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Abstract. Ontologies specified in DL-Lite are commonly used to facil-
itate query answering. Formally, an ontology is a knowledge base com-
posed of a TBox (a set of axioms) and an ABox (a set of assertions).
The assertions may be conflicting with respect to the axioms, so the in-
consistency in the ABox should be resolved before querying it. This is
usually achieved by computing the set of all the conflicts of the ABox. We
have recently proposed a method for handling inconsistency in ontologies
where the assertions are partially preordered and uncertain. We have de-
fined π-accepted assertions as those assertions that are more certain than
at least one assertion of each conflict in the ABox. In DL-Lite ontologies,
a conflict is a subset of two assertions, and the set of all the conflicts can
be computed in polynomial time. Thus our method is also polynomial
in the ABox’s size in DL-Lite. We propose here a new equivalent char-
acterization of π-accepted assertions that is also tractable, but without
exhibiting the conflicts beforehand. Instead, it is based on a consistency
check, such that an assertion is π-accepted if it is consistent with all the
assertions that are at least as certain or that are incomparable to it in
terms of certainty degrees. This new characterization allows to generalise
the method to description logic languages that are more expressive than
DL-Lite and where the conflicts may not be computable efficiently.

Keywords: Inconsistency management · Formal ontologies · DL-Lite.

1 Introduction

An ontology is a Description Logic [1] knowledge base with two components: a
TBox and an ABox. The TBox contains terminological knowledge designed by
domain experts and encoded in the form of axioms. The ABox is a dataset com-
posed of ground facts about particular entities. Its elements are called assertions
and they are usually obtained from various information sources.

Answering queries posed over data pieces that are semantically enriched with
domain knowledge has the advantage of deriving new facts from the knowledge
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base. Nonetheless, the drawback is a potential increase in computational com-
plexity, except for the DL-Lite fragments of Description Logics [12] in which
query answering is carried out in polynomial time in the ABox’s size.

Query answering should be performed over a consistent knowledge base in
order to ensure the validity of the derived conclusions. The TBox’s axioms can be
safely considered as correct and unquestionable. However, the ABox assertions
may be prone to errors, incomplete and potentially contradictory when assessed
against the axioms. Therefore, the whole knowledge base may be inconsistent and
classical Description Logic semantics cannot be used to compute query answers.

Restoring the consistency of the ABox with respect to the TBox can be ad-
dressed using the notion of a repair, defined as a maximally-consistent subset of
the ABox, and over which query answers can be computed. Since an inconsistent
ABox may admit several repairs, a significant body of work has been devoted to
designing strategies (a.k.a. inconsistency-tolerant semantics) for choosing which
repair(s) should be queried in lieu of the initial ABox [2–4,8–11,14,16,17].

Arguably, one of the most well-known strategies is the “Intersection of ABox
Repair” (IAR) semantics [13]. Basically, a query answer is a valid conclusion of
the knowledge base, called an IAR-consequence, if it can be derived from a single
repair obtained from the intersection of all the repairs of the ABox. Equivalently,
an IAR-consequence is an assertion that is not involved in any conflict [5], which
is defined as a minimally-inconsistent subset of the ABox.

Another imperfection in the data is uncertainty. Possibility theory has been
used as the underlying framework to define a formal setting for standard possi-
bilistic DL-Lite [6]. Each assertion is assigned a real number in the unit interval
]0, 1] to represent its certainty degree, such that the highest weight where incon-
sistency is met is called the inconsistency degree of the ABox. The possibilistic
repair is defined as a consistent subset of the ABox containing all the assertions
that are strictly more certain than the inconsistency degree.

A framework has been recently proposed for the case where the certainty
degrees of multi-source data may not be comparable on the same scale [3]. It
computes a single repair for the ABox, in the spirit of the IAR semantics. It
assumes that the TBox’s axioms are fully certain, but that the ABox assertions
may be uncertain and are equipped with partially ordered symbolic weights. It
proposes a characterization based on the notion of π-accepted assertions, which
are the assertions that are more certain than at least one assertion of each
conflict. The repair is then the set of all π-accepted assertions. Most notably, it
can be computed in polynomial time in the ABox’s size in DL-LiteR

3.

This follows directly from the fact that each conflict in DL-Lite involves (at
most) two assertions, and that the conflict set can be computed in polynomial
time in the ABox’s size [11]. However, in more expressive Description Logic
languages, conflicts may involve any number of assertions, and the number of
conflicts may be exponential. Hence, the favourable computational properties of
this method cannot be guaranteed beyond DL-Lite.

3 The fragment DL-LiteR is a dialect of DL-Lite that provides the logical underpin-
nings for the OWL 2 QL profile [15], which is devoted to query answering.
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Exhibiting all the conflicts of the ABox is often a prerequisite for computing
repairs. In this research, we introduce a new equivalent characterization of π-
accepted assertions that is not based on conflicts. It rather performs a consistency
check whereby an assertion is π-accepted if it is consistent with all the assertions
that are at least as certain or that are incomparable to it in terms of certainty
degrees. This way, the method can be generalized to other Description Logic
languages, regardless of the computational complexity of computing the conflicts.

This paper is structured as follows. Section 2 presents some preliminaries.
Section 3 recalls the method for computing a partially preordered possibilistic
repair. Section 4 introduces our new characterization, before concluding.

2 Preliminaries

2.1 Overview of DL-LiteR

The DL-LiteR language is built upon three countably infinite and mutually
disjoint sets. These are: a set CN of concept names, a set RN of role names and
a set IN of individual names. The syntax is recursively defined as follows:

– R := P | P− is a basic role, with P ∈ RN and its inverse P− ∈ RN.
– E := R | ¬R denotes a complex role.
– B := A | ∃R, with A ∈ CN, stands for a basic concept.
– C := B | ¬B represents a complex concept.

In terms of semantics, an interpretation is a tuple I = ⟨∆I , ·I⟩, where ∆I ̸= ∅
and ·I is an interpretation function mapping concept names A to AI ⊆ ∆I , role
names P to P I ⊆ (∆I ×∆I), and individual names a to aI ∈ ∆I . We extend
the function ·I to interpret complex concepts and roles of DL-LiteR as follows:

(P−)I = {(y, x) ∈ (∆I ×∆I) | (x, y) ∈ P I};
(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I s.t. (x, y) ∈ RI};
(¬B)I = ∆I \BI ;
(¬R)I = (∆I ×∆I) \RI .

In this paper, we consider the following vocabulary. Let:

– CN = {Electric,Thermal,Plugin,Manual,Energy}, representing resp.: electric ve-
hicle, thermal car, rechargeable plug-in car, manual gearbox and energy type.

– RN = {useFuel}, which links a thermal car to an energy type. Hence, the
inverse useFuel− links an energy type to a thermal car.

– IN = {v1, v2, v3, p}, where vi represents a particular vehicle, and “p” stands
for the energy type petrol.

An inclusion axiom on concepts (resp. on roles) is a statement of the form B ⊑ C
(resp. R ⊑ E). Concept inclusions with (resp. without) the negation symbol “¬”
on the right of the inclusion symbol are called negative (resp. positive) inclusion
axioms. A TBox T is a finite set of inclusion axioms. An assertion is a statement
of the form A(a) or P (a, b), where a, b ∈ IN. An ABox A is a finite set of
assertions. A Knowledge Base (KB) is a pair K = ⟨T,A⟩.

An interpretation I satisfies an inclusion axiom B ⊑ C (resp. R ⊑ E),
denoted by I ⊩ B ⊑ C (resp. I ⊩ R ⊑ E), if BI ⊆ CI (resp. RI ⊆ EI).
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Similarly, I satisfies an assertion A(a) (resp. P (a, b)), denoted by I ⊩ A(a)
(resp. I ⊩ P (a, b)), if aI ∈ AI (resp. (aI , bI) ∈ P I). An interpretation I is a
model of T (resp. A), denoted by I ⊩ T (resp. I ⊩ A), if I ⊩ α for every α in T
(resp. in A). We say that I is a model of a KB K = ⟨T,A⟩, if I ⊩ T and I ⊩ A.

A KB K is consistent if it admits at least one model, otherwise it is incon-
sistent. A TBox T is incoherent if there is A ∈ CN that is empty in every model
of T, otherwise it is coherent.
We use the following running example.

Example 1. Let K = ⟨T,A⟩ be a DL-LiteR KB, where the TBox is given by:

T =

{
1. Electric ⊑ ¬Manual 2. Thermal ⊑ ¬Plugin
3. ∃useFuel ⊑ Thermal 4. ∃useFuel− ⊑ Energy

}
Axiom 1 indicates that the set of electric vehicles is disjoint from the set of
manual transmission vehicles. Axiom 2 indicates that the set of thermal vehicles
is disjoint from the set of rechargeable plug-in vehicles. Axiom 3 states that any
element using fuel is a thermal vehicle. Axiom 4 specifies that the fuel used by
a vehicle is an energy type. Axioms 1 and 2 are negative inclusions on concepts.
Consider the flat ABox (the assertions are equally certain):

A =

{
Manual(v1),Electric(v1),Plugin(v1),Thermal(v2),
Plugin(v2),Electric(v3), useFuel(v2, p),Energy(p)

}
One can see that K is inconsistent. For example, the assertions Manual(v1) and
Electric(v1) violate Axiom 1.

⊓⊔

2.2 The IAR semantics

Restoring the consistency of the ABox relies on the notion of ABox repair,
inspired from data repair in relational databases to ensure consistent query an-
swering (e.g. see [7]). In the following definitions, we assume K = ⟨T,A⟩ is an
inconsistent DL-LiteR KB.

Definition 1. A repair, denoted by R, is an inclusion-maximal subset of A such
that ⟨T,R⟩ is consistent.

One of the most well-known inconsistency-tolerant semantics is the IAR (Inter-
section of ABox Repair) semantics [13]. It evaluates queries over a single repair
obtained from the intersection of all the repairs of the ABox.

Definition 2. A query answer is an IAR-consequence of K if it can be derived
from the subset: IAR(A) =

⋂
{R | R is a repair of A}.

Answers are returned in polynomial time in the ABox’s size in DL-LiteR [12,13].
Negative inclusion axioms in the TBox allow to specify the disjointness of

assertions in the ABox. This is captured by the notion of conflict.

Definition 3. A conflict, denoted by C, is an inclusion-minimal subset of A
such that ⟨T, C⟩ is inconsistent.
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We denote the set of all the conflicts in the ABox A by Cf(A). We assume
that A does not contain any assertion φ such that ⟨T, {φ}⟩ is inconsistent. Thus
any conflict C in Cf(A) is binary, in other words, |C| = 2 [11].

By definition, ABox repairs are conflict-free, so the assertions of the same
conflict cannot belong to the same repair. An equivalent characterization for
the IAR semantics computes IAR(A) as the set of free assertions [5,13], i.e., the
assertions of A that are not involved in any conflict.

Example 2. The KB K contains three conflicts:

– {Manual(v1),Electric(v1)}, which contradicts axiom 1.
– {Thermal(v2),Plugin(v2)}, which contradicts axiom 2.
– {useFuel(v2, p),Plugin(v2)}, which contradicts axioms 2 and 3.

The ABox A admits the following four repairs:

– R1 = {Manual(v1),Plugin(v1), useFuel(v2, p),Thermal(v2),Electric(v3),Energy(p)}.
– R2 = {Electric(v1),Plugin(v1), useFuel(v2, p),Thermal(v2),Electric(v3),Energy(p)}.
– R3 = {Manual(v1),Plugin(v1),Plugin(v2),Electric(v3),Energy(p)}.
– R4 = {Electric(v1),Plugin(v1),Plugin(v2),Electric(v3),Energy(p)}.

The intersection of these repairs yields the set:
IAR(A) = {Plugin(v1),Electric(v3),Energy(p)}.

⊓⊔

In the rest of the paper, we present the characterization recently proposed in [3].
We then discuss its shortcomings and introduce a characterization that is more
efficient computationally.

3 Partially preordered possibilistic repair

Let us recall the method defined in [3] for computing a possibilistic repair for par-
tially preordered DL-LiteR ontologies. Consider a partially ordered uncertainty
scale L = (U,▷), defined over:

– a partially ordered set (POS) U = {u1, . . . , un,1}, and
– a strict partial order ▷ (i.e., an irreflexive and transitive relation).

The element 1 represents full certainty, such that: ∀ui ∈ U \ {1},1 ▷ ui.
Intuitively, the elements of a POS denoted by U represent certainty degrees
applied to the ABox assertions. When ui ⋫ uj and uj ⋫ ui, we say that ui

and uj are incomparable and we denote it by ui ▷◁ uj .
A partially preordered DL-LiteR KB is a triple K▷ = ⟨T,A▷,L⟩ with:

A▷ = {(φi, ui) | φi is a DL-LiteR assertion, ui ∈ U},
where a single weight ui is assigned to each assertion φi.
Given two assertions (φi, ui), (φj , uj) ∈ A▷, we write φi ▷ φj to mean ui ▷ uj

(i.e., φi is strictly preferred to φj), and write φi ▷◁ φj to mean ui ▷◁ uj (i.e.,
φi and φj are incomparable). Note that the relation ▷ on U is a strict partial
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order 4. However, the ABox A▷ is partially preordered because the same weight
can be assigned to more than one assertion.
Computing the partially preordered possibilistic repair proceeds as follows [3]:

(a) Compute the compatible bases of A▷, i.e., consider all the total preorder
extensions of ▷ over U.

(b) Compute the possibilistic repair associated with each compatible base.
(c) Intersect all the repairs to obtain a single repair denoted by π(A▷).

Let WA = {(φi, αi) | (φi, ui) ∈ A▷, αi ∈]0, 1]} be a weighted ABox obtained
from A▷ by replacing each symbolic weight ui ∈ U with some real number αi ∈
]0, 1]. Then WA is compatible with A▷ if it preserves the strict ordering between
the assertions. Formally:

∀(φi, αi) ∈ WA,∀(φj , αj) ∈ WA, if φi ▷ φj then αi > αj .
The set of real numbers that can be assigned to the assertions is infinite, so
there are infinitely many compatible bases. However, it suffices to consider a
finite number thereof, i.e., only those that express a distinct preference ordering.
The possibilistic repair of a weighted ABox is defined as:

Rπ(WA) = {φ | (φ, α) ∈ WA, α > Inc(WA)},
where Inc(WA) is the inconsistency degree of WA, i.e., the highest weight at-
tached to an assertion that makes the ABox is inconsistent.
Hence, the partially preordered possibilistic repair of A▷ is defined as:

π(A▷) =
⋂
{Rπ(WA) | WA is compatible with A▷}.

An equivalent characterization [3] of this method produces the same result,
without executing the steps (a), (b) and (c) described above. It is based on the
notion of π-accepted assertion. Intuitively, this is an assertion that is strictly
preferred to at least one assertion of each conflict of A▷. The conflict set Cf(A▷)
is obtained with a small tweak to Definition 3 to take into account the weights.

Definition 4. An assertion (φi, ui) ∈ A▷ is π-accepted if:
∀C ∈ Cf(A▷),∃(φj , uj) ∈ C, φi ̸= φj , s.t. φi ▷ φj (i.e., ui ▷ uj).

It follows that in DL-LiteR knowledge bases:

Proposition 1. The set of all π-accepted assertions (without the weights) is
equal to π(A▷). It can be computed in polynomial time in the ABox’s size [3].

Next, we propose a new characterization that is more computationally efficient.

4 Revisiting π-acceptance

4.1 A new characterization of π-acceptance

In inconsistent knowledge bases that are specified in the lightweight fragment
DL-LiteR, each conflict in the ABox is a non-empty subset composed of at most
two assertions [11]. In this work, we assume that the ABox does not contain any

4 Namely, ∀ui ∈ U, ∀uj ∈ U, if ui ▷ uj holds, then uj ▷ ui does not hold.
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assertion contradicting itself with respect to the axioms of the TBox. It follows
that the conflict set is composed only of pairs of conflicting assertions. Hence,
the size of the conflict set (i.e., the number of conflicts) is a square polynomial
in the ABox’s size, in the worst case.

In order to determine whether some assertion of the ABox is π-accepted, the
characterization given in Definition 4 parses all the pairs of assertions in the
conflict set, and it does so in linear time in the ABox’s size. This means that
in the worst case, checking the π-acceptance of an assertion can be achieved in
square polynomial time in the ABox’s size for DL-LiteR ontologies. However,
despite the fact that a square polynomial time complexity is also polynomial,
it may be impractical in applications where the main reasoning task consists
in answering queries posed over ontologies with high-dimensional datasets, and
especially when the answers need to be computed efficiently.

Furthermore, like most frameworks proposed in the literature for handling in-
consistency in Description Logic knowledge bases, the characterization described
in Defintion 4 starts from the assumption that the conflict set is computed and
available beforehand. This does not constitute an issue in DL-LiteR ontologies
since the time complexity for computing the conflict set is polynomial in the
ABox’s size [10, 11]. However, when dealing with ontologies specified in De-
scription Logic languages that are more expressive than DL-LiteR, there is no
assurance that the conflict set can be enumerated in tractable time with respect
to the ABox’s size.

Two important aspects to take into consideration concern the size of the con-
flicts (i.e., the number of assertions that constitute each conflict) and the size of
the conflict set (i.e., the number of conflicts in the ABox). One advantage of the
characterization given in Definition 4 is that it does not place any restrictions
on the number of assertions within the conflicts, so long as each conflict contains
at least two assertions. Hence, the characterization remains valid in frameworks
where the conflicts are not necessarily binary and may be composed of an ar-
bitrary number of assertions. However, as illustrated in Example 4, considering
conflicts that may involve any number of assertions entails that the size of the
conflict set may be exponential in the ABox’s size. This means that the cost of
parsing all the elements of the conflict set in order to check the π-acceptance of
some assertion can no longer be considered as negligible.

Clearly, the complexity of exhibiting all the conflicts has a direct impact on
the computational properties of checking the π-acceptance of an assertion and
of determining the set of all π-accepted assertions, i.e., the partially preordered
possibilistic repair of the ABox. In order to mitigate these limitations, we propose
an equivalent characterization for π-acceptance that does not involve compar-
isons between an assertion and all the elements of the conflict set. The idea is to
rather make use of the consistency checking mechanism that is associated with
the Description Logic language in which the ontology is encoded.

The first step is to build, for each assertion (φi, ui) in A▷, the set ∆(φi)
composed of all the other assertions of A▷ that are either more certain than φi

or incomparable to φi, in terms of the strict partial order ▷. Said differently, this
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set ∆(φi) is composed of all assertions of A▷ that are not strictly less preferred
than φi. Formally:

∆(φi) = A▷\{φj |(φj , uj) ∈ A▷ s.t. ui ▷ uj}.

Note that we omit the weights associated to the assertions in the set ∆(φi) in
order to be able to use the standard consistency checking mechanism underlying
the ontological language.

Then, the new characterization that we propose in this paper determines the
π-acceptance status of any given assertion φi by simply checking whether φi

together with the subset ∆(φi) is consistent with respect to the axioms of the
TBox. Most importantly, this characterization is equivalent to Definition 4.

Proposition 2. An assertion (φi, ui) of A▷ is π-accepted in terms of ▷ if and
only if {φi} ∪∆(φi) is consistent with respect to T.

Proof. Consider (φi, ui) ∈ A▷.
(i) Assume that {φi} ∪ ∆(φi) is consistent w.r.t. T but that (φi, ui) is not π-
accepted. According to Definition 4, this means that there is a conflict C ∈
Cf(A▷) such that for each assertion (φj , uj) ∈ C, φi ̸= φj , we have φi ⋫ φj . This
means that for each element (φj , uj) ∈ C, we have either φj ▷φi or φj ▷◁ φi (re-
call that ▷ is a strict partial order). This means that {φj |(φj , uj) ∈ C} ⊆ ∆(φi).
This contradicts the fact that {φi} ∪∆(φi) is consistent.

(ii) Assume that (φi, ui) is π-accepted but that {φi} ∪ ∆(φi) is inconsistent
w.r.t. T. This means that there is a conflict C such that for each assertion
(φj , uj) ∈ C, we have φj ∈ {φi} ∪ ∆(φi). This also means that each element
(φj , uj) ∈ C, φi ̸= φj , is such that either φj ▷ φi or φj ▷◁ φi. This contradicts
the fact that (φi, ui) is π-accepted.

⊓⊔

An important property of the characterization introduced in Proposition 2 is
that it runs in polynomial time in the ABox’s size in any Description Logic
language where the ABox’s consistency can also be checked in polynomial time.

Proposition 3. Checking whether an assertion (φi, ui) of A▷ is π-accepted can
be achieved in polynomial time with respect to the size of A▷ in DL-LiteR.

Proof. The proof follows directly from the fact that consistency checking is
tractable in DL-LiteR ontologies.

⊓⊔

We illustrate both characterizations on our running example.

Example 3. Consider the KB K▷ = ⟨T,A▷,L⟩ obtained from Example 1 by keep-
ing the same TBox T and assigning symbolic weights to the assertions as depicted
in Figure 1,(a)-(c). The compatible bases of A▷ are given by Figure 1,(d)-(f),
where the weights in the unit interval are shown on the left side of each sub-
figure. The inconsistency degrees are : Inc(WA1) = 0.4, Inc(WA2) = 0.4 and
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(a) The base A▷

Assertions Weights

φ1 = Manual(v1) u4

φ3 = Plugin(v1) u4

φ6 = Electric(v3) u4

φ4 = Thermal(v2) u3

φ8 = Energy(p) u3

φ7 = useFuel(v2, p) u2

φ2 = Electric(v1) u2

φ5 = Plugin(v2) u1

(b) The relation ▷ over U

1

u4

u3

u2 u1

(c) The conflicts of A▷

u4 φ1 φ3 φ6

u3φ4 φ8

u2
φ7φ2

u1
φ5

(d) The base WA1

φ1 φ3 φ6

φ4 φ8

φ2 φ7

φ5

0.8

0.6

0.4

0.2

(e) The base WA2

φ1 φ3 φ6

φ4 φ8

φ5

φ2 φ7

0.8

0.6

0.4

0.2

(f) The base WA3

φ1 φ3 φ6

φ4 φ8

φ5

φ2 φ7

0.8

0.6

0.2

Fig. 1: The base A▷ and its compatible bases WA1, WA2 and WA3. The con-
flicts are represented with dotted lines. Arrow heads represent strict preference.

Inc(WA3) = 0.2. The associated possibilistic repairs are by coincidence all the
same and they are equal to their intersection. Hence the partially preordered
repair corresponds to :

π(A▷) = {Manual(v1),Plugin(v1),Electric(v3),Thermal(v2),Energy(p)}.

First characterization It is easy to see that the assertions (Manual(v1), u4),
(Plugin(v1), u4), (Electric(v3), u4), (Thermal(v2), u3), (Energy(p), u3) are strictly pre-
ferred to at least one assertion of each conflict (see Figures 1(a), 1(b) and 1(c)).
Hence, according to Definition 4, these assertions are all π-accepted.

Second characterization For each assertion in A▷, we determine the correspond-
ing ∆ set (see Figures 1(a), 1(b) and 1(c)).

– ∆(φ1) = ∆(φ3) = ∆(φ6) = ∅.
Since A▷ does not contain self-contradictory assertions, each of the three
assertions together with the empty set is consistent w.r.t. T. Hence, the
assertions (φ1, u4), (φ3, u4) and (φ6, u4) are all π-accepted.

– ∆(φ4) = ∆(φ8) = {φ1, φ3, φ6}.
Each of the assertions (φ4, u3) and (φ8, u3) together with the ∆ set is con-
sistent w.r.t. T. Hence, both assertions are π-accepted.

– ∆(φ2) = ∆(φ7) = {φ1, φ3, φ6, φ4, φ8, φ5}.
None of (φ2, u2) or (φ7, u2) is π-accepted because both assertions are unsat-
isfiable with the corresponding ∆ set.

– ∆(φ5) = {φ1, φ3, φ6, φ4, φ8, φ2, φ7}. This ∆ set is unsatisfiable, hence the
assertion (φ5, u1) is not π-accepted.
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Hence, the π-accepted assertions using the new characterization are given by
the following five assertions: (Manual(v1), u4), (Plugin(v1), u4), (Electric(v3), u4),
(Thermal(v2), u3) and (Energy(p), u3).

⊓⊔

This example illustrates that both characterizations return the same π-accepted
assertions for A▷, which also correspond to the assertions of the repair π(A▷)
where the symbolic weights are omitted.

In DL-LiteR ontologies, |Cf(A▷)| = O(n2), where n = |A▷|. Hence, com-
puting the set of π-accepted assertions using the first characterization requires
O(n3) steps. Indeed, for each assertion of A▷, the method parses all the con-
flict pairs in Cf(A▷) and compares it with both assertions of each pair (in the
worst case). In contrast, using the second characterization requires n consistency
checks to identify the π-accepted assertions of A▷.

4.2 The case of non-binary conflicts

Our aim in this paper is to compute the set of π-accepted assertions. When
dealing with an inconsistent knowledge base, it is desirable to have efficient
procedures that allow to:

Task 1 check whether the knowledge base is consistent;
Task 2 compute the set of all the conflicts; and,
Task 3 check whether an assertion is satisfiable with the set of assertions that
are either strictly more certain or incomparable.

It is clear that if there exists an efficient procedure that achieves Task 3
in polynomial time, then our method can be extended to Description Logic
languages that are richer than DL-LiteR and in which the conflicts can be of
arbitrary size (i.e., not necessarily composed of two assertions like in DL-LiteR).
So, checking whether an assertion is π-accepted can be done efficiently.

Note that this is not the case in the original method of calculating π-accepted
assertions proposed in [3] for DL-LiteR KBs, which is based on Task 2, i.e., it
requires the preliminary computation of all the conflicts. However, even if an
expressive language has an algorithm for exhibiting all the conflicts in polynomial
time in the ABox’s size, the time itself may be large. The following simple
example illustrates this observation.

Example 4. We are interested in describing the integrity constraints restricting
user access to machines (computers) in a large company. We first describe the
vocabulary of the language, we then describe the knowledge base.

Suppose that a large company is made up of a number m of departments,
simply numbered as {d1, . . . , dm}. Each department di has a number t of ma-
chines, denoted by {ci1, . . . , cit} (we assume that all the departments have the
same number of machines).

Suppose that we have a set of m role names (one per department) denoted
by {Access1, . . . ,Accessm}. Intuitively, the role Accessi(x, c) means that in the
department di, the user x has access to the machine c.
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For the sake of simplicity, we are only interested in the permissions granted
to a particular employee, for instance the head of the company, denoted by h.
Our set of constants is therefore composed of:

{h} ∪ (
⋃

i=1,...,m

{ci1, . . . , cit}).

We further assume that the TBox T is composed of a single negative axiom:

T = {∃Access1 ⊓ ∃Access2 ⊓ . . . ⊓ ∃Accessm ⊑ ⊥}.
This negative axiom means that there is no user that has access to at least one
machine in each department.

The following ABox describes the access permissions granted to the user h,
the head of the company. We assume that she has access to all the machines in
the company, regardless of the department in which they are located.

A = {Access1(h, c11), . . . ,Access1(h, c1t)}
∪ {Access2(h, c21), . . . ,Access2(h, c2t)}
∪ . . .
∪ {Accessm(h, cm1), . . . ,Accessm(h, cmt)}.

We assume a partition of the partially preordered ABox A = ⟨A1,A2, . . . ,An⟩,
such that each sub-base Ai contains the assertions concerning access permissions
to the machines of the department di:

Ai = {Accessi(h, ci1), . . . ,Accessi(h, cit)}.
The preference relation between the sub-bases Ai, i = 1, . . . , n, is defined as:

– for all j, j = 2, . . . , n, we have: A1 ▷Aj , and
– for all k, k = 2, . . . , n such that k ̸= j, we have: Aj ▷◁ Ak.

Note that the assertions belonging to same sub-base Ai are equally certain.
One can easily check that the size of the ABox A is equal to t ∗ m assertions.
Moreover, each m-uple:

C = {Access1(h, cj1),Access2(h, cj2), . . . ,Accessm(h, cjm)}
obtained by taking exactly one assertion from each role is a conflict. Therefore,
the conflict set is:

Cf(A) = {Access1(h, c11), . . . ,Access1(h, c1t)}
× {Access2(h, c21), . . . ,Access2(h, c2t)}

×
...
{Accessm(h, cm1), . . . ,Accessm(h, cmt}.

where the operator × denotes the Cartesian product of sets. Hence, the size of
the conflict set Cf(A) is:

|Cf(A)| = O(tm).

The number of conflicts in the ABox is exponential. This implies that even with
reasonable numbers, for instance m = 10 and t = 200, it is clearly not possible
to exhibit all the conflicts in the knowledge base. Hence, the original method for
determining π-acceptance [3] is impractical for such a scenario.

⊓⊔
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Through Example 4, we argue that even for a Description Logic language that
allows to compute the conflict set in polynomial time, it is not sufficient to apply
the method for computing π-accepted assertions given in [3]. Indeed, the size of
the conflict set also needs to be polynomial in the ABox’s size.

Note that if for a given Description Logic language, we have an algorithm
that is polynomial in time and space to calculate the conflict set, then checking
the consistency is also tractable. However, the converse does not hold. Indeed,
assume that there is some language (or at least, special cases of knowledge
bases) in which checking consistency is tractable but the number of conflicts
in the ABox is not polynomial with respect to the ABox’s size. Therefore, the
characterization introduced in this paper (Proposition 2) is more efficient than
the one introduced in [3] (Definition 4).

In the following example, we apply Proposition 2 in order to determine the
π-acceptance of assertions, even in knowledge bases where the size of the conflict
set is exponential.

Example 5. We continue Example 4 and illustrate the new characterization with
two examples of queries in order to check whether the assertions Access1(h, c11)
and Access3(h, c31) are π-accepted.

We start with the assertion Access1(h, c11) and determine ∆(Access1(h, c11)).
One can determine that:

∆(Access1(h, c11)) = A1.
Indeed, the assertions of Aj with j > 1 are all strictly less certain than any
assertion of A1.
One can easily check that ∆(Access1(h, c11)) is consistent. This means that the
assertion Access1(h, c11) is satisfiable with ∆(Access1(h, c11)). Therefore, we con-
clude that Access1(h, c11) is π-accepted.

Regarding the assertion Access3(h, c31), one can determine that:
∆(Access3(h, c31)) = A1 ∪ A2 ∪ · · · ∪ Am.

Indeed, for any assertion φ of A, either Access3(h, c31) is incomparable to φ (if
φ ∈ Aj with j > 1), or Access3(h, c31) is strictly less certain than φ (if φ ∈ A1).
Then, one can also check that each assertion of the ABox A does not belong to
at least one repair of the ABox. Therefore, the assertion Access3(h, c31) is not
satisfiable with the set∆(Access3(h, c31)). Hence, we conclude that Access3(h, c31)
is not π-accepted.

⊓⊔

5 Conclusion

Handling inconsistency in knowledge bases is an ongoing research topic meeting
many applications, such as query answering from ontologies, where the focus is
on defining efficient methods and procedures. In this paper, we address this issue
by proposing a new characterization for checking (the so-called) π-acceptance
in inconsistent and partially preordered ontologies. This characterization is an
improvement over the original one. Indeed, the original characterization is based
on the conflict set associated with the partially preordered knowledge base, so
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it assumes that the conflict set is readily available. The new characterization
is rather based on a consistency check on a subset of the ABox, and does not
require computing the conflict set.

Moreover, the new characterization can be applied to Description Logic lan-
guages that are more expressive than DL-LiteR, and remains efficient for any
language where the consistency check can be performed efficiently.

In future work, we plan to investigate methods for producing more productive
repairs and that are also tractable. One option is to consider the positive deduc-
tive closure but without incurring a computational explosion. We also plan to
explore the case where the TBox’s axioms may be uncertain and may be ignored
or weakened as a means for resolving the inconsistency in the ABox.

Within the research project CROQUIS in collaboration with specialists in
hydro-science, we plan to apply our methods of inconsistency handling to knowl-
edge bases representing wastewater and stormwater networks in a large metropo-
lis. The expert knowledge serves to complete the data, which is incomplete, im-
perfect, fragmented, outdated, multi-source, heterogeneous and uncertain. Data
may consist of analog and digital maps of urban networks, geographical data,
various types of images, intervention reports, and so on. It may be obtained
from public organisations as well as private companies. Hence, it is virtually
impossible for such a knowledge base to be consistent, making standard query
answering tools inadequate. Moreover, given the sheer volume of data, a reduc-
tion in the computational complexity of repairing the inconsistency in the ABox
is expected to have a direct positive impact on the experimental performance of
our new characterization.

Acknowledgements: This research has received support from the ANR CRO-
QUIS (Collecting, Representing, cOmpleting, merging, and Querying heteroge-
neous and UncertaIn waStewater and stormwater network data) project, grant
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