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Abstract. In this paper we propose a satisfiability-based approach
for enumerating all frequent, closed and maximal patterns with wild-
cards in a given sequence. In this context, since frequency is the most
used criterion, we introduce a new polynomial inductive formula-
tion of the cardinality constraint as a Boolean formula. A nogood-
based formulation of the anti-monotonicity property is proposed and
dynamically used for pruning. This declarative framework allows
us to exploit the efficiency of modern SAT solvers and particularly
their clause learning component. The experimental evaluation on real
world data shows the feasibility of our proposed approach in prac-
tice.

1 Introduction

Frequent sequence data mining is the problem of discovering fre-
quent patterns shared across time among an input data-sequence. Pat-
tern discovery in data is widely used in bioinformatics as a way to ex-
tract meaningful ”knowledge” in large volume of data such as protein
motif discovery, gene prediction and sequence alignment. This prob-
lem is central to many other applications domains such as database
and text mining.

In this paper we consider the pattern discovery problem for a spe-
cific class of patterns in a sequence. The data could be represented
as a string (a sequence of ”solid” characters), while the pattern can
be seen as a subsequence with an additional special character called
wildcard or joker that match any character [11, 14, 1]. We are par-
ticularly interested in enumerating all frequent, closed and maximal
patterns in a sequence. The enumeration problem for maximal and
closed motifs with wildcards has been investigated recently by sev-
eral authors [12, 14, 1]. One of the major problem is that the number
of motifs can be of exponential size. This combinatorial explosion is
tackled using different approaches. For example, in Parida et al. [11],
the number of patterns is reduced by introducing the maximal non re-
dundant q-patterns (patterns occurring at least q times in a sequence).
Arimura and Uno [1] proposed a polynomial space and polynomial
delay algorithm MaxMotif for maximal pattern discovery of the class
of motifs with wildcards.

Our approach for enumerating all frequent patterns in a sequence
differs from all the previous specialized approaches. It follows the
constraint programming (CP) based data mining framework pro-
posed recently by Luc De Raedt et al. in [15] for itemset mining.
This new framework offers a declarative and flexible representation
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model. New constraints often require new implementations in spe-
cialized approaches, while they can be easily integrated in such a CP
framework. It allows data mining problems to benefit from several
generic and efficient CP solving techniques. The authors show how
some typical constraints (e.g. frequency, maximality, monotonicity)
used in itemset mining can be formulated for use in CP [7]. This first
study leads to the first CP approach for itemset mining displaying
nice declarative opportunities without neglecting efficiency. Encour-
aged by these promising results our first goal is to heavily exploit
these declarative languages (constraint programming and Boolean
satisfiability (SAT)) and their associated efficient and generic solv-
ing techniques. First, we propose a SAT model for our problem that
includes different types of constraints. The first one, called support
constraint, allows us to capture the locations of a given candidate
pattern. The second one, called frequency constraint, encodes that a
pattern must appears at least λ times in the sequence. Using inductive
arguments, we also provide an interesting encoding of the frequency
constraint to a Boolean formula. Finally, in order to search for closed
and maximal motifs, we also provide a Boolean formulation of both
closedness and maximality constraints. This leads us to the first SAT-
based model for enumerating frequent, closed and maximal patterns
in a sequence. In addition to the benefit that can be obtained thanks
to the recent progress in satisfiability testing, another important mo-
tivation behind the Boolean model rises in the ability of modern SAT
solvers to efficiently handle nogoods thanks to their clause learning
component. In order to encode the anti-monotonicity property, we
show that it can be dynamically maintained using a set of nogoods.
Each time a pattern p is proved infrequent, all patterns p′ such that
p ⊆ p′ are eliminated thanks to additional nogoods.

2 Preliminaries
2.1 Frequent patterns mining: definitions and

notations
In this section, we give a formal description of the problem of enu-
merating frequent patterns, possibly interspersed with a wildcard
symbol, in a sequence. To this end we first introduce some basic
definitions and notations according to [11, 14, 1]. Let Σ be an al-
phabet, which is a finite set of symbols (called solid characters). A
sequence (or simply a string) s is a successive sequence of charac-
ters s1 . . . sn ∈ Σn. The length of the string s is denoted by |s|. We
denote by O = {1 . . . |s|} the set of positions of the characters in s.
A wildcard (or don’t care) is an additional symbol ◦ not belonging to
Σ (◦ /∈ Σ) that matches any symbol of the alphabet including itself.

Definition 1 (Pattern) A pattern over Σ is a sequence p =
p1 . . . pm ∈ Σ ∪ Σ.(Σ ∪ {◦})∗.Σ, where ∪ and . are the classi-



cal regular expression operators of union and concatenation respec-
tively. The first and the last position of a pattern must contain a solid
character i.e. p1 6= ◦ and pm 6= ◦.

Definition 2 (Inclusion) A pattern p = p1 . . . pm appears in a se-
quence s = s1 . . . sn at the location l ∈ O denoted p ⊆l s, if
∀i ∈ {1 . . .m}, pi = sl+i−1 or pi = ◦. We note Ls(p) = {l ∈
O|p ⊆l s} the support of p in s. We say that p ⊆ s iff ∃l ∈ O such
that p ⊆l s.

Definition 3 (Motif/Frequent pattern) Let s be a sequence and p a
pattern. Given a positive number λ ≥ 1, called quorum, we say that
p is a motif (or frequent pattern) in s when |Ls(p)| ≥ λ. The set of
all motifs of s for the quorum λ is denoted byMλ

s .

Example 1 Let s = aababcabcba be a sequence and p = ab ◦ b be
a pattern. As p ⊆2 s, and p ⊆7 s, we have Ls(p) = {2, 7}. If we set
the quorum λ to the value 2, then the pattern p is a motif of s.

Definition 4 (EMS) The problem of Enumerating all Motifs in a Se-
quence (EMS) can be defined as follows. Given a sequence s and a
quorum λ ≥ 1, enumerates all the elements ofMλ

s .

The following property can play an important role in reducing the
search space. Indeed, if a pattern is shown to be infrequent, all pat-
terns containing it are also infrequent.

Proposition 1 (Anti-monotonicity) Let p1 and p2 be two patterns
such that p1 ⊆ p2. If |Ls(p2)| ≥ λ then |Ls(p1)| ≥ λ.

Definition 5 (Closed Frequent Pattern) A frequent pattern p is
closed in a sequence s if for any frequent pattern q such that q ⊃ p,
there is no integer d such thatLs(q) = Ls(p)+d, whereLs(p)+d =
{l + d|l ∈ Ls(p)}.

Definition 6 (Maximal Frequent Pattern) A frequent pattern p is
maximal in a sequence s if for any frequent pattern q, q 6⊃ p.

One can easily see that all frequent patterns can be obtained from
the closed frequent patterns and also from the maximal ones by re-
placing solid characters with wildcards. Since the number of the
closed frequent patterns (resp. maximal frequent patterns) are smaller
or equal to the number of the frequent patterns, enumerating all
closed frequent patterns (resp. maximal frequent patterns) allows us
to reduce the size of the output.

2.2 Boolean Satisfiability
Let P be a propositional language of formulas FP built in the stan-
dard way, using usual logical connectives (∨, ∧, ¬, ⇒, ⇔) and a
set of propositional variables. Using linear Tseitin encoding, any
Boolean formula f ∈ FP can be translated to CNF (f), a formula
in conjonctive normal form. A CNF formula Φ is a set (interpreted
as a conjunction) of clauses, where a clause is a set (interpreted as a
disjunction) of literals. A literal is a positive or negated propositional
variable. A unit clause is a clause containing only one literal (called
unit literal). An empty clause, noted ⊥, is interpreted as false (un-
satisfiable), whereas an empty CNF formula, noted >, is interpreted
as true (satisfiable). We define Φ|x = {c | c ∈ Φ, {x,¬x} ∩ c =
∅} ∪ {c\{¬x} | c ∈ Φ,¬x ∈ c} as the formula obtained from Φ
by assigning the value trueto x. Φ∗ denotes the formula Φ closed
under unit propagation, defined recursively as follows: (1) Φ∗ = Φ
if Φ does not contain any unit clause, (2) Φ∗ =⊥ if Φ contains two

unit clauses {x} and {¬x}, (3) otherwise, Φ∗ = (Φ|x)∗ where x is
the literal of a unit clause of Φ. An assignment I of Φ is a function
which associates a value I(x) ∈ {false, true} to some of the vari-
ables of Φ. I is complete if it assigns a value to every variable of Φ,
and partial otherwise. A model of a formula Φ is an assignment that
makes the formula true. The SAT problem consists in determining if
a Boolean formula expressed in CNF admits a model or not.

Let us informally describe the most important components of
modern SAT solvers. They are based on a reincarnation of the histor-
ical Davis, Putnam, Logemann and Loveland procedure, commonly
called DPLL [6]. It performs a backtrack search; selecting at each
level of the search tree, a decision variable which is set to a Boolean
value. This assignment is followed by an inference step that deduces
and propagates some forced unit literal assignments. This is recorded
in the implication graph, a central data-structure, which encodes the
decision literals together with there implications. This branching pro-
cess is repeated until finding a model or a conflict. In the first case, the
formula is answered satisfiable, and the model is reported, whereas
in the second case, a conflict clause (called learnt clause) is gener-
ated by resolution following a bottom-up traversal of the implication
graph [9, 19]. The learning or conflict analysis process stops when a
conflict clause containing only one literal from the current decision
level is generated. Such a conflict clause asserts that the unique literal
with the current level (called asserting literal) is implied at a previ-
ous level, called assertion level, identified as the maximum level of
the other literals of the clause. The solver backtracks to the assertion
level and assigns that asserting literal to true. When an empty con-
flict clause is generated, the literal is implied at level 0, and the orig-
inal formula can be reported unsatisfiable. In addition to this basic
scheme, modern SAT solvers use other components such as activity
based heuristics and restart policies. An extensive overview can be
found in [5].

3 A SAT-based Approach for EMS
In this section, we show how the EMS problem (Definition 4) can be
encoded as a Boolean formula in CNF. In addition to the encoding
of the enumeration of motifs (frequent pattern) in a sequence, we
also provide a Boolean encoding of the closed and maximal motifs
enumeration problems.

3.1 Motivations
Our Boolean model is motivated by several important features of
both the EMS problem and SAT solvers. First, all the constraints
defining the EMS problem are defined on boolean variables lead-
ing naturally to a SAT-based model (Boolean formula in CNF). Our
second motivation comes from our desire to benefit from the (1) im-
pressive progress in Boolean Satisfiability checking [5]. The scala-
bility of modern SAT solvers can be related to both algorithmic im-
provements, and to (2) their ability to exploit the hidden structures of
the problem instance. By structure, we understand the dependencies
between variables, which can often appear through Boolean func-
tions. One particular example being the well known notion of strong
backdoors [18] that can be informally defined as subset of variables
such that any assignments of these variables leads to a tractable sub-
formula.

Another important motivation behind our Boolean model rises in
the ability of modern SAT solvers to (3) efficiently handle nogoods
thanks to their clause learning component. Indeed, clause learning
play a critical role in the success of modern complete SAT solvers.
The main idea is that when a current branch leads to a conflict, clause
learning aims to derive a clause that succinctly express the causes of



conflict. Such learned clause is then used to prune the search space.
Clause learning also known in the literature as Conflict Driven Clause
Learning (CDCL) refers now to the most known and used First UIP
learning scheme, first integrated in the SAT solver Grasp [9] and effi-
ciently implemented in zChaff [10]. Most of the SAT solvers, usually
called modern SAT solvers, integrate this strong learning scheme.
Theoretically, by integrating clause learning to DPLL-like procedure
[6], the obtained SAT solver corresponds to a proof system that is as
powerful as general resolution [13].

3.2 Boolean Encoding

We recall that n and m represent the size of the sequence and
the maximal size of motifs respectively. To enumerate all motifs
of arbitrary length, we first need to set the length of the motif to
the upper bound m = n − λ + 1. Secondly, we suppose that the
sequence is completed on the right hand side with m− 1 wildcards.
Let us take again the example 1. The maximum length of the motifs
is set to m = 9. Indeed, as λ = 3 and the size of the sequence is
n = 11, then the patterns of size greater than 9 are infrequent. The
number of wildcards added at the end of the sequence is m− 1 = 8.
This completion allows us to search for all motifs of different sizes.
Indeed, the string a◦◦◦◦◦◦◦◦ of size 9 representing the pattern a
of size 1 (a pattern starts and ends with a solid character) appears
5 times in swhen s is completed with 8 wildcards; 2 times otherwise.

We now describe our Boolean encoding of the EMS problem.
Suppose that Σ = {a1 . . . a|Σ|}. Let p = p1p2 . . . pm be a can-
didate pattern, where for all i ∈ {1 . . . ,m}, pi ∈ Σ ∪ {◦}. An
instantiation of the variables associated to a candidate pattern p to
a1 . . . am represents a pattern a1 . . . al such that al 6= ◦ and for all
i ∈ {l + 1, . . . ,m}, ai = ◦, i.e. l is the last position of a solid
character in a1 . . . am. For example, an instantiation of p1 . . . p6 to
a◦b◦◦◦ represents the pattern a ◦ b.

For each pi (1 ≤ i ≤ m), we associate |Σ|+ 1 boolean variables
{pi = a1 . . . pi = aj . . . pi = a|Σ|+1}, where pi = aj , for j ∈
{1, . . . , |Σ|}, expresses that pi takes the value aj and pi = a|Σ|+1

expresses that pi is a joker (◦). The number of introduced boolean
variables, denoted byP , ism×(|Σ|+1). In the sequel, for simplicity
reason, we note the literal ¬(pi = aj) as pi 6= aj .

3.3 EMS as Boolean Formulae

Let us now introduce the Boolean formulation of the different con-
straints necessary for the encodings of the problems we consider.

Domain Constraint We first need to encode that each pi, for
i ∈ {1, . . . ,m}, must take only one value in Σ ∪ {◦}. This domain
constraint is reformulated by the following two boolean formulas that
correspond to the at least and at most constraints respectively:

m̂

i=1

[

|Σ|+1_
j=1

(pi = aj)] (1)

m̂

i=1

[
_

1≤j<k≤|Σ|+1

(pi 6= aj ∨ pi 6= ak)] (2)

As mentioned below, the first symbol of p must be a solid charac-
ter. This is expressed by the following simple unary constraint (unit
clause):

p1 6= ◦ (3)

Location Constraint We define the location constraint
loc(k, p, s) in order to express that p is located in s at posi-
tion k.

(p1 = sk) ∧ [
m̂

i=2

(pi = ◦ ∨ pi = sk+i−1)] (4)

The location constraint is a CNF formula. Let us note that, since
s is completed with wildcards, for all i ∈ {1, . . . ,m} and for all
k ∈ {1, . . . , n}, sk+i−1 exists.

Support Constraint The support constraint supp(p, s) allows us
to capture the locations of p in s:

n̂

k=1

(bk ⇔ loc(k, p, s)) (5)

where B = {b1 . . . bn} is a set of new Boolean variables. In the
previous formula, bk = true if the pattern p is located at the position
k in s; false otherwise.

Frequency Constraint To search only for frequent patterns (mo-
tifs), we introduce the frequency constraint freq(p, s, λ) which ex-
press that p must occurs at least λ times in s.

nX
k=1

bk ≥ λ (6)

The frequency constraint 6 is a boolean cardinality constraint (0/1
linear inequality). Several polynomial encodings of this kind of
constraints into CNF formula have been proposed in the literature.
The first linear encoding of general linear inequalities to CNF have
been proposed by J. P. Warners [17]. Recently, efficient encoding of
the cardinality constraint to CNF have been proposed and most of
them try to improve the efficiency of constraint propagation (e.g;
[3, 16]).

In this paper, we introduce a new polynomial inductive formulation
of the cardinality constraint. We first define by simultaneous induc-
tion on i ∈ {1, . . . , n} and l ∈ {1, . . . , λ} the formula M(i, l) as
follows:8<:

i) M(i, 0) = >
ii) M(n− l + 1, l) = (bn−l+1 ∧ · · · ∧ bn)

iii) M(i, l) = (bi ∧ X l−1
i+1 ) ∨ X li+1

where for all i ∈ {1, . . . , n} and for all l ∈ {λ− i+ 1, . . . , λ} with
i ≤ n−l+1 and l ≥ 1,X li is a new Boolean variable.M(i, l) allows
us to express that there are at least l variables in {bk|i ≤ k ≤ n}
instantiated to true. Thus, the following formula in the case of our
model expresses that p must occurs at least λ times in s:

M(1, λ) (7)

Moreover, for all i ∈ {1, . . . , n} and for all l ∈ {λ− i+ 1, . . . , λ}
with i ≤ n− l+ 1 and l ≥ 1, we have to add the following Boolean
formula:

X li ↔M(i, l) (8)

We denote by X the set of Boolean variables X li where i ∈
{1, . . . , n}, and l ∈ {λ − i + 1, . . . , λ}, with i ≤ n − l + 1 and
l ≥ 1. It is clear that the following proposition is satisfied:

Proposition 2 The size of the set X is bounded by n× λ.

Proposition 3 The number of clauses of the inductive formulation
of the cardinality constraint

Pn
k=1 bk ≥ λ is in O(n× λ).

Proof: Since the number of basic cases of the form (ii) is bounded
by λ, the number of their corresponding clauses is bounded by



λ × (λ + 1). The number of Boolean formulas of the form (iii) is
bounded by n × λ. Since each occurrence corresponds to 6 clauses,
the total number of their associated clauses is bounded by 6× n× λ
(see also (8)). As λ ≤ n, the whole number of clauses encoding the
cardinality constraint is in O(n× λ). 2

Theorem 1 The problem of enumerating all motifs in a given se-
quence s is expressed by the constraints (1), (2), (3), (5), (7) and (8).

Proof: A direct consequence of our encoding. 2

If we take a closer look to the EMS SAT model, we can see that the
set of boolean variables representing the candidate pattern p is clearly
a strong backdoor set. Indeed, when such variables are assigned, the
values of the other Boolean variables B ∪ X are trivially deduced.
The constraints (5), (7) and (8) express such dependencies (the value
of the variable bk depends on the value of loc(k, p, s), and the value
of X li depends on the values of the variables bk). Consequently, one
can enumerate only on P . Hence, the complexity is exponentially
bounded by the size of P . The Strong backdoor set is an interesting
structural information that we will provide to the SAT solver.

Closedness Constraint Let us now introduce the closedness con-
straint:

n̂

k=1

(¬bk ∨ sk+i−1 = a)→ pi = a for 1 ≤ i ≤ m, a ∈ Σ (9)

(
m̂

i=m−j
pi = ◦)→ Φc(j, a) for 0 ≤ j ≤ m− 2, a ∈ Σ (10)

where Φc(j, a) = ¬(
Vn
k=1(bk → sk−j−1 = a)).

Theorem 2 The problem of enumerating all closed motifs in a given
sequence s is expressed by the constraints (1), (2), (3), (5), (7), (8),
(9) and (10).

Proof: The key idea in the closedness constraint consists in replacing
the maximum number of wildcards in a pattern with solid characters
w.r.t its support and forbiding the pattern to be included at location j
in another one with positions Ls(p)− j. 2

Maximality Constraint We introduce here the maximality con-
straint. In a sense, it is similar to the closedness constraint:
nX
k=1

bk ∧ (sk+i−1 = a) ≥ λ→ pi = a for 1 ≤ i ≤ m, a ∈ Σ (11)

(

m−j^
i=m

pi = ◦)→ Φmax(j, a) for 0 ≤ j ≤ m− 2, a ∈ Σ (12)

where Φmax(j, a) =
Pn
k=1 bk ∧ (sk−j−1 = a) ≤ λ − 1. The

expressions of the form
Pn
k=1 xk /λ, with / ∈ {≤,≥}, are encoded

inductively as the frequency constraint.

Theorem 3 The problem of enumerating all maximal motifs in a
given sequence s is expressed by the constraints (1), (2), (3), (5),
(7), (8), (11) and (12).

Proof: In the maximality constraint, the idea consists in replacing
the maximum number of wildcards in a pattern with solid charac-
ters w.r.t λ. The constraint (12) expresses that no frequent pattern
includes p at location j. 2

3.4 Anti-monotonicity: a nogood-based approach
To exploit the anti-monotonicity property, one need to prove that a
given pattern p is infrequent. Consequently, each time a pattern is
proven infrequent, we dynamically add new constraints called no-
goods to the constraints database.

We assume that I is a Boolean interpretation such that he
frequency constraint is violated and p′ = {p′1, . . . , p′k} corresponds
to the infrequent pattern extracted from I using the set of variables
P . Let i1, . . . il be the ordered sequence of positions in p′ such that
∀1 ≤ j ≤ l, p′ij 6= ◦. The following nogoods are added dynamically
to the constraints database in order to avoid future patterns p such
that p′ ⊆ p.

antiMon(p′, p) =

m−il+1^
x=1

l_
y=1

(p′iy 6= piy+x−1) (13)

These nogoods state for each position x in p s.t. p′ 6⊆x p, at least
one of the solid characters in p′ is not matched in p at the expected
position iy + x− 1.

It is important to note that the exploitation of the anti-monotonicity
property in our approach requires the use of the strong backdoor set
(pattern variables). By branching on these pattern variables, the ex-
traction of the infrequent pattern can be done in a simple way as the
pattern variables are first assigned in the current branch. In our en-
coding using inductive formulation for the cardinality constraint, all
the conflicts are always encountered because of the frequency con-
straint. However, this is not always the case in other encodings of the
cardinality constraint [17, 3, 16]. In the case of such encodings, one
has to use an additional procedure to determine if a conflict is en-
countered because of the frequency constraint. For instance, a such
procedure can consist in analyzing and checking if all the conflict
set of decisions (or literals involved in the conflict) are in the strong
backdoor set P .

4 Implementation and preliminary experiments
4.1 Implementation details
In this section we describe our SAT based solver for EMS (Algo-
rithm 1). It is based on a model of CDCL SAT algorithm proposed in
[13]. Algorithm 1 (SatEms+AM) includes all the basic components
of modern SAT solvers and integrates the anti-monotonicity property
(AM ) with strong backdoors (P). It takes as input a CNF formula Φ
and a set P of pattern variables and returns the set M of motifs.
The algorithm is based on variable assignments called decisions (D)
followed by unit propagation. SatEms+AM starts with the follow-
ing four empty sets (lines 1-4): decision literals (D), motifs (M),
learnt clauses database (∆) and the anti-monotone nogoods database
(Γ). Then, it iterates until finding all the motifs. In each iteration, the
conjunction of Φ, D, ∆, and Γ are checked for inconsistency using
unit propagation (line 7). If unit propagation finds an inconsistency
(S∗==⊥, line 7), the algorithm does one of the two things:
(1) The decision sequence D is empty, the algorithm terminates by
returning the set of all motifsM (line 8).
(2) The decision sequence D is not empty, a clause α is generated
by classical conflict analysis (line 9) and added to the learnt clauses
database ∆ (line 10). As a conflict occurs, an infrequent pattern p is
then generated (line 11) and the set of associated anti-monotone no-
goods Θ are built (line 12). From the nogood representing the infre-
quent pattern p we apply the classical conflict analysis and generate
an additional learnt clause β (line 13). This last learnt clause together
with the set of nogoods Θ are added to the anti-monotone nogoods
database Γ (line 14). Then a level n is computed based on α and β by



Algorithm 1: SatEms+AM
Input: a CNF formula Φ, and a set P of pattern variables
Output: a set of all motifsM
D ← ∅; /* Decision literals */1
M← ∅; /* Set of all motifs */2
∆← ∅; /* Learnt clauses */3
Γ← ∅; /* Anti monotone nogoods */4
while (true) do5
S ← (Φ ∧ D ∧∆ ∧ Γ);6
if (S∗ = ⊥ ) then7

if (D = ∅) then returnM;8
α← analyzeConflict(S,D);9
∆← ∆ ∪ {α};10
p← extractPattern(D,P);11
Θ← antiMonotone(p);12
β ← analyzeConflict(p,S,D);13
Γ← Γ ∪Θ ∪ {β};14
n← min{level(α), level(β)};15
D ← Dn; /* n first decisions */16

else17
if ((l← decide(P))= null) then p← extractPattern(D,P);18
M←M∪ {p};19
σ ← extractNogood(p);20
Φ← Φ ∪ {σ};21
D ← ∅;22
else23
D ← D ∪ {l};24

taking the minimum of their assertion levels (line 15). The algorithm
then erases all decisions made after level n (line 16), and moves on
to the next iteration.

If unit propagation detects no inconsistency, the solver makes a
decision by selecting a literal l from the backdoor set (line 18), and
adds it to the decision sequence (line 24). If no such literal is found,
a motif p is then extracted from the set of decisions and added to the
set of motifs M (line 19). To avoid enumerating the same models
several times, in line 20, a nogood σ is generated from the found
motif and added to the original formula Φ (line 21). Search restarts
by setting the set of decision to an empty set (line 22).

Some of the basic SAT functions of Algorithm 1 such us
analyzeConflict() and level() are informally described in Section
2.2. We will now provide some missing details of the other specific
functions :

• extractPattern(D,P): given a set of decisions D and a set of
pattern variables P , a pattern p is extracted from D.

• antiMonotone(p): generates a set of anti-monotone nogoods
(Equation 13).

• extractNogood(p): let p = d ◦ c be a motif of s, the extracted
nogood is (p1 6= d ∨ p2 6= ◦ ∨ p3 6= c).

4.2 Experiments
In this section, an experimental evaluation of our approach on some
real world data are given. We consider sequences from two applica-
tion domains:
Bioinformatics: proteinic data encoded as a sequence of amino-acid
of arbitrary length3.
Computer security: user data drawn from the command histories of
UNIX computer users4 [8].

These experiments aim (1) to show the feasibility of our approach,
and (2) to analyze the power and weakness of our implementation.
We compare two versions of Algorithm 1 based on MiniSAT 2.2 5:

1. SatEms+AM: a full version of the Algorithm 1. It integrates the
anti-monotonicity property together with strong backdoors set P .

3 http://www.biomedcentral.com/1471-2105/11/175/additional/
4 http://kdd.ics.uci.edu/databases/UNIX user data/
5 MiniSAT: http://minisat.se/

2. SatEms: a basic version of Algorithm 1 without the anti-
monotonicity property. SatEms can be obtained from Algorithm
1 by deleting the lines 11-14, and substituting line 15 with n ←
level(α).

Both SatEms+AM and SatEms enumerate the set of frequent
patterns (motifs), respectively with and without using the anti-
monotonicity property.

We conducted two kind of experiments. In the first one, we illus-
trate the evolution of computation time while varying the length of
the input sequence. The different sequences are build from the User
data by taking the first k characters, where k is varied from 200 to
6000 by a step of 200. As in [1], to get approximately the same num-
ber of motifs, for each sequence i (dot in the figure), we use a quorum
proportional to its length (λi = lengthi

50
). The results obtained on the

problem of enumerating frequent patterns in a sequence by SatEms
and SatEms+AM using two different encodings of the cardinality
constraints (BDD [4] encoding using BoolVar/PB open source java
library 6 and our inductive formulation (IND) presented in Section
3.3) are depicted in Figure 1. The results clearly show that apply-
ing the anti-monotone property with additional domain knowledge
leads to dramatic improvements. In the second experiment, we con-
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sider proteinic data of fixed length and we measure the evolution of
computation time with respect to the quorum. The quorum evolves
linearly (λ0 = 10 and λi = λi−1 + 10). To analyze the behavior
of our approach with respect to the number of motifs, we show in
Figure 2 and Figure 3 the evolution of the ratio between CPU time
and the number of motifs while varying the quorum. The considered
sequence is of length 1200 characters. In Figure 2, we show the re-
sults obtained by SatEms and SatEms+AM using again two differ-
ent encodings of the cardinality constraints (BDD encoding [4] and
our inductive encoding presented in Section 3.3). Clearly, the anti-
monotonicity property improves significantly the performances of
SatEms when the frequency constraint is encoded using our induc-
tive formulation. However, no real improvement is observed when
we use BDD encoding with anti-monotonicity property. For both en-
codings, the ratio time/#motifs do not evolves significantly. The per-
formances seem to be less sensitive with respect to the number of
motifs, except in the hard region around λ = 90. Overall, the BDD
encoding of the frequency constraint is better than the inductive for-
mulation.

In the Figure 3, we show the performance of SatEms obtained
on the generation of closed (closed motifs) and maximal (maximal

6 BoolVAR/PB : http://boolvar.sourceforge.net/



motifs) patterns in a sequence using our inductive formulation of the
cardinality constraint. We note similar observation on the sensitivity
of the methods in terms of the number of motifs. The performances
of our approach for enumerating closed motifs is clearly better than
that of enumerating maximal ones.
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The experiments above show the feasibility of our proposed frame-
work on some data sequences. In order to compare our approach to
the state-of-the-art, we consider the imperative one proposed in [1].
As far as we now, it is considered as the most effective specialized
approach for enumerating motifs in a sequence. The proposed algo-
rithm is both polynomial space and polynomial delay. The key of the
algorithm is depth search on tree shaped search route over all max-
imal motifs based on a technique called prefix-preserving closure
extension. Let us note that Arimura and Uno approach is extremly
efficient as it can handle huge sequences of over to 10 million length.

We run Arimura and Uno algorithm 7 on the data sequences pre-
sented above (bioinfo and user data). It is, as expected, significantly
more efficient than our SAT based formulation. Indeed, most of the
instances are solved in less than 5 seconds. This is the consequence,
among other things, of the fact that the SAT-solver used in our ap-
proach is not suitable for model enumeration. Indeed, to find a model
different from the previous outcomes, the SAT-solver injects simply
the negations of the latter models. In fact, this issue is less studied
in the SAT literature and we think that the design of effective SAT
solvers for enumerating all models is an important perspective for
both constraint based datamining and other application domains. Let
us note that some additional gains can be obtained using more ef-
ficient encodings of the cardinality constraint (e.g. Cardinality net-

7 http://research.nii.ac.jp/ uno/code/maxmotif.html

works [2]). Having said that, our approach provides a declarative and
flexible framework that can be easily extended with other constraints.
For instance, constraints for restrictions on the number of consecu-
tive wildcards. The SAT based datamining approaches can be much
more effective in the case where the interestingness predicate is non-
montonic.

5 Conclusion and future works
In this paper, we proposed a first Satisfiability based approach for
enumerating frequent, closed and maximal motifs with wildcards in
a sequence. This declarative approach offers an additional possibility
to benefit from the recent progress in satisfiability testing and partic-
ularly from their efficient nogood (or clause learning) component.

This work opens several issues for future research. First, the study
of how our encodings can be extended with constraints on the form
of the enumerated patterns (restriction on the number of consecutive
wildcards, regular expressions, etc) will be the next step to be de-
veloped in further works. Moreover, we plan to investigate how this
framework can be extended to deal with other data mining problems
such in sequences of itemsets, trees, graphs, etc.
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