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Pattern Mining Problems

Basket data analysis, seminal paper of Apriori [AS94]
Plenty of such problems

Even more applications and

an overflow of research papers since 1994 |

frequent itemsets (and variants), sequences, trees, graphs
functional, inclusion, multivalued dependencies

» learning monotone function

» minimal transversals of hypergraph

v

v

v

v

v

v

= A wide class of problems, some being studied for years in

combinatorics, artificial intelligence and databases
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Practical Applications
Pattern mining problems < hidden behind practical applications

For instance:
1. Basket data analysis (Agrawal et al, VLDB’93) [AS94]

2. Query rewriting in data integration (H. Jaudoin et al, DL05)
[JFPT09]

3. Discovering complex matchings across web query
interfaces: a correlation mining approach (B. He et al,
KDD’04) [HCHO04]

4. and much more ...

= data-centric steps of many practical applications
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Main constat

Data mining research in this (sub-)area ?
< most of the time, ad-hoc solutions (with customized data
structures)

» Can be seen as a competition to devise (low-level) code (to
beat previous implementations)

» |/O routines sometimes as important as algorithmic
strategies !

For one problem common to many applications, one solution
per application !
» efficient low level code very difficult to reuse

» a slight change in the problem statement (data, pattern or
predicate) often means to re-start development from
scratch
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Our Motivations

< Rapid prototyping of new problems should be easy
= Low-level details should be hidden to developers
< Efficient and scalable implementations

< Pushing forward declarative approaches (SAT/CP,
Databases) for pattern mining problems

< Towards a wider dissemination of data mining techniques
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Related works

Main trends for declarative approaches in data mining

>

C++ library (DMTL [CHSZ08], iZi [FDP09]) — remains
programmer-dependent, lack of declarative languages +
optimization

Inductive logic programming (e.g. [Wro00, NRO6]) — highly
expressive, not efficient enough

Inductive Databases (e.g. [IM96, LGZ10, RT11])
Constraint programming (De Raedt group [RGNO08], Caen,
Lens, Lyon) — new trends of research, relatively active
Databases and Data Mining (e.g. [HFW96, Cha98,
STA98, 1V99, CW01, BCCO05, FL10, BCF*11, OP11]) —
Many attempts, driven by the "elephants”

Theoretical frameworks for pattern mining (e.g.
[MT97, GKM*03, AU09, GMS11])



Requirements on Inductive Databases

Three dimensions [RT11]:
» The KDD as a process: closure principle?, completeness,
reusability
» The data source to explore and the patterns to discover:
Expressiveness, meta-schema definition, extensibility

» The system architecture that supports the query language:
support for efficient algorithm programming, flexibility,
standardization (e.g. PMML)

2The closure principle is sometimes not required [TVST07].
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Related works
Many attempts, not very successful yet
Compromise to be found between many opposite goals:
genericity, efficiency, easy of use, seamless integration with
SQL...
The elephants (Oracle, DB2, SQLServer) have their own data
mining solutions
» built on top of existing DBMS, not fully integrated with SQL
» can be seen as syntactic sugar

» The scope of IDB should be narrowed, even for pattern
mining problems themselves (without classifications,
clustering ...)

» Lack of theoretical background for pattern mining
= Need to specify classes of problems on which
declarative techniques may apply.

» No hope in the large !
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Notations
Mainly from (Mannila and Toivonen, DMKD, 1997) [MT97]

Consider the following framework:
1. Let D be a database
2. Let £ be a set of patterns (or a finite language)

3. Let P be a predicate to qualify interesting patterns X in D,
noted P(X, D)

Given D, £ and P, enumerate all interesting patterns of £ in D

In other words, enumerate the set
Th(D,LP)={X € L|P(X,D)true}

Sometimes, D is made up of patterns of £
Without any other knowledge, how to solve P?
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Structuring the search space (1/2)

Specialization/generalization relation may exist among patterns
4 Let < be a partial order on L

X =2 Y : X generalizes Y and Y specializes X

Many possible partial orders specific to patterns, e.g. sets,
sequences, trees, inclusion dependencies
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Structuring the search space (2/2)
Influence of the partial order on the predicate ?

The most studied property in data mining: monotonic property

P is said to be monotone with respect to < ifforall X, Y € £
such that X < Y, P(Y,D) = P(X,D)
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Equivalent problem statements

Two (complementary) notions emerges: the positive and
negative borders, i.e. the most specialized interesting patterns
and the most generalized non interesting patterns

Given D, £ and P, enumerate positive (or negative) border of
interesting patterns of £ in D

In other words, enumerate the sets:
bdt™(D,L,P,X)={XeTh| AY e L(X Y=Y € Th)}
bd=(D,L,P,X)={XeLIXEZThVY e L(Y<X=Y e Th)}

= Characterize DAG problems
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Example of frequent itemset mining (FIM)

Let A be a set of items, ¢ a user-defined threshold, D a
transactional database, £ = 24 and P(X, D) defined as:
P(X,D) true wrt e iff card({t e DX C t}) > ¢

P(X, D) monotone wrt C

» ’Apriori’ levelwise search with clever candidate
generation

» Depth-first search

» Relationship between borders

» Specialized data structures to optimize the counting
operation, to compress the database ...

Many contributions with international competitions: FIMI 2003,
FIMI 2004, OSDM 2005 workshops
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Example (end)

Levelwise search

Pruning strategy: based on the monotonicity property

ABCDEG /B

ABCDE ABCDG ABCEG ABDEG ACDEG BCDEG ABCDF

d+

ABCD ABCE ABCF ABCG ABDE ABDF ABDG ABEG ACDE ACDF ACDG ADEG BCDE BCDF BCDG BCEG BDEG CDEG

ABC ABD ABE ABF ABG ACD ACE ACF ACG ADE ADF ADG AEG BCD BCE BCF BCG BDE BDF BDG BEG CDE CDF CDG CEG DEG

AB AC AD AE AF AG BC BD BE BF BG CD CE CF CG DE DF DG EF EG FG

A B c D E F G \

p Bd-
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Isomorphism with a boolean lattice

Patterns encoded in the powerset of some set and inversely

» For some finite set E, a function f from £ to 2F has to exist
such that:

» f~1is computable

» f bijective

» f preserves the partial order, i.e. X <Y < f(X) C f(Y)
= Quite severe assumption

= Define the so-called representable as set pattern mining
problems
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Main interests of "representable as sets" problems

For any representable as set problem:

1. Clear separation between DB accesses for predicate
evaluation and candidate enumerations on patterns
2. Set oriented algorithms can be used everywhere

2.1 candidate generation in levelwise algorithms
2.2 relationship between borders: notion of dualization (minimal
transversal enumeration in an hypergraph)

3. Same algorithm principles can be applied to every problem

» Formally defined, good candidate to apply declarative
approaches

» Quite restrictive due to the surjectivity constraint
< The set of patterns has to have 2" patterns
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Complexity of enumeration algorithms

Main points to be studied:
1. Dualization problem (the heart of the many pattern mining
problems)

2. Encoding/decoding of pattern mining problems (new
classes of problems)

3. Relaxation of enumeration problems vs extended
enumeration (new idea)
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Enumeration problems

Input: A finite discrete structure S and a predicate P over S.
Output: The set P(S) of elements of S which satisfy P.

Input: A finite discrete structure S, a predicate P over S and a
set X C P(S).
Question: Does X = P(S) holds?

Input: A finite discrete structure S, a predicate P over S and a
set X C P(S).
Question: Does X = P(S) holds? Otherwise find x € P(S)\ X.
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Enumeration problems

Input: A finite discrete structure S and a predicate P over S.
Output: The set P(S) of elements of S which satisfy P.

» |P(S)| can be exponential in |S|.

» Polynomial complexity : O((|S| + |P(S)|)).

» Quasi-Polynomial complexity : n°(°9(m) where
n=|S[+ |P(S)I.
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Dualization problem
Let V be a finite set of patterns, C € 2" and A C C.
Wenote: AT ={xeC|3JacA aCx,}
A-={xeC|3dacA xCa,}
The negative border of A can be written as:
bd~(A) := maxc{x | x e C\A"}

Input: CC2VetACC
Question: Enumerate bd~(A).

Input: C C2Y, AC Cet X C bd=(A)
Question: Is bd~(A) = X ? Otherwise find x € bd—(A) \ X.

» Complexity depends on the structure and the encoding of C
» For the boolean lattice, the encoding is implicite, i.e.
c=2".
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Some known results about dualization

» C =2"is a boolean lattice: Quasi-Polynomial [FK96].
» (C,C) Is a product of chains: Quasi-Polynomial [EIb09]
» Ais the set of basis of a matroid: Polynomial [EMRQ09]
» (C,CQ) is a lattice: coNP-complet [BK11].

» (C, Q) is a distributive lattice: OPEN.
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Context

Example (Frequent ltemset Mining (Agrawal et al.
[AIS93]))

» Let 7 a set of objects and A\ the minimum support threshold

» D: atransaction database 7 (t€ T, t C I)

> ﬁ = 2I

> PO D) {teT |[PeL,dC =
(Frequency constraint)

Example

v

Z = {pain, jus, fromage, yaourt}
T = {{pain, fromage, yaourt, jus}, {yaourt, jus}}

for A = 2, {{yaourt},{jus}, {yaourt, jus}} are frequent
itemsets (patterns)

{yaourt, jus} is maximal (another constraint)

v

v

v
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Motivations

Constraint-based data mining,

» A large number of constraints have been defined
» Several data mining systems have been designed

» difficulty to add new constraints (e.g. maximal and
frequent, ...)

» often require new implementations

Challenge: Design of declarative, efficient and generic data
mining systems
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A constraint programming framework for DM [Luc De
Raedt et al. [RGNO08]]

A first declarative approach for data mining based on constraint
programming

» Models and solves a wide variety of constraint based
itemset mining tasks (frequent, maximal, closed,
cost-based, discriminative...)

» CP4IM implementation
(http://dtai.cs.kuleuven.be/CP4IM/)
using one of the well known CP systems (Gecode library
[Sch] http://www.gecode.org/)

» Demonstrates the feasibility of the approach with respect
to specialized data mining systems
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Declarative approaches for Data mining

New research issue initiated by Luc De Raedt group
» Several recents publications
» A Dagstuhl seminar "Constraint programming meets
machine learning and data mining"
» An international workshop on "declarative pattern mining
(to be held in conjunction with ICDM’2011 conference)
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CP/SAT and Pattern Mining
Constraint Programming (CP) and Satisfiability (SAT): a
brief overview
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Constraint programming (CP)

One of the most popular Al model for solving combinatorial
problems (e.g. scheduling, planning, configuration)

» Declarative: the user specify how the problem is modeled
and a general search engine is then used to find solutions

» The problem is modeled as constraint system
» The solver search for a solution, all solutions or optimal
solutions

» Generic: general solving paradigm (search + propagation)

» Efficient: widely used for solving a variety of real world
problems
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Constraint programming

Let,
» X ={Xy,...,Xn} be a set of variables, with their
associated finite domains D(x1),. .., D(xn)
» C ={Cy,...,Cn} be a set of constraints defined on

subsets of X
> Cj(Xk17"'?anj) : D(Xk1) XX D(anj) - {071}

decide if there exists a valuation p s.t. p(x;) € D(x;) and
pECIA---ACp.
We say that p is a model or solution of the CSP.
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CP: modeling

Different kind of constraints:

» All tutorials must be scheduled at different time-slots (all
different constraint)

» Number of students must be less than a given capacity
limit (inequality constraint)

> ...

Example (Crypto-arithmetic example)

SEND + MORE = MONEY
> Variables: V=[S, E,N, D, M, O, R, Y]
» Domains: domain([E, N, D, M, O, R, Y], 0, 9), domain([S, M], 1, 9),
» Constraints:
» 1000 x S+100x E+10x N+ D +
1000 x M+100x O+10x R+ E =
1000 x M+100x N+10x E+ Y
» all_different(Sol)
> Search: labbeling(Sol) Sol =[9,5,6,7,1,0,8,2]
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CP: Search

» Propagation (deterministic): eliminates values from the
domains of the variables
» D, ={3,4,5}, D, = {0,1,2,3,4}, Ci:x<y

> Dx— {3,4, 5}, D, — {0, 1. 2,3.4} -
» Propagator forx <y :

» if D(x) = v, and v > maxqecp(y) then delete v from D(x)
» if D(y) = v, and v < mingep(x) then delete v from D(y)

» Branching (non-deterministic):

» recursively select and instantiate a variable to a value
(e.g. recursive call with x = 3 and with x = 4)
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CP: Backtrack search algorithm

Algorithm 1 Constraint-Search(D)

: D :=propagate(D)

if D is a false domain then
return

end if

if 3z € V : |D(z)| > 1 then
T = arg Mingey p(z)>1 ()
for all d € D(z) do

Constraint-Search(D U {z — {d}})

9: end for

10: else

11: Output solution

12: end if
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Constraint programming
The constraint programming model includes several,

» kind of constraints and propagators (e.g. a catalogue of
more than 2 hundreds of global constraints)

» enhancements of the backtrack search algorithm (e.g.
search heuristics, non-chronological backtracking and
nogoods recording)

For a survey see,

» Books:

» Constraint Processing, by Rina Dechter (editor), Morgan
Kaufmann, 450 pages, 2003

» Handbook of Constraint Programming, by Francesca Rossi,
Peter van Beek and Toby Walsh, Elsevier, 978 pages, 2006

» Links:

» Association for Constraint Programming (ACP):
http://4cll0.ucc.ie/acp/adcp/
» Constraints archive:
http://4c.ucc.ie/web/archive/
» International conference on constraint programming (CP)
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Boolean Satisfiability (SAT)

» Given a CNF formula F
(avbve)A(-avb)A(—=bVve)A(-cVa)

» F admits a model?

» F is satisfiable : {a = frue, b = true, ¢ = true} is a model

» FU{(—aV -bV —c)} is unsatisfiable

» Bad news: SAT is NP-Complete [Cook 71]

» Good news : Modern SAT solvers can solve instances with
millions of variables and clauses in few seconds!
= Widely used in formal verification, planning,
bioinformatics, cryptography, ...



An exemple : post-cbmc-zfcp-2.8-u2.cnf

p cnf 11 483 525 (vars) 32 697 150 (clauses)
1-30

2-30 — X1 = N(Xo, X3)
-1-230

-11482897 -11483041 -11483523 0

11482897 11483041 -11483523 0

11482897 -11483041 11483523 0 — (X3 & X2 & X3)
-11482897 11483041 11483523 0

-11483518 -11483524 0

-11483519 -11483524 0

-11483520 -11483524 0

-11483521 -11483524 0 — Xg = /\(X77 Xg, X9, X10, X11, X12)
-11483522 -11483524 0

-11483523 -11483524 0

11483518 11483519 11483520 11483521 11483522 11483523 11483524 0
-8590303 -11483524 -11483525 0

8590303 11483524 -11483525 0

8590303 -11483524 11483525 0 — (X13 < X14 < X15)
-8590303 11483524 11483525 0

-11483525 0

Solved in less than 1 minute [Talk by Carla Gomes]



Modern SAT solvers: four basic bricks

1. Heavy tailed phenomena: Gomes et al. [GSC97] —
Restarts

2. Resolution based conflict analysis: Marques Silva et al.
[MSS96] — Learning

3. Activity-based variable ordering: [Brisoux et al. [BGS99],
Moskewicz et al. [MMZ*01] — efficient heuristics

4. Watched literals: [H. Zhang el al. [Zha97], Moskewicz et al.
[MMZ+01] — Efficient BCP

» Four component proposed in Four years



Modern SAT solvers: architecture

(2) Implication graph

. - (3) Generate
(1) Literal i__, conflict-clause

(4) conflict-clause

Decisions. Conflict analysis
(vsiDs) (5) Activity | Learning |

Backtrack friendly
(6) Conflict

e e
-
— BN

[Source: Talk L. Bordeaux and Y. Hamadi]

(4) Conflict-clause




Definitions and notations

» CNF : F = (ﬁX1 V —Xo V X3) A (ﬁX1 \Y X2) AN (ﬁXg vV ﬁX3) A (ﬁX3)

» Partial interpretation : p : X C V(F) — {faux, vrai}

» Simplification : F|, denotes the formula simplified by p

> Implication : imp(xs) = (xi A Xo — X3), EXP(xa) = {1, X2}

» Formula F closed by UP : 7* = (—=x1 V —=X2) A (=X V X2)

> Resolvent : n[xz, (—x1 V X2), (X2 V =X3)] = (—X1 V —X3)

» Logical consequence : F = (=X V —X3)




Conflict Driven Clause Learning (CDCL)

(¢1) XV =x41V—xpo (c2)
(c3) X2V -XgV —xo (ca)
(Cs) —Xg VX0V X (Cs)
(c7) X1V x5 (cs)

(cd) —X3V -xq9V —Xyg

Notations: x{ literal x; assigned at level j.

p={.mxdoxN(x) X)L

5 5 5 5 _ 5 5 5 _,5
((XF1), X7, Xigs 7X3 5 2 X5, X7, X35 7X5)

X191V X43 V X
=X4 V Xo V X0
X109 V X3

X177V =X1 VX3V X5 V X8

3



Classical Learning

=x17(1)

A1 =1lxis, Co, Cg] = (~xfg V X{; V XP V X3V X2)
Do =nxs, At, 07] = (—xX5y V X1 VXDV X3V X3,)
B3 =n[x3, Ba, Gs] = (—xFg V X{7 VX7V X3,)

Ay =[x, Az, c5] = (~x3y v x{, v —x2 v x3) <= Asserting Clause (AC in short)



Modern SAT solver Vs resolution

» CDCL: Marques Silva et al. [MSS96], Moskewicz et al.
[MMZ*01]
is a fundamental component of Modern SAT solvers

» Modern SAT solvers: ~ General resolution , Knot et al.
[PDO09]

» DPLL-like solver: ~ Tree-Like resolution



Propositional Satisfiability

For a survey on propositional satisfiability see,
» Books:
» Probléeme SAT : Progrés et Défis, by Lakhdar Sais (editor),
Hermes Publishing Ltd, 352 pages, may 2008
» Handbook of satisfiability, by Armin Biere et al. (editor), IOS
Press, 980 pages, february 2009
» Links:
» Satlive: http://www.satlive.org/
» SAT competition: http://www.satcompetition.org/
» International Conference on Theory and Application of
Satisfiability Testing (SAT)
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CSP, SAT and PL-(0/1): Summary

Var. Bivaluées (0/1) Multi-Valuées | Bivaluées (0/1)
Contr. (x4 V=x2V x3) Table | YK, ax <b
P(rédicats) aj,beZ
G(lobales)
Forme normale Oui Non QOui
Extensions MaxSAT, W-MaxSAT | Max-CSP, WCSP, PLNE
QBF, #SAT QCSP,
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SAT, CP and PL-01: Summary

A— B

Transformation linéaire

CSP définis en
compréhension
quelconques

PL 0/1 générale
(Pseudo Booléen)

Yaix < b

a,beZ

PL 0/1 a coeff -1, 0, 1 CSP définis en
(Cardinalité) compréhension
Tx-Xy<b booléens
beZ I
) ’ CSP définis en
[Bailleux-Boufkhad:04] extension
CNF

[Joost P. Waners:96]

[Source Bahia Project, PRC IA, 1992]
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Outline

CP/SAT and Pattern Mining

CP for Frequent ltemset Mining
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PC - Pattern discovery modelisation

A naive approach for pattern discovery:
» 1 variable x4 with domain £
» Constraints encoding the database D and the predicate p
» how to achieve propagation
» the set of interesting patterns is derived thanks to an
exhaustive enumeration of the CSP solutions.
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Frequent ltemset Mining (FIM) [De Readt et al.
KDD’2008]

Variables:
» the pattern ¢ is represented by |Z| boolean variables /;

(D(h) = £0,1}).
— [ =1 if the item / appears in the pattern ¢

» For each transaction t € 7, we associates a boolean
variable T; (D(T;) = {0,1}).
— T¢ =1 if the transaction t contains ¢
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Frequent ltemset Mining (FIM) [De Readt et al.
KDD’2008]

Constraints:

» Notation: Dy = 1 iff the transaction t contains the item i
» Constraints
» Exactcovering:Vte 7, T;=1<t2®
> Vte T, Ti=1 <:>ZI/(1 —-Dy)=0
i€eT
> Frequency: » 'T;>s
teT

> V/GI,/,':‘IéthDﬁZS
teT

For more details see [Tutorial by De Readt]
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ltemset Mining - other variations
Flexibility of the Constraint programming for encoding variations
of the problem:

» Maximal:
VieT, =1 @ZTtDﬁzs
teT
» Closed: frequency +

VieZi=1s) Ti(1-Dj)=0

teT
» Maximal / Minimal cost:
> cili < cmax > il > cmin
ieT ieT

» Minimal average cost:

> (ci—cmin)l; > 0

i€z
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Outline

CP/SAT and Pattern Mining

CP/SAT for Sequence Mining
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CP/SAT for Sequence Mining

A first Constraint Programming Approach for Enumerating
Motifs in a Sequence

Joint work between LIRIS (E. Coquery) and CRIL (S. Jabbour and L.
Sais)

International Workshop on Declarative Pattern Mining (held in
conjunction with ICDM 2011) [CJS11]

Important remarks:

» Sequence patterns are not "representable as sets", i.e. a
one-to-one mapping between the set of sequence patterns and
a Boolean lattice does not exist

» Classical set-oriented algorithms (e.g. "Dualize and Advance")
can not be applied
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Preliminary definitions

Let © be an alphabet, st. o ¢ ¥ (o is called a wildcard). A
sequence Sis astringof X*i.e. S=51S,...S, € £*. The set
of position is denoted by O = {1...n}.

A patternis astring M = MiM, .. .My € (XU {o})*st. m<n
and My £oet My #o

Let S=5;S,...S5,be asequenceand M = MiM, ... My, a
pattern. We say that M appears in S at position p € O denoted
MCp S, itVie O, we have M; = S, ;1 or M; = o. We note
Ls(M)={p € O|M <, S}.

We say that M C Siff 3pc Ost. M Cp Q.
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Sequence Mining Problem

The sequence mining problem is defined as follows:
Input: A sequence S and a quorum A
Output: All frequent patterns (motifs) M of S st. |[Ls(M)| > A

In the sequel, we limit (without loss of generality) to patterns of
fixed maximal size m.

Let My and M, be two patterns ofS with My C M,. If
|Ls(M2)| > X then |Ls(My)| > A.
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CP model of SMP : Variables

» M; (1 < i< m)represent the ith symbol of the candidate
motif M. The domain of M; is X U {o}.

» P (1 <k < n)true (= 1) if the motif M appears at position
k in S; false otherwise.
An instantiation of M; ... Mn to a; ... an represents the motif
a;...aq st a#oandVvi,ifl <i<mthen g = o.

» [is the last position of a solid character (symbol different
fromo)inay...anm.

» An instantiation of M; ... Mg to ao b o oo represents the
motif ao b.

» We add m — 1 o at the end of S.

The set of variables Py for 1 < k < n represents the support of
M.
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CP model of SMP: Constraints

M appears in S at position k :

m
inc(k,M,S) = \(M; = oV Skyi—1 = M)

i=1
Inclusion of M at each position k in S :
n
support(M, S) = /\ (Px < inc(k, M, S))
The frequency constraint is then defined as follows:

n
freq(S) = Z Py > A

We also add the unary constraint : My # o.
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The Constraint Satisfaction Problem (CSP)

The Sequence Mining Problem is defined by the following CSP
P=V,0C):

» V={M[1<i<m}U{P1<k<n}
» C = support(M, S) A freq(S) A My # o

The set of solutions of P corresponds to the set of frequent
patterns (motifs) of S with maximal size m.
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Propositional Satisfiability (SAT) encoding

Encoding the problem as a Boolean formula to benefit from

» The clause learning component (anti-monotonic property)
» The recent progress in Satisfiability testing
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Propositional Satisfiability (SAT) encoding

» Boolean variables

» for each M; we associate |X| + 1 boolean variables
{M? | c € X U{0o}}. These variables constitute a strong
backdoor set .

» The other variables Py are Boolean.

» Clauses are obtained as follows:

» Domains encoding: expresses that a given variable M; must
be assigned to exactly one value from X U {o}

» Constraints encoding: the support constraint is a boolean
formula. For the frequency constraint there exists efficient
CNF encoding [Bailleux 06, 09, Warners 96]

» encoded with a binary adder

» linear in the size of the frequency constraint.

> ltis also possible to natively integrate the frequency
constraint: pseudo boolean, SAT Modulo Theory
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SAT: anti-monotonic property encoding

The integration of no-goods is natural in SAT (Learning
component)

» The SAT solver generates its own no-goods (leant clauses)
— express possible interesting properties ?

Anti-monotonic constraints

» M’ proved non frequent (no-good) — Eliminates all futures
motifs M s.t. M' C M.

» Let M = M{M, ... My, and {ii,...J;} the ordered set of
positions of M’ s.t. Vj € {1...1}, M;j # o.

m— I/+1
antiMon(M’, M /\ \/ 7& M, x—1)

64/71



First experiments

» The CNF Boolean formula is generated using a Java
platform, and solved with a modified modern SAT solver
MiniSAT [ES05]:

» Search for all solutions
» generation of the anti-monotone no-goods
» integration of the strong backdoor set

» Real world data

» Bioinformatics (proteinic sequence of amino-acid)
» computer security (command history of UNIX computer
users)
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Impact of the strong backdoor and anti-monotone
no-goods

7000 9000
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Motifs extraction time Vs size and quorum

» the integration of strong backdoor is crucial
» limited impact of anti-monotone no-goods no-goods

» huge number of no-goods ?
» most of them are redundant % unit propagation?
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Promising results
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Several Perspectives

v

Improve the efficiency CP/SAT model for mining itemsets
and sequences

Pseudo boolean and/or SAT modulo Theory models ?

Define high declarative language (logic or algebraic) for
Data mining

How about other kind of complex patterns (graphs, trees,

)

v

v

v
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Outline

Concluding remarks
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Conclusion

» Declarative approaches in data mining
» CP/SAT ++

» easier to modify constraints than patching C++ code !
» allows rapid prototyping of data mining algorithms
» efficient for more constrained problems (e.g. top-k)

» CP/SAT —

> less efficient than specialized implementations,
» What about the level of declarativity ?

» DB++

» driven by the "elephants" and the market
» DB -

» not fully integrated with SQL [STA98]
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Conclusion

Some tentatives, not fully successful yet

neither in academia (US gurus don't like it!) nor in industry
(from a clean and theoretical point of view)

DAG website: http://liris.cnrs.fr/dag/
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