
Concrete 3.9.2: A CSP solving software & API
Julien Vion

http://github.com/concrete-cp/concrete

1 Features
Concrete is a CSP constraint solver written in Scala 2.12 [15]. We always try
to use up-to-date dependencies. Concrete is a pretty standard CP solver, which
solves CSP instances using depth-first search and AC or weaker variants for
propagation. The two main specific aspects of Concrete are:

• the use of persistent data structures [16] for managing domain states and
some constraint states. We use bit vectors copied on-the fly, hash tries,
trees with a high branching factor, and red-black trees. For the state of
many constraints, semi-persistent data structures (mainly sparse sets [4])
or backtrack-stable data (watched literals [6] or residues [9]) are preferred.

• the use of the companion project CSPOM 2.25 [19], a solver-independent
modeling assistant able to perform automatic reformulation such as con-
straint aggregation. CSPOM is able to parse problems written in FlatZ-
inc [13], XCSP3 [1], the legacy XCSP2 format or its own Java and Scala
DSL (yet to be documented).

Concrete can solve models defined with signed 32-bit integers. Domains
are internally represented using either intervals, bit vectors, or red-black trees
depending on domain density. Singleton and boolean domains are handled
specifically. CSPOM represents domains with interval trees and supports infi-
nite domains, but they must be fully defined during the compilation phase in
order to be processed in Concrete. This allows to infer some variable domains,
e.g. for auxiliary variables or variables defined by a constraint. Set variables
are currently not supported.

The main loop of Concrete is a tail-recursive DFS. It allows to enumerate
solutions or to search for an optimal solution. If used correctly, it is able to add
constraints dynamically between solutions.

Concrete natively supports the following constraints:

• Extension (list of allowed or forbidden tuples). An optimized algorithm
should be automatically selected for binary constraints (AC3-bit+rm) [11]
or MDD [20].

• Linear (a·x+b·y+. . . {= / < / ≤ / ̸=} k). Bound consistency (except for
̸=) [7] or full domain consistency for ternary constraints (using residues).

1

• Absolute value (x = |y|). Bound or domain consistency (using residues).

• Distance (x = |y − z|). Bound or domain consistency (using residues).

• All-different with 2-consistency or bound consistency [12].

• Cardinality (AtLeast/AtMost)

• Bin-packing [17]

• Channel (x(i) = j ⇐⇒ x(j) = i)

• Boolean clauses and XOR (using watched literals)

• Cumulative using profile and energetic reasoning

• Rectangle packing (diffN) using quad-trees and energetic reasoning

• Quadratic (x = y · z, x = y2). Bound or domain consistency (using
residues)

• Integer division and modulo. Bound or domain consistency (using residues)

• Element / Member (using watched literals and residues)

• Inverse (x(i) = j =⇒ y(j) = i)

• Lex-Leq

• Lex-Neq

• Min/Max

• Subcircuit with defined starting point (uses Dijkstra shortest path algo-
rithm)

• Regular and Sliding-Sum via MDD decomposition

• Generic reification (for any constraint C, a boolean variable b can be
defined s.t. b =⇒ C)

All FlatZinc constraints are supported, and other documented MiniZinc con-
straints are supported via provided decomposition or reformulation. All XCSP3
constraints selected for the 2018 competition are supported via (trivial) decom-
position or reformulation. Some XCSP3 constraints may not be supported.

2

2 Search strategies
Concrete solves CSP/COP using a binary depth-first tree search [8]. The default
variable ordering heuristic is dom/wdeg [2] with incremental computation and
random tiebreaking. The default value heuristic chooses the best known value
first [22], then applies BBS, an heuristic that uses singleton assignments to
find the value that maximizes potential solution quality [5]. Ties are broken
randomly, with prority given to domain bounds. Sometimes, a random value is
selected to improve diversity in search. Search is restarted periodically (with a
geometric growth) to reduce long tails of search time [Gomes2000].

Propagation queue is managed using a coarse-grained constraint-oriented
propagation scheme [3] with dynamic and constraint-specific propagation or-
dering heuristic [21]. Constraint entailment is managed when it can be detected
easily.

3 Present and near-future of Concrete
Feedback from the competition allowed us to improve Concrete in many ways
in late 2017. Bugs have been fixed, some heuristics have been improved. For
2018, we implemented new constraints selected for the competition (mainly
Subcircuit), BBS, and tuned some parameters.

We recently reimplemented nogood recording from restarts [10], which was
available in older versions of Concrete for binary nogoods only, but was dropped
off a few years ago. A full nogood-managing global constraint is now available
with innovating tricks.

Common subexpression elimination (ACCSE) [14] for CSPOM is now fast
and stable.

License. Concrete is free and open-source software, relased under the terms
of the GNU LGPL 3.0 license [18]. Concrete is © Julien Vion, CNRS and Univ.
Polytechnique des Hauts de France.

References
[1] G. Audemard, F. Boussemart, C. Lecoutre, C. Piette, et al. XCSP3. http:

//www.xcsp.org. 2016.
[2] F. Boussemart, F. Hemery, C. Lecoutre, and L. Saïs. “Boosting Systematic

Search by Weighting Constraints”. In: Proc. 16th ECAI. 2004, pp. 146–
150.

[3] F. Boussemart, F. Hemery, and C. Lecoutre. “Revision Ordering Heuris-
tics for the CSP”. In: Proc. CPAI’04 workshop held with CP’04. Toronto,
Canada, 2004, pp. 29–43.

3

[4] P. Briggs and L. Torczon. “An Efficient Representation for Sparse Sets”.
In: ACM Letters on Programming Languages and Systems 2.1–4 (1993),
pp. 59–69.

[5] J.-G. Fages and C. Prud’Homme. “Making the first solution good!” In:
Proc. 29th ICTAI. Boston, MA, United States, Nov. 2017.

[6] I. P. Gent, C. Jefferson, and I. Miguel. “Watched literals for constraint
propagation in Minion”. In: Proc. 12th CP. 2006, pp. 182–197.

[7] W. Harvey and J. Schimpf. “Bounds Consistency Techniques for Long
Linear Constraints”. In: In Proceedings of TRICS: Techniques foR Imple-
menting Constraint programming Systems. 2002, pp. 39–46.

[8] J. Hwang and D.G. Mitchell. “2-way vs d-way branching for CSP”. In:
Proc. 11th CP. 2005, pp. 343–357.

[9] C. Lecoutre and F. Hemery. “A Study of Residual Supports in Arc Con-
sistency”. In: Proc. 20th IJCAI. 2007, pp. 125–130.

[10] C. Lecoutre, L. Saïs, S. Tabary, and V. Vidal. “Nogood Recording from
Restarts”. In: Proc. 20th IJCAI. 2007.

[11] C. Lecoutre and J. Vion. “Enforcing AC using Bitwise Operations”. In:
Constraint Programming Letters 2 (2008), pp. 21–35.

[12] A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. “A fast and
simple algorithm for bounds consistency of the alldifferent constraint”. In:
Proc. 18th IJCAI. 2003, pp. 245–250.

[13] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack.
“Minizinc: Towards a standard CP modelling language”. In: Proc. 13th CP.
Ed. by C. Bessière. 2007, pp. 529–543.

[14] P. Nightingale, Ö. Akgün, I. P. Gent, C. Jefferson, I. Miguel, and P.
Spracklen. “Automatically Improving Constraint Models in Savile Row”.
In: Artificial Intelligence 251.Supplement C (2017), pp. 35–61.

[15] M. Odersky et al. The Scala Programming Language. http://www.scala-
lang.org/. 2001.

[16] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[17] P. Shaw. “A Constraint for Bin Packing”. In: Proc. 10th CP. Ed. by M.
Wallace. 2004, pp. 648–662.

[18] R.M. Stallman. GNU Lesser General Public License. GNU Project–Free
Software Foundation, http://gnu.org/licenses. 1999.

[19] J. Vion. CSP Object Model. http://github.com/concrete-cp/cspom.
2008–2016.

[20] J. Vion and S. Piechowiak. “From MDD to BDD and Arc consistency”.
In: Constraints (July 2018). doi: 10.1007/s10601-018-9286-5.

4

[21] J. Vion and S. Piechowiak. “Handling Heterogeneous Constraints in Re-
vision Ordering Heuristics”. In: Proc. of the TRICS’2010 workshop held
in conjunction with CP’2010. 2010, pp. 62–82.

[22] J. Vion and S. Piechowiak. “Une simple heuristique pour rapprocher DFS
et LNS pour les COP”. In: Actes des 13e JFPC. 2017, pp. 39–44.

5

