
implementation7 [16] on each dataset before and after preprocessing.

#sym |I| |Irem| λ |Iset| |Isset|
6 900 421 5 1015830 4370
10 5586 3711 90 17467891 12952
16 37350 32482 375 2679034 467
22 148471 128471 900 1462982 1232
26 311850 289847 1450 22156 33

Table 3. Comparison of the number of removed item occurences and
output size in the number of discovered symmetries.

One can see for instance in Table 3 that as the number of sym-
metries in the dataset increases, the size of the preprocessed dataset
is significantly reduced. In particular, in our simulated dataset, when
the number of symmetries equals 26, the item occurrences is reduced
from 311850 to 66272 (ensuring a reduction rate of 78%). Note also
that the output size (see the number of frequent itemsets |Iset| be-
fore preprocessing and the number frequent itemsets |Isset| on the
preprocessed dataset) is significantly reduced on all the datasets of
Table 3. The output size is computed for each dataset using the same
support λ.

7 http://research.nii.ac.jp/˜uno/codes.htm



7.3 Results on public datasets
In Table 4, we provide details on the used datasets and the obtained
results. The results of Table 4 show that in the tested public datasets,

Dataset |D| |I| |Iocc| %dens |Irem| #sym
Mushroom 8124 186852 198169866 13% 1208 11
Retail 88162 908576 4106009 0.005% 89 217
BMS-
WebView2

77512 3341 358278 0.14% 4 10

BMS-
POS

515597 1658 3367020 0.4% 3 16

SIDO1 9297 4926 4514145 9.85% 568 190

Table 4. Details and results on public datasets

symmetries can be found. For instance, the SIDO1 dataset contains
190 symmetries allowing to remove 568 item occurrences from the
initial dataset. However, the number of symmetries is not as impor-
tant as in some simulated datasets of Table 2. Also, the number of
removed item occurrences is not significant, consequently the size of
the outputs in terms of the number of frequent itemsets is not signif-
icantly reduced.

7.4 Results on real datasets
In Table 5, we find details on the used alert datasets and the results of
our approach. In Table 5, we see that our datasets regarding real in-

Dataset |D| |I| |Iocc| %dens |Irem| #sym
Alert1h 22203 167 27049 0.73% 86 23
Alert8h 123 167 3453 16.81% 248 19

Table 5. Details and results on the alert dataset

trusion detection alerts contain some symmetries. More importantly,
on the dataset Alert8h, the size of the output in terms of the number
of frequent itemsets (with a support λ=60) is decreased by a ratio
of 50%. The two datasets have different densities and the number of
removed items does not depend only on the number of discovered
symmetries but also on the nature of the data itself.
Let us summarize the experimental evaluation of our symmetry
framework for frequent itemset mining problems. From the obtained
results, we can make several interesting observations:

• Several datasets contain symmetries and are discovered by our
symmetry detection method in a reasonable amount of time.

• The size of the output (number of frequent itemsets) can be sig-
nificantly reduced by our symmetry-based framework.

• The reduction rate in terms of the number of eliminated item oc-
currences in the transaction database does not depend only on the
number of found symmetries but also on their form. Indeed, some
of the discovered symmetries are made of permutations of items in
the same transactions, leading to no reduction using our symmetry
breaking approaches. Such kind of symmetries can be better ex-
ploited in a dynamic way by Apriori-like algorithms as explained
in Section 5 (symmetry pruning). This issue will be a subject of fu-
ture investigations. The goal is to combine both symmetry break-
ing and symmetry pruning in the same framework.

8 Conclusion and Future Works
Symmetry is an important structural property widely exploited to re-
duce the search space of many combinatorial problems. In this paper,
we have presented the theoretical foundation for discovering and us-
ing symmetries in the context of itemset mining problems. This study
is important for several reasons. First, this kind of structures can be
present in structured data and can be exploited for reducing both the
search space and the size of the output. Secondly, even if such output

is reduced, the eliminated combinatorial structures can be recovered
by symmetry. Symmetries can also be used to help the user for com-
puting either non-symmetric or symmetric patterns. The symmetries
discovered from a given set of data, might be valuable in analyzing
data themselves. Our theoretical framework includes symmetry de-
tection, symmetry breaking and symmetry pruning. Our experimen-
tal results, demonstrate that this kind of structure can be hidden in
some classes of transaction databases. We also show that when sym-
metries are present, their exploitation leads to interesting reduction
of the output size.

The symmetry framework proposed in this paper for the itemset
mining problem opens interesting research directions in data min-
ing in general. We plan to extend our symmetry framework to other
data mining problems such us sequence, tree or graph mining. In
the context of itemset mining, there remains many rooms for future
improvements. The integration of symmetry pruning in Apriori-like
algorithm is clearly an important issue as many datasets contain sym-
metries between items appearing in the same transactions.
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