
Packing Consequtive Squares into a Sqaure

Takehide Soh

Kobe University, Japan,
soh@lion.kobe-u.ac.jp

1 Overview and History

Consecutive square packing is a problem that finds a packing (placement) of consecu-
tive squares 1×1, 2×2, . . . , N ×N into a given container square without overlap. The
following figure shows a solution when N = 15 and the size of the container square
is 36 which is the minimum size that can contain all 15 consecutive squares without
overlap.

15
14

13 12 11

109 8

7

6

54

32 1

This problem gets popular when Martin Gardner introduced it in Scientific American
in 1966 [1]. In addition, he introduced an open instance that asks: Can pack consecutive
squares 1 × 1, 2 × 2, . . . , 24 × 24 into the container square sized 70? This problem is
solved negatively in 2004 by Richard Korf [2]. Following that, There have been several
studies to compute the minimum sized container square [2, 5, 3, 4].

So far, until N = 56, the minimum sized container squares are reported except N =
38, 40, 42, 48, 52, 53, 55. Those results are summarized in the web page of A005842 of
OEIS1.

1 https://oeis.org/A005842



2 Constraint Model

The constraint model for this problem is simple—it uses two kinds of integer variables
and one kind of constraint.

Integer variables xi and yi that denote the position of lower left coordinates of the
i-th square to be packed. The domain of both xi and yi are {d ∈ N | 0 ≤ d ≤ S − i}
where S denotes the size of a given container square.

No-overlap constraints for i-th square and j-th square are introduced as follows:

(xi + i ≤ xj) ∨ (xj + j ≤ xi) ∨ (yi + i ≤ yj) ∨ (yj + j ≤ yi)

where i and j range 1 ≤ i < j ≤ N .
The following represents the above constraint model by MCSP32 where n and

size represent the number of consecutive squares N and the size of the container
square S.

public void model() {
Var[] x =

array("x", size(n), i -> dom(range(size - i)),
"x[i] is x coordinate of the i-th square");

Var[] y =
array("y", size(n), i -> dom(range(size - i)),

"y[i] is y coordinate of the i-th square");

forall(range(n).range(n), (i, j) -> {
if (i < j)
intension(or(le(add(x[i], i + 1), x[j]),

le(add(x[j], j + 1), x[i]),
le(add(y[i], i + 1), y[j]),
le(add(y[j], j + 1), y[i])));

});
}

References
1. Gardner, M.: Scientific American, vol. 215, chap. Mathematical ames: the problem of Mrs.

Perkins’ quilt, and answers to last month’s puzzles, pp. 264–272 (September 1966)
2. Korf, R.E.: Optimal rectangle packing: New results. In: Proceedings of the Fourteenth Inter-

national Conference on Automated Planning and Scheduling (ICAPS 2004), June 3-7 2004,
Whistler, British Columbia, Canada. pp. 142–149 (2004)

3. Korf, R.E., Moffitt, M.D., Pollack, M.E.: Optimal rectangle packing. Annals OR 179(1), 261–
295 (2010)

4. Martello, S., Monaci, M.: Models and algorithms for packing rectangles into the smallest
square. Computers & OR 63, 161–171 (2015)

5. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Principles and Prac-
tice of Constraint Programming, 14th International Conference, CP 2008, Sydney, Australia,
September 14-18, 2008. Proceedings. pp. 52–66 (2008)

2 https://github.com/xcsp3team/XCSP3-Java-Tools


