
A Picat-based XCSP Solver – from Parsing,
Modeling, to SAT Encoding

Neng-Fa Zhou1 and H̊akan Kjellerstrand2

1 CUNY Brooklyn College & Graduate Center
2 hakank.org

Abstract. This short paper gives an overview of a Picat-based XCSP3
solver, named PicatSAT, submitted to the 2018 XCSP competition. The
solver demonstrates the strengths of Picat, a logic-based language, in
parsing, modeling, and encoding constraints into SAT.

XCSP3

XCSP3 [1] is an XML-based domain specific language for describing constraint
satisfaction and optimization problems (CSP). XCSP3 is positioned as an in-
termediate language for CSPs. It does not provide high-level constructs as seen
in modeling languages. However, XCSP3 is significantly more complex than a
canonical-form language, like FlatZinc. A constraint can sometimes be described
in either the standard format or simplified format. The advanced format, which
is used by group and matrix constraints, allows more compact description of
constraints.

Picat

Picat [6] is a simple, and yet powerful, logic-based multi-paradigm programming
language. Picat is a Prolog-like rule-based language, in which predicates, func-
tions, and actors are defined with pattern-matching rules. Picat incorporates
many declarative language features for better productivity of software devel-
opment, including explicit non-determinism, explicit unification, functions, list
comprehensions, constraints, and tabling. Picat also provides imperative lan-
guage constructs, such as assignments and loops, for programming everyday
things. Picat provides facilities for solving combinatorial search problems, in-
cluding a common interface with CP, SAT, and MIP solvers, tabling for dynamic
programming, and a module for planning. PicatSAT uses the SAT module, which
generally performs better than the CP and MIP modules on competition bench-
marks.

Parsing

The availability of different formats in XCSP3 makes it a challenge to parse the
XCSP3 language. A parser implemented in C++ by the XCSP designers has

more than 10,000 lines of code. The entire Picat implementation of XCSP3 has
about 2,000 lines of code, two-thirds of which is devoted to parsing and syntax-
directed translation. As illustrated in the following example, Picat is well suited
to parsing.

% E -> T E’

ex(Si,So) => term(Si,S1), ex_prime(S1,So).

% E’ -> + T E’ | - T E’ | e

ex_prime([’+’|Si],So) =>

term(Si,S1),

ex_prime(S1,So).

ex_prime([’-’|Si],So) =>

term(Si,S1),

ex_prime(S1,So).

ex_prime(Si,So) => So = Si.

The parser follows the framework for translating context-free grammar into Pro-
log [3]: a non-terminal is encoded as a predicate that takes an input string (Si)
and an output string (So), and when the predicate succeeds, the difference Si-So
constitutes a string that matches the nonterminal. Unlike in Prolog, pattern-
matching rules in Picat are fully indexed, which facilitates selecting right rules
based on look-ahead tokens.

Modeling

It is well known that loops and list comprehensions are a necessity for modeling
CSPs. The following Picat example illustrates the convenience of these language
constructs for modeling.

post_constr(allDifferentMatrix(Matrix)) =>

NRows = len(Matrix),

NCols = len(Matrix[1]),

foreach (I in 1..NRows)

all_different(Matrix[I])

end,

foreach (J in 1..NCols)

all_different([Matrix[I,J] : I in 1..NRows])

end.

The allDifferentMatrix(Matrix) constraint takes a matrix that is represented
as a two-dimensional array, and posts an all different constraint for each row
and each column of the matrix.

SAT Encoding

PicatSAT adopts the log encoding for domain variables. While log encoding had
been perceived to be unsuited to arithmetic constraints due to its hindrance

2

to propagation [2], we have shown that log encoding can be made competitive
with optimizations [4]. There are hundreds of optimizations implemented in Pi-
catSAT, and they are described easily as pattern-matching rules in Picat. We
have also shown that, with specialization, the binary adder encoding is not only
compact, but also generally more efficient than BDD encodings for PB con-
straints [5]. PicatSAT adopts specialized decomposition algorithms for some of
the global constraints. While competitive overall, PicatSAT is not competitive
with state-of-the-art CP solvers on benchmarks that use path-finding constraints
that require reachability checking during search. The future work is to design
efficient encodings for these global constraints.

References

1. Frederic Boussemart, Christophe Lecoutre, and Gilles Audemard. XCSP3 - an
integrated format for benchmarking combinatorial constrained problems. Technical
report, xcsp.org.

2. Donald Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfi-
ability. Addison-Wesley, 2015.

3. Fernando C. N. Pereira and David H. D. Warren. Definite clause grammars for
language analysis - A survey of the formalism and a comparison with augmented
transition networks. Artif. Intell., 13(3):231–278, 1980.

4. Neng-Fa Zhou and H̊akan Kjellerstrand. Optimizing SAT encodings for arithmetic
constraints. In CP, pages 671–686, 2017.

5. Neng-Fa Zhou and H̊akan Kjellerstrand. Encoding pb constraints into sat via binary
adders and bdds – revisited. In Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion RCRA, 2018.

6. Neng-Fa Zhou, H̊akan Kjellerstrand, and Jonathan Fruhman. Constraint Solving
and Planning with Picat. Springer, 2015.

3

