
Under consideration for publication in Theory and Practice of Logic Programming 1

A Pigeon-Hole Based Encoding of Cardinality
Constraints

Said Jabbour and Lakhdar Sais and Yakoub Salhi
CRIL - CNRS, Université d’Artois, France

(e-mail: {jabbour, sais, salhi}@cril.fr)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In this paper, we propose a new encoding of the cardinality constraint ∑
n
i=1 xi > b. It makes an original

use of the general formulation of the Pigeon-Hole principle to derive a formula in conjunctive normal
form (CNF). Our Pigeon-Hole based CNF encoding can be seen as a nice and simple way to express the
semantic of the cardinality constraint, that can be defined as how to put b pigeons into n holes. To derive
an efficient CNF encoding that ensures constraint propagation, we exploit the set of symmetries of the
Pigeon-Hole based formulation to derive an efficient CNF encoding of the cardinality constraint. More
interestingly, the final CNF formula contains is b× (n− b) variables and clauses and belongs to the well-
known Reverse-Horn tractable CNF formula, which can be decided by unit propagation. Our proposed
Pigeon-Hole based encoding is theoretically compared with the currently well-known CNF encoding of the
cardinality constraint.

KEYWORDS: Cardinality constraints, Propositional Satisfiability

1 Introduction

Today, Boolean satisfiability (SAT) has gained a considerable audience with the advent of a new
generation of solvers able to solve large instances encoding real-world problems. In addition to
the traditional applications of SAT to hardware and software formal verification, this impressive
progress led to increasing use of SAT technology to solve new real-world applications such as
planning, bioinformatics, cryptography, and data mining. Encoding applications as formulas in
conjunctive normal form (CNF) became now a usual practice.

One of the most important flaws of CNF or Boolean representation in general rises in the
difficulty to deal with counting constraints, among them the cardinality constraint and its more
general form the pseudo Boolean constraint. Indeed, several applications involve counting ar-
guments expressed as cardinality or pseudo Boolean constraint. This kind of constraints arises
frequently out of the encoding of real-world problems such as radio frequency assignment, time
tabling and product configuration problems to cite a few. For the above reasons, several authors
have addressed the issue of finding an efficient encoding of cardinality (e.g. (Warners 1996;
Bailleux and Boufkhad 2003; Sinz 2005; Silva and Lynce 2007; Ası́n et al. 2009)) and pseudo
Boolean constraints (e.g. (Eén and Sörensson 2006; Bailleux et al. 2009)) as a CNF formula.
Efficiency refers to both the compactness of the representation (size of the CNF formula) and to
the ability to achieve the same level of constraint propagation (generalized arc consistency) on
the CNF formula.

2 S. Jabbour and L. Sais and Y. Salhi

In this paper, we present a new encoding of the cardinality constraint as a formula in CNF. Our
proposed encoding starts from an initial formulation of this counting constraint using the well
known Pigeon-Hole principle. This first CNF encoding is not effective as one must face satisfia-
bility checking of a hard CNF sub-formula expressing the well-known Pigeon-Hole problem. To
avoid this problem, we combine several techniques to derive the final and efficient CNF encod-
ing of the cardinality constraint. More precisely, our method is based on the application of the
resolution rule using different kinds of clauses: symmetry breaking predicates, blocked clauses
and redundant clauses. The resulting CNF formula is very natural, and preserves generalized arc
consistency through unit propagation.

The rest of this paper is organized as follows. After some preliminary definitions and technical
background, we present our Pigen-Hole based CNF encoding of the cardinality constraint. Then
a theoretical comparison with existing encodings is given. We conclude with some interesting
and general perspectives emerging from an original use of the Pigeon-Hole principle together
with a combination of several kinds of clauses and techniques.

2 Technical Background and preliminary definitions

2.1 Preliminary Definitions and Notations

A Boolean formula F in Conjunctive Normal Form (CNF) is a conjunction of clauses, where a
clause is a disjunction of literals. A literal is a positive (x) or negated (¬x) propositional variable.
The two literals x and ¬x are called complementary. We denote by l̃ the complementary literal
of l. More precisely, if l = x then l̃ = ¬x, otherwise l̃ = x. The variable associated to a literal l
is denoted by |l|. Let us recall that any Boolean formula can be translated to CNF using linear
Tseitin’s encoding (Tseitin 1968). A unit clause is a clause containing only one literal (called
unit literal), while a binary clause contains exactly two literals. A Horn (resp. reverse Horn)
clause is a clause with at-most one positive (resp. negative) literal. A positive (resp. negative)
clause is a clause whose literals are all positive (resp. negative). An empty clause, denoted ⊥, is
interpreted as false (unsatisfiable), whereas an empty CNF formula, denoted >, is interpreted as
true (satisfiable).

The set of variables occurring in F is denoted VF and its associated set of literals LF =

∪x∈VF
{x,¬x} . A set of literals is complete if it contains one literal for each variable in VF ,

and fundamental if it does not contain complementary literals. A literal l is called monotone or
pure if l̃ does not appear in F . An interpretation ρ of a Boolean formula F is a function which
associates a truth value ρ(x) ∈ {0,1} (0 for false and 1 for true) to some of the variables x ∈VF .
ρ is complete if it assigns a value to every x ∈ VF , and partial otherwise. An interpretation is
alternatively represented by a complete and fundamental set of literals. A model of a formula
F is an interpretation ρ that satisfies the formula, denoted ρ |= F . A formula G is a logical
consequence of a formula F , denoted F |= G , iff every model of F is a model of G .

Let ci and c j be two clauses such that ci = (x∨α) and c j = (¬x∨β), η [x,ci,c j] = (α ∨β)

denotes the resolvent on x between ci and c j. A resolvent is called tautological when it contains
complementary literals.

F |x denotes the formula obtained from F by assigning x the truth-value true. Formally
F |x = {c | c ∈F ,{x,¬x}∩ c = /0}∪ {c\{¬x} | c ∈F ,¬x ∈ c}. This notation is extended to
interpretations: given an interpretation ρ = {x1, . . . ,xn}, we define F |ρ = (. . .((F |x1)|x2) . . . |xn).

F ∗ denotes the formula F closed under unit propagation, defined recursively as follows: (1)

Theory and Practice of Logic Programming 3

F ∗ = F if F does not contain any unit clause, (2) F ∗ =⊥ if F contains two unit-clauses {x}
and {¬x}, (3) otherwise, F ∗ = (F |x)∗ where x is the literal appearing in a unit clause of F .

Let c1 and c2 be two clauses of a formula F . We say that c1 (respectively c2) subsume (resp.
is subsumed) c2 (resp. by c1) iff c1 ⊆ c2. If c1 subsume c2, then c1 |= c2 (the converse is not true).

Let c ∈F such that x ∈ c, the literal x of c is called blocked if ∀c′ ∈F such that ¬x ∈ c′ and
c 6= c′, η [x,c,c′] is a tautology. A clause c ∈F is a blocked clause if it contains a blocked literal
(Kullmann 1997). A blocked clause c∈F can be deleted from F while preserving satisfiability.

2.2 Pigeon-Hole Principle

Our encoding is based on the Pigeon-Hole principle widely used in proof complexity. It asserts
that there is no injective mapping from b pigeons to n holes as long as b > n. Stephen A. Cook
proved that the propositional formula encoding the Pigeon-Hole problem have polynomial size
proof in extended resolution proof system (Cook. 1976). A polynomial proof is also obtained by
Krishnamurthy (Krishnamurthy 1985) using resolution with symmetry. The Pigeon-Hole princi-
ple PHPb

n can be expressed as a propositional formula in conjunctive normal form. The variables
of PHPb

n are pi j with 1 6 i 6 b, 1 6 j 6 n; the variable pi j is intended to denote the condition
that pigeon i is sitting in hole j. The CNF formula encoding PHPb

n can be stated as follows:

n∨
j=1

pi j, 1 6 i 6 b (1)

∧
16i<k6b

(¬pi j ∨¬pk j), 1 6 j 6 n (2)

The first equation (1) expresses that any pigeon must be put in at least one hole, while the
equation (2) constrains each hole to contain at most one pigeon.

2.3 Symmetries in SAT

As our Pigeon-Hole based encoding heavily exploit symmetries (Krishnamurthy 1985), we briefly
recall the symmetry breaking framework in SAT. For more details on symmetry, we refer the
reader to some but not exhaustive list of works in SAT (Crawford et al. 1996; Benhamou and
Sais 1994; Aloul et al. 2003) and CSP (Puget 1993; Gent et al. 2006).

First, let us introduce some definitions on group theory. A group (G ,◦) is a finite set G with an
associative binary operation ◦ : G ×G →G admitting a neutral and an inverse element. The set of
all permutation P over a finite set E associated to the composition operator ◦, denoted (P,◦),
forms a group. Furthermore, each permutation σ ∈P can be represented by a set of cycles
{c1 . . .cn} where each cycle ci is a list of elements of E (li1 . . . lini

) s.t. ∀1 6 k < ni,σ(lik) = lik+1

and σ(lini
) = li1 .

Let F be a CNF formula, and σ a permutation over L (F). We can extend the definition of
the permutation σ to F as follows: σ(F) = {σ(c)|c ∈F} and σ(c) = {σ(l)|l ∈ c}.

Definition 1
Let F be a CNF formula and σ a permutation over the literals of F , σ is a symmetry of F if it
satisfies the following conditions:

• σ(¬x) = ¬σ(x), ∀x ∈LF

• σ(F) = F

4 S. Jabbour and L. Sais and Y. Salhi

From the definition above, a symmetry σ defines an equivalence relation over the set of possi-
ble assignments. We need to consider only one assignment from each equivalence class. Break-
ing symmetries consist in eliminating all symmetric assignments except one in each equivalence
class. The most used approach to break symmetries consists in adding new clauses - called sym-
metry breaking predicates (SBP) or lex leader constraints - to the original formula (Crawford
1992; Crawford et al. 1996; Aloul et al. 2003; Walsh 2006).

Before introducing the general definition of SBP, let us illustrate the main idea behind this
technique using a simple example. Let σ = (x1,y1) be a symmetry of a CNF formula F with
only one cycle. Suppose that F admits m = {x1,¬y1 . . .} as a model, then σ(m) = {¬x1,y1, . . .}
is also a model of F . To break this symmetry, it is sufficient to lay down an ordering on the
values of x1 and y1. For example, adding conjunctively the constraint x1 6 y1, which can be
expressed by the clause c = (¬x1∨ y1), to the formula F , leads to a new formula Φ = F ∪{c}
while preserving satisfiability. The model m of F is eliminated as it is not a model of Φ. All other
models of F not satisfying the added binary clause are also eliminated. This idea is generalized
in definition 3 to a symmetry containing arbitrary number of cycles.

Definition 2
Let σ = (x1,y1), . . . ,(xn,yn) be a symmetry of F . σ is called lexicographically ordered iff ∀i(16
i 6 n−1) |xi|< |xi+1| and ∀i(1 6 i 6 n) |xi|< |yi| holds.

Definition 3 (SBP (Crawford et al. 1996))
Let F be a CNF and σ = (x1,y1)(x2,y2) . . .(xn,yn) a symmetry of F . Then the symmetry break-
ing predicates, called sbpσ , associated to a lexicographically ordered symmetry σ is defined as
the conjunction of the following constraints:

• (x1 6 y1)∧
• (x1 = y1)→ (x2 6 y2)∧
• . . .∧
• (x1 = y1)∧ (x2 = y2) . . .(xn−1 = yn−1)→ (xn 6 yn)

Similarly, in order to break a set of symmetries one need to add conjunctively symmetry break-
ing predicates associated to each individual symmetry.

The following property shows that symmetry breaking predicates approach preserves the sat-
isfiability between the original formula and the generated one.

Proposition 1 ((Crawford et al. 1996))
Let F be a CNF formula and σ a symmetry of F . Then F and (F ∧ sbpσ) are equivalent w.r.t.
satisfiability.

In order to limit the combinatorial explosion of the clausal transformation of these predicates,
one has to add one variable αi per cycle (xi,yi) to express the equality between xi and yi. However,
one of the major drawbacks of this approach is that the size of the symmetry breaking predicates
is exponential in the worst case. Recently, interesting reductions in the size of the SBP has been
obtained in (Aloul et al. 2006) using non redundant generators concept.

3 Piegon-Hole based Encoding of cardinality Constraints

∑
n
i=1 xi > b such that xi is propositional variable (xi ∈ {0,1}), for 1 6 i 6 n, is a well known car-

dinality constraint. As mentioned by Joot P. Warners in (Warners 1996), this kind of constraints

Theory and Practice of Logic Programming 5

and its generalized form ∑
n
i=1 aixi > b (where ai are positive integers) can be polynomially en-

coded as a propositional formula in CNF. The first polynomial CNF expansion of cardinality
constraint is proposed by Hooker in an unpublished note (see also (Warners 1996)). Let us give
the formulation of the Hooker CNF encoding of the ∑

n
i=1 xi > b constraint as it is was described

in (Warners 1996) (page 12):
(¬zik ∨ xi), 1 6 i 6 n, 1 6 k 6 b (3)

n∨
i=1

zik, 1 6 k 6 b (4)

(¬zik ∨¬z jk), 1 6 i < j 6 n, 1 6 k 6 b (5)

Let us note that in (Warners 1996) the author mentions that the formula (3) says that xi is true
if some zik is true, while formula (4) combined with formula (5) say that for each k exactly one
zik must be true.

However this formulation is clearly wrong. Let us give a counter example. Suppose that
xi = 0 for 1 6 i 6 n− (b− 1). In such a case, the cardinality constraint ∑

n
i=1 xi > b is unsat-

isfiable as one needs to set b variables to true among the set of remaining unassigned variables
R = {xn−(b−2),xn−(b−3), . . . ,xn}. Indeed, this is clearly impossible as the number of unassigned
variables is n− (n− (b−2))+1 = b−1. On the contrary, the CNF formula made of (3), (4) and
(5) is satisfiable. One can set the remaining variables of R to true and for each k (1 6 k 6 b) set
exactly one zik to true for (n− (b−2)6 i 6 n).

Despite of the importance of the Warners’ paper and its precursory nature on the subject, to
our knowledge, this error in the formulation of the first translation of the cardinality constraint to
CNF reported by Warners was never raised.

Based on the description above, the first contribution of this paper concerns the correct refor-
mulation of the CNF representation of the cardinality constraint ∑

n
j=1 x j > b, that we denote by

Pb
n in the sequel:

b∧
k=1

(¬pki∨ xi), 1 6 i 6 n (6)

n∨
i=1

pki, 1 6 k 6 b (7)

∧
16k<k′6b

(¬pki∨¬pk′i), 1 6 i 6 n (8)

Let us mention that the two equations (7) and (8) encode the well-known pigeon hole problem
PHPb

n , where b is the number of pigeons and n is the number of holes (pki expresses that pigeon
k is in hole i). The mapping between the models of PHPb

n and those of ∑
n
i=1 xi > b are obtained

thanks to the equation (6). Indeed, the propositional variable xi is true if the hole i contains one
of the pigeons k for 1 6 k 6 b. If we take again the previous counter example, the CNF formula
Pb

n becomes unsatisfiable as it encodes an unsatisfiable Pigeon-Hole problem PHPb
b−1.

In this original polynomial transformation, the number of variables is n+b×n and the number
of clauses required is n× b+ b+ n× b×(b−1)

2 . The overall complexity is in O(b× n) variables
and O(n×b2) clauses.

Unfortunately, checking the satisfiability of a Pigeon-Hole formula is computationally hard
except if we use resolution with symmetry or extended resolution proof systems. In the following,
we show how to improve the efficiency of this Pigeon-Hole based encoding of the cardinality

6 S. Jabbour and L. Sais and Y. Salhi

constraint. By efficiency, we mean enhancing the propagation capabilities (unit propagation) of
the obtained CNF. To this end, we show in the next section, how symmetries of the this Pigeon-
Hole formulation can be used to enhance this first version of our encoding.

3.1 Symmetry Breaking on the Pigeon-Hole Based Encoding

In this section, we show how symmetry breaking predicates can be used to reduce the size of our
Pigeon-Hole based encoding of the cardinality constraint while ensuring unit propagation.

For clarity reason, and to better visualize the reductions on our previous encoding Pb
n , we

use the following matrix representation for the CNF formula (7). Each row represents a positive
clause of (7).

p11 · · · [p1b · · · p1n]
p21 · · · [p2(b−1) · · · p2(n−1)] p2n

... . .
.

. .
. ...

[pb1 · · · pb(n−(b−1))] · · · pbn

Efficient encoding We give now our enhanced CNF Pigeon-Hole based encoding, called phPb
n ,

of a cardinality constraint:
¬p(b−k+1)(i+k−1)∨ x(i+k−1), 1 6 i 6 n−b+1,

1 6 k 6 b
(9)

n−b+1∨
i=1

p(b−k+1)(i+k−1), 1 6 k 6 b (10)

p(b−k+1)k ∨·· · ∨ p(b−k+1)(i+k)∨¬p(b−k)(i+k+1),

0 6 i 6 n−b−1,1 6 k 6 b−1
(11)

This efficient phPb
n encoding is obtained from Pb

n encoding using sophisticated reductions.
Before illustrating how such reductions are performed, let us describe briefly this encoding. The
formula (10) corresponds to the reduction of (7) to only the sub-clauses represented in brackets
(see the previous matrix). These sub-clauses are obtained by deducing that the literals belonging
to the upper-left corner triangle and to the lower-right corner triangle of the previous matrix must
be assigned to false. For instance, the clause pb1∨ ·· ·∨ pb(n−(b−1)) ∈ (11) is obtained for k = 1,
corresponding to the last clause in brackets of the previous matrix. Moreover, the formula (9)
corresponds to the restriction of (6) to the variables appearing in (10). Finally, the formula (11),
called stair-implications, link successive rows in the matrix from the bottom to the top. With
these implications the set of negative binary clauses (8) are made redundant and then can be
dropped. One can see that the number of clauses of (11) is smaller than that of (8).
From phPb

n , one can deduce that the overall complexity of our encoding is in O(b× (n− b))
variables and clauses.
We now illustrate how symmetry breaking predicates can be used to improve Pb

n in order to
obtain our final phPb

n encoding made only of the formulas (9), (10) and (11). Let us take a
closer look to the CNF formula Pb

n . Let S ym(Pb
n) be the following set of symmetries (row

symmetries) of Pb
n : ⋃

16i< j6b

σ(i, j) = (pi1, p j1),(pi2, p j2), . . . ,(pin, p jn) (12)

The other symmetries (column symmetries) that involve the variables xi are not considered, as

Theory and Practice of Logic Programming 7

these variables can take part in other constraints. In this case a permutation between the variables
xi is clearly a local or conditional symmetry (Gent et al. 2005).
We here show how the formula (7) can be reduced to only the sub-clauses represented in brack-
ets corresponding to the formula (10). For this purpose, we only need to show that the literals
belonging to the upper-left and lower-right corner triangles can be assigned to f alse. The as-
signment of such subset of variables allows as to derive the formula (9) from the formula (6).
This reduction is obtained by applying the resolution rule between the clauses of the symmetry
breaking predicates sbp(S ym(Pb

n)) and those of (7) and (8).

Eliminating the upper-left corner triangle Let us iteratively show how literals belonging to the
upper-left corner triangle can be eliminated.

• Pb
n ∧ sbp(S ym(Pb

n)) |= ¬p11∧¬p21, . . . ,¬p(b−1)1 i.e. first column of the upper-left cor-
ner triangle.

1. Pb
n ∧ sbpσ(1,2) |= ¬p11: Let σ = (p11, p21),(p12, p22) ⊂ σ(1,2). sbpσ = (p11 6

p21)∧(p11 = p21)→ (p12 6 p22). The CNF formula associated to sbp(σ) is (1)(¬p11∨
p21), (2)(p11∨ p21∨¬p12∨ p22), (3)(¬p11∨¬p21∨¬p12∨ p22). The clause (3) is
subsumed by the binary clause c=(¬p11∨¬p21)∈Pb

n (see formula (8)). η [p21,(1),c] =
¬p11. By propagating ¬p11, we eliminate p11 from the first row of the matrix and
we satisfy all the negative binary clauses of (8) involving ¬p11.

2. Using the same reasoning, we can prove that Pb
n ∧ sbp(S ym(Pb

n)) |= ¬p21 ∧
¬p31∧, . . . ,¬p(b−1)1.

• Pb
n ∧ sbp(S ym(Pb

n)) |= ¬p12 ∧¬p22, . . . ,¬p(b−2)2 i.e. second column of the upper-left
corner triangle.

1. Pb
n ∧ sbpσ(1,2) |= ¬p12: Let σ = (p12, p22),(p13, p23) ⊂ σ(1,2). sbpσ = (p12 6

p22)∧(p12 = p22)→ (p13 6 p23). The CNF formula associated to sbp(σ) is (1)(¬p12∨
p22), (2)(p12∨ p22∨¬p13∨ p23), (3)(¬p12∨¬p22∨¬p13∨ p23). The clause (3) is
subsumed by the binary clause c=(¬p12∨¬p22)∈Pb

n (see formula (8)). η [p22,(1),c] =
¬p12. By propagating ¬p12, we eliminate p12 from the second row of the matrix and
we satisfy all the binary clauses of (8) involving ¬p12.

2. Using the same reasoning, we can prove that Pb
n ∧sbp(S ym(Pb

n)) |=¬p22∧, . . . ,¬p(b−2)2

• Following this resolution process between the clauses of sbp(S ym(Pb
n)) and Pb

n , we
deduce that all the literals belonging to the upper-left corner triangle can be assigned to
f alse.

Eliminating the lower-right corner triangle Let us now describe how the literals involved in the
lower-right corner triangle can be eliminated. This second reduction phase is obtained in a similar
way, but with different resolution steps. For this second reduction, we start from the formula Pb

n
with the literals of the upper-left corner triangle assigned to f alse. It is achieved by the following
resolution process.

• uPb
n ∧sbp(S ym(Pb

n)) |=¬p2n∧¬p3n, . . . ,¬pbn i.e. we eliminate the variables of the last
column of the lower-right corner triangle.

1. uPb
n ∧sbp(S ym(Pb

n)) |=¬p2n: By resolution between the positive clause (p1b∨, . . . ,
∨p1(n−1)∨ p1n) and the negative binary clause (¬p1n∨¬p2n), we obtain the clause
r1 =(p1b∨, . . . ,∨p1(n−1)∨¬p2n). A second resolution step between r1 and (p2(b−1)∨,

8 S. Jabbour and L. Sais and Y. Salhi

. . . ,∨p2(n−1)∨ p2n), allows us to deduce r2 =(p1b∨, . . . ,∨p1(n−2)∨ p1(n−1)∨ p2(b−1)∨,

. . . ,∨p2(n−1)). To eliminate the first n−1 literals from r2, we exploit sbpσ(1,i) with
2 6 i 6 b. The literal p1(n−1) is eliminated from r2 by resolution between the clause
s1 = (p2(b−1) ∨ p1b ∨ p2b ∨ . . . ,∨p1(n−2) ∨ p2(n−2) ∨¬p1(n−1) ∨ p2(n−1)) ∈ sbpσ(1,2)
and r2. The clause s1 ∈ (p11 = p21)∧, · · · ∧ (p1(b−1) = p2(b−1))∧, . . . ,∧(p1(n−2) =

p2(n−2))→ p1(n−1)6 p2(n−1)). All the literals {p11, p21, . . . , p1(b−1)} are false (upper-
left corner triangle). We have the resolvent η [p1(n−1),r2,s1] = r3 =(p1b∨, . . . ,∨p1(n−2)∨
p2(b−1)∨, . . . ,∨p2(n−1)). Now, we show how p1(n−2) can be eliminated from r3. Let
s2 = (p2(b−1)∨ p1b∨ p2b∨ . . . ,∨p1(n−3)∨ p2(n−3)∨¬p1(n−2)∨ p2(n−1)) ∈ sbpσ(1,2).
We obtain the resolvent η [p1(n−2),r3,s2] = r4 = (p1b∨, . . . ,∨p1(n−3)
∨p2(b−1)∨, . . . ,∨p2(n−1)). The remaining literals {p1b, . . . , p1(n−3)} from r4 can be
eliminated by iterating the same reasoning. Then we deduce the clause (p2(b−1)∨, . . . ,
∨p2(n−1)), the clause in brackets (second row of the matrix). The previous reasoning
allows us to eliminate the single occurrence of the positive literal p2n. Then the lit-
eral ¬p2n becomes pure. Consequently, the binary clauses from (8) containing ¬p2n

can be eliminated.
2. To eliminate the literals p3n, . . . , and pbn, we use exactly the same reasoning with

sbpσ(1,3), . . . ,sbpσ(1,b) respectively.

• Following the above process,with sbpσ(2,3), . . . , and sbpσ(2,b), we eliminate the literals of
the second column of the lower-right corner triangle p3(n−1), . . . , pb(n−1) respectively. We
iterate this process until eliminating the last column of the triangle made only of a single
literal pb(n−(b−2)).

To end the reduction of Pb
n to phPb

n , we only need to show how the formula (11) can be
derived and used to substitute the set of binary clauses (8). To achieve this, we use a similar but
slightly different process involving tricky and non trivial resolution steps on the formula obtained
by the previous reductions. This last reduction step is more complicated than the two previous
reductions of upper-left and lower-right corner triangles. It involves both symmetry breaking
predicates, redundant clauses expressing that a pigeon can not be put in two different holes, and
additional blocked clauses. We omit this last reduction step and we prove in the sequel that our
phPb

n encoding of the cardinality constraint is sound and preserves unit propagation.
We have shown how a resolution process involving clauses of the original formulation Pb

n and
clauses from symmetry breaking predicates sbp(S ym(Pb

n)) can be very useful in reducing the
size of the formula. This contrast with the usual way to break symmetries where the SBP’s are
conjunctively added to the original formula.

It is important to note that except for the elimination of the upper-left triangle, the other reduc-
tions involve more complicated reasoning and can not be obtained by a simple reasoning on the
CSP formulation using the lex-leader constraints (Puget 2005; Walsh 2007) or row symmetries
(Flener et al. 2002; Katsirelos et al. 2010).

4 Soundness and unit propagation

Soundness In the following two propositions, we show that our encoding of constraint cardinal-
ity is sound.

Proposition 2
If ρ is a model of phPb

n then ρ is a model of ∑
n
i=1 xi > b.

Theory and Practice of Logic Programming 9

Proof
Let us assume that ρ is not a model of ∑

n
i=1 xi > b. Then, there exist n− b+ 1 distinct integers

i1 < · · · < in−b+1 such that ρ(xi1) = · · · = ρ(xin−b+1) = 0. Moreover, using unit propagation in
(9), we have for all propositional variables of the form pk(i j) for j = 1, . . . ,n−b+1, ρ(pk(i j))= 0
holds. If in−b+1 = in−b +1 = · · · = i1 +n−b, then one can see that there exists a clause in (10)
which is not satisfied by ρ and we get a contradiction. Otherwise, using unit propagation in
(11), we deduce that there exist n−b+1 distinct integers i′1 < · · · < i′n−b+1 such that i′n−b+1 =

i′n−b + 1 = · · · = i′1 + n− b and ρ(p(b−i′1+1)(i′j)
) = 0 for j = 1, . . . ,n−b+1. Thus, the clause

p(b−i′1+1)(i′1)
∨ ·· · ∨ p(b−i′1+1)(i′n−b+1)

in (10) is not satisfied by ρ and we get also a contradiction.

Proposition 3
If ρ is a model of ∑

n
i=1 xi > b, then there exists a model ρ ′ of phPb

n such that for all i∈ {1, . . . ,n},
ρ(xi) = ρ ′(xi).

Proof
Let us consider that ρ(∑n

i=1 xi) = l > b. We know that there exists a set S of l propositional
variables {pk1i1 , . . . , pkl il} such that: for all m,m′ ∈ {1, . . . , l}, ρ(xim) = 1, and im 6= im′ when
m 6= m′; and {1, . . . ,b} ⊆ {k1, . . . ,kl}. Let us now define ρ ′ on the propositional variables of
phPb

n not in {x1, . . . ,xn} as follows:

ρ
′(p)=

{
1 if p ∈ S
0 otherwise

One can see that ρ ′(9) = 1. Moreover, using the fact that {1, . . . ,b} ⊆ {k1, . . . ,kl}, we get
ρ ′(10) = 1. Finally, since for all m,m′ ∈ {1, . . . , l} we have im 6= im′ when m 6= m′, we deduce
that ρ ′(11) = 1.

Unit propagation Let us now prove that phPb
n ensures generalized arc consistency by unit prop-

agation, one of the most important properties for the efficiency of the encoding.

Proposition 4 (Unit propagation)
Let ρ be a model of phPb

n assigning 0 to the elements of a set S = {xi1 , . . . ,xin−b} of n− b
propositional variables included in X = {x1, . . . ,xn}. Unit propagation is sufficient to deduce that
for all variable x ∈ X\S, ρ(x) = 1.

Proof
We assume without loss of generality that i1 < · · · < in−b. Let us note that we have the following
clauses in (11):

p(b−k+1)k ∨¬p(b−k)(k+1), k = 1, . . . ,b−1 (13)

If in−b = in−b−1 + 1 = · · · = i1 + n− b− 1, then, by using unit propagation in (9), (10) and
(13), we get for all j ∈ {1, . . . , i1− 1}, ρ(x j) = 1. That is mainly because of the fact that one
can obtain ρ(p(i1+1)(i1−1)) = 1 by using unit propagation in (9) and the clause p(i1+1)(i1−1) ∨
·· · ∨ p(i1+1)(in−b). Moreover, by using unit propagation in (9), (10) and (11), we get for all
j ∈ {in−b + 1, . . . ,n}, ρ(x j) = 1. Indeed, using unit propagation in (10) and (11) allows us to
deduce that for all k ∈ {i1, . . . ,b}, ρ(p(b−k+1)(k+n−b)) = 1.
Let us now consider the case where i1, · · · , in−b are not immediate successive integers. By using
now unit propagation in (9) and (11), we deduce that for all i ∈ I1 = {b, . . . ,n}\{i1, · · · , in−b}
which is different from the greatest element l1 of I1, ρ(p1i) = 0, and consequently ρ(p1l1) = 1.

10 S. Jabbour and L. Sais and Y. Salhi

For instance, let us see that by using unit propagation in (9) and (13), we deduce that ρ(p(b−(i1+k)+1)(ii+k))=

0 for k = 1, . . . ,b− i1. By using also unit propagation in (11), we obtain that for all i ∈ I2 =

({b− 1, . . . ,n− 1}−{l1})\{i1, · · · , in−b} which is different from the greatest element l2 of I2,
ρ(p2i) = 0, and consequently ρ(p2l2) = 1. We proceed similarly until we obtain ρ(p1l1) =

ρ(p2l2) = · · · = ρ(pblb) = 1. Finally, by using unit propagation in (9), we conclude that for
all i ∈ {1, . . . ,n}\{i1, · · · , in−b}, ρ(xi) = 1 holds.

5 At most one constraint: a particular case

In this section, we consider the at most one constraint ∑
n
i=1 xi 6 1, a special case of the cardinal-

ity constraint. First, the constraint ∑
n
i=1 xi 6 1 can be equivalently written as ∑

n
i=1¬xi ≥ (n−1).

Using our Pigeon-Hole based encoding phPb
n , we obtain the following CNF formula:

(¬p(n−k)k ∨¬xk)∧ (¬p(n−k)(k+1)∨¬xk+1),

k = 1, . . . ,(n−1)
(14)

(p(n−k)k ∨ p(n−k)(k+1)), k = 1, . . . ,(n−1) (15)

p(n−k)k ∨¬p(n−(k+1))(k+1), k = 1, . . . ,(n−2) (16)

Note that p(n−k)(k+1),k ∈ {1, . . . ,n− 1} appear negatively only in the clause (¬p(n−k)(k+1) ∨
¬xk+1). Using an additional blocked clause (p(n−k)(k+1) ∨ xk+1) we express that p(n−k)(k+1) is
equivalent to ¬xk+1. After substitution of p(n−k)(k+1) by ¬xk+1 and simplification, the new for-
mula is written as :

(¬p(n−k)k ∨¬xk), k = 1, . . . ,(n−1) (17)

(p(n−k)k ∨¬xk+1), k = 1, . . . ,(n−1) (18)

p(n−k)k ∨¬p(n−(k+1))(k+1), k = 1, . . . ,(n−2) (19)

Note that substitution allows us to reduce the number of variables from 2×n additional variables
to n and from 4×n clauses to 3×n. As the number of additional variables is equal to n we can
simplify our notation. For example p(n−k)k can be written simply as pk leading to the following
simple encoding:

(¬x1∨ p1)∧ (¬xn∨ pn−1)∧
1<i<n

((¬xi∨ pi)∧ (¬pi−1∨ pi)∧ (¬xi∨¬pi−1))
(20)

As we can see, the resulting formula (20) is the same than the one derived using sequential
counter (Sinz 2005; Silva and Lynce 2007).

6 Theoretical Comparison with other encodings

In this section, we compare our Pigeon-Hole based encodings with several well-known state-of-
the-art encodings. In Table 1, we give a comparison in term of number of variables and clauses.
We also mention, if the encoding can be decided by unit propagation, or by search. For our com-
parison, we consider the cardinality constraint ∑

n
i=1 xi 6 b as it is the most used in the literature.

Theory and Practice of Logic Programming 11

This cardinality constraint is equivalent to ∑
n
i=1¬xi 6 n−b. The complexity of our encoding is

the same for both kinds of cardinality constraints.
The first naive approach (without auxiliary variables) for encoding the cardinality constraint

is exponential in the worst case. Most of the proposed encodings aims to both reduce the size
of the encoding and to improve its propagation capabilities. Some of the most known encodings
are summarized in Table 1. As we can see, the best current available encoding is clearly the
cardinality network encoding proposed recently in (Ası́n et al. 2011). Comparatively, our phPb

n
is clearly competitive both in size and efficiency. As we mentioned previously, symmetries among
the variables xi are not considered in our encoding, we believe that further improvements might
be obtained.

Encoding # Clauses # Variables Decided

Sequential unary counter

(LT n,b
SEQ)(Sinz 2005) O(b×n) O(b×n) UP

Parallel binary counter

(LT n,b
SEQ)(Sinz 2005) 7n−3log(n)−6 2n−2 Search

Totalizer
(Bailleux and Boufkhad 2003) O(b×n) O(n× log2(n)) UP

Buttner & Rintanen
(Büttner and Rintanen 2005) O(b2 ×n) O(n× log2(n)) UP

Sorting Network
(Eén and Sörensson 2006) O(n× log2

2(n)) O(n× log2
2(n)) UP

Cardinality Network
(Ası́n et al. 2011) O(n× log2

2(b)) O(n× log2
2(b)) UP

Warners (Warners 1996) 8n 2n Search

Pb
n O(b×n) O(b2 ×n) Search

phPb
n O(b× (n−b)) O(b× (n−b)) UP

Table 1. Comparison of CNF encodings of ∑
n
i=1 xi 6 b

7 Conclusion and Future Works

In this paper, we proposed a new and efficient Pigeon-Hole based encoding of cardinality con-
straints to CNF. Our encoding is competitive as it derives a CNF formula with O(b(n−b)) vari-
ables and clauses. As the obtained CNF formula is reverse Horn, unit propagation is sufficient
for deciding its satisfiability. The originality of our proposed approach rises in the use for the first
time of the Pigeon-Hole principle to naturally model counting constraints. We have also shown
that when resolution is applied between clauses of the original Pigeon-Hole encoding and sym-
metry breaking predicates, one can achieve interesting reduction and improvements. This opens
a promising perspective on how to extend the reasoning applied in this paper to other kinds of
constraints (e.g. global constraints), or to reduce formula with symmetry breaking predicates.
The generalization of our reasoning to encode general pseudo Boolean constraint to CNF is also
a short term perspective.

12 S. Jabbour and L. Sais and Y. Salhi

References

ALOUL, F. A., RAMANI, A., MARKOV, I. L., AND SAKALLAH, K. A. 2003. Solving difficult instances
of boolean satisfiability in the presence of symmetry. IEEE Trans. on CAD of Integrated Circuits and
Systems 22, 9, 1117–1137.

ALOUL, F. A., SAKALLAH, K. A., AND MARKOV, I. L. 2006. Efficient symmetry breaking for boolean
satisfiability. IEEE Trans. Computers 55, 5, 549–558.

ASÍN, R., NIEUWENHUIS, R., OLIVERAS, A., AND RODRÍGUEZ-CARBONELL, E. 2009. Cardinality
networks and their applications. In 12th International Conference on Theory and Applications of Satisfi-
ability Testing (SAT 2009). 167–180.

ASÍN, R., NIEUWENHUIS, R., OLIVERAS, A., AND RODRÍGUEZ-CARBONELL, E. 2011. Cardinality
networks: a theoretical and empirical study. Constraints 16, 2, 195–221.

BAILLEUX, O. AND BOUFKHAD, Y. 2003. Efficient cnf encoding of boolean cardinality constraints. In 9th
International Conference on Principles and Practice of Constraint Programming (CP 2003). 108–122.

BAILLEUX, O., BOUFKHAD, Y., AND ROUSSEL, O. 2009. New encodings of pseudo-boolean constraints
into cnf. In SAT’2009. 181–194.

BENHAMOU, B. AND SAIS, L. 1994. Tractability through symmetries in propositional calculus. Journal
of Automated Reasoning 12, 1, 89–102.

BÜTTNER, M. AND RINTANEN, J. 2005. Satisfiability planning with constraints on the number of actions.
In ICAPS, S. Biundo, K. L. Myers, and K. Rajan, Eds. AAAI, 292–299.

COOK., S. A. 1976. A short proof of the pigeon hole principle using extended resolution. SIGACT News 8, 4
(Oct.), 28–32.

CRAWFORD, J. 1992. A theorical analysis of reasoning by symmetry in first order logic. In Proceedings of
Workshop on Tractable Reasonning, AAAI. 17–22.

CRAWFORD, J. M., GINSBERG, M. L., LUKS, E. M., AND ROY, A. 1996. Symmetry-breaking predicates
for search problems. In KR. 148–159.

EÉN, N. AND SÖRENSSON, N. 2006. Translating pseudo-boolean constraints into sat. JSAT 2, 1-4, 1–26.
FLENER, P., FRISCH, A. M., HNICH, B., KIZILTAN, Z., MIGUEL, I., PEARSON, J., AND WALSH, T.

2002. Breaking row and column symmetries in matrix models. In 8th International Conference on
Principles and Practice of Constraint Programming (CP’2002). Springer-Verlag, London, UK, UK, 462–
476.

GENT, I. P., KELSEY, T., LINTON, S., MCDONALD, I., MIGUEL, I., AND SMITH, B. M. 2005. Condi-
tional symmetry breaking. In 11th International Conference on Principles and Practice of Constraint
Programming (CP 2005). 256–270.

GENT, I. P., PETRIE, K. E., AND PUGET, J.-F. 2006. Chapter 10 symmetry in constraint programming.
In Handbook of Constraint Programming, P. v. B. F. Rossi and T. Walsh, Eds. Foundations of Artificial
Intelligence, vol. 2. Elsevier, 329 – 376.

KATSIRELOS, G., NARODYTSKA, N., AND WALSH, T. 2010. On the complexity and completeness of static
constraints for breaking row and column symmetry. In 16th International Conference on Principles and
Practice of Constraint Programming (CP’2010). 305–320.

KRISHNAMURTHY, B. 1985. Shorts proofs for tricky formulas. Acta Informatica 22, 253–275.
KULLMANN, O. 1997. On a generalization of extended resolution. Discrete Applied Mathematics 34,

73–95.
PUGET, J. 1993. On the satisfiability of symmetrical constraint satisfaction problems. In proceedings of

ISMIS. 350–361.
PUGET, J.-F. 2005. Breaking symmetries in all different problems. In Proceedings of the Nineteenth

International Joint Conference on Artificial Intelligence (IJCAI’2005). 272–277.
SILVA, J. P. M. AND LYNCE, I. 2007. Towards robust cnf encodings of cardinality constraints. In 13th

International Conference on Principles and Practice of Constraint Programming (CP 2007). 483–497.
SINZ, C. 2005. Towards an optimal cnf encoding of boolean cardinality constraints. In 11th International

Conference on Principles and Practice of Constraint Programming (CP 2005). 827–831.

Theory and Practice of Logic Programming 13

TSEITIN, G. 1968. On the complexity of derivations in the propositional calculus. In Structures in Con-
structives Mathematics and Mathematical Logic, Part II, H. Slesenko, Ed. 115–125.

WALSH, T. 2006. General symmetry breaking constraints. In 12th International Conference on Principles
and Practice of Constraint Programming (CP 2006). 650–664.

WALSH, T. 2007. Breaking value symmetry. In 13th International Conference on Principles and Practice
of Constraint Programming (CP’2007). 880–887.

WARNERS, J. P. 1996. A linear-time transformation of linear inequalities into conjunctive normal form.
Information Processing Letters.

