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Abstract. Graded modal logic GS5 is an extension of S5 by the modal
connective }�: the formula }�A means that there are at least � worlds
satisfying A. In this paper, we show how to reduce GS5 satisfiability to
propositional satisfiability (SAT). Furthermore, we consider a satisfiabil-
ity problem related to the frequent itemset mining problem: SUPPSATn

(where n is a strictly positive integer). We show how SUPPSATn can be
encoded in GS5 satisfiability and consequently in SAT.

1 Introduction

The modal logic S5 is among the most studied normal modal logics. In a possible
world semantics, a model frame is a non empty set of worlds with an accessibility
relation which is an equivalence relation [4]. However, there is another equivalent
possible world semantics where a model frame is just a non empty set of worlds
without any accessibility relation [9]. The formula }A means simply that there
exists a world where A is true and 2A means that A is true in every world. Let
us note that there exist various formal systems dedicated to proof-search in this
logic [9, 22, 15].

Graded modal logic GS5 includes modal connectives allowing to reason on
the number of worlds satisfying a formula [7, 21]. For example, the formula }5A
means that there are at least 5 worlds satisfying A. The first sound and complete
axiomatization for this logic was provided by Fine in [7] and other results on
axiomatic aspects were provided in [21]. Let us note that the modal connectives
in GS5 coincide with concept cardinality restrictions in description logics defined
in [3] and count operators in modal logics defined in [2].

In the literature, the majority of decision algorithms for modal logics are
based on either the use of the formalism style in structural proof theory called
sequent calculus and its variant called tableau method [8], or encodings in first
order logic [16]. In the last decade, e�cient SAT-based algorithms have been
proposed to decide satisfiability of a formula in modal logics [10, 11]. It has been
formally proved that these algorithms are better than those based on tableau
method [17]. One of the main ideas in the SAT-based approach consists simply
in considering the modal subformulas as propositional variables and trying to



extend propositional models to modal models. In this work, we are interested in
finding reductions of satisfiability problem in S5 and GS5 to SAT.

After having introduced syntax and semantics of the modal logic S5, we
present a reduction of S5 satisfiability problem to SAT. This reduction is obtained
by using the property that says that a formula is satisfiable in S5 if and only
if it is satisfiable in a model with at most the number of its modal subformulas
as the number of worlds. Using a similar approach, we also show how to reduce
GS5 satisfiability to SAT. Thus, e�cient propositional SAT solvers can be used
to perform satisfiability in S5 and its graded version GS5.

In order to show how GS5 satisfiability, and consequently SAT, can be used to
reason over some problems in data mining, we consider a satisfiability problem in
data mining: SUPPSAT

n (where n is a strictly positive integer) [5, 6]. It is related
to the frequent itemset mining problem which is one of the most studied problems
in data mining [1]. It consists in computing frequent itemsets in a transaction
database. We show how SUPPSAT

n can be encoded in GS5 satisfiability.The
SUPPSAT

n problem has important applications. For instance, in the privacy
preserving data mining where the SUPPSAT

n problem can be used for trying to
reconstruct parts of the original database from data mining outcomes: inverse

data mining [14] (see [5, 6] for some details). Moreover, the SUPPSAT

n problem
can be used to improve the pruning of infrequent candidates in frequent itemset
mining algorithms.

2 Modal Logic S5

2.1 Syntax and Semantics

The set of propositional formulae of S5, denoted FormS5, is inductively defined
from a set of propositional variables, denoted Prop (we use p, q, r, . . . to range
over Prop), by using the propositional connectives ^ and ¬ and the modal
connective }. The other propositional connectives and the modal connective
2 can be expressed using ^, ¬ and } as follows: A _ B =def ¬(¬A ^ ¬B),
A! B =def ¬A _ B and 2A =def ¬}¬A. In other words, the language of S5

extends that of classical propositional logic by the modal connectives 2 and }.

A Hilbert axiomatic system for S5 is given by the following axioms and rules:
0. Any substitution instance of a propositional tautology.
K. 2(A!B)! (2A!2B) T . 2A!A B. A!2}A 4. 2A!22A

A!B A
B

[mp] and A
2A

[nec]

Le us now define the simplest possible world semantics for S5. We first define the
structure of S5 modal model, and then we define a relation between the worlds
and FormS5, called forcing relation, that allows us to define S5 satisfiability prob-
lem.

Definition 1 (Modal Model). A modal model is a couple M = (W,V ) where

W is a non-empty set (of worlds) and V is a function from W to P(Prop), where

P(Prop) is the powerset of Prop, i.e. its set of subsets.



Definition 2 (Forcing Relation). Let M = (W,V ) be a modal model. The

forcing relation, denoted ✏M, between W and FormS5 is inductively defined on

formula structure as follows:

w ✏M p i↵ p 2 V (w);
w ✏M A ^B i↵ w ✏M A and w ✏M B;

w ✏M ¬A i↵ w 2M A;

w ✏M }A i↵ 9w0 2W , w0 ✏M A.

Definition 3 (S5 Satisfiability Problem). A formula A is satisfiable in S5 i↵

there exists a modal model M = (W,V ) sand a world w 2W such that w ✏M A.

A formula A is valid in M, denoted M ✏ A, if and only if, for all w 2 W ,
w ✏M A. A is a theorem of S5 if and only if A is valid in every modal model.
Satisfiability and validity are complementary in S5. In fact, S5 satisfiability (resp.
validity) is NP-complete (resp. co-NP-Complete).

We define the size of a formula, denoted | · |, as follows:

|p| = 1 |¬A| = |A|+ 1 |A ^B| = |A|+ |B|+ 1 |}A| = |A|+ 1

Theorem 1 ([13]). A is satisfiable in S5 i↵ it is satisfiable in a model with at

most |A| worlds.

2.2 Reducing S5 satisfiability to SAT

We first introduce the satisfiability problem and some necessary notations that
will be used in the di↵erent reductions of our problems to SAT. A literal is a
positive (p) or negated (¬p) propositional variable. The two literals p and ¬p
are called complementary. We denote by l̄ the complementary literal of l. Let us
recall that any propositional formula can be translated to the conjunctive normal
form (CNF) using linear Tseitin encoding [20]. We denote by V ar(F ) the set of
propositional variables appearing in F . An interpretation B of a propositional
formula F is a function which associates a value B(p) 2 {0, 1} (0 corresponds
to false and 1 to true) to the variables p 2 V ar(F ). A model of a formula F
is an interpretation B that satisfies the formula. The SAT problem consists in
deciding if a given formula admits a model or not.

Let us now show how to reduce S5 satisfiability to SAT. We first associate to
each S5 formula A and strictly positive integer n a propositional formula so that
A is satisfiable in a model with n worlds if and only if its associated propositional
formula is satisfiable. Thus, using the property that a formula is satisfiable in S5

if and only if it is satisfiable in a model with at most the number of its modal
subformulas as the number of worlds, we provide a polynomial reduction of S5

satisfiability to SAT.

We define a deep modal subformula as a subformula of the form }A that is in the
scope of only one modal connective. For instance, the deep modal subformulas
of }(}A ^ }(C _ }D)) are }A and }(C _ }D).



Definition 4. Let A be an S5 formula, {}B1, . . . ,}Bk} the set of the deep

modal subformulas of A and {x}B1 , . . . , x}Bk} a set of k fresh variables. We

define inductively the S5 formula D(A) as follows:

– D(A) = A if A does not contain any deep modal subformula;

– D(A) = A[}B1/x}B1 , . . . ,}Bk/x}Bk ]
Vk

i=1D(}x}Bi ! }Bi)Vk
i=1D(}Bi ! ¬}¬x}Bi).

where A[}B1/x}B1 , . . . ,}Bk/x}Bk ] denotes the result of substituting each deep

modal subformula by its associated fresh variable.

It is easy to see that D(A) is of polynomial size in |A|. Intuitively, the two
formulae }x}Bi ! }Bi and }Bi ! ¬}¬x}Bi correspond to �(x}Bi $ }Bi).
Indeed, we have �(x}Bi ! }Bi) ⌘ �(¬x}Bi _ }Bi) ⌘ ¬}x}Bi _ �}Bi ⌘
}x}Bi ! }Bi (because of �}Bi ⌘ }Bi and �¬x}Bi ⌘ ¬}x}Bi). Furthermore,
�(}Bi ! x}Bi) ⌘ �¬}Bi _�x}Bi ⌘ ¬}Bi _ ¬}¬x}Bi . Thus, one can easily
prove that A is satisfiable if and only if D(A) is satisfiable. Moreover, we have
for all model M, if M ✏ D(A) then M ✏ A. In fact, it is well-known that one
can disallow nested modalities in S5 without any loss of generality. Here, we use
an approach similar to that using in Tseitin encoding in propositional logic [20].

Definition 5. Let A be an S5 formula and n a strictly positive integer. We asso-

ciate to each propositional variable p of A and i 2 {1, . . . , n} a new propositional

variable pi. Then, we define the propositional formula (A)i
n by induction on the

structure of A as follows:

(p)i
n = pi (B ^ C)i

n = (B)i
n ^ (C)i

n

(¬B)i
n = ¬(B)i

n (}B)i
n =

W
16j6n(B)j

n

Let us note that (A)i
n is not always of polynomial size in |A| (we consider that

n is polynomial in |A|). For instance, we have with a naive enconding:

(

k timesz }| {
} · · ·} p)i

n =

kn�1 timesz }| {
(p1 _ · · · _ pn) _ · · · _ (p1 _ · · · _ pn)

However, one can see that the propositional formula (D(A))i
n is in the polynomial

size of |A|. Moreover, (D(A))i
n is satisfiable if and only if (A)i

n is satisfiable, and
if an interpretation B is a model of (D(A))i

n then it is also a model of (A)i
n.

Proposition 1. A is S5 satisfiable in a modal model of n worlds i↵ (D(A))1n is

satisfiable.

Proof. We only have to prove that A is S5 satisfiable in a modal model of n
worlds i↵ (A)1n is satisfiable.
Part ). Let M = (W,V ) be a modal model with n worlds such that there
exists w in W where w ✏M A. Let f be a function associating to each integer
i 2 {1, . . . , n} a world in W such that f(1) = w and for all i, j 2 {1, . . . , n}, if
i 6= j then f(i) 6= f(j). We define the boolean interpretation B as follows: B(pi)
is equal to 1 if p 2 V (f(i)), 0 otherwise. One can easily prove by simultaneous
induction on formula structure that for all F 2 FormS5 and for all i 2 {1, . . . , n}:



- if f(i) ✏M F then B((F )i
n) = 1; and

- if f(i) 2M F then B((F )i
n) = 0.

Therefore, we deduce that B is a model of (A)1n.
Part (. Let B be a model of (A)1n and M = ({1, . . . , n}, V ) a modal model
such that for all i 2 {1, . . . , n}, V (i) = {p | B(pi) = 1}. Similarly to Part ),
one can easily prove by simultaneous induction on formula structure that for all
F 2 FormS5 and for all i 2 {1, . . . , n}:

- if B((F )i
n) = 1 then i ✏M F ; and

- if B((F )i
n) = 0 then i 2M F .

Since B satisfies (A)1n, we deduce that 1 ✏M A, and consequently M satisfies A.

Theorem 2. A is S5 satisfiable i↵

W
16i6|A|(D(A))1i is satisfiable.

Proof. It is a direct consequence of Theorem 1 and Proposition 1.

3 Graded Modal Logic GS5

3.1 Syntax and Semantics

The graded modal logic GS5 corresponds to an extension of S5. Indeed, in this
logic the modal connective } is generalized to a new one }� where � is a strictly
positive integer. The set of formulae of GS5 (FormGS5) is given by the following
grammar: A, B ::= p | ¬A | A ^B | }�A.
Semantically, the formula }�A is satisfied in a model if and only if there exist at
least � di↵erent worlds satisfying A. Thus, such a modal logic allows to reason
on propertiy supports. Concerning the dual modal connective, 2�A is satisfied
if and only if there exist less than � distinct worlds satisfying ¬A. Like in the
case of S5, GS5 satisfiability is NP-complete.

The definition of forcing relation in the case of }� is as follows:

w ✏M }�A i↵ there exist � distinct worlds w1, . . . , w� in W such that
w1 ✏M A, . . . , w� ✏M A.

The formulae size | · | is extended to FormGS5 by |}�A| = |A|+ �.

Theorem 3 ([21]). A is GS5 satisfiable i↵ it is satisfiable in a model with at

most |A| worlds.

Definition 6. Let A be a GS5 formula and n a strictly positive integer. The

GS5 formula s(A, n) is inductively defined on the structure of A as follows:

s(p, n) = p s(B ^ C, n) = s(B,n) ^ s(C, n)
s(}�B,n) = }�s(B,n) s(¬p, n) = ¬p
s(¬¬B,n) = s(B,n) s(¬(B ^ C), n) = s(¬B,n) _ s(¬C, n)
s(¬}�B,n) = }n��+1s(¬B,n)

Proposition 2. A is GS5 satisfiable in a model M with n worlds i↵ s(A, n) is

GS5 satisfiable in M

Proof. By induction on the structure of A.



3.2 Reducing GS5 satisfiability to SAT

In the case of }� in GS5 satisfiablity, we have to determine if a formula is
satisfied in at least � worlds. In our reduction (Definition 7), such counting
argument is encoded using the well known Horn cardinality constraint

Pn
j=1 xj >

�. It is important to note that this kind of constraints and its generalized formPn
j=1 ajxj > � (where aj are positive integers) can be polynomialy encoded as

a propositional formula in CNF [12]. As mentioned by J. P. Warners in [12], the
first polynomial CNF expansion of Horn cardinality constraint is first proposed
by Hooker in an unpublished note. The Hooker encoding of

Pn
j=1 xj > � to CNF

is obtained as follows:
¬zik _ xi, i = 1, . . . , n k = 1, . . . ,� (1)

n_

i=1

zik, k = 1, . . . ,� (2)

¬zik _ ¬zik0 , i = 1, . . . , n k, k0 = 1, . . . ,�, k 6= k0 (3)

The two equations 2 and 3 encode the pigeon hole problem PH�,n, where � is the
number of pigeons and n is the number of holes (zik expresses that pigeon k is in
hole i). The mapping between the models of PH�,n and those of

Pn
j=1 xj > � are

obtained thanks to the equation 1. In this elegant transformation, the number of
additional variables is �⇥n and the number of clauses required is 1

2�(n2+n+2).
Let us mention that in [12] (see Section 5), the equation 3 is written as follows:

¬zik _ ¬zjk, i, j = 1, . . . , n, i 6= j k = 1, . . . ,�. (4)

One can obviously check that the formulation given in [12], where the equation
3 is substituted by the equation 4 is not correct. Even the description associated
to the formulation in Warners’ paper is not correct. This brief recall allows us to
give a correct formulation described by the three equations 1, 2 and 3. Several
improvements of the CNF encoding of both Horn cardinality constraints (e.g.
[19, 18]) have been proposed since 1996. In these recent encodings the propaga-
tion capabilities of the obtained CNF has been significantly enhanced.

Let us now introduce our reduction of GS5 satisfiability to SAT. To this end, we
use an approach similar to that used in the case of S5 satisfiability.

Definition 7. Let A be a GS5 formula and n a strictly positive integer. We

associate to each propositional variable p and i 2 {1, . . . , n} a new propositional

variable pi. We define the propositional formula (s(A, n))i
by induction on the

structure of s(A, n) as follows:

(p)i = pi (¬p)i = ¬pi

(B ^ C)i = (B)i ^ (C)i (B _ C)i = (B)i _ (C)i

(}�B)i =
⇢
? if � > n
(
Vn

j=1 xj $ (B)j) ^
Pn

j=1 xj > � otherwise
where x1, . . . , xn are n fresh propositional variables.



Similarly to (A)i
n, (s(A, n))i is not always polynomial in |A|. In order to obtain

an equivalent polynomial size formula, we only have to proceed, like in the case of
S5 (see Definition 4), by introducing the formula D(A) obtained by substituting
inductively the deep modal subformulas by fresh variables:

– D(A) = A if A does not contain any deep modal subformula;
– D(A) = A[}�1B1/x}�1B1 , . . . ,}�kBk/x}�k

Bk ]
Vk

i=1D(}1x}�i
Bi ! }�iBi)Vk

i=1D(}�iBi ! ¬}1¬x}�i
Bi).

Proposition 3. A is GS5 satisfiable in a modal model of n worlds i↵ (D(s(A, n)))1
is satisfiable.

Proof. Similar to the proof of Proposition 1.

As a consequence of Proposition 3 and Theorem 3, we obtain the following
theorem:

Theorem 4. A is GS5 satisfiable i↵

W
16i6|A|(s(A, i))1 is satisfiable.

4 Itemset Support Satisfiability

4.1 Preliminary

Let I be a finite set of items, a set I ✓ I is called an itemset. A transaction

is a couple (tid, I) where tid is a transaction identifier and I is an itemset.
A transaction database D is a finite set of transactions over I where for all
two di↵erent transactions, they do not have the same identifier. We say that a
transaction (tid, I) supports an itemset J if J ✓ I.

The support of an itemset I in D is defined by: S(I,D) = |{tid | (tid, J) 2
D and I ✓ J}|. Moreover, the frequency of I in D is defined by:
F(I,D) = S(I,D)

|D| .

Let us consider the following example of transaction database over the set of
items I = {Spaghetti, Tomato, Parmesan, Beef, Olive oil}:

tid itemset
1 Spaghetti, Tomato, Olive oil
2 Spaghetti, Parmesan,Olive oil
3 Spaghetti, Olive oil
4 Salad, Olive oil
5 Spaghetti, Beef,Olive oil

Transaction database D

For instance, we have S({Spaghetti, Olive oil},D) = |{1, 2, 3, 5}| = 4 and
F({Spaghetti, Olive oil},D) = 4

5 .

It is easy to see that a transaction databases can be considered as a modal



model where the items corresponds to propositional variables and the trans-
actions to worlds. For example, the transaction database in the previous ex-
ample corresponds to the model M = ({1, 2, 3, 4, 5}, V ) where (w, V (w)) 2 D
(e.g. V (1) = {Spaghetti, Tomato, Olive oil}). We denote by MD (resp. DM)
the modal model (resp. the transaction database) associated to the transaction
database (resp. the modal model) D (resp. M).

Using the fact that each transaction database has a corresponding modal model,
one can encode some transaction database problems in GS5. Thus, the verifica-
tion techniques in GS5, in particular using SAT, can be used to prove properties
on such problems. For instance, let us consider the problem of computing fre-
quent itemsets which is one of the most studied problems in data mining. Let
D be a transaction database over I and � a minimal support threshold. The
frequent itemset mining problem consists in computing the following set:

FIM(D, �) = {I ✓ I | S(I,D) > �}

It can be encoded in GS5 as follows: I 2 FIM(D, �) ,MD ✏ }�
V

i2I i. For
example, in order to prove that for all transaction database, for all minimal
support threshold � and for all itemsets I and J , if I ✓ J and J 2 FIM(D, �)
then I 2 FIM(D, �) (anti-monotonicity), it su�ces to prove that F = }�(p ^
q)!}�p is a theorem of GS5. Indeed, if F is not a theorem then there exists a
transaction database (a modal model) where the anti-monotonicity property is
not true. Otherwise, it su�ces to notice that if I ✓ J then there exists K such
that

V
j2J j ⌘ (

V
i2I i) ^ (

V
k2K k). Since MD ✏ }�

V
j2J j and F is a theorem

of GS5, we deduce that MD ✏ }�
V

i2I i and then I 2 FIM(D, �).

4.2 SUPPSATn
Problem

A support constraint is an expression of the form I / k where I is a an itemset,
/ 2 {6,>} and k is a natural number. A transaction database D satisfies a
support constraint I / k if and only if S(I,D) / k.

Problem 1 (SUPPSAT

n
). Given a set of support constraints E , determine if there

exists a database D with n transaction satisfying all the constraints in E .

Now, let us encode SUPPSAT

n in GS5 satsifiability (and consequently in SAT).

Definition 8. Let E = {I1 /1 k1, . . . , Im /m km} be a set of support constraints.

The GS5 formula associated to E, denoted FE , is

Vm
i=1 F (Ii /i ki) where

F (I > k) = }k
V

j2I j and F (I 6 k) = ¬}k+1
V

j2I j.

Proposition 4. A set of support constraints E is SUPPSAT

n
i↵ FE ^ ¬}n+1>

is GS5 satsifiable.

Proof.

- Part ). Let D be a database with n transaction satisfying E , then it is easy
to see that MD satisfies FE . Moreover, since MD contains n worlds, it satisfies



also ¬}n+1>.
- Part (. Let M be a model satisfying FE ^ ¬}n+1>. Then DM is a database
with m transactions satisfying E where m 6 n because of ¬}n+1>. Let D0 be
the transaction database obtained from D by adding n�m empty transactions
(transaction without items). It is trivial that D0 is a database with n transactions
satisfying E .
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6 Conclusion and Perspectives

In this work, we study the satisfiability problem in the modal logic S5 and its
graded version GS5. We provide reductions of S5 satsifiability and GS5 satisfia-
bility to propositional satisfiability (SAT). The key point is that a modal formula
is satisfiable in S5 or GS5 if and only if it is satisfiable in a model with at most
the number of the modal subformulas as the number of worlds. Moreover, in
order to show how GS5 satisfiablity can be used in data mining, we consider
a satisfiability problem related to the known frequent itemset mining problem,
called itemset support satisfiability and denoted by SUPPSAT

n. We show how
SUPPSAT

n can be encoded simply in GS5 satisfiability.

In further works we will study the possibility to develop a suitable resolution
method for GS5 satisfiability problem. In this context, we think that we have to
find a useful form for the modal formulas similar to conjunctive normal form in
the propositional case. We also have to propose additional rules to deal with the
modal connectives. Such a method can be more appropriate for GS5 satisfiability
and also for itemset support satisfiability than a reduction to SAT. Moreover,
we will study the satisfiability problem in some extensions of GS5 with new con-
nectives, for example, with the connective >> where A >> B means that the
number of worlds satisfying A are greater than the number of those satisfying B.
Such a connective will allow us to reason on relations between property supports.

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets
of items in large databases. In SIGMOD, pages 207–216. ACM Press, 1993.

2. C. Areces, G. Ho↵mann, and Al. Denis. Modal logics with counting. In WoLLIC,
volume 6188 of LNCS, pages 98–109. Springer, 2010.

3. F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts.
Artificial Intelligence, 88(1-2):195–213, 1996.

4. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.



5. T. Calders. Axiomatization and Deduction Rules for the Frequency of Itemsets.
PhD Thesis. Universiteit Antwerpen, 2003.

6. T. Calders. Itemset frequency satisfiability: Complexity and axiomatization. The-
oretical Computer Science, 394(1-2):84–111, 2008.

7. K. Fine. Cut-free modal sequents for normal modal logics. Notre-Dame Journal
of Formal Logic, 13(4):516–520, 1972.

8. M. Fitting. Proof methods for modal and intuitionistic logics, volume 169 of Syn-
these Library. Kluwer, 1983.

9. M. Fitting. A simple propositional S5 tableau system. the Annals of Pure and
Applied Logic, 96:107–115, 1999.

10. E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella. Sat vs. Translation
Based decision procedures for modal logics: a comparative evaluation. Journal of
Applied Non-Classical Logics, 10(2), 2000.

11. E. Giunchiglia, A. Tacchella, and F. Giunchiglia. Sat-based decision procedures
for classical modal logics. J. Autom. Reasoning, 28(2):143–171, 2002.

12. j. P. Warners. A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters, 1996.

13. R. E. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM Journal Computation, 6(3):467–480, 1977.
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