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Abstract. In this paper, we propose an extension of our Mining for SAT
framework to Constraint satisfaction Problem (CSP). We consider n-ary
extensional constraints (table constraints). Our approach aims to reduce
the size of the CSP by exploiting the structure of the constraints graph
and of its associated microstructure. More precisely, we apply itemset
mining techniques to search for closed frequent itemsets on these two
representation. Using Tseitin extension, we rewrite the whole CSP to
another compressed CSP equivalent with respect to satisfiability. Our
approach contrast with previous proposed approach by Katsirelos and
Walsh, as we do not change the structure of the constraints.

1 Introduction

The table constraint is considered for a long time as particularly important in
constraint satisfaction problems (CSP). Indeed, on of the most used formulation
of CSP consists in expressing the each constraint in extension or as a relation
among variables with associated finite domains. Many research work, consider
table constraints as the standard representation. Indeed, any constraint can be
expressed using a set of allowed or forbidden tuples. However, the size of these
kind of extensional constraints might be exponential in the worst case. In [6],
Katsirelos and Walsh proposed for the first time a compression algorithm for
large arity extensional constraints. The proposed algorithm attempts to capture
the structure that may exist in a table constraint. The authors proposed an
alternative representation of the set of tuples of a given relation by a set of
compressed tuples. The proposed representation may lead to an exponential
reduction in space complexity. However, the compressed tuples may be larger
than the arity of the original constraint. Consequently, the obtained CSP do
not follow the standard representation of the table constraint. The authors use
decision trees to derive a set of compressed tuples.

In this paper, we present a new compression algorithm that combines both
itemset mining techniques and Tseitin extension principles to derive a new com-
pact representation of the table constraints. First, we show our previous Mining
for SAT approach can be extended to deal with the CSP by considering the
constraint graph as a transaction database, where the transactions corresponds
to the constraints and items to the variables of the CSP. The closed frequent
itemsets corresponds to subset of variables shared most often by the different
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constraint of the CSP. Secondly, using extension (auxiliary variables) we show
how such constraints can be rewritten while preserving satisfiability. Secondly, we
consider each table constraint individually, we derive a new transaction database
made of a sequence of tuples i.e. a set of indexed tuples. More precisely, each
value of a tuple is indexed with its position in the constraint. By enumerating
closed frequent itemsets on such transaction database, we are able to search for
the largest rectangle in the table constraint. Similarly, with extension principle,
we show how such constraint can be compressed while preserving the traditional
representation.

2 Technical background and preliminary definitions

2.1 Frequent Itemset Mining Problem

Let I be a set of items. A set I ⊆ I is called an itemset. A transaction is
a couple (tid, I) where tid is the transaction identifier and I is an itemset. A
transaction database D is a finite set of transactions over I where for all two
different transactions, they do not have the same transaction identifier. We say
that a transaction (tid, I) supports an itemset J if J ⊆ I.

The cover of an itemset I in a transaction database D is the set of identifiers
of transactions in D supporting I: C(I,D) = {tid | (tid, J) ∈ D and I ⊆ J}.
The support of an itemset I in D is defined by: S(I,D) =| C(I,D) |. Moreover,

the frequency of I in D is defined by: F(I,D) = S(I,D)
|D| .

For example, let us consider the transaction database in Table 1. Each trans-
action corresponds to the favorite writers of a library member. For instance, we
have S({Hemingway,Melville},D) = |{002, 004}|= 2 and F({Hemingway,
Melville},D) = 1

3 .

tid itemset

001 Joyce,Beckett, P roust

002 Faulkner,Hemingway,Melville

003 Joyce, Proust

004 Hemingway,Melville

005 F laubert,Zola

006 Hemingway,Golding

Table 1. An example of transaction database D

Let D be a transaction database over I and λ a minimal support threshold.
The frequent itemset mining problem consists of computing the following set:
FIM(D, λ) = {I ⊆ I | S(I,D) > λ}.

The problem of computing the number of frequent itemsets is #P -hard [3].
The complexity class #P corresponds to the set of counting problems associated
with a decision problems in NP . For example, counting the number of models
satisfying a CNF formula is a #P problem.



Let us now define two condensed representations of the set of all frequent
itemsets: maximal and closed frequent itemsets.

Definition 1 (Maximal Frequent Itemset). Let D be a transaction database,
λ a minimal support threshold and I ∈ FIM(D, λ). I is called maximal when
for all I ′ ⊃ I, I ′ /∈ FIM(D, λ) (I ′ is not a frequent itemset).

We denote by MAX (D, λ) the set of all maximal frequent itemsets in D
with λ as a minimal support threshold. For instance, in the previous example,
we have MAX (D, 2) = {{Joyce, Proust}, {Hemingway,Melville}}.

Definition 2 (Closed Frequent Itemset). Let D be a transaction database,
λ a minimal support threshold and I ∈ FIM(D, λ). I is called closed when for
all I ′ ⊃ I, C(I,D) 6= C(I ′,D).

We denote by CLO(D, λ) the set of all closed frequent itemsets in D with λ as
a minimal support threshold. For instance, we have CLO(D, 2) = {{Hemingway},
{Joyce, Proust}, {Hemingway,Melville}}. In particular, let us note that we
have C({Hemingway},D) = {002, 004, 006} and C({Hemingway,Melville},D) =
{002, 004}. That explains why {Hemingway} and {Hemingway,Melville} are
both closed. One can easily see that if all the closed (resp. maximal) frequent
itemsets are computed, then all the frequent itemsets can be computed without
using the corresponding database. Indeed, the frequent itemsets correspond to
all the subsets of the closed (resp. maximal) frequent itemsets.

Clearly, the number of maximal (resp. closed) frequent itemsets is signifi-
cantly smaller than the number of frequent itemsets. Nonetheless, this number
is not always polynomial in the size of the database [9]. In particular, the prob-
lem of counting the number of maximal frequent itemsets is #P -complete (see
also [9]).

Many algorithm has been proposed for enumerating frequent closed itemsets.
One can cite Apriori-like algorithm, originally proposed in [1] for mining frequent
itemsets for association rules. It proceeds by a level-wise search of the elements of
FIM(D, λ). Indeed, it starts by computing the elements of FIM(D, λ) of size
one. Then, assuming the element of FIM(D, λ) of size n is known, it computes
a set of candidates of size n+1 so that I is a candidate if and only if all its sub-
sets are in FIM(D, λ). This procedure is iterated until no more candidates are
found. Obviously, this basic procedure is enhanced using some properties such as
the anti-monotonicity property that allow us to reduce the search space. Indeed,
if I /∈ FIM(D, λ), then I ′ /∈ FIM(D, λ) for all I ′ ⊇ I. In our experiments, we
consider one of the state-of-the-art algorithm LCM for mining frequent closed
itemsets proposed by Takeaki Uno et al. in [8]. In theory, the authors prove that
LCM exactly enumerates the set of frequent closed itemsets within polynomial
time per closed itemset in the total input size. Let us mention that LCM algo-
rithm obtained the best implementation award of FIMI’2004 (Frequent Itemset
Mining Implementations).



2.2 Constraint Satisfaction Problems: Preliminary definitions and
notations

A constraint network is defined as a tuple P = 〈X ,D, C〉. X is a finite set of
n variables {x1, x2, . . . , xn} and D is a function mapping a variable xi ∈ X to
a domain of values D(xi) = {vi1 , vi2 . . . vidi }. We note d = max{di|1 6 i 6 n}
the maximum size of the domains, and V = ∪x∈XD(x) the set of all values. C
is a finite set of m constraints {c1, c2, . . . , cm}. Each constraint ci ∈ C of arity
k is defined as a couple 〈scope(ci), Rci〉 where scope(ci) = {xi1 , . . . , xik} ⊆ X
is the set of variables involved in ci and Rci ⊆ D(xi1 ) × . . .× D(xik ) the set of
allowed tuples i.e. t ∈ Rci iff the tuple t satisfies the constraint ci. We define the
size of the constraint network P as |P| =

∑
c∈C |Rc| where |Rc| =

∑
t∈Rc

|t| and
|t| = |scope(c)|. A solution to the constraint network P is an assignment of all
the variables satisfying all the constraints in C. A CSP (Constraint Satisfaction
Problem) is the problem of deciding if a constraint network P admits a solution
or not.

We denote t[x] the value of the variable x in the tuple t. Let t1 = (v1, . . . , vk)
and t2 = (w1, . . . , wl) be two tuples (of values or variables), we define the non-
commutative operator ⊕ by t1 ⊕ t2 = (v1, . . . , vk, w1, . . . , wl). Let P = 〈X ,D, C〉
be a CSP instance, c = 〈scope(c), Rc〉 ∈ C a constraint and s = (x1, . . . , xk) a
sequence of variables such that V ar(s) ⊆ scope(c) where V ar(s) is the set of
variables of s. We denote by Rc[s] the following set of tuples:

Rc[s] = {(t[x1], . . . , t[xk]) | t ∈ Rc}

2.3 Tseitin’s Extension principle

To explain the Tseitin principles [7] at the basis of linear transformation of
general Boolean formulas to a formula in conjunctive normal form (CNF), let
us introduce some necessary definitions and notations. A CNF formula Φ is a
conjunction of clauses, where a clause is a disjunction of literals. A literal is a
positive (p) or negated (¬p) propositional variable. The two literals p and ¬p
are called complementary. A CNF formula can also be seen as a set of clauses,
and a clause as a set of literals. The size of the CNF formula Φ is defined as
|Φ| =

∑
c∈Φ |c|, where |c| is equal to the number of literals in c.

Tseitin’s encoding consists in introducing fresh variables to represent sub-
formulae in order to represent their truth values. Let us consider the following
DNF formula (Disjunctive Normal Form: a disjunction of conjunctions):

(x1 ∧ · · · ∧ xl) ∨ (y1 ∧ · · · ∧ ym) ∨ (z1 ∧ · · · ∧ zn)

A naive way of converting such a formula to a CNF formula consists in using the
distributivity of disjunction over conjunction (A∨ (B∧C) ↔ (A∨B)∧ (A∨C)):

(x1 ∨ y1 ∨ z1) ∧ (x1 ∨ y1 ∨ z2) ∧ · · · ∧ (xl ∨ ym ∨ zn)



Such a naive approach is clearly exponential in the worst case. In Tseitin’s trans-
formation, fresh propositional variables are introduced to prevent such combi-
natorial explosion, mainly caused by the distributivity of disjunction over con-
junction and vice versa. With additional variables, the obtained CNF formula
is linear in the size of the original formula. However the equivalence is only
preserved w.r.t satisfiability:

(t1 ∨ t2 ∨ t3) ∧ (t1 → (x1 ∧ · · · ∧ xl)) ∧ (t2 → (y1 ∧ · · · ∧ ym))

∧(t3 → (z1 ∧ · · · ∧ zn))

3 Compressing Table Constraints Networks

In this section, we proposed two compression rules for table constraints networks.
The first one is based on the constraint graph aims to reduce the size of the
constraint network by rewriting the constraints using the most shared variables.
The second compression technique based on the microstructure of the constraint
network aims to reduce the size of table constraints by exploiting common sub-
tuples.

3.1 Constraint graph Based Compression

CSP instance as transactions database: We describe the transactions database
that we associate to a given constraints network. It is obtained by considering
the set of variables as a set of items.

Definition 3. Let P = 〈X ,D, C〉 be a constraints network. The transactions
database associated to P, denoted T DP , is defined over the set of items X as
follows:

T DP = {(tidc, scope(c)) | c ∈ C}

Constraints Graph Rewriting Rule (CGR): We provide a rewriting rule
for reducing the size of a constraints network. It is mainly based on introducing
new variables using Tseitin extension principle.

Definition 4 (CGR rule). Let P = 〈X ,D, C〉 be a constraints network, s =
(x1, . . . , xk) a tuple of variables and {c1, c2, . . . , cn} ⊆ C a subset of n constraints
of C such that V(s) ⊆ scope(ci) for 1 6 i 6 n. In order to rewrite P, we introduce
a new variable y /∈ X and a set N of l new values such that V ∩ N = ∅ and
l = |

⋂n

i=1 Rci [s]|. Let f be a bijection from
⋂n

i=1 Rci [s] to N . We denote by Pg

the constraint network 〈X g,Dg, Cg〉 obtained by rewriting P with respect to s and
f :

– X g = X ∪ {y};
– Dg is a domain function defined as follows: Dg(x) = D(x) if x ∈ X , and

Dg(y) = N .



– Cg = C \ {c1, . . . , cn} ∪ C′ , where C′ = {c0, c′1, . . . , c
′
n} such that:

• c0 = 〈(y, x1, . . . , xk), {(f(a1, . . . , ak), a1, . . . , ak)|(a1, . . . , ak) ∈
⋂n

i=1 Rci [s]}〉
• c′i = 〈(scope(ci) − s) ⊕ (y), {t[scope(ci) − s] ⊕ (f(t[s]))|t ∈ Rci , t[s] ∈⋂n

j=1 Rcj [s]}〉

It is important to note that our rewriting rule, achieve a weak form of pairwise
consistency [5]. A constraint network is pairwise consistent (PWC) iff it has non-
empty relations and any consistent tuple of a constraint c can be consistently
extended to any other constraint that intersects with c.

Definition 5 (Pairwise consistency). [2,5] Let P = 〈X ,D, C〉 be a con-
straints network. P is pairwise consistent if and only if ∀ci, ∀cj ∈ C, Rci[scope(ci)∩
scope(cj)] = Rcj [scope(ci) ∩ scope(cj)] and ∀c ∈ C, Rc 6= ∅.

As pairwise consistency deletes tuples from a constraint relation, some values
can be eliminated when they have lost all their supports. Consequently, domains
can be filtered if generalized arc consistency (GAC) is applied in a second step.

As a side effect, our CGR rewriting rule maintains some weak form of PWC.
Indeed, in Definition 4, when a sub-tuple t[s] /∈

⋂n

j=1 Rcj [s], the tuple t is then
deleted and do not belong to the new constraint c′i.

Example 1. Let P = 〈X ,D, C〉 be a constraints network, where X = {x1, . . . , x4},
D(x1) =, . . . ,= D(x4) = {a, b} and C = {c1, c2} where c1 = 〈{x1, x2, x3}, {(b, a, a),
(a, a, b), (a, b, a)}〉 and c1 = 〈{x2, x3, x4}, {(a, b, a), (b, a, a), (b, a, b)}〉. Let s =
(x2, x3) be a tuple of variables such that s ⊂ scope(c1) and s ⊂ scope(c2).By
applying the CGR rule on P , we obtain Pg = 〈X g ,Dg, Cg〉 such that:

– X g = X ∪ {y}

– ∀i(1 6 i 6 4),Dg(xi) = {a, b}. We have
⋂2

j=1 Rcj [s] = {(a, b), (b, a)}. We
define f((a, b)) = c, f((b, a)) = d. Then Dg(y) = {c, d}.

– Cg = {c0, c′1, c
′
2}

• c0 = 〈{y, x2, x3}, {(c, a, b), (d, b, a)}〉;
• c′1 = 〈{x1, y}, {(a, c), (a, d)}〉 and c′2 = 〈{x4, y}, {(a, c), (a, d), (b, d)}〉

In this simple example, using one additional variable, we reduce the size of the
constraint network from |P| = 18 to |Pg| = 16. As we can observe, the value b
can be eliminated by GAC from the domain of x1.

Necessary and sufficient condition for size reduction Let P = 〈X ,D, C〉
be a constraints network, and s = (x1, . . . , xn) ⊆ X be a sub-tuple of variables
corresponding to a frequent itemset Is of Pg where the minimal support thresh-
old is greater or equal to k. Let {c1, . . . , ck} ⊆ C be the set of constraints such
that s ⊆ scope(ci) for 1 6 i 6 k. Suppose that the constraints network P is pair-
wise consistent, in such a case, all the relations associated to each ci for 1 6 i 6 k
contain the same number p of tuples. Under such worst case hypothesis, the size
of P can be reduced by at least r = (n×p×k−(p×k+n×p+p). Let us consider



again the example 1. The reduction is at least r = (2×3×2)−(3×2+2×3+3) =
12− 15 = −3. If we consider, the tuple (b, a, b) ∈ Rc1 eliminated by the applica-
tion of the CGR rule. This results in subtracting 5 from the second term of r.
Consequently, we obtain a reduction of 2.

Regarding the value of k, one can see that the compression is interesting
when r > 0 i.e. k > n+1

n−1 . Indeed, if n < 2 then there is no reduction. Thus,
there are three cases : if n = 2, then k > 4, else if n = 3 then k > 3, k > 2
otherwise. Therefore, the constraint network is always reduced when k > 4. We
obtain exactly the same condition as in our mining based compression approach
of Propositional CNF formula [4]. This is not surprising, as CGR rule is an
extension of our Mining4SAT approach [4] to CSP.

Closed vs. Maximal: In [4], we introduced two condensed representations of
the frequent itemsets: closed and maximal. We know that the set of maximal
frequent itemsets is included in that of the closed ones. Thus, a small number
of fresh variables and new clauses are introduced using the maximal frequent
itemsets. However, there are cases where the use of the closed frequent itemsets
is more suitable. The example given in [4], show the benefit that can be obtained
by considering frequent closed itemsets. In our Mining for CSP approach we
search for frequent closed itemsets.

Compression algorithm: Given a constraint network P , we first search for
closed frequent itemsets (set of variables) on T DP and then we apply the above
rewriting rule on the constraint network using the discovered itemsets of vari-
ables. For more details on our algorithm, we refer the reader to the Mining4SAT
greedy algorithm [4], where the overlap notion between itemsets are considered.
The general compression problem can be stated as follows: given a set of fre-
quent closed itemsets (sub-sequence of variables) and a constraints network, the
question is to find an ordered sequence of operations (application of the CGR
rule) leading to a CSP of minimal size.

3.2 Microstructure Based Compression

In this section, we describe our compression based approach of Table constraints.
First, we show how a Table constraint c can be translated to a transaction
database T Dc. Secondly, we show how to compress c using itemset mining tech-
niques.

Table constraint as transactions database: Obviously, a table constraint
c can be translated in a naive way to a transaction database T Dc. Indeed, one
can define the set of items as the union of the domains of the variables in the
scope of c (I = ∪x∈scope(c)D(x)) and a transaction (tid, t) as the set of values
involved in the tuple t ∈ Rc. This naive representation is difficult to exploit in
our context. Let I = {a, b, c} be a frequent itemset of T Dc. As the variables in



each transaction (or tuple) associated to the values in I are different, it is difficult
to compress the the constraint while using both classical tuples and compressed
tuples [6]. To overcome this difficulty, we consider tuples as sequence, where each
value is indexed by its position in the tuple.

Definition 6 (Indexed tuples). Let P = 〈X ,D, C〉 be a constraint network,
and ci ∈ C a table constraint such that scope(ci) = (xi1 , xi2 , . . . , xini

). Let t ∈ Rci

a tuple of ci. We define indexed(t) = (t[xi1 ]
1, t[xi2 ]

2, . . . , t[xini
]ni) as an indexed

tuple associated to t i.e. each value of the tuple is indexed with its position in
the tuple.

Definition 7 (Inclusion, index). Let c be a table constraint with scope(c) =
{x1, . . . , xn} and t = (v1, . . . , vn) ∈ Rc a tuple of c. We say that s = (w1, . . . , wk)
is a sub-tuple of t, denoted s ⊆ t, if ∃1 6 i1 < i2 < · · · < ik 6 n such that
w1 = vi1 , . . . , wk = vik . We define index(t) = {1, . . . , n}, while index(w) =
{i1, . . . , ik}. We also define vars(index(t)) = scope(c) and vars(index(w)) =
{xi1 , . . . , xik}.

Definition 8. Let P = 〈X ,D, C〉 be a constraints network, and c ∈ C a table
constraint where scope(c) = {x1, . . . , xn}. The transaction database associated
to c, denoted T Dc, is defined over the set of items I =

⋃
t∈Rc

{t[x1]
1, . . . , t[xn]

n}
as follows:

T Dc = {(tidt, indexed(t))|t ∈ Rc}

Example 2. Let P = 〈X ,D, C〉 be a constraints network, where X = {x1, x2, x3, x4},
D(x) = D(y) = D(z) = D(t) = {a, b}. Let c ∈ C a table constraint, such that
scope(c) = {x1, x2, x3, x4} and Rc = {(a, b, b, a), (a, a, b, b), (a, b, a, a), (b, b, a, a),
(b, b, b, a)}. The transaction database T Dc associated to c is defined as follows:

tid itemset

001 a1, b2, b3, a4

002 a1, a2, b3, b4

003 a1, b2, a3, a4

004 b1, b2, a3, a4

005 b1, b2, b3, a4

Table 2. T Dc a transaction database associated to c

Let I = {b2, a4} be an itemset of T Dc. We have S(I, T Dc) = |{001, 003, 004, 005}|=
2, index(I) = {2, 4} and vars(index(I)) = {x2, x4}.

Microstructure Rewriting Rule (MRR): We now provide a rewriting rule
for reducing the size of a table constraint.



Definition 9 (MRR rule). Let P = 〈X ,D, C〉 be a constraints network and
c ∈ C be a table constraint with scope(c) = {x1, x2, . . . xn} and |Rc| = m. Let I =
{vi11 , . . . , vikk } be an itemset of T Dc and Y = vars(index(I)) = {xi1 , . . . , xik}.
In order to rewrite c using I, we introduce a new variable z /∈ X and a set N
of l new values such that V ∩ N = ∅ and l = |

⋃
t∈Rc

t[Y ]|. Let f be a bijection
from

⋃
t∈Rc

t[Y ] to N . We denote by Pm the constraints network 〈Xm,Dm, Cm〉
obtained by rewriting c with respect to I and f :

– Xm = X ∪ {z};
– Dm is a domain function defined as follows: Dm(x) = D(x) if x ∈ X , and

Dm(z) = N .
– Cm = C \ {c} ∪C′ , where C′ = {c0, c′} such that:

• c0 = 〈(z, Y ), {(f(a1, . . . , ak), a1, . . . , ak)|(a1, . . . , ak) ∈
⋃

t∈Rc
t[Y ]}〉

• c′ = 〈(scope(c)− Y )⊕ (z), {t[scope(c)− Y ]⊕ (f(t[Y ]))|t ∈ Rc}〉

Example 3. Let us consider again the example 2. Applying the MR rewriting
rule to c with respect to I = {b2, a4}, and f where f((b, a)) = c1 and f((a, b)) =
c2, we obtain the following two constraints:

– c0 = 〈{z, x2, x4}, {(c1, b, a), (c2, a, b)}〉;
– c′ = 〈{x1, x3, z}, {(a, b, c1), (a, b, c2), (a, a, c1), (b, a, c1), (b, b, c1)}〉

It is easy to see that in example 3, applying MRR rule leads to a constraint of
greater size. In what follows, we introduce a necessary and sufficient condition
for reducing the size of the table constraint.

Necessary and sufficient condition for size reduction Let c be a table
constraint, p the number of tuples in Rc, and s = (v1, . . . , vn) ⊆ X be a sub-
tuple of values corresponding to a frequent itemset Is of T Dc where the minimal
support threshold is greater or equal to k. Let {t1, . . . , tk} be the set of tuples
such that ti[vars(index(s))] = s for 1 6 i 6 k. The size of Rc can be reduced by
at least r = (n × k − (p + 1 + n + (p − k)). Let us consider again the example
3. The reduction is at least r = (2 × 4 − (5 + 1 + 2 + (5 − 4)) = 8 − 9 = −1.
In this example, we increase the size of c by one value. Indeed, |Rc| = 20 and
|Rc0 |+ |Rc′ | = 6 + 15 = 21.

Regarding the value of k, one can see that applying MRR rule is interesting
when r > 0 i.e. k > 2×p+n+1

n+1 . In the previous example, no reduction is obtained

as 4 > 2×5+2+1
2+1 . (4 > 4, the condition is not satisfied).

Compression algorithm of a table constraint: Given a constraint network
P , and c a constraint table of P , we first search for closed frequent itemsets (sub-
tuple of values) on T Dc and then we apply the above rewriting rule on the table
constraint using the discovered itemsets of values. Similarly to the constraint
graph based compression algorithm, our microstructure based compression algo-
rithm can be derived from the one defined in [4].

As a summary, to compress general CSP, our approach first apply constraint
graph based compression algorithm followed by the microstructure based com-
pression algorithm.



4 Conclusion and Future Works

In this paper, we propose a data-mining approach, called Mining4CSP, for re-
ducing the size of constraints satisfaction problems when constraints are rep-
resented in extension. It can be seen as a preprocessing step that aims to dis-
cover hidden structural knowledge that are used to decrease the size of table
constraints. Mining4CSP combines both frequent itemset mining techniques for
discovering interesting substructures, and Tseitin-based approach for a compact
representation of Table constraints using these substructures. Our approach is
able to compact a CSP by considering both its associated constraint graph and
microstructure. This allows us to define a two step algorithm. The first step,
named coarse-grained compression, allows to compact the constraint graph using
patterns representing subsets of variables. The second step, named fine-grained
compression allows us to compact a given set of tuples of a given table constraint
using patterns representing subset of values. Finally, an experimental evaluation
on CSP instances is short term perspective.
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