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1 Features
Concrete is a CSP constraint solver written in Scala 2.12 [15]. We always try
to use up-to-date dependencies. Concrete is a pretty standard CP solver, which
solves CSP instances using depth-first search and AC or weaker variants for
propagation. The two main specific aspects of Concrete are:

• the use of persistent data structures [16] for managing domain states and
some constraint states. We use bit vectors copied on-the fly, hash tries,
trees with a high branching factor, and red-black trees. For the state of
many constraints, semi-persistent data structures (mainly sparse sets [4])
or backtrack-stable data (watched literals [5] or residues [9]) are preferred.

• the use of the companion project CSPOM [19], a solver-independent mod-
eling assistant able to perform automatic reformulation such as constraint
aggregation. CSPOM is able to parse problems written in FlatZinc [13],
XCSP3 [1], the legacy XCSP2 format or its own Java and Scala DSL (yet
to be documented).

Concrete can solve models defined with signed 32-bit integers. Domains are
internally represented using either intervals or bit vectors, with a specialization
for singleton and boolean domains. CSPOM represents domains with inter-
val trees and supports infinite domains, but they must be fully defined during
the compilation phase in order to be processed in Concrete. Set variables are
currently not supported.

The main loop of Concrete is a tail-recursive DFS. It allows to enumerate
solutions or to search for an optimal solution. If used correctly, it is able to add
constraints dynamically between solutions.

Concrete natively supports the following constraints:

• Extension (list of allowed or forbidden tuples). An optimized algorithm
should be automatically selected for binary constraints (AC3-bit+rm) [10]
or MDD [21].

• Linear (a·x+b·y+. . . {= / < / ≤ / ̸=} k). Bound consistency (except for
̸=) [7] or full domain consistency for ternary constraints (using residues).
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• Absolute value (x = |y|). Bound or domain consistency (using residues).

• Distance (x = |y − z|). Bound or domain consistency (using residues).

• All-different with 2-consistency or bound consistency [12].

• Cardinality (AtLeast/AtMost)

• Bin-packing [17]

• Channel (x(i) = j ⇐⇒ x(j) = i)

• Boolean clauses and XOR (using watched literals)

• Cumulative using profile and energetic reasoning

• Rectangle packing (diffN) using quad-trees and energetic reasoning

• Integer division and modulo. Bound or domain consistency (using residues)

• Element / Member (using watched literals and residues)

• Inverse (x(i) = j =⇒ y(j) = i)

• Lex-Leq

• Lex-Neq

• Min/Max

• Quadratic (x = y · z, x = y2). Bound or domain consistency (using
residues)

• Generic reification (for any constraint C, a boolean variable b can be
defined s.t. b =⇒ C)

All other documented MiniZinc constraints are supported via decomposition
or reformulation. All other XCSP3 constraints selected for the 2017 competition
are supported via decomposition or reformulation. Some XCSP3 constraints are
not supported.

2 Search strategies
Concrete solves CSP/COP using a binary depth-first tree search [8]. The default
variable ordering heuristic is dom/wdeg [3] with incremental computation and
random tiebreaking. The default value heuristic chooses the best known value
first [22], then the largest value from the domain. Sometimes, a random value
is selected to improve diversity in search. Search is restarted periodically (with
a geometric growth) to reduce long tails of search time [6].

Propagation queue is managed using a coarse-grained constraint-oriented
propagation scheme [2] with dynamic and constraint-specific propagation or-
dering heuristic [20]. Constraint entailment is managed when it can be detected
easily.
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3 Present and near-future of Concrete
Feedback from the competition allowed us to improve Concrete in many ways in
late 2017. Bugs have been fixed, some heuristics have been improved: it seems
that choosing the largest value first for branching was counter-productive for
many instances (e.g., bin packing), and the randomization was set too high. We
are in the process of performing a large-scale evaluation of diversification/restart
strategies in search and the corresponding links with LNS. Since the competi-
tion, the way value ordering heuristics work in Concrete has been revamped.
Now a portfolio of heuristics can be parameterized, which should allow fancy
things such as separate randomization for both variable and value heuristics,
tie-breaking and cascading fallback heuristics. A new value ordering heuristic
which minimizes the bound of the optimization variable has been implemented.

A new variable ordering heuristic is under development, whose objective
is to improve the behavior of dom/wdeg when constraints of large arity are
involved. In the long term, heuristics inspired from SAT solvers will probably
be considered.

Concrete’s main loop, element and min/max constraints have been recently
rewritten to improve performance (both in memory and time), as well as code
readability.

A new domain representation using red-black trees is now available, which
should improve the representation of sparse domains. A new domain type based
on set difference is being studied.

We recently reimplemented nogood recording from restarts [11], which was
available in older versions of Concrete for binary nogoods only, but was dropped
off a few years ago. A full nogood-managing global constraint is now available
with innovating tricks.

We are currently finishing the implementation of common subexpression
elimination for CSPOM [14].

License. Concrete is free and open-source software, relased under the terms
of the GNU LGPL 3.0 license [18]. Concrete is © Julien Vion, CNRS and Univ.
Valenciennes.
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