0.00/0.01 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.01 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.01 c
0.00/0.01 c user parameter file <scip.set> not found - using default parameters
0.00/0.01 c reading problem <HOME/instance-4545515-1753238426.opb>
0.00/0.04 c original problem has 6099 variables (6099 bin, 0 int, 0 impl, 0 cont) and 7394 constraints
0.00/0.04 c problem read in 0.03
0.00/0.04 c No objective function, only one solution is needed.
0.00/0.06 c presolving:
0.00/0.08 c (round 1, fast) 167 del vars, 87 del conss, 88 add conss, 166 chg bounds, 198 chg sides, 176 chg coeffs, 0 upgd conss, 0 impls, 753 clqs
0.00/0.08 c (round 2, fast) 462 del vars, 161 del conss, 94 add conss, 445 chg bounds, 513 chg sides, 623 chg coeffs, 0 upgd conss, 0 impls, 768 clqs
0.00/0.08 c (round 3, fast) 557 del vars, 201 del conss, 125 add conss, 485 chg bounds, 521 chg sides, 642 chg coeffs, 0 upgd conss, 0 impls, 750 clqs
0.00/0.08 c (round 4, fast) 650 del vars, 242 del conss, 131 add conss, 528 chg bounds, 521 chg sides, 656 chg coeffs, 0 upgd conss, 0 impls, 717 clqs
0.00/0.08 c (round 5, fast) 695 del vars, 253 del conss, 135 add conss, 553 chg bounds, 521 chg sides, 668 chg coeffs, 0 upgd conss, 0 impls, 673 clqs
0.00/0.08 c (round 6, fast) 743 del vars, 268 del conss, 139 add conss, 578 chg bounds, 523 chg sides, 676 chg coeffs, 0 upgd conss, 0 impls, 635 clqs
0.00/0.09 c (round 7, fast) 770 del vars, 278 del conss, 142 add conss, 591 chg bounds, 525 chg sides, 682 chg coeffs, 0 upgd conss, 0 impls, 611 clqs
0.00/0.09 c (round 8, fast) 790 del vars, 292 del conss, 144 add conss, 598 chg bounds, 525 chg sides, 684 chg coeffs, 0 upgd conss, 0 impls, 602 clqs
0.00/0.09 c (round 9, fast) 804 del vars, 300 del conss, 144 add conss, 606 chg bounds, 525 chg sides, 684 chg coeffs, 0 upgd conss, 0 impls, 598 clqs
0.00/0.09 c (round 10, fast) 812 del vars, 315 del conss, 144 add conss, 614 chg bounds, 525 chg sides, 692 chg coeffs, 0 upgd conss, 0 impls, 598 clqs
0.09/0.11 c (0.1s) running MILP presolver
0.09/0.19 c (0.2s) MILP presolver (6 rounds): 1595 aggregations, 0 fixings, 0 bound changes
0.09/0.19 c (round 11, medium) 2407 del vars, 7448 del conss, 6213 add conss, 614 chg bounds, 525 chg sides, 692 chg coeffs, 0 upgd conss, 0 impls, 576 clqs
0.20/0.21 c (round 12, fast) 2407 del vars, 7448 del conss, 6275 add conss, 614 chg bounds, 525 chg sides, 692 chg coeffs, 0 upgd conss, 0 impls, 576 clqs
0.20/0.21 c (round 13, fast) 2407 del vars, 7448 del conss, 6275 add conss, 614 chg bounds, 717 chg sides, 1220 chg coeffs, 0 upgd conss, 0 impls, 576 clqs
0.20/0.23 c (round 14, exhaustive) 2407 del vars, 7780 del conss, 6275 add conss, 614 chg bounds, 737 chg sides, 1220 chg coeffs, 0 upgd conss, 0 impls, 576 clqs
0.20/0.26 c (round 15, exhaustive) 2407 del vars, 7780 del conss, 6275 add conss, 614 chg bounds, 737 chg sides, 1220 chg coeffs, 5802 upgd conss, 0 impls, 576 clqs
0.20/0.27 c (round 16, fast) 2407 del vars, 7780 del conss, 6275 add conss, 614 chg bounds, 752 chg sides, 1286 chg coeffs, 5802 upgd conss, 0 impls, 576 clqs
0.20/0.29 c (round 17, medium) 2407 del vars, 8343 del conss, 7346 add conss, 614 chg bounds, 1368 chg sides, 2028 chg coeffs, 5802 upgd conss, 0 impls, 1521 clqs
0.20/0.29 c (round 18, fast) 2407 del vars, 8358 del conss, 7359 add conss, 614 chg bounds, 1368 chg sides, 2032 chg coeffs, 5802 upgd conss, 0 impls, 1521 clqs
0.20/0.29 c (round 19, exhaustive) 2407 del vars, 9750 del conss, 7823 add conss, 614 chg bounds, 1368 chg sides, 2032 chg coeffs, 5802 upgd conss, 0 impls, 1521 clqs
0.20/0.30 c (round 20, exhaustive) 2407 del vars, 9750 del conss, 7823 add conss, 614 chg bounds, 1369 chg sides, 2032 chg coeffs, 5824 upgd conss, 0 impls, 1521 clqs
0.29/0.35 c (0.3s) probing: 51/3777 (1.4%) - 0 fixings, 0 aggregations, 0 implications, 0 bound changes
0.29/0.35 c (0.3s) probing aborted: 50/50 successive totally useless probings
0.29/0.35 c (0.3s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
0.29/0.39 c (0.4s) symmetry computation finished: 33 generators found (max: 1500, log10 of symmetry group size: 0.0) (symcode time: 0.01)
0.29/0.39 c dynamic symmetry handling statistics:
0.29/0.39 c orbitopal reduction: no components
0.29/0.39 c orbital reduction: no components
0.29/0.39 c lexicographic reduction: 33 permutations with support sizes 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
0.29/0.39 c handled 33 out of 33 symmetry components
0.29/0.40 c presolving (21 rounds: 21 fast, 7 medium, 5 exhaustive):
0.29/0.40 c 2407 deleted vars, 9750 deleted constraints, 7823 added constraints, 614 tightened bounds, 0 added holes, 1369 changed sides, 2032 changed coefficients
0.29/0.40 c 0 implications, 1521 cliques
0.29/0.40 c presolved problem has 3777 variables (3777 bin, 0 int, 0 impl, 0 cont) and 5467 constraints
0.29/0.40 c 4496 constraints of type <knapsack>
0.29/0.40 c 327 constraints of type <setppc>
0.29/0.40 c 464 constraints of type <and>
0.29/0.40 c 65 constraints of type <linear>
0.29/0.40 c 115 constraints of type <logicor>
0.29/0.40 c transformed objective value is always integral (scale: 1)
0.29/0.40 c Presolving Time: 0.34
0.29/0.40 c - non default parameters ----------------------------------------------------------------------
0.29/0.40 c # SCIP version 10.0.0
0.29/0.40 c
0.29/0.40 c # maximal time in seconds to run
0.29/0.40 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
0.29/0.40 c limits/time = 3596.998007
0.29/0.40 c
0.29/0.40 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.29/0.40 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
0.29/0.40 c limits/memory = 27900
0.29/0.40 c
0.29/0.40 c # solving stops, if the given number of solutions were found; this limit is first checked in presolving (-1: no limit)
0.29/0.40 c # [type: int, advanced: FALSE, range: [-1,2147483647], default: -1]
0.29/0.40 c limits/solutions = 1
0.29/0.40 c
0.29/0.40 c # bitset describing used symmetry handling technique: (0: off; 1: constraint-based (orbitopes and/or symresacks); 2: orbital fixing; 3: orbitopes and orbital fixing; 4: Schreier Sims cuts; 5: Schreier Sims cuts and orbitopes; 6: Schreier Sims cuts and orbital fixing; 7: Schreier Sims cuts, orbitopes, and orbital fixing) See type_symmetry.h.
0.29/0.40 c # [type: int, advanced: FALSE, range: [0,7], default: 7]
0.29/0.40 c misc/usesymmetry = 3
0.29/0.40 c
0.29/0.40 c # belongs reading time to solving time?
0.29/0.40 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
0.29/0.40 c timing/reading = TRUE
0.29/0.40 c
0.29/0.40 c # Should we check whether the components of the symmetry group can be handled by double lex matrices?
0.29/0.40 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.29/0.40 c propagating/symmetry/detectdoublelex = FALSE
0.29/0.40 c
0.29/0.40 c # Should we try to detect symmetric subgroups of the symmetry group on binary variables?
0.29/0.40 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.29/0.40 c propagating/symmetry/detectsubgroups = FALSE
0.29/0.40 c
0.29/0.40 c # Type of symmetries that shall be computed?
0.29/0.40 c # [type: int, advanced: TRUE, range: [0,1], default: 0]
0.29/0.40 c propagating/symmetry/symtype = 1
0.29/0.40 c
0.29/0.40 c # Should components consisting of a single full reflection be handled?
0.29/0.40 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.29/0.40 c propagating/symmetry/usesimplesgncomp = FALSE
0.29/0.40 c
0.29/0.40 c -----------------------------------------------------------------------------------------------
0.29/0.40 c start solving
0.29/0.40 c
0.50/0.55 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
0.50/0.55 c 0.5s| 1 | 0 | 1792 | - | 91M | 0 |3777 |5485 |5931 | 0 | 0 | 17 | 0 | 0.000000e+00 | -- | Inf | unknown
0.98/1.03 c 1.0s| 1 | 0 | 3644 | - | 96M | 0 |3777 |5485 |6031 | 104 | 1 | 17 | 0 | 0.000000e+00 | -- | Inf | unknown
1.08/1.14 c 1.1s| 1 | 0 | 3726 | - | 98M | 0 |3777 |5485 |6066 | 139 | 2 | 17 | 0 | 0.000000e+00 | -- | Inf | unknown
1.28/1.35 c 1.3s| 1 | 0 | 3812 | - | 103M | 0 |3777 |5485 |6096 | 169 | 3 | 17 | 0 | 0.000000e+00 | -- | Inf | unknown
1.38/1.44 c 1.4s| 1 | 0 | 3844 | - | 107M | 0 |3777 |5487 |6121 | 194 | 4 | 19 | 0 | 0.000000e+00 | -- | Inf | unknown
1.58/1.61 c 1.6s| 1 | 0 | 3919 | - | 110M | 0 |3777 |5487 |6148 | 221 | 5 | 19 | 0 | 0.000000e+00 | -- | Inf | unknown
1.68/1.74 c 1.7s| 1 | 0 | 3983 | - | 111M | 0 |3777 |5487 |6186 | 259 | 6 | 19 | 0 | 0.000000e+00 | -- | Inf | unknown
1.78/1.89 c 1.9s| 1 | 0 | 4107 | - | 114M | 0 |3777 |5487 |6220 | 293 | 7 | 19 | 0 | 0.000000e+00 | -- | Inf | unknown
1.98/2.06 c 2.1s| 1 | 0 | 4213 | - | 122M | 0 |3777 |5494 |6258 | 331 | 8 | 26 | 0 | 0.000000e+00 | -- | Inf | unknown
2.17/2.20 c 2.2s| 1 | 0 | 4347 | - | 126M | 0 |3777 |5496 |6289 | 362 | 9 | 28 | 0 | 0.000000e+00 | -- | Inf | unknown
2.27/2.37 c 2.4s| 1 | 0 | 4494 | - | 131M | 0 |3777 |5497 |6242 | 392 | 10 | 29 | 0 | 0.000000e+00 | -- | Inf | unknown
2.37/2.43 c 2.4s| 1 | 0 | 4563 | - | 133M | 0 |3777 |5499 |6271 | 421 | 11 | 31 | 0 | 0.000000e+00 | -- | Inf | unknown
2.37/2.46 c 2.5s| 1 | 0 | 4563 | - | 133M | 0 |3777 |5515 |6279 | 421 | 11 | 41 | 0 | 0.000000e+00 | -- | Inf | unknown
2.47/2.52 c 2.5s| 1 | 0 | 4645 | - | 134M | 0 |3777 |5515 |6303 | 445 | 12 | 41 | 0 | 0.000000e+00 | -- | Inf | unknown
2.57/2.60 c 2.6s| 1 | 0 | 4749 | - | 138M | 0 |3777 |5522 |6327 | 469 | 13 | 48 | 0 | 0.000000e+00 | -- | Inf | unknown
2.57/2.64 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
2.57/2.64 c 2.6s| 1 | 0 | 4854 | - | 138M | 0 |3777 |5527 |6355 | 497 | 14 | 53 | 0 | 0.000000e+00 | -- | Inf | unknown
2.67/2.72 c 2.7s| 1 | 0 | 4926 | - | 139M | 0 |3777 |5535 |6379 | 521 | 15 | 61 | 0 | 0.000000e+00 | -- | Inf | unknown
2.77/2.82 c 2.8s| 1 | 0 | 5018 | - | 141M | 0 |3777 |5541 |6314 | 547 | 16 | 67 | 0 | 0.000000e+00 | -- | Inf | unknown
2.77/2.86 c 2.9s| 1 | 0 | 5134 | - | 141M | 0 |3777 |5548 |6333 | 566 | 17 | 74 | 0 | 0.000000e+00 | -- | Inf | unknown
2.87/2.94 c 2.9s| 1 | 0 | 5265 | - | 142M | 0 |3777 |5549 |6354 | 587 | 18 | 75 | 0 | 0.000000e+00 | -- | Inf | unknown
2.87/2.98 c 3.0s| 1 | 0 | 5374 | - | 142M | 0 |3777 |5551 |6382 | 615 | 19 | 77 | 0 | 0.000000e+00 | -- | Inf | unknown
2.98/3.05 c 3.0s| 1 | 0 | 5474 | - | 143M | 0 |3777 |5554 |6402 | 635 | 20 | 80 | 0 | 0.000000e+00 | -- | Inf | unknown
3.08/3.13 c 3.1s| 1 | 0 | 5553 | - | 143M | 0 |3777 |5556 |6426 | 659 | 21 | 82 | 0 | 0.000000e+00 | -- | Inf | unknown
3.08/3.17 c 3.2s| 1 | 0 | 5655 | - | 143M | 0 |3777 |5564 |6351 | 677 | 22 | 90 | 0 | 0.000000e+00 | -- | Inf | unknown
4.17/4.20 c 4.2s| 1 | 0 | 6550 | - | 144M | 0 |3777 |5575 |6351 | 677 | 22 | 104 | 20 | 0.000000e+00 | -- | Inf | unknown
4.17/4.24 c 4.2s| 1 | 0 | 6629 | - | 145M | 0 |3777 |5576 |6373 | 699 | 23 | 105 | 20 | 0.000000e+00 | -- | Inf | unknown
4.17/4.26 c 4.3s| 1 | 0 | 6736 | - | 145M | 0 |3777 |5577 |6392 | 718 | 24 | 106 | 20 | 0.000000e+00 | -- | Inf | unknown
4.47/4.56 c 4.6s| 1 | 2 | 6798 | - | 145M | 0 |3777 |5580 |6392 | 718 | 24 | 109 | 39 | 0.000000e+00 | -- | Inf | unknown
8.36/8.47 c 8.5s| 100 | 51 | 34976 | 294.3 | 147M | 36 |3777 |5691 |6146 |1188 | 1 | 220 | 39 | 0.000000e+00 | -- | Inf | unknown
9.76/9.84 c 9.8s| 200 | 88 | 43467 | 189.1 | 149M | 63 |3777 |6002 | 0 |1422 | 0 | 531 | 39 | 0.000000e+00 | -- | Inf | unknown
11.16/11.26 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
11.16/11.26 c 11.3s| 300 | 160 | 49746 | 146.8 | 151M | 95 |3777 |6123 |6249 |1515 | 1 | 654 | 39 | 0.000000e+00 | -- | Inf | unknown
12.96/13.08 c 13.1s| 400 | 254 | 58516 | 132.0 | 152M | 95 |3777 |6271 |6249 |1523 | 1 | 806 | 39 | 0.000000e+00 | -- | Inf | unknown
14.35/14.45 c 14.4s| 500 | 354 | 65989 | 120.5 | 152M | 103 |3777 |6403 |6249 |1525 | 1 | 943 | 39 | 0.000000e+00 | -- | Inf | unknown
15.24/15.38 c 15.4s| 600 | 454 | 70286 | 107.6 | 153M | 104 |3777 |6534 |6249 |1525 | 1 |1080 | 39 | 0.000000e+00 | -- | Inf | unknown
16.24/16.39 c 16.4s| 700 | 553 | 75575 | 99.8 | 153M | 106 |3777 |6657 |6249 |1525 | 1 |1211 | 39 | 0.000000e+00 | -- | Inf | unknown
17.14/17.26 c 17.2s| 800 | 653 | 80834 | 93.9 | 155M | 107 |3777 |6856 |6249 |1526 | 1 |1414 | 39 | 0.000000e+00 | -- | Inf | unknown
18.04/18.11 c 18.1s| 900 | 753 | 84451 | 87.4 | 155M | 124 |3777 |7145 |6249 |1528 | 1 |1705 | 39 | 0.000000e+00 | -- | Inf | unknown
18.53/18.63 c 18.6s| 1000 | 842 | 86174 | 80.4 | 155M | 147 |3777 |7353 |6249 |1528 | 1 |1915 | 39 | 0.000000e+00 | -- | Inf | unknown
18.63/18.76 c Restart triggered after 50 consecutive estimations that the remaining tree will be large
18.63/18.77 c (run 1, node 1034) performing user restart
18.63/18.77 c
18.63/18.78 c (restart) converted 97 cuts from the global cut pool into linear constraints
18.63/18.78 c
18.63/18.80 c presolving:
18.73/18.81 c (round 1, fast) 6 del vars, 108 del conss, 62 add conss, 0 chg bounds, 69 chg sides, 159 chg coeffs, 0 upgd conss, 0 impls, 1525 clqs
18.73/18.81 c (round 2, fast) 6 del vars, 108 del conss, 62 add conss, 0 chg bounds, 261 chg sides, 687 chg coeffs, 0 upgd conss, 0 impls, 1525 clqs
18.73/18.83 c (round 3, exhaustive) 6 del vars, 120 del conss, 63 add conss, 0 chg bounds, 280 chg sides, 688 chg coeffs, 0 upgd conss, 0 impls, 1528 clqs
18.73/18.85 c (round 4, exhaustive) 6 del vars, 120 del conss, 65 add conss, 0 chg bounds, 282 chg sides, 692 chg coeffs, 166 upgd conss, 0 impls, 1529 clqs
18.73/18.85 c (round 5, fast) 6 del vars, 190 del conss, 65 add conss, 0 chg bounds, 283 chg sides, 700 chg coeffs, 166 upgd conss, 0 impls, 1529 clqs
18.73/18.85 c (round 6, medium) 6 del vars, 190 del conss, 65 add conss, 0 chg bounds, 289 chg sides, 706 chg coeffs, 166 upgd conss, 0 impls, 1531 clqs
19.04/19.18 c (round 7, exhaustive) 6 del vars, 254 del conss, 65 add conss, 0 chg bounds, 289 chg sides, 1826 chg coeffs, 166 upgd conss, 0 impls, 1531 clqs
19.33/19.49 c (round 8, exhaustive) 6 del vars, 254 del conss, 65 add conss, 0 chg bounds, 289 chg sides, 3071 chg coeffs, 166 upgd conss, 0 impls, 1531 clqs
19.73/19.84 c presolving (9 rounds: 9 fast, 6 medium, 5 exhaustive):
19.73/19.84 c 6 deleted vars, 254 deleted constraints, 65 added constraints, 0 tightened bounds, 0 added holes, 289 changed sides, 3071 changed coefficients
19.73/19.84 c 0 implications, 1531 cliques
19.73/19.84 c presolved problem has 3771 variables (3771 bin, 0 int, 0 impl, 0 cont) and 7285 constraints
19.73/19.84 c 4526 constraints of type <knapsack>
19.73/19.84 c 355 constraints of type <setppc>
19.73/19.84 c 460 constraints of type <and>
19.73/19.84 c 77 constraints of type <linear>
19.73/19.84 c 1867 constraints of type <logicor>
19.73/19.84 c transformed objective value is always integral (scale: 1)
19.73/19.84 c Presolving Time: 1.39
19.73/19.84 c
19.83/19.96 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
19.83/19.96 c 20.0s| 1 | 0 | 88294 | - | 161M | 0 |3771 |7285 |6014 | 0 | 0 |1940 | 39 | 0.000000e+00 | -- | Inf | unknown
20.22/20.36 c 20.3s| 1 | 0 | 88500 | - | 162M | 0 |3771 |7285 |6108 | 94 | 1 |1940 | 39 | 0.000000e+00 | -- | Inf | unknown
20.32/20.48 c 20.5s| 1 | 0 | 88587 | - | 163M | 0 |3771 |7285 |6140 | 126 | 2 |1940 | 39 | 0.000000e+00 | -- | Inf | unknown
20.42/20.59 c 20.6s| 1 | 0 | 88695 | - | 164M | 0 |3771 |7293 |6167 | 153 | 3 |1948 | 39 | 0.000000e+00 | -- | Inf | unknown
20.62/20.72 c 20.7s| 1 | 0 | 88829 | - | 165M | 0 |3771 |7293 |6197 | 183 | 4 |1948 | 39 | 0.000000e+00 | -- | Inf | unknown
20.72/20.86 c 20.9s| 1 | 0 | 88954 | - | 166M | 0 |3771 |7293 |6237 | 223 | 5 |1948 | 39 | 0.000000e+00 | -- | Inf | unknown
20.82/20.98 c 21.0s| 1 | 0 | 89049 | - | 168M | 0 |3771 |7293 |6265 | 251 | 6 |1948 | 39 | 0.000000e+00 | -- | Inf | unknown
21.03/21.11 c 21.1s| 1 | 0 | 89163 | - | 168M | 0 |3771 |7293 |6298 | 284 | 7 |1948 | 39 | 0.000000e+00 | -- | Inf | unknown
21.12/21.27 c 21.3s| 1 | 0 | 89279 | - | 170M | 0 |3771 |7293 |6329 | 315 | 8 |1948 | 39 | 0.000000e+00 | -- | Inf | unknown
21.32/21.46 c 21.4s| 1 | 0 | 89395 | - | 172M | 0 |3771 |7296 |6352 | 338 | 9 |1951 | 39 | 0.000000e+00 | -- | Inf | unknown
21.52/21.64 c 21.6s| 1 | 0 | 89461 | - | 176M | 0 |3771 |7296 |6377 | 363 | 10 |1951 | 39 | 0.000000e+00 | -- | Inf | unknown
21.62/21.72 c 21.7s| 1 | 0 | 89579 | - | 177M | 0 |3771 |7297 |6399 | 385 | 11 |1952 | 39 | 0.000000e+00 | -- | Inf | unknown
22.22/22.36 c 22.4s| 1 | 2 | 94392 | - | 177M | 0 |3771 |7322 |6399 | 385 | 11 |1977 | 57 | 0.000000e+00 | -- | Inf | unknown
27.80/27.95 c 27.9s| 100 | 68 |132804 | 109.2 | 182M | 49 |3771 |7441 | 0 | 794 | 0 |2096 | 57 | 0.000000e+00 | -- | Inf | 7.90%
29.00/29.19 c 29.2s| 200 | 146 |142121 | 107.9 | 183M | 78 |3771 |7702 |6231 |1042 | 1 |2364 | 57 | 0.000000e+00 | -- | Inf | 7.90%
29.50/29.68 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
29.50/29.68 c 29.7s| 300 | 224 |142881 | 100.4 | 183M | 141 |3771 |7755 | 0 |1048 | 0 |2417 | 57 | 0.000000e+00 | -- | Inf | 7.90%
29.79/29.97 c 30.0s| 400 | 256 |143125 | 93.6 | 184M | 141 |3771 |7895 |6237 |1048 | 1 |2566 | 57 | 0.000000e+00 | -- | Inf | 7.90%
30.58/30.74 c 30.7s| 500 | 287 |145082 | 88.7 | 184M | 141 |3771 |7945 |6237 |1105 | 1 |2755 | 57 | 0.000000e+00 | -- | Inf | 7.90%
30.89/31.07 c 31.1s| 600 | 306 |145366 | 83.5 | 184M | 141 |3771 |8081 |6237 |1105 | 1 |2958 | 57 | 0.000000e+00 | -- | Inf | 7.90%
31.28/31.43 c 31.4s| 700 | 320 |145604 | 78.8 | 185M | 141 |3771 |8213 |6237 |1105 | 1 |3173 | 57 | 0.000000e+00 | -- | Inf | 7.90%
31.58/31.75 c 31.7s| 800 | 327 |145796 | 74.6 | 185M | 141 |3771 |8342 |6237 |1105 | 1 |3354 | 57 | 0.000000e+00 | -- | Inf | 7.90%
31.88/32.00 c 32.0s| 900 | 333 |146031 | 70.9 | 185M | 141 |3771 |8276 |6237 |1105 | 1 |3462 | 57 | 0.000000e+00 | -- | Inf | 7.90%
32.08/32.22 c 32.2s| 1000 | 349 |146242 | 67.5 | 185M | 141 |3771 |8324 | 0 |1105 | 0 |3517 | 57 | 0.000000e+00 | -- | Inf | 7.90%
32.28/32.43 c 32.4s| 1100 | 346 |146410 | 64.4 | 185M | 141 |3771 |8369 | 0 |1105 | 0 |3614 | 57 | 0.000000e+00 | -- | Inf | 7.90%
32.48/32.64 c 32.6s| 1200 | 362 |146608 | 61.6 | 185M | 141 |3771 |8268 | 0 |1105 | 0 |3645 | 57 | 0.000000e+00 | -- | Inf | 7.90%
32.68/32.87 c 32.9s| 1300 | 373 |146822 | 59.1 | 185M | 141 |3771 |8312 | 0 |1105 | 0 |3717 | 57 | 0.000000e+00 | -- | Inf | 7.90%
32.88/33.06 c 33.1s| 1400 | 359 |146970 | 56.7 | 185M | 141 |3771 |8354 |6237 |1105 | 1 |3800 | 57 | 0.000000e+00 | -- | Inf | 7.90%
33.07/33.25 c 33.2s| 1500 | 351 |147147 | 54.5 | 185M | 141 |3771 |8322 |6237 |1105 | 1 |3851 | 57 | 0.000000e+00 | -- | Inf | 7.90%
33.27/33.47 c 33.5s| 1600 | 358 |147324 | 52.5 | 185M | 141 |3771 |8308 |6237 |1105 | 1 |3895 | 57 | 0.000000e+00 | -- | Inf | 7.90%
33.57/33.72 c 33.7s| 1700 | 369 |147844 | 50.8 | 185M | 141 |3771 |8302 |6237 |1105 | 1 |3935 | 57 | 0.000000e+00 | -- | Inf | 7.90%
33.77/33.98 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
33.77/33.98 c 34.0s| 1800 | 404 |148068 | 49.1 | 185M | 141 |3771 |8310 | 0 |1105 | 0 |4003 | 57 | 0.000000e+00 | -- | Inf | 7.90%
34.07/34.20 c 34.2s| 1900 | 410 |148249 | 47.5 | 185M | 141 |3771 |8350 |6237 |1105 | 1 |4089 | 57 | 0.000000e+00 | -- | Inf | 7.90%
34.27/34.42 c 34.4s| 2000 | 423 |148440 | 46.0 | 185M | 141 |3771 |8392 | 0 |1105 | 0 |4162 | 57 | 0.000000e+00 | -- | Inf | 7.90%
34.47/34.64 c 34.6s| 2100 | 436 |148620 | 44.5 | 185M | 141 |3771 |8406 |6237 |1105 | 1 |4224 | 57 | 0.000000e+00 | -- | Inf | 7.90%
34.67/34.86 c 34.9s| 2200 | 438 |148786 | 43.2 | 186M | 141 |3771 |8475 | 0 |1105 | 0 |4322 | 57 | 0.000000e+00 | -- | Inf | 7.90%
34.87/35.06 c 35.1s| 2300 | 440 |148969 | 42.0 | 186M | 141 |3771 |8559 | 0 |1105 | 0 |4413 | 57 | 0.000000e+00 | -- | Inf | 7.90%
35.07/35.28 c 35.3s| 2400 | 428 |149109 | 40.8 | 186M | 141 |3771 |8674 | 0 |1105 | 0 |4560 | 57 | 0.000000e+00 | -- | Inf | 7.90%
35.37/35.54 c 35.5s| 2500 | 454 |149327 | 39.7 | 186M | 141 |3771 |8707 | 0 |1105 | 0 |4641 | 57 | 0.000000e+00 | -- | Inf | 7.90%
35.56/35.79 c 35.8s| 2600 | 464 |149527 | 38.7 | 186M | 141 |3771 |8740 |6237 |1105 | 1 |4767 | 57 | 0.000000e+00 | -- | Inf | 7.90%
35.87/36.01 c 36.0s| 2700 | 479 |149742 | 37.7 | 186M | 141 |3771 |8772 |6237 |1105 | 1 |4839 | 57 | 0.000000e+00 | -- | Inf | 7.90%
36.06/36.23 c 36.2s| 2800 | 483 |149962 | 36.8 | 186M | 141 |3771 |8820 |6237 |1105 | 1 |4921 | 57 | 0.000000e+00 | -- | Inf | 7.90%
36.26/36.45 c 36.4s| 2900 | 488 |150145 | 35.9 | 186M | 141 |3771 |8885 | 0 |1105 | 0 |5047 | 57 | 0.000000e+00 | -- | Inf | 7.90%
36.56/36.70 c 36.7s| 3000 | 514 |150342 | 35.0 | 186M | 141 |3771 |8935 | 0 |1105 | 0 |5155 | 57 | 0.000000e+00 | -- | Inf | 7.90%
36.76/36.94 c 36.9s| 3100 | 514 |150485 | 34.2 | 187M | 141 |3771 |9022 |6237 |1105 | 1 |5326 | 57 | 0.000000e+00 | -- | Inf | 7.90%
36.96/37.15 c 37.1s| 3200 | 509 |150664 | 33.5 | 187M | 141 |3771 |9067 |6237 |1105 | 1 |5469 | 57 | 0.000000e+00 | -- | Inf | 7.90%
37.26/37.41 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
37.26/37.41 c 37.4s| 3300 | 525 |150868 | 32.7 | 187M | 141 |3771 |9166 |6237 |1105 | 1 |5621 | 57 | 0.000000e+00 | -- | Inf | 7.90%
37.46/37.67 c 37.7s| 3400 | 533 |151064 | 32.0 | 187M | 141 |3771 |9174 | 0 |1105 | 0 |5755 | 57 | 0.000000e+00 | -- | Inf | 7.90%
37.75/37.91 c 37.9s| 3500 | 535 |151257 | 31.4 | 187M | 141 |3771 |9281 |6237 |1105 | 1 |5928 | 57 | 0.000000e+00 | -- | Inf | 7.90%
37.96/38.18 c 38.2s| 3600 | 562 |151435 | 30.7 | 187M | 141 |3771 |9134 |6237 |1105 | 1 |6017 | 57 | 0.000000e+00 | -- | Inf | 7.90%
38.25/38.43 c 38.4s| 3700 | 588 |151613 | 30.1 | 187M | 141 |3771 |9017 |6237 |1105 | 1 |6107 | 57 | 0.000000e+00 | -- | Inf | 7.90%
38.45/38.67 c 38.7s| 3800 | 594 |151772 | 29.5 | 187M | 141 |3771 |9001 | 0 |1105 | 0 |6220 | 57 | 0.000000e+00 | -- | Inf | 7.90%
38.75/38.91 c 38.9s| 3900 | 596 |151941 | 29.0 | 187M | 141 |3771 |9083 |6237 |1105 | 1 |6372 | 57 | 0.000000e+00 | -- | Inf | 7.90%
38.95/39.16 c 39.2s| 4000 | 604 |152160 | 28.4 | 187M | 141 |3771 |9174 |6237 |1105 | 1 |6566 | 57 | 0.000000e+00 | -- | Inf | 7.90%
39.15/39.35 c 39.3s| 4100 | 584 |152319 | 27.9 | 187M | 141 |3771 |9314 |6237 |1105 | 1 |6742 | 57 | 0.000000e+00 | -- | Inf | 7.90%
39.45/39.61 c 39.6s| 4200 | 587 |152485 | 27.4 | 187M | 141 |3771 |9330 |6237 |1105 | 1 |6949 | 57 | 0.000000e+00 | -- | Inf | 7.90%
39.65/39.84 c 39.8s| 4300 | 576 |152627 | 26.9 | 187M | 141 |3771 |9419 |6237 |1105 | 1 |7126 | 57 | 0.000000e+00 | -- | Inf | 7.90%
39.85/40.08 c 40.1s| 4400 | 594 |152833 | 26.5 | 187M | 141 |3771 |9545 |6237 |1105 | 1 |7293 | 57 | 0.000000e+00 | -- | Inf | 7.90%
40.05/40.28 c 40.3s| 4500 | 600 |153009 | 26.0 | 187M | 141 |3771 |9670 | 0 |1105 | 0 |7457 | 57 | 0.000000e+00 | -- | Inf | 7.90%
40.24/40.47 c 40.5s| 4600 | 598 |153188 | 25.6 | 187M | 141 |3771 |9747 |6237 |1105 | 1 |7568 | 57 | 0.000000e+00 | -- | Inf | 7.90%
40.44/40.64 c 40.6s| 4700 | 585 |153341 | 25.2 | 187M | 141 |3771 |9810 | 0 |1105 | 0 |7679 | 57 | 0.000000e+00 | -- | Inf | 7.90%
40.64/40.87 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
40.64/40.87 c 40.9s| 4800 | 582 |153507 | 24.8 | 188M | 141 |3771 |9796 |6237 |1105 | 1 |7872 | 57 | 0.000000e+00 | -- | Inf | 7.90%
40.95/41.11 c 41.1s| 4900 | 597 |153762 | 24.4 | 188M | 141 |3771 |9797 | 0 |1105 | 0 |7987 | 57 | 0.000000e+00 | -- | Inf | 7.90%
41.14/41.36 c 41.3s| 5000 | 612 |153998 | 24.0 | 188M | 141 |3771 |9852 |6237 |1105 | 1 |8091 | 57 | 0.000000e+00 | -- | Inf | 7.90%
41.44/41.62 c 41.6s| 5100 | 624 |154191 | 23.7 | 188M | 141 |3771 |9949 |6237 |1105 | 1 |8211 | 57 | 0.000000e+00 | -- | Inf | 7.90%
41.64/41.88 c 41.9s| 5200 | 625 |154375 | 23.3 | 189M | 141 |3771 | 10k| 0 |1105 | 0 |8465 | 57 | 0.000000e+00 | -- | Inf | 7.90%
41.94/42.12 c 42.1s| 5300 | 619 |154529 | 23.0 | 189M | 141 |3771 | 10k|6237 |1105 | 1 |8636 | 57 | 0.000000e+00 | -- | Inf | 7.90%
42.14/42.38 c 42.4s| 5400 | 631 |154723 | 22.6 | 189M | 141 |3771 | 10k|6237 |1105 | 1 |8764 | 57 | 0.000000e+00 | -- | Inf | 7.90%
42.44/42.64 c 42.6s| 5500 | 671 |154987 | 22.3 | 189M | 141 |3771 | 10k|6237 |1105 | 1 |8863 | 57 | 0.000000e+00 | -- | Inf | 7.90%
42.63/42.89 c 42.9s| 5600 | 691 |155221 | 22.0 | 189M | 141 |3771 |9998 |6237 |1105 | 1 |9030 | 57 | 0.000000e+00 | -- | Inf | 7.90%
42.94/43.12 c 43.1s| 5700 | 682 |155399 | 21.7 | 189M | 141 |3771 | 10k| 0 |1105 | 0 |9272 | 57 | 0.000000e+00 | -- | Inf | 7.90%
43.13/43.34 c 43.3s| 5800 | 681 |155569 | 21.4 | 189M | 141 |3771 | 10k|6237 |1105 | 1 |9482 | 57 | 0.000000e+00 | -- | Inf | 7.90%
43.33/43.54 c 43.5s| 5900 | 661 |155712 | 21.2 | 189M | 141 |3771 | 10k| 0 |1105 | 0 |9683 | 57 | 0.000000e+00 | -- | Inf | 7.90%
43.53/43.74 c 43.7s| 6000 | 669 |155884 | 20.9 | 189M | 141 |3771 | 10k| 0 |1105 | 0 |9852 | 57 | 0.000000e+00 | -- | Inf | 7.90%
43.73/43.95 c 43.9s| 6100 | 677 |156081 | 20.6 | 189M | 141 |3771 | 10k| 0 |1105 | 0 | 10k| 57 | 0.000000e+00 | -- | Inf | 7.90%
43.93/44.17 c 44.2s| 6200 | 687 |156287 | 20.4 | 189M | 141 |3771 | 10k|6237 |1105 | 1 | 10k| 57 | 0.000000e+00 | -- | Inf | 7.90%
44.13/44.37 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
44.13/44.37 c 44.4s| 6300 | 683 |156456 | 20.1 | 189M | 141 |3771 | 10k|6237 |1105 | 1 | 10k| 57 | 0.000000e+00 | -- | Inf | 7.90%
44.33/44.57 c 44.6s| 6400 | 674 |156621 | 19.9 | 189M | 141 |3771 | 10k|6237 |1105 | 1 | 10k| 57 | 0.000000e+00 | -- | Inf | 7.90%
44.53/44.79 c 44.8s| 6500 | 672 |156785 | 19.6 | 190M | 141 |3771 | 10k|6237 |1105 | 1 | 10k| 57 | 0.000000e+00 | -- | Inf | 7.90%
44.83/45.02 c 45.0s| 6600 | 673 |157015 | 19.4 | 190M | 141 |3771 | 11k| 0 |1105 | 0 | 10k| 57 | 0.000000e+00 | -- | Inf | 7.90%
45.03/45.26 c 45.3s| 6700 | 677 |157162 | 19.2 | 190M | 141 |3771 | 11k|6237 |1105 | 1 | 11k| 57 | 0.000000e+00 | -- | Inf | 7.90%
45.32/45.51 c 45.5s| 6800 | 672 |157329 | 18.9 | 190M | 141 |3771 | 10k|6237 |1105 | 1 | 11k| 57 | 0.000000e+00 | -- | Inf | 7.90%
45.62/45.80 c 45.8s| 6900 | 692 |157518 | 18.7 | 190M | 141 |3771 | 10k|6237 |1105 | 1 | 11k| 57 | 0.000000e+00 | -- | Inf | 7.90%
45.83/46.06 c 46.1s| 7000 | 686 |157718 | 18.5 | 190M | 141 |3771 | 10k| 0 |1105 | 0 | 11k| 57 | 0.000000e+00 | -- | Inf | 7.90%
46.12/46.38 c 46.4s| 7100 | 719 |158544 | 18.4 | 190M | 141 |3771 | 10k|6237 |1105 | 1 | 11k| 57 | 0.000000e+00 | -- | Inf | 7.90%
46.42/46.64 c 46.6s| 7200 | 731 |158714 | 18.2 | 190M | 141 |3771 | 10k| 0 |1105 | 0 | 11k| 57 | 0.000000e+00 | -- | Inf | 7.90%
46.62/46.85 c 46.8s| 7300 | 726 |158889 | 18.0 | 190M | 141 |3771 | 10k| 0 |1105 | 0 | 11k| 57 | 0.000000e+00 | -- | Inf | 7.90%
46.82/47.08 c 47.1s| 7400 | 721 |159057 | 17.8 | 190M | 141 |3771 | 10k|6237 |1105 | 1 | 12k| 57 | 0.000000e+00 | -- | Inf | 7.90%
47.12/47.33 c 47.3s| 7500 | 719 |159198 | 17.6 | 190M | 141 |3771 |9938 |6237 |1105 | 1 | 12k| 57 | 0.000000e+00 | -- | Inf | 7.90%
47.32/47.56 c 47.6s| 7600 | 723 |159380 | 17.4 | 190M | 141 |3771 |9776 | 0 |1105 | 0 | 12k| 57 | 0.000000e+00 | -- | Inf | 7.90%
47.61/47.85 c 47.8s| 7700 | 774 |159621 | 17.2 | 190M | 141 |3771 |9515 |6237 |1105 | 1 | 12k| 57 | 0.000000e+00 | -- | Inf | 7.90%
47.92/48.12 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
47.92/48.12 c 48.1s| 7800 | 810 |159820 | 17.1 | 190M | 141 |3771 |9300 |6237 |1105 | 1 | 12k| 57 | 0.000000e+00 | -- | Inf | 7.90%
48.11/48.39 c 48.4s| 7900 | 833 |160006 | 16.9 | 190M | 141 |3771 |9339 |6237 |1105 | 1 | 12k| 57 | 0.000000e+00 | -- | Inf | 7.90%
48.41/48.61 c 48.6s| 8000 | 827 |160189 | 16.7 | 190M | 141 |3771 |9567 | 0 |1105 | 0 | 13k| 57 | 0.000000e+00 | -- | Inf | 7.90%
48.61/48.89 c 48.9s| 8100 | 841 |160454 | 16.6 | 190M | 141 |3771 |9466 | 0 |1105 | 0 | 13k| 57 | 0.000000e+00 | -- | Inf | 7.90%
48.91/49.14 c 49.1s| 8200 | 846 |160674 | 16.4 | 190M | 141 |3771 |9595 |6237 |1105 | 1 | 13k| 57 | 0.000000e+00 | -- | Inf | 7.90%
49.11/49.38 c 49.4s| 8300 | 831 |160833 | 16.3 | 190M | 141 |3771 |9681 | 0 |1105 | 0 | 13k| 57 | 0.000000e+00 | -- | Inf | 7.90%
49.41/49.62 c 49.6s| 8400 | 826 |161010 | 16.1 | 190M | 141 |3771 |9661 |6237 |1105 | 1 | 13k| 57 | 0.000000e+00 | -- | Inf | 7.90%
49.71/49.90 c 49.9s| 8500 | 847 |161204 | 16.0 | 190M | 141 |3771 |9727 |6237 |1105 | 1 | 14k| 57 | 0.000000e+00 | -- | Inf | 7.90%
49.91/50.17 c 50.2s| 8600 | 834 |161380 | 15.8 | 190M | 141 |3771 |9819 |6237 |1105 | 1 | 14k| 57 | 0.000000e+00 | -- | Inf | 7.90%
50.20/50.42 c 50.4s| 8700 | 838 |161538 | 15.7 | 190M | 141 |3771 |9802 |6237 |1105 | 1 | 14k| 57 | 0.000000e+00 | -- | Inf | 7.90%
50.40/50.69 c 50.7s| 8800 | 848 |161706 | 15.5 | 190M | 141 |3771 |9641 |6237 |1105 | 1 | 14k| 57 | 0.000000e+00 | -- | Inf | 7.90%
50.70/50.96 c 51.0s| 8900 | 849 |161888 | 15.4 | 190M | 141 |3771 |9581 | 0 |1105 | 0 | 14k| 57 | 0.000000e+00 | -- | Inf | 7.90%
51.00/51.22 c 51.2s| 9000 | 854 |162082 | 15.3 | 190M | 141 |3771 |9493 |6237 |1105 | 1 | 14k| 57 | 0.000000e+00 | -- | Inf | 7.90%
51.20/51.49 c 51.5s| 9100 | 858 |162285 | 15.1 | 190M | 141 |3771 |9573 |6237 |1105 | 1 | 15k| 57 | 0.000000e+00 | -- | Inf | 7.90%
51.50/51.74 c 51.7s| 9200 | 882 |162474 | 15.0 | 190M | 141 |3771 |9499 | 0 |1105 | 0 | 15k| 57 | 0.000000e+00 | -- | Inf | 7.90%
51.80/52.00 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
51.80/52.00 c 52.0s| 9300 | 899 |162624 | 14.9 | 190M | 141 |3771 |9518 | 0 |1105 | 0 | 15k| 57 | 0.000000e+00 | -- | Inf | 7.90%
52.00/52.26 c 52.3s| 9400 | 914 |162813 | 14.7 | 190M | 141 |3771 |9556 |6237 |1105 | 1 | 15k| 57 | 0.000000e+00 | -- | Inf | 7.90%
52.30/52.51 c 52.5s| 9500 | 914 |162940 | 14.6 | 191M | 141 |3771 |9661 | 0 |1105 | 0 | 15k| 57 | 0.000000e+00 | -- | Inf | 7.90%
52.59/52.87 c 52.9s| 9600 | 938 |163473 | 14.5 | 191M | 141 |3771 |9543 |6236 |1105 | 1 | 15k| 57 | 0.000000e+00 | -- | Inf | 7.90%
53.90/54.17 c 54.2s| 9700 | 206 |165392 | 14.6 | 192M | 160 |3771 |8950 |6239 |1157 | 1 | 15k| 57 | 0.000000e+00 | -- | Inf | 7.90%
54.80/55.10 c 55.1s| 9800 | 216 |166182 | 14.5 | 192M | 160 |3771 |8791 | 0 |1167 | 0 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
55.80/56.01 c 56.0s| 9900 | 230 |166766 | 14.4 | 193M | 160 |3771 |8633 | 0 |1169 | 0 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
55.99/56.25 c 56.2s| 10000 | 217 |166987 | 14.3 | 193M | 160 |3771 |8601 |6238 |1175 | 1 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
56.29/56.53 c 56.5s| 10100 | 228 |167497 | 14.2 | 193M | 160 |3771 |8524 | 0 |1188 | 0 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
56.59/56.82 c 56.8s| 10200 | 229 |168093 | 14.2 | 193M | 160 |3771 |8555 | 0 |1195 | 0 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
56.89/57.14 c 57.1s| 10300 | 233 |169006 | 14.1 | 193M | 160 |3771 |8603 |6239 |1201 | 1 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
57.19/57.40 c 57.4s| 10400 | 233 |169661 | 14.0 | 193M | 160 |3771 |8724 |6239 |1201 | 1 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
57.38/57.66 c 57.7s| 10500 | 236 |170461 | 14.0 | 193M | 160 |3771 |8826 | 0 |1201 | 0 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
57.68/57.97 c 58.0s| 10600 | 243 |172000 | 14.0 | 194M | 160 |3771 |8958 | 0 |1201 | 0 | 16k| 57 | 0.000000e+00 | -- | Inf | 7.90%
57.98/58.20 c 58.2s| 10700 | 240 |172255 | 13.9 | 194M | 160 |3771 |9034 | 0 |1201 | 0 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
58.18/58.44 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
58.18/58.44 c 58.4s| 10800 | 243 |172745 | 13.8 | 194M | 160 |3771 |9096 |6239 |1201 | 1 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
58.38/58.68 c 58.7s| 10900 | 240 |173121 | 13.7 | 194M | 160 |3771 |9181 | 0 |1201 | 0 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
58.68/58.93 c 58.9s| 11000 | 239 |173495 | 13.7 | 194M | 160 |3771 |9204 | 0 |1201 | 0 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
58.88/59.18 c 59.2s| 11100 | 240 |173876 | 13.6 | 194M | 160 |3771 |9221 |6239 |1201 | 1 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
59.18/59.48 c 59.5s| 11200 | 235 |175060 | 13.6 | 194M | 160 |3771 |9267 | 0 |1201 | 0 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
59.48/59.76 c 59.8s| 11300 | 295 |175614 | 13.5 | 194M | 160 |3771 |8999 |6238 |1205 | 1 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
59.88/60.12 c 60.1s| 11400 | 342 |177096 | 13.5 | 194M | 160 |3771 |9019 |6238 |1205 | 1 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
60.07/60.31 c 60.3s| 11500 | 347 |177289 | 13.4 | 194M | 160 |3771 |8975 |6238 |1205 | 1 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
60.27/60.51 c 60.5s| 11600 | 362 |177475 | 13.3 | 194M | 160 |3771 |8981 | 0 |1205 | 0 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
60.47/60.74 c 60.7s| 11700 | 295 |177698 | 13.2 | 194M | 160 |3771 |8842 |6238 |1209 | 1 | 17k| 57 | 0.000000e+00 | -- | Inf | 7.90%
60.78/61.01 c 61.0s| 11800 | 252 |177944 | 13.2 | 194M | 160 |3771 |8824 | 0 |1221 | 0 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
60.97/61.24 c 61.2s| 11900 | 239 |178191 | 13.1 | 194M | 160 |3771 |8779 | 0 |1225 | 0 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
61.27/61.50 c 61.5s| 12000 | 240 |178657 | 13.0 | 194M | 160 |3771 |8757 |6238 |1239 | 1 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
61.47/61.75 c 61.7s| 12100 | 247 |179045 | 12.9 | 195M | 160 |3771 |8657 |6239 |1243 | 1 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
61.67/61.98 c 62.0s| 12200 | 254 |179251 | 12.9 | 195M | 160 |3771 |8742 |6238 |1247 | 1 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
61.97/62.21 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
61.97/62.21 c 62.2s| 12300 | 271 |179504 | 12.8 | 195M | 160 |3771 |8803 |6238 |1247 | 1 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
62.07/62.39 c 62.4s| 12400 | 250 |179704 | 12.7 | 195M | 160 |3771 |8762 | 0 |1247 | 0 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
62.36/62.60 c 62.6s| 12500 | 256 |179972 | 12.6 | 195M | 160 |3771 |8780 |6238 |1247 | 1 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
62.56/62.80 c 62.8s| 12600 | 255 |180221 | 12.6 | 195M | 160 |3771 |8713 |6239 |1247 | 1 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
62.77/63.01 c 63.0s| 12700 | 245 |180484 | 12.5 | 195M | 160 |3771 |8718 | 0 |1247 | 0 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
62.96/63.24 c 63.2s| 12800 | 242 |180870 | 12.4 | 195M | 160 |3771 |8762 | 0 |1247 | 0 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
63.16/63.46 c 63.5s| 12900 | 254 |181303 | 12.4 | 195M | 160 |3771 |8793 | 0 |1251 | 0 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
63.36/63.66 c 63.7s| 13000 | 255 |181632 | 12.3 | 195M | 160 |3771 |8774 |6238 |1251 | 1 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
63.56/63.86 c 63.9s| 13100 | 247 |182042 | 12.2 | 195M | 160 |3771 |8620 |6239 |1259 | 3 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
63.76/64.10 c 64.1s| 13200 | 245 |182448 | 12.2 | 195M | 160 |3771 |8508 | 0 |1275 | 0 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
64.56/64.85 c 64.8s| 13300 | 296 |184517 | 12.2 | 195M | 160 |3771 |8298 | 0 |1309 | 0 | 18k| 57 | 0.000000e+00 | -- | Inf | 7.90%
65.15/65.46 c 65.5s| 13400 | 288 |185727 | 12.2 | 195M | 160 |3771 |8192 | 0 |1334 | 0 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
65.76/66.01 c 66.0s| 13500 | 358 |187256 | 12.3 | 195M | 160 |3771 |8220 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
66.35/66.68 c 66.7s| 13600 | 458 |190322 | 12.4 | 196M | 160 |3771 |8212 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
66.75/67.04 c 67.0s| 13700 | 523 |191150 | 12.4 | 196M | 160 |3771 |8223 | 0 |1340 | 0 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
67.15/67.42 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
67.15/67.42 c 67.4s| 13800 | 597 |191983 | 12.3 | 196M | 160 |3771 |8270 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
67.54/67.85 c 67.8s| 13900 | 691 |193356 | 12.3 | 196M | 160 |3771 |8275 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
67.94/68.24 c 68.2s| 14000 | 767 |194505 | 12.3 | 196M | 160 |3771 |8286 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
68.14/68.48 c 68.5s| 14100 | 817 |195129 | 12.3 | 196M | 160 |3771 |8231 | 0 |1340 | 0 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
68.54/68.83 c 68.8s| 14200 | 903 |195934 | 12.3 | 196M | 160 |3771 |8206 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
68.94/69.27 c 69.3s| 14300 | 969 |197217 | 12.3 | 196M | 160 |3771 |8175 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
69.34/69.60 c 69.6s| 14400 | 1050 |198605 | 12.3 | 196M | 160 |3771 |8167 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
69.64/69.91 c 69.9s| 14500 | 1126 |199363 | 12.3 | 196M | 160 |3771 |8163 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
69.93/70.26 c 70.3s| 14600 | 1207 |200434 | 12.2 | 197M | 160 |3771 |8158 |6231 |1340 | 1 | 19k| 57 | 0.000000e+00 | -- | Inf | 7.90%
70.23/70.55 c *70.5s| 14684 | 0 |201091 | 12.2 | LP | 160 |3771 |8171 |6232 |1353 | 1 | 19k| 57 | 0.000000e+00 | 0.000000e+00 | 0.00%| 100.00%
70.23/70.56 c
70.23/70.56 c SCIP Status : problem is solved [optimal solution found]
70.23/70.56 c Solving Time (sec) : 70.55
70.23/70.56 c Solving Nodes : 14684 (total of 15718 nodes in 2 runs)
70.23/70.56 c Primal Bound : +0.00000000000000e+00 (1 solutions)
70.23/70.56 c Dual Bound : +0.00000000000000e+00
70.23/70.56 c Gap : 0.00 %
70.23/70.56 s SATISFIABLE
70.23/70.56 v -x6099 -x6098 x6097 x6096 x6095 x6094 x6093 x6092 x6091 x6090 x6089 x6088 x6087 x6086 x6085 x6084 x6083 x6082 x6081 x6080 x6079
70.23/70.56 v -x6078 -x6077 -x6076 -x6075 x6074 x6073 x6072 x6071 x6070 x6069 -x6068 x6067 -x6066 -x6065 x6064 -x6063 x6062 x6061 -x6060 -x6059
70.23/70.56 v -x6058 -x6057 -x6056 -x6055 -x6054 x6053 x6052 x6051 x6050 x6049 x6048 -x6047 x6046 -x6045 -x6044 x6043 -x6042 x6041 x6040
70.23/70.56 v -x6039 -x6038 -x6037 -x6036 -x6035 -x6034 -x6033 -x6032 x6031 x6030 x6029 x6028 x6027 -x6026 x6025 -x6024 -x6023 x6022 -x6021
70.23/70.56 v x6020 -x6019 -x6018 -x6017 -x6016 -x6015 -x6014 -x6013 -x6012 -x6011 -x6010 -x6009 -x6008 -x6007 x6006 -x6005 -x6004 -x6003
70.23/70.56 v -x6002 x6001 -x6000 -x5999 -x5998 -x5997 -x5996 -x5995 -x5994 -x5993 -x5992 -x5991 -x5990 -x5989 -x5988 -x5987 -x5986 x5985
70.23/70.56 v -x5984 -x5983 -x5982 -x5981 x5980 -x5979 -x5978 -x5977 -x5976 -x5975 -x5974 -x5973 -x5972 -x5971 -x5970 -x5969 -x5968 -x5967
70.23/70.56 v -x5966 -x5965 x5964 -x5963 -x5962 -x5961 -x5960 x5959 -x5958 -x5957 -x5956 -x5955 -x5954 -x5953 -x5952 -x5951 -x5950 -x5949
70.23/70.56 v -x5948 -x5947 -x5946 -x5945 -x5944 x5943 -x5942 -x5941 -x5940 -x5939 x5938 -x5937 -x5936 -x5935 -x5934 -x5933 -x5932 -x5931
70.23/70.56 v -x5930 -x5929 -x5928 -x5927 -x5926 -x5925 -x5924 -x5923 -x5922 -x5921 -x5920 -x5919 -x5918 -x5917 -x5916 -x5915 -x5914 -x5913
70.23/70.56 v -x5912 -x5911 -x5910 -x5909 -x5908 -x5907 -x5906 x5905 x5904 x5903 x5902 x5901 x5900 x5899 -x5898 -x5897 x5896 -x5895 x5894
70.23/70.56 v x5893 -x5892 -x5891 -x5890 -x5889 -x5888 -x5887 -x5886 -x5885 -x5884 -x5883 -x5882 -x5881 -x5880 x5879 -x5878 -x5877 -x5876
70.23/70.56 v x5875 -x5874 -x5873 -x5872 -x5871 -x5870 -x5869 -x5868 -x5867 -x5866 -x5865 -x5864 x5863 x5862 x5861 x5860 x5859 x5858 -x5857
70.23/70.56 v x5856 -x5855 x5854 -x5853 x5852 x5851 -x5850 -x5849 -x5848 -x5847 -x5846 -x5845 -x5844 -x5843 x5842 x5841 x5840 x5839 x5838
70.23/70.56 v x5837 -x5836 x5835 -x5834 x5833 -x5832 x5831 x5830 -x5829 -x5828 -x5827 -x5826 -x5825 -x5824 -x5823 -x5822 -x5821 -x5820 -x5819
70.23/70.56 v -x5818 -x5817 -x5816 -x5815 -x5814 -x5813 -x5812 -x5811 -x5810 -x5809 -x5808 -x5807 -x5806 -x5805 -x5804 -x5803 -x5802 -x5801
70.23/70.56 v x5800 x5799 x5798 x5797 x5796 x5795 -x5794 x5793 -x5792 -x5791 x5790 x5789 x5788 -x5787 -x5786 -x5785 -x5784 -x5783 -x5782
70.23/70.56 v -x5781 -x5780 -x5779 -x5778 -x5777 -x5776 -x5775 x5774 -x5773 -x5772 -x5771 -x5770 x5769 -x5768 -x5767 -x5766 -x5765 -x5764
70.23/70.56 v -x5763 -x5762 -x5761 -x5760 -x5759 -x5758 x5757 x5756 x5755 x5754 x5753 -x5752 x5751 -x5750 -x5749 x5748 -x5747 x5746 -x5745
70.23/70.56 v -x5744 -x5743 -x5742 -x5741 -x5740 -x5739 -x5738 x5737 x5736 x5735 x5734 x5733 x5732 -x5731 x5730 -x5729 -x5728 x5727 -x5726
70.23/70.56 v x5725 x5724 -x5723 -x5722 -x5721 -x5720 -x5719 -x5718 -x5717 x5716 x5715 x5714 x5713 x5712 x5711 -x5710 x5709 -x5708 -x5707
70.23/70.56 v x5706 -x5705 x5704 x5703 -x5702 -x5701 -x5700 -x5699 -x5698 x5697 x5696 x5695 x5694 x5693 x5692 x5691 x5690 x5689 x5688 x5687
70.23/70.56 v x5686 x5685 x5684 x5683 x5682 x5681 x5680 -x5679 x5678 -x5677 -x5676 -x5675 -x5674 -x5673 -x5672 -x5671 -x5670 -x5669 -x5668
70.23/70.56 v -x5667 -x5666 -x5665 -x5664 -x5663 -x5662 -x5661 -x5660 -x5659 x5658 x5657 x5656 -x5655 -x5654 -x5653 -x5652 -x5651 -x5650 -x5649
70.23/70.56 v -x5648 -x5647 -x5646 -x5645 -x5644 -x5643 -x5642 -x5641 -x5640 -x5639 x5638 x5637 x5636 x5635 -x5634 -x5633 -x5632 -x5631
70.23/70.56 v -x5630 -x5629 -x5628 -x5627 -x5626 -x5625 -x5624 -x5623 -x5622 -x5621 -x5620 -x5619 -x5618 x5617 x5616 x5615 x5614 x5613 x5612
70.23/70.56 v -x5611 -x5610 -x5609 -x5608 -x5607 x5606 -x5605 x5604 x5603 -x5602 x5601 -x5600 -x5599 x5598 x5597 x5596 x5595 x5594 x5593
70.23/70.56 v x5592 x5591 x5590 -x5589 -x5588 -x5587 -x5586 x5585 -x5584 x5583 x5582 -x5581 x5580 -x5579 x5578 x5577 x5576 x5575 x5574 x5573
70.23/70.56 v x5572 x5571 x5570 x5569 -x5568 -x5567 -x5566 -x5565 x5564 -x5563 x5562 x5561 -x5560 x5559 -x5558 x5557 x5556 x5555 x5554
70.23/70.56 v x5553 x5552 x5551 x5550 x5549 x5548 -x5547 -x5546 -x5545 -x5544 x5543 -x5542 x5541 x5540 -x5539 x5538 -x5537 x5536 x5535 x5534
70.23/70.56 v x5533 x5532 x5531 x5530 x5529 x5528 x5527 -x5526 -x5525 -x5524 -x5523 x5522 -x5521 x5520 x5519 -x5518 x5517 -x5516 x5515 x5514
70.23/70.56 v x5513 x5512 x5511 x5510 x5509 x5508 x5507 x5506 x5505 x5504 x5503 x5502 x5501 x5500 x5499 x5498 -x5497 x5496 x5495 x5494
70.23/70.56 v x5493 x5492 x5491 x5490 x5489 x5488 -x5487 -x5486 -x5485 -x5484 -x5483 -x5482 -x5481 -x5480 -x5479 -x5478 -x5477 -x5476 -x5475
70.23/70.56 v -x5474 -x5473 -x5472 -x5471 x5470 x5469 x5468 x5467 x5466 x5465 x5464 -x5463 -x5462 -x5461 -x5460 -x5459 x5458 x5457 x5456
70.23/70.56 v -x5455 x5454 -x5453 x5452 x5451 x5450 x5449 x5448 x5447 x5446 -x5445 -x5444 -x5443 -x5442 -x5441 -x5440 -x5439 -x5438 -x5437
70.23/70.56 v -x5436 -x5435 -x5434 -x5433 -x5432 -x5431 -x5430 -x5429 x5428 x5427 x5426 x5425 -x5424 -x5423 -x5422 -x5421 -x5420 -x5419 -x5418
70.23/70.56 v -x5417 -x5416 -x5415 -x5414 -x5413 -x5412 -x5411 -x5410 -x5409 -x5408 x5407 x5406 x5405 x5404 x5403 x5402 x5401 x5400 x5399
70.23/70.56 v x5398 x5397 -x5396 x5395 x5394 x5393 x5392 x5391 x5390 x5389 x5388 x5387 x5386 x5385 x5384 x5383 -x5382 -x5381 -x5380 -x5379
70.23/70.56 v -x5378 -x5377 -x5376 -x5375 -x5374 -x5373 -x5372 -x5371 -x5370 -x5369 -x5368 -x5367 -x5366 x5365 x5364 x5363 x5362 x5361
70.23/70.56 v x5360 x5359 -x5358 -x5357 -x5356 -x5355 -x5354 x5353 -x5352 x5351 x5350 -x5349 x5348 x5347 x5346 x5345 x5344 x5343 x5342 x5341
70.23/70.56 v x5340 x5339 -x5338 -x5337 -x5336 -x5335 -x5334 -x5333 x5332 -x5331 x5330 x5329 -x5328 x5327 -x5326 x5325 x5324 x5323 x5322
70.23/70.56 v x5321 x5320 -x5319 -x5318 -x5317 -x5316 -x5315 -x5314 -x5313 -x5312 -x5311 -x5310 -x5309 -x5308 -x5307 -x5306 -x5305 -x5304 -x5303
70.23/70.56 v x5302 x5301 x5300 x5299 -x5298 -x5297 -x5296 -x5295 -x5294 -x5293 -x5292 -x5291 -x5290 -x5289 -x5288 -x5287 -x5286 -x5285
70.23/70.56 v -x5284 -x5283 -x5282 x5281 x5280 x5279 x5278 -x5277 -x5276 -x5275 -x5274 -x5273 -x5272 -x5271 -x5270 -x5269 -x5268 -x5267
70.23/70.56 v -x5266 -x5265 -x5264 -x5263 -x5262 -x5261 -x5260 -x5238 -x5239 -x5240 -x5241 -x5242 -x5243 -x5244 -x5245 -x5246 -x5247 -x5248
70.23/70.56 v -x5249 -x5250 -x5251 -x5252 -x5253 -x5254 -x5255 -x5256 -x5257 x5258 -x5259 -x5216 -x5217 -x5218 -x5219 -x5220 -x5221 -x5222
70.23/70.56 v -x5223 -x5224 -x5225 -x5226 -x5227 -x5228 -x5229 -x5230 -x5231 -x5232 -x5233 -x5234 -x5235 -x5236 x5237 -x5194 -x5195 -x5196
70.23/70.56 v -x5197 -x5198 -x5199 -x5200 -x5201 -x5202 -x5203 -x5204 -x5205 -x5206 -x5207 -x5208 -x5209 -x5210 -x5211 -x5212 x5213 -x5214
70.23/70.56 v -x5215 -x5172 -x5173 -x5174 -x5175 -x5176 -x5177 -x5178 -x5179 -x5180 -x5181 -x5182 -x5183 -x5184 -x5185 -x5186 -x5187 -x5188
70.23/70.56 v x5189 -x5190 -x5191 -x5192 -x5193 -x5150 -x5151 -x5152 -x5153 -x5154 -x5155 -x5156 -x5157 -x5158 -x5159 -x5160 -x5161 -x5162
70.23/70.56 v -x5163 x5164 -x5165 -x5166 -x5167 -x5168 -x5169 -x5170 -x5171 -x5128 -x5129 -x5130 -x5131 -x5132 -x5133 -x5134 -x5135 -x5136
70.23/70.56 v x5137 -x5138 -x5139 -x5140 -x5141 -x5142 -x5143 -x5144 -x5145 -x5146 -x5147 -x5148 -x5149 -x5106 -x5107 -x5108 x5109 -x5110
70.23/70.56 v -x5111 -x5112 -x5113 -x5114 -x5115 -x5116 -x5117 -x5118 -x5119 -x5120 -x5121 -x5122 -x5123 -x5124 -x5125 -x5126 -x5127 -x5084
70.23/70.56 v -x5085 -x5086 -x5087 -x5088 x5089 -x5090 -x5091 -x5092 -x5093 -x5094 -x5095 -x5096 -x5097 -x5098 -x5099 -x5100 -x5101 -x5102
70.23/70.56 v -x5103 -x5104 -x5105 -x5062 -x5063 x5064 -x5065 -x5066 -x5067 -x5068 -x5069 -x5070 -x5071 -x5072 -x5073 -x5074 -x5075 -x5076
70.23/70.56 v -x5077 -x5078 -x5079 -x5080 -x5081 -x5082 -x5083 -x5040 -x5041 -x5042 -x5043 -x5044 -x5045 -x5046 x5047 -x5048 -x5049 -x5050
70.23/70.56 v -x5051 -x5052 -x5053 -x5054 -x5055 -x5056 -x5057 -x5058 -x5059 -x5060 -x5061 -x5018 x5019 -x5020 -x5021 -x5022 -x5023 -x5024
70.23/70.56 v -x5025 -x5026 -x5027 -x5028 -x5029 -x5030 -x5031 -x5032 -x5033 -x5034 -x5035 -x5036 -x5037 -x5038 -x5039 -x4996 -x4997 -x4998
70.23/70.56 v -x4999 -x5000 -x5001 -x5002 -x5003 -x5004 -x5005 -x5006 -x5007 x5008 -x5009 -x5010 -x5011 -x5012 -x5013 -x5014 -x5015 -x5016
70.23/70.56 v -x5017 -x4974 -x4975 -x4976 -x4977 x4978 -x4979 -x4980 -x4981 -x4982 -x4983 -x4984 -x4985 -x4986 -x4987 -x4988 -x4989 -x4990
70.23/70.56 v -x4991 -x4992 -x4993 -x4994 -x4995 -x4952 -x4953 -x4954 -x4955 -x4956 -x4957 -x4958 -x4959 -x4960 -x4961 -x4962 -x4963 -x4964
70.23/70.56 v -x4965 -x4966 -x4967 x4968 -x4969 -x4970 -x4971 -x4972 -x4973 -x4930 -x4931 -x4932 -x4933 -x4934 -x4935 -x4936 -x4937 -x4938
70.23/70.56 v -x4939 -x4940 -x4941 -x4942 x4943 -x4944 -x4945 -x4946 -x4947 -x4948 -x4949 -x4950 -x4951 x4908 -x4909 -x4910 -x4911 -x4912
70.23/70.56 v -x4913 -x4914 -x4915 -x4916 -x4917 -x4918 -x4919 -x4920 -x4921 -x4922 -x4923 -x4924 -x4925 -x4926 -x4927 -x4928 -x4929 -x4886
70.23/70.56 v -x4887 -x4888 -x4889 -x4890 -x4891 -x4892 -x4893 -x4894 -x4895 -x4896 x4897 -x4898 -x4899 -x4900 -x4901 -x4902 -x4903 -x4904
70.23/70.56 v -x4905 -x4906 -x4907 -x4864 -x4865 -x4866 -x4867 -x4868 -x4869 x4870 -x4871 -x4872 -x4873 -x4874 -x4875 -x4876 -x4877 -x4878
70.23/70.56 v -x4879 -x4880 -x4881 -x4882 -x4883 -x4884 -x4885 -x4842 -x4843 -x4844 -x4845 -x4846 -x4847 -x4848 -x4849 x4850 -x4851 -x4852
70.23/70.56 v -x4853 -x4854 -x4855 -x4856 -x4857 -x4858 -x4859 -x4860 -x4861 -x4862 -x4863 -x4820 -x4821 -x4822 -x4823 -x4824 -x4825 -x4826
70.23/70.56 v -x4827 -x4828 -x4829 x4830 -x4831 -x4832 -x4833 -x4834 -x4835 -x4836 -x4837 -x4838 -x4839 -x4840 -x4841 -x4798 -x4799 -x4800
70.23/70.56 v -x4801 -x4802 -x4803 -x4804 -x4805 -x4806 -x4807 -x4808 -x4809 -x4810 -x4811 -x4812 x4813 -x4814 -x4815 -x4816 -x4817 -x4818
70.23/70.56 v -x4819 -x4776 -x4777 -x4778 -x4779 -x4780 -x4781 -x4782 -x4783 -x4784 -x4785 -x4786 -x4787 -x4788 -x4789 -x4790 -x4791 -x4792
70.23/70.56 v -x4793 x4794 -x4795 -x4796 -x4797 x4775 x4774 x4773 x4772 x4771 x4770 x4769 x4768 x4767 x4766 x4765 x4764 x4763 x4762 x4761
70.23/70.56 v x4760 x4759 x4758 x4757 x4756 x4755 x4754 x4753 x4752 x4751 x4750 x4749 x4748 x4747 x4746 x4745 x4744 x4743 x4742 x4741
70.23/70.56 v x4740 x4739 x4738 x4737 x4736 x4735 x4734 x4733 x4732 -x4731 x4730 -x4729 x4728 x4727 x4726 -x4725 -x4724 x4723 -x4722 -x4721
70.23/70.56 v x4720 -x4719 -x4718 x4717 -x4716 -x4715 x4714 -x4713 -x4712 x4711 -x4710 -x4709 x4708 -x4707 -x4706 x4705 -x4704 -x4703 x4702
70.23/70.56 v -x4701 -x4700 x4699 -x4698 -x4697 x4696 -x4695 -x4694 x4693 -x4692 -x4691 x4690 -x4689 -x4688 x4687 -x4686 -x4685 x4684 -x4683
70.23/70.56 v -x4682 x4681 -x4680 -x4679 x4678 -x4677 -x4676 x4675 -x4674 -x4673 x4672 -x4671 -x4670 x4669 -x4668 -x4667 x4666 -x4665 -x4664
70.23/70.56 v x4663 -x4662 -x4661 x4660 -x4659 -x4658 x4657 -x4656 -x4655 x4654 -x4653 -x4652 x4651 -x4650 -x4649 x4648 -x4647 -x4646
70.23/70.56 v x4645 -x4644 -x4643 x4642 -x4641 -x4640 x4639 -x4638 -x4637 x4636 -x4635 -x4634 x4633 -x4632 -x4631 x4630 -x4629 -x4628 x4627
70.23/70.56 v -x4626 -x4625 x4624 -x4623 -x4622 x4621 -x4620 -x4619 x4618 -x4617 -x4616 x4615 -x4614 -x4613 x4612 -x4611 -x4610 x4609 -x4608
70.23/70.56 v -x4607 x4606 x4605 x4604 x4603 -x4602 x4601 -x4600 -x4599 -x4598 x4597 -x4596 -x4595 x4594 -x4593 -x4592 x4591 -x4590 -x4589
70.23/70.56 v x4588 -x4587 -x4586 x4585 -x4584 -x4583 x4582 -x4581 -x4580 x4579 -x4578 -x4577 x4576 -x4575 -x4574 x4573 -x4572 -x4571 x4570
70.23/70.56 v -x4569 -x4568 x4567 -x4566 -x4565 x4564 -x4563 -x4562 x4561 -x4560 -x4559 x4558 -x4557 -x4556 x4555 -x4554 -x4553 x4552
70.23/70.56 v -x4551 -x4550 x4549 -x4548 -x4547 x4546 -x4545 -x4544 x4543 -x4542 x4541 -x4540 -x4539 x4538 -x4537 -x4536 x4535 -x4534 x4533
70.23/70.56 v x4532 x4531 -x4530 -x4529 x4528 -x4527 -x4526 x4525 -x4524 -x4523 x4522 -x4521 -x4520 x4519 -x4518 -x4517 x4516 -x4515 -x4514
70.23/70.56 v x4513 x4512 x4511 x4510 -x4509 -x4508 x4507 x4506 x4505 x4504 x4503 x4502 x4501 -x4500 -x4499 x4498 x4497 x4496 x4495 -x4494
70.23/70.56 v -x4493 x4492 -x4491 -x4490 x4489 x4488 x4487 x4486 x4485 x4484 x4483 -x4482 x4481 -x4480 -x4479 x4478 -x4477 -x4476 x4475 -x4474
70.23/70.56 v -x4473 x4472 -x4471 x4470 x4469 x4468 -x4467 -x4466 x4465 -x4464 -x4463 x4462 -x4461 -x4460 x4459 -x4458 -x4457 x4456 -x4455
70.23/70.56 v -x4454 x4453 -x4452 -x4451 x4450 x4449 x4448 x4447 -x4446 -x4445 x4444 x4443 x4442 x4441 x4440 x4439 x4438 -x4437 -x4436
70.23/70.56 v x4435 x4434 x4433 x4432 -x4431 -x4430 x4429 -x4428 -x4427 x4426 x4425 x4424 x4423 x4422 x4421 x4420 -x4419 x4418 -x4417 -x4416
70.23/70.56 v x4415 -x4414 -x4413 x4412 -x4411 -x4410 x4409 -x4408 -x4407 x4406 -x4405 -x4404 x4403 -x4402 -x4401 -x4400 x4399 -x4398 -x4397
70.23/70.56 v x4396 -x4395 -x4394 x4393 -x4392 -x4391 x4390 -x4389 -x4388 x4387 -x4386 x4385 -x4384 -x4383 -x4382 x4381 -x4380 x4379
70.23/70.56 v -x4378 -x4377 x4376 -x4375 -x4374 -x4373 x4372 -x4371 x4370 -x4369 -x4368 -x4367 x4366 x4365 x4364 x4363 -x4362 x4361 -x4360
70.23/70.56 v -x4359 x4358 -x4357 -x4356 x4355 -x4354 -x4353 x4352 -x4351 -x4350 x4349 -x4348 -x4347 x4346 -x4345 -x4344 x4343 -x4342 -x4341
70.23/70.56 v x4340 -x4339 -x4338 x4337 -x4336 x4335 x4334 x4333 x4332 x4331 x4330 x4329 x4328 x4327 -x4326 -x4325 x4324 -x4323 x4322 -x4321
70.23/70.56 v x4320 x4319 x4318 -x4317 x4316 -x4315 -x4314 x4313 -x4312 -x4311 -x4310 x4309 -x4308 x4307 -x4306 x4305 x4304 x4303 -x4302
70.23/70.56 v x4301 -x4300 -x4299 x4298 -x4297 -x4296 x4295 -x4294 -x4293 x4292 -x4291 -x4290 x4289 -x4288 -x4287 x4286 -x4285 -x4284 x4283
70.23/70.56 v -x4282 -x4281 x4280 -x4279 -x4278 x4277 -x4276 -x4275 x4274 -x4273 x4272 x4271 x4270 x4269 x4268 x4267 x4266 x4265 x4264 -x4263
70.23/70.56 v -x4262 x4261 -x4260 x4259 -x4258 x4257 x4256 x4255 -x4254 x4253 -x4252 -x4251 x4250 -x4249 -x4248 -x4247 x4246 -x4245 x4244
70.23/70.56 v -x4243 x4242 x4241 x4240 -x4239 x4238 -x4237 -x4236 x4235 -x4234 -x4233 x4232 -x4231 -x4230 x4229 -x4228 -x4227 x4226 -x4225
70.23/70.56 v -x4224 x4223 -x4222 -x4221 x4220 -x4219 -x4218 x4217 -x4216 -x4215 x4214 -x4213 -x4212 x4211 -x4210 x4209 x4208 x4207 x4206
70.23/70.56 v x4205 x4204 x4203 x4202 x4201 -x4200 -x4199 x4198 -x4197 x4196 -x4195 x4194 x4193 x4192 -x4191 x4190 -x4189 -x4188 x4187
70.23/70.56 v -x4186 -x4185 -x4184 x4183 -x4182 x4181 -x4180 x4179 x4178 x4177 -x4176 x4175 -x4174 -x4173 x4172 -x4171 -x4170 x4169 -x4168
70.23/70.56 v -x4167 x4166 -x4165 -x4164 x4163 -x4162 -x4161 x4160 -x4159 -x4158 x4157 -x4156 -x4155 x4154 -x4153 -x4152 x4151 -x4150 -x4149
70.23/70.56 v x4148 -x4147 x4146 x4145 x4144 x4143 x4142 x4141 x4140 x4139 x4138 -x4137 -x4136 x4135 -x4134 x4133 -x4132 x4131 x4130 x4129
70.23/70.56 v -x4128 x4127 -x4126 -x4125 x4124 -x4123 -x4122 -x4121 x4120 -x4119 x4118 -x4117 x4116 x4115 x4114 -x4113 x4112 -x4111 -x4110
70.23/70.56 v x4109 -x4108 -x4107 x4106 -x4105 -x4104 x4103 -x4102 -x4101 x4100 -x4099 -x4098 x4097 -x4096 -x4095 x4094 -x4093 -x4092 x4091
70.23/70.56 v -x4090 -x4089 x4088 -x4087 -x4086 x4085 -x4084 -x4083 x4082 -x4081 -x4080 x4079 -x4078 -x4077 x4076 -x4075 -x4074 x4073 -x4072
70.23/70.56 v -x4071 x4070 -x4069 -x4068 x4067 -x4066 -x4065 x4064 -x4063 -x4062 x4061 -x4060 x4059 x4058 x4057 -x4056 x4055 -x4054 -x4053
70.23/70.56 v x4052 -x4051 -x4050 x4049 -x4048 -x4047 x4046 -x4045 -x4044 x4043 -x4042 -x4041 x4040 -x4039 -x4038 x4037 -x4036 -x4035
70.23/70.56 v x4034 -x4033 -x4032 x4031 -x4030 x4029 x4028 x4027 x4026 x4025 x4024 -x4023 -x4022 x4021 -x4020 -x4019 x4018 -x4017 -x4016 x4015
70.23/70.56 v -x4014 -x4013 x4012 -x4011 -x4010 x4009 -x4008 -x4007 x4006 -x4005 -x4004 x4003 x4002 x4001 x4000 x3999 x3998 x3997 -x3996
70.23/70.56 v -x3995 x3994 x3993 x3992 x3991 -x3990 -x3989 x3988 -x3987 -x3986 x3985 x3984 x3983 x3982 x3981 x3980 x3979 -x3978 x3977 -x3976
70.23/70.56 v -x3975 x3974 -x3973 -x3972 x3971 -x3970 -x3969 x3968 -x3967 -x3966 x3965 -x3964 -x3963 x3962 -x3961 -x3960 x3959 -x3958 x3957
70.23/70.56 v x3956 x3955 x3954 x3953 x3952 x3951 x3950 x3949 x3948 x3947 x3946 -x3945 -x3944 x3943 -x3942 x3941 -x3940 -x3939 x3938 -x3937
70.23/70.56 v -x3936 x3935 -x3934 -x3933 -x3932 x3931 -x3930 x3929 -x3928 x3927 x3926 x3925 -x3924 x3923 -x3922 -x3921 x3920 -x3919 -x3918
70.23/70.56 v x3917 -x3916 -x3915 x3914 -x3913 -x3912 x3911 -x3910 -x3909 x3908 -x3907 -x3906 x3905 -x3904 x3903 x3902 x3901 x3900 x3899
70.23/70.56 v x3898 -x3897 -x3896 x3895 -x3894 -x3893 x3892 -x3891 -x3890 x3889 -x3888 -x3887 x3886 -x3885 -x3884 x3883 -x3882 -x3881 x3880
70.23/70.56 v x3879 x3878 x3877 -x3876 -x3875 x3874 x3873 x3872 x3871 -x3870 -x3869 x3868 x3867 x3866 x3865 -x3864 -x3863 x3862 -x3861
70.23/70.56 v -x3860 x3859 x3858 x3857 x3856 x3855 x3854 x3853 -x3852 x3851 -x3850 -x3849 x3848 -x3847 -x3846 x3845 -x3844 -x3843 x3842 -x3841
70.23/70.56 v x3840 x3839 x3838 x3837 x3836 x3835 -x3834 -x3833 x3832 -x3831 -x3830 x3829 -x3828 -x3827 x3826 -x3825 -x3824 x3823 -x3822
70.23/70.56 v -x3821 x3820 -x3819 -x3818 x3817 x3816 x3815 x3814 -x3813 -x3812 x3811 x3810 x3809 x3808 -x3807 -x3806 x3805 x3804 x3803 x3802
70.23/70.56 v -x3801 -x3800 x3799 -x3798 -x3797 x3796 x3795 x3794 x3793 x3792 x3791 x3790 -x3789 x3788 -x3787 -x3786 x3785 -x3784 -x3783
70.23/70.56 v x3782 -x3781 -x3780 x3779 -x3778 -x3777 x3776 -x3775 -x3774 x3773 -x3772 -x3771 x3770 -x3769 -x3768 x3767 -x3766 -x3765 x3764
70.23/70.56 v -x3763 -x3762 x3761 -x3760 -x3759 x3758 -x3757 x3756 x3755 x3754 -x3753 x3752 -x3751 -x3750 x3749 -x3748 -x3747 x3746 -x3745
70.23/70.56 v -x3744 x3743 -x3742 -x3741 x3740 -x3739 -x3738 x3737 -x3736 -x3735 x3734 -x3733 -x3732 x3731 -x3730 -x3729 x3728 -x3727 -x3726
70.23/70.56 v x3725 -x3724 -x3723 x3722 -x3721 -x3720 x3719 -x3718 -x3717 x3716 -x3715 x3714 x3713 x3712 x3711 x3710 x3709 -x3708 -x3707
70.23/70.56 v x3706 -x3705 -x3704 x3703 -x3702 -x3701 x3700 -x3699 -x3698 x3697 -x3696 -x3695 x3694 -x3693 -x3692 x3691 x3690 x3689 x3688
70.23/70.56 v -x3687 -x3686 x3685 x3684 x3683 x3682 x3681 x3680 x3679 -x3678 -x3677 x3676 -x3675 -x3674 x3673 -x3672 -x3671 x3670 x3669
70.23/70.56 v x3668 x3667 x3666 x3665 x3664 -x3663 x3662 -x3661 -x3660 x3659 -x3658 -x3657 x3656 -x3655 -x3654 x3653 -x3652 -x3651 x3650 -x3649
70.23/70.56 v -x3648 x3647 -x3646 -x3645 x3644 -x3643 x3642 x3641 x3640 x3639 x3638 x3637 x3636 x3635 x3634 x3633 x3632 x3631 -x3630 -x3629
70.23/70.56 v x3628 -x3627 x3626 -x3625 x3624 x3623 x3622 -x3621 x3620 -x3619 -x3618 x3617 -x3616 -x3615 -x3614 x3613 -x3612 x3611 -x3610
70.23/70.56 v -x3609 x3608 -x3607 -x3606 x3605 -x3604 -x3603 x3602 -x3601 -x3600 x3599 -x3598 -x3597 x3596 -x3595 -x3594 x3593 -x3592
70.23/70.56 v -x3591 x3590 -x3589 -x3588 x3587 -x3586 -x3585 x3584 -x3583 x3582 x3581 x3580 -x3579 -x3578 x3577 -x3576 -x3575 x3574 -x3573
70.23/70.56 v -x3572 x3571 -x3570 -x3569 x3568 -x3567 -x3566 x3565 -x3564 x3563 -x3562 -x3561 -x3560 x3559 -x3558 x3557 -x3556 -x3555 x3554
70.23/70.56 v -x3553 -x3552 -x3551 x3550 -x3549 x3548 -x3547 -x3546 -x3545 x3544 -x3543 x3542 -x3541 -x3540 x3539 -x3538 -x3537 x3536 -x3535
70.23/70.56 v -x3534 x3533 -x3532 -x3531 x3530 -x3529 -x3528 x3527 -x3526 x3525 x3524 x3523 x3522 x3521 x3520 -x3519 -x3518 x3517 -x3516
70.23/70.56 v -x3515 x3514 -x3513 -x3512 x3511 -x3510 -x3509 x3508 -x3507 -x3506 x3505 -x3504 -x3503 x3502 x3501 x3500 x3499 -x3498 -x3497
70.23/70.56 v x3496 x3495 x3494 x3493 x3492 x3491 x3490 -x3489 -x3488 x3487 x3486 x3485 x3484 -x3483 -x3482 x3481 -x3480 -x3479 x3478 x3477
70.23/70.56 v x3476 x3475 -x3474 x3473 -x3472 -x3471 x3470 -x3469 -x3468 x3467 -x3466 -x3465 x3464 -x3463 x3462 x3461 x3460 x3459 x3458 x3457
70.23/70.56 v -x3456 -x3455 x3454 -x3453 -x3452 x3451 -x3450 -x3449 x3448 -x3447 -x3446 x3445 -x3444 -x3443 x3442 -x3441 -x3440 x3439
70.23/70.56 v x3438 x3437 x3436 -x3435 -x3434 x3433 x3432 x3431 x3430 x3429 x3428 x3427 -x3426 -x3425 x3424 x3423 x3422 x3421 -x3420 -x3419
70.23/70.56 v x3418 -x3417 -x3416 x3415 x3414 x3413 x3412 -x3411 x3410 -x3409 -x3408 x3407 -x3406 -x3405 x3404 -x3403 -x3402 x3401 -x3400
70.23/70.56 v -x3399 -x3398 x3397 -x3396 -x3395 x3394 -x3393 -x3392 x3391 -x3390 -x3389 x3388 -x3387 -x3386 x3385 -x3384 -x3383 x3382 -x3381
70.23/70.56 v -x3380 x3379 -x3378 -x3377 x3376 -x3375 -x3374 x3373 -x3372 -x3371 x3370 -x3369 -x3368 x3367 -x3366 -x3365 x3364 -x3363 -x3362
70.23/70.56 v x3361 -x3360 -x3359 x3358 -x3357 -x3356 x3355 -x3354 -x3353 x3352 -x3351 -x3350 x3349 -x3348 -x3347 x3346 x3345 x3344 x3343
70.23/70.56 v -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325
70.23/70.56 v -x3324 -x3323 x3322 -x3321 -x3320 -x3319 -x3318 -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307
70.23/70.56 v -x3306 -x3305 -x3304 -x3303 -x3302 x3301 x3300 x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289
70.23/70.56 v -x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 x3279 x3278 x3277 x3276 x3275 -x3274 -x3273 -x3272 -x3271 -x3270
70.23/70.56 v -x3269 x3268 -x3267 x3266 x3265 -x3264 x3263 -x3262 -x3261 x3260 x3259 x3258 x3257 x3256 x3255 x3254 x3253 -x3252 -x3251
70.23/70.56 v -x3250 -x3249 -x3248 -x3247 x3246 -x3245 x3244 x3243 -x3242 x3241 -x3240 -x3239 x3238 x3237 x3236 x3235 x3234 x3233 x3232 x3231
70.23/70.56 v x3230 -x3229 -x3228 -x3227 -x3226 -x3225 x3224 -x3223 x3222 x3221 -x3220 x3219 -x3218 x3217 x3216 x3215 x3214 x3213 x3212
70.23/70.56 v x3211 x3210 x3209 x3208 x3207 x3206 x3205 x3204 -x3203 x3202 x3201 x3200 x3199 -x3198 x3197 x3196 x3195 x3194 x3193 x3192 x3191
70.23/70.56 v x3190 x3189 x3188 x3187 x3186 x3185 x3184 x3183 x3182 -x3181 x3180 x3179 x3178 x3177 -x3176 x3175 x3174 x3173 x3172 x3171
70.23/70.56 v x3170 x3169 x3168 x3167 x3166 x3165 x3164 x3163 x3162 x3161 x3160 -x3159 x3158 x3157 x3156 x3155 -x3154 x3153 x3152 x3151 x3150
70.23/70.56 v x3149 x3148 x3147 x3146 x3145 x3144 x3143 x3142 x3141 x3140 x3139 x3138 -x3137 x3136 x3135 x3134 x3133 -x3132 x3131 x3130
70.23/70.56 v x3129 x3128 x3127 x3126 x3125 x3124 x3123 x3122 x3121 x3120 x3119 x3118 x3117 x3116 x3115 x3114 x3113 x3112 x3111 x3110 x3109
70.23/70.56 v x3108 x3107 x3106 x3105 x3104 x3103 x3102 x3101 x3100 x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 x3092 -x3091 x3090 x3089
70.23/70.56 v -x3088 x3087 -x3086 -x3085 x3084 x3083 x3082 x3081 x3080 x3079 x3078 x3077 x3076 x3075 x3074 x3073 x3072 -x3071 x3070 x3069
70.23/70.56 v x3068 x3067 -x3066 x3065 x3064 x3063 x3062 x3061 x3060 x3059 x3058 x3057 x3056 x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049
70.23/70.56 v x3048 -x3047 x3046 x3045 -x3044 x3043 -x3042 -x3041 x3040 x3039 x3038 x3037 x3036 x3035 x3034 x3033 -x3032 -x3031 -x3030
70.23/70.56 v -x3029 -x3028 -x3027 x3026 -x3025 x3024 x3023 -x3022 x3021 -x3020 -x3019 x3018 x3017 x3016 x3015 x3014 x3013 x3012 x3011 x3010
70.23/70.56 v x3009 x3008 x3007 x3006 x3005 x3004 x3003 x3002 x3001 x3000 x2999 x2998 x2997 x2996 x2995 x2994 x2993 x2992 x2991 x2990 x2989
70.23/70.56 v -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 x2982 -x2981 x2980 x2979 -x2978 x2977 -x2976 -x2975 x2974 x2973 x2972 x2971 x2970
70.23/70.56 v x2969 x2968 x2967 x2966 x2965 x2964 x2963 x2962 -x2961 x2960 x2959 x2958 x2957 -x2956 x2955 x2954 x2953 x2952 x2951 x2950
70.23/70.56 v x2949 x2948 x2947 x2946 x2945 x2944 -x2943 -x2942 -x2941 -x2940 -x2939 x2938 -x2937 x2936 x2935 -x2934 x2933 -x2932 x2931 x2930
70.23/70.56 v x2929 x2928 x2927 x2926 x2925 x2924 x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 x2916 -x2915 x2914 x2913 -x2912 x2911
70.23/70.56 v -x2910 -x2909 x2908 x2907 x2906 x2905 x2904 x2903 x2902 x2901 -x2900 -x2899 -x2898 -x2897 -x2896 -x2895 x2894 -x2893 x2892 x2891
70.23/70.56 v -x2890 x2889 -x2888 -x2887 x2886 x2885 x2884 x2883 x2882 x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872
70.23/70.56 v -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 x2862 -x2861 -x2860 x2859 -x2858 -x2857 x2856 x2855 -x2854
70.23/70.56 v -x2853 -x2852 -x2851 x2850 x2849 -x2848 -x2847 x2846 -x2845 -x2844 x2843 -x2842 -x2841 x2840 -x2839 -x2838 -x2837 -x2836 x2835
70.23/70.56 v -x2834 x2833 -x2832 -x2831 -x2830 x2829 -x2828 -x2827 x2826 x2825 -x2824 -x2823 x2822 -x2821 -x2820 -x2819 -x2818 x2817 -x2816
70.23/70.56 v -x2815 x2814 -x2813 -x2812 x2811 -x2810 -x2809 x2808 -x2807 -x2806 x2805 x2804 -x2803 -x2802 -x2801 -x2800 x2799 -x2798
70.23/70.56 v -x2797 x2796 x2795 -x2794 -x2793 -x2792 -x2791 x2790 -x2789 -x2788 x2787 x2786 -x2785 -x2784 -x2783 -x2782 x2781 x2780 -x2779
70.23/70.56 v -x2778 x2777 -x2776 -x2775 x2774 -x2773 -x2772 x2771 -x2770 -x2769 x2768 -x2767 -x2766 x2765 -x2764 -x2763 x2762 -x2761 -x2760
70.23/70.56 v x2759 -x2758 -x2757 x2756 -x2755 -x2754 x2753 -x2752 -x2751 -x2750 -x2749 x2748 x2747 -x2746 -x2745 x2744 -x2743 -x2742 x2741
70.23/70.56 v -x2740 -x2739 -x2738 -x2737 x2736 x2735 -x2734 -x2733 x2732 -x2731 -x2730 x2729 -x2728 -x2727 -x2726 -x2725 x2724 -x2723
70.23/70.56 v x2722 -x2721 x2720 -x2719 -x2718 x2717 -x2716 -x2715 -x2714 -x2713 x2712 x2711 -x2710 -x2709 x2708 -x2707 -x2706 -x2705 -x2704
70.23/70.56 v x2703 x2702 -x2701 -x2700 x2699 -x2698 -x2697 -x2696 -x2695 x2694 x2693 -x2692 -x2691 -x2690 -x2689 x2688 -x2687 -x2686 x2685
70.23/70.56 v -x2684 x2683 -x2682 -x2681 -x2680 x2679 -x2678 -x2677 x2676 x2675 -x2674 -x2673 x2672 -x2671 -x2670 -x2669 -x2668 x2667 -x2666
70.23/70.56 v -x2665 x2664 -x2663 -x2662 x2661 -x2660 -x2659 x2658 -x2657 -x2656 x2655 x2654 -x2653 -x2652 x2651 -x2650 -x2649 x2648
70.23/70.56 v -x2647 -x2646 -x2645 -x2644 x2643 -x2642 -x2641 x2640 x2639 -x2638 -x2637 x2636 -x2635 -x2634 x2633 -x2632 -x2631 x2630 -x2629
70.23/70.56 v -x2628 x2627 -x2626 -x2625 -x2624 -x2623 x2622 -x2621 -x2620 x2619 -x2618 -x2617 x2616 -x2615 -x2614 x2613 x2612 -x2611 -x2610
70.23/70.56 v x2609 -x2608 -x2607 -x2606 -x2605 x2604 -x2603 -x2602 x2601 -x2600 -x2599 x2598 -x2597 -x2596 x2595 x2594 -x2593 -x2592 x2591
70.23/70.56 v -x2590 -x2589 x2588 -x2587 -x2586 x2585 -x2584 -x2583 x2582 -x2581 -x2580 x2579 -x2578 -x2577 -x2576 -x2575 x2574 -x2573
70.23/70.56 v -x2572 x2571 x2570 -x2569 -x2568 x2567 -x2566 -x2565 -x2564 -x2563 x2562 x2561 -x2560 -x2559 -x2558 -x2557 x2556 -x2555 -x2554
70.23/70.56 v x2553 x2552 -x2551 -x2550 x2549 -x2548 -x2547 -x2546 -x2545 x2544 x2543 -x2542 -x2541 -x2540 -x2539 x2538 -x2537 -x2536 x2535
70.23/70.56 v -x2534 -x2533 x2532 x2531 -x2530 -x2529 -x2528 -x2527 x2526 x2525 -x2524 -x2523 x2522 -x2521 -x2520 x2519 -x2518 -x2517 x2516
70.23/70.56 v -x2515 -x2514 x2513 -x2512 -x2511 -x2510 -x2509 x2508 -x2507 -x2506 x2505 -x2504 -x2503 x2502 -x2501 -x2500 x2499 x2498
70.23/70.56 v -x2497 -x2496 x2495 -x2494 -x2493 x2492 -x2491 -x2490 x2489 -x2488 -x2487 x2486 -x2485 -x2484 -x2483 -x2482 x2481 -x2480 -x2479
70.23/70.56 v x2478 -x2477 -x2476 x2475 x2474 -x2473 -x2472 x2471 -x2470 -x2469 x2468 -x2467 -x2466 x2465 -x2464 -x2463 -x2462 -x2461 x2460
70.23/70.56 v x2459 -x2458 -x2457 -x2456 -x2455 x2454 -x2453 -x2452 x2451 -x2450 -x2449 x2448 -x2447 -x2446 x2445 x2444 -x2443 -x2442 x2441
70.23/70.56 v -x2440 -x2439 -x2438 -x2437 x2436 x2435 -x2434 -x2433 x2432 -x2431 -x2430 -x2429 -x2428 x2427 -x2426 -x2425 x2424 x2423
70.23/70.56 v -x2422 -x2421 x2420 -x2419 -x2418 x2417 -x2416 -x2415 x2414 -x2413 -x2412 -x2411 -x2410 x2409 x2408 -x2407 -x2406 -x2405 -x2404
70.23/70.56 v x2403 x2402 -x2401 -x2400 -x2399 -x2398 x2397 -x2396 -x2395 x2394 -x2393 -x2392 x2391 x2390 -x2389 -x2388 -x2387 -x2386 x2385
70.23/70.56 v x2384 -x2383 -x2382 -x2381 -x2380 x2379 -x2378 -x2377 x2376 x2375 -x2374 -x2373 -x2372 -x2371 x2370 x2369 -x2368 -x2367 -x2366
70.23/70.56 v -x2365 x2364 -x2363 -x2362 x2361 -x2360 -x2359 x2358 -x2357 -x2356 x2355 x2354 -x2353 -x2352 -x2351 -x2350 x2349 -x2348
70.23/70.56 v -x2347 x2346 -x2345 -x2344 x2343 x2342 -x2341 -x2340 x2339 -x2338 -x2337 -x2336 -x2335 x2334 x2333 -x2332 -x2331 -x2330 -x2329
70.23/70.56 v x2328 x2327 -x2326 -x2325 x2324 -x2323 -x2322 x2321 -x2320 -x2319 x2318 -x2317 -x2316 -x2315 -x2314 x2313 x2312 -x2311 -x2310
70.23/70.56 v x2309 -x2308 -x2307 x2306 -x2305 -x2304 x2303 -x2302 -x2301 -x2300 -x2299 x2298 x2297 -x2296 -x2295 -x2294 -x2293 x2292 x2291
70.23/70.56 v -x2290 -x2289 x2288 -x2287 -x2286 -x2285 -x2284 x2283 x2282 -x2281 -x2280 -x2279 -x2278 x2277 -x2276 -x2275 x2274 x2273
70.23/70.56 v -x2272 -x2271 x2270 -x2269 -x2268 x2267 -x2266 -x2265 -x2264 -x2263 x2262 x2261 -x2260 -x2259 -x2258 x2257 -x2256 x2255 -x2254
70.23/70.56 v -x2253 -x2252 -x2251 x2250 x2249 -x2248 -x2247 -x2246 -x2245 x2244 x2243 -x2242 -x2241 x2240 -x2239 -x2238 -x2237 -x2236 x2235
70.23/70.56 v -x2234 -x2233 x2232 x2231 -x2230 -x2229 x2228 -x2227 -x2226 x2225 -x2224 -x2223 x2222 -x2221 -x2220 x2219 -x2218 -x2217 x2216
70.23/70.56 v -x2215 -x2214 x2213 -x2212 -x2211 -x2210 -x2209 x2208 x2207 -x2206 -x2205 -x2204 -x2203 x2202 x2201 -x2200 -x2199 x2198
70.23/70.56 v -x2197 -x2196 x2195 -x2194 -x2193 x2192 -x2191 -x2190 x2189 -x2188 -x2187 x2186 -x2185 -x2184 x2183 -x2182 -x2181 -x2180 -x2179
70.23/70.56 v x2178 x2177 -x2176 -x2175 x2174 -x2173 -x2172 x2171 -x2170 -x2169 x2168 -x2167 -x2166 x2165 -x2164 -x2163 x2162 -x2161 -x2160
70.23/70.56 v x2159 -x2158 -x2157 x2156 -x2155 -x2154 x2153 -x2152 -x2151 x2150 -x2149 -x2148 -x2147 -x2146 x2145 x2144 -x2143 -x2142 x2141
70.23/70.56 v -x2140 -x2139 -x2138 -x2137 x2136 x2135 -x2134 -x2133 x2132 -x2131 -x2130 -x2129 -x2128 x2127 -x2126 -x2125 x2124 x2123
70.23/70.56 v -x2122 -x2121 x2120 -x2119 -x2118 x2117 -x2116 -x2115 x2114 -x2113 -x2112 x2111 -x2110 -x2109 x2108 -x2107 -x2106 x2105 -x2104
70.23/70.56 v -x2103 x2102 -x2101 -x2100 x2099 -x2098 -x2097 x2096 -x2095 -x2094 x2093 -x2092 -x2091 -x2090 -x2089 x2088 x2087 -x2086 -x2085
70.23/70.56 v x2084 -x2083 -x2082 x2081 -x2080 -x2079 x2078 -x2077 -x2076 -x2075 -x2074 x2073 x2072 -x2071 -x2070 -x2065 -x2066 -x2067
70.23/70.56 v x2068 -x2069 -x2060 -x2061 -x2062 -x2063 -x2064 -x2055 -x2056 -x2057 x2058 -x2059 -x2050 x2051 -x2052 x2053 x2054 -x2045 x2046
70.23/70.56 v -x2047 x2048 x2049 -x2040 x2041 x2042 -x2043 x2044 x2035 -x2036 -x2037 x2038 x2039 x2030 -x2031 -x2032 x2033 x2034 x2025 -x2026
70.23/70.56 v -x2027 x2028 x2029 x2020 -x2021 -x2022 x2023 x2024 x2015 -x2016 x2017 -x2018 x2019 -x2010 x2011 -x2012 x2013 x2014 x2005
70.23/70.56 v -x2006 -x2007 x2008 x2009 -x2000 x2001 -x2002 x2003 x2004 -x1995 x1996 -x1997 x1998 x1999 x1990 -x1991 x1992 -x1993 x1994 -x1985
70.23/70.56 v x1986 -x1987 x1988 x1989 x1980 -x1981 -x1982 x1983 x1984 -x1975 x1976 x1977 -x1978 x1979 -x1970 x1971 -x1972 x1973 x1974
70.23/70.56 v -x1965 x1966 -x1967 x1968 x1969 -x1960 -x1961 -x1962 x1963 x1964 -x1955 -x1956 -x1957 -x1958 x1959 -x1950 -x1951 -x1952 -x1953
70.23/70.56 v -x1954 -x1945 -x1946 -x1947 -x1948 x1949 -x1940 -x1941 x1942 -x1943 -x1944 -x1935 -x1936 x1937 -x1938 -x1939 -x1930 x1931
70.23/70.56 v x1932 -x1933 -x1934 -x1925 x1926 x1927 x1928 -x1929 -x1920 x1921 x1922 x1923 -x1924 -x1915 x1916 x1917 x1918 -x1919 -x1910 x1911
70.23/70.56 v x1912 x1913 -x1914 x1905 -x1906 x1907 -x1908 -x1909 -x1900 -x1901 x1902 -x1903 -x1904 -x1895 x1896 x1897 x1898 -x1899 -x1890
70.23/70.56 v -x1891 x1892 -x1893 -x1894 -x1885 -x1886 x1887 -x1888 -x1889 x1880 -x1881 x1882 -x1883 -x1884 -x1875 -x1876 x1877 -x1878
70.23/70.56 v -x1879 -x1870 x1871 x1872 x1873 -x1874 -x1865 x1866 x1867 -x1868 -x1869 -x1860 -x1861 x1862 -x1863 -x1864 -x1855 -x1856 x1857
70.23/70.56 v -x1858 -x1859 -x1850 -x1851 -x1852 x1853 x1854 -x1845 -x1846 -x1847 -x1848 x1849 -x1840 -x1841 -x1842 -x1843 -x1844 -x1835 -x1836
70.23/70.56 v -x1837 x1838 -x1839 -x1830 -x1831 x1832 -x1833 -x1834 -x1825 -x1826 x1827 x1828 x1829 -x1820 x1821 x1822 -x1823 -x1824
70.23/70.56 v x1815 -x1816 -x1817 x1818 -x1819 x1810 -x1811 -x1812 -x1813 -x1814 x1805 -x1806 -x1807 x1808 x1809 -x1800 x1801 x1802 x1803 -x1804
70.23/70.56 v x1795 -x1796 x1797 -x1798 -x1799 -x1790 x1791 -x1792 -x1793 x1794 x1785 -x1786 -x1787 -x1788 x1789 -x1780 -x1781 x1782
70.23/70.56 v -x1783 x1784 -x1775 x1776 -x1777 -x1778 -x1779 x1770 -x1771 x1772 -x1773 x1774 -x1765 x1766 -x1767 x1768 -x1769 -x1760 x1761
70.23/70.56 v x1762 x1763 x1764 -x1755 x1756 x1757 -x1758 x1759 -x1750 x1751 -x1752 x1753 x1754 -x1745 -x1746 x1747 x1748 -x1749 -x1740 -x1741
70.23/70.56 v -x1742 x1743 x1744 x1733 -x1734 -x1735 -x1736 -x1737 -x1738 -x1739 x1726 -x1727 x1728 x1729 -x1730 -x1731 -x1732 x1719 -x1720
70.23/70.56 v -x1721 -x1722 -x1723 -x1724 -x1725 -x1712 x1713 x1714 -x1715 -x1716 -x1717 -x1718 -x1705 x1706 x1707 -x1708 -x1709 -x1710
70.23/70.56 v -x1711 -x1698 x1699 -x1700 -x1701 x1702 -x1703 -x1704 -x1691 x1692 -x1693 -x1694 -x1695 -x1696 x1697 -x1684 x1685 -x1686 -x1687
70.23/70.56 v -x1688 -x1689 x1690 -x1677 x1678 -x1679 -x1680 -x1681 -x1682 x1683 -x1670 x1671 -x1672 -x1673 -x1674 -x1675 x1676 -x1663
70.23/70.56 v x1664 -x1665 -x1666 -x1667 -x1668 -x1669 -x1656 x1657 x1658 -x1659 -x1660 -x1661 -x1662 -x1649 x1650 -x1651 -x1652 -x1653 -x1654
70.23/70.56 v x1655 -x1642 x1643 x1644 -x1645 -x1646 -x1647 -x1648 -x1635 x1636 x1637 -x1638 -x1639 -x1640 -x1641 -x1628 x1629 -x1630
70.23/70.56 v -x1631 -x1632 -x1633 -x1634 -x1621 x1622 x1623 -x1624 -x1625 -x1626 -x1627 -x1614 x1615 -x1616 -x1617 -x1618 -x1619 x1620 -x1607
70.23/70.56 v x1608 -x1609 -x1610 x1611 -x1612 -x1613 -x1600 x1601 x1602 -x1603 -x1604 -x1605 -x1606 -x1593 x1594 x1595 -x1596 -x1597 -x1598
70.23/70.56 v -x1599 -x1586 x1587 x1588 -x1589 x1590 -x1591 -x1592 x1583 -x1584 -x1585 -x1580 -x1581 x1582 x1577 -x1578 -x1579 -x1574
70.23/70.56 v -x1575 x1576 -x1571 -x1572 x1573 x1568 -x1569 -x1570 x1565 -x1566 -x1567 -x1562 -x1563 x1564 -x1559 -x1560 x1561 x1556 -x1557
70.23/70.56 v -x1558 -x1553 -x1554 x1555 x1550 -x1551 -x1552 -x1547 -x1548 x1549 x1544 -x1545 -x1546 -x1541 -x1542 x1543 x1538 -x1539 -x1540
70.23/70.56 v x1535 -x1536 -x1537 -x1532 -x1533 x1534 -x1529 x1530 -x1531 -x1526 x1527 -x1528 x1523 -x1524 -x1525 -x1520 -x1521 x1522 x1517
70.23/70.56 v -x1518 -x1519 -x1514 -x1515 x1516 -x1511 -x1512 x1513 x1508 -x1509 -x1510 -x1505 -x1506 x1507 x1502 -x1503 -x1504 x1499
70.23/70.56 v -x1500 -x1501 -x1496 -x1497 x1498 x1493 -x1494 -x1495 -x1490 -x1491 x1492 x1487 -x1488 -x1489 -x1484 -x1485 x1486 x1481 -x1482
70.23/70.56 v -x1483 -x1478 -x1479 x1480 x1475 -x1476 -x1477 -x1472 -x1473 x1474 -x1469 -x1470 x1471 x1466 -x1467 -x1468 x1463 -x1464 -x1465
70.23/70.56 v -x1460 -x1461 x1462 x1457 -x1458 -x1459 -x1454 -x1455 x1456 -x1451 -x1452 x1453 x1448 -x1449 -x1450 x1445 -x1446 -x1447 -x1442
70.23/70.56 v -x1443 x1444 x1439 -x1440 -x1441 -x1436 -x1437 x1438 -x1433 -x1434 x1435 x1430 -x1431 -x1432 x1427 -x1428 -x1429 -x1424
70.23/70.56 v -x1425 x1426 -x1421 -x1422 x1423 x1418 -x1419 -x1420 -x1415 -x1416 x1417 x1412 -x1413 -x1414 -x1409 -x1410 x1411 x1406 -x1407
70.23/70.56 v -x1408 -x1403 -x1404 x1405 x1400 -x1401 -x1402 -x1397 -x1398 x1399 x1394 -x1395 -x1396 -x1391 -x1392 x1393 x1388 -x1389 -x1390
70.23/70.56 v -x1385 -x1386 x1387 x1382 -x1383 -x1384 -x1379 -x1380 x1381 x1376 -x1377 -x1378 -x1373 -x1374 x1375 x1370 -x1371 -x1372 -x1367
70.23/70.56 v -x1368 x1369 x1364 -x1365 -x1366 x1361 -x1362 -x1363 -x1358 -x1359 x1360 -x1355 -x1356 x1357 x1352 -x1353 -x1354 -x1349
70.23/70.56 v -x1350 x1351 x1346 -x1347 -x1348 -x1343 -x1344 x1345 x1340 -x1341 -x1342 x1337 -x1338 -x1339 -x1334 -x1335 x1336 -x1331 -x1332
70.23/70.56 v x1333 x1328 -x1329 -x1330 -x1325 -x1326 x1327 x1322 -x1323 -x1324 -x1319 -x1320 x1321 x1316 -x1317 -x1318 x1313 -x1314 -x1315
70.23/70.56 v -x1310 -x1311 x1312 -x1307 x1308 -x1309 -x1304 x1305 -x1306 -x1301 -x1302 x1303 x1298 -x1299 -x1300 -x1295 -x1296 x1297 x1292
70.23/70.56 v -x1293 -x1294 x1289 -x1290 -x1291 -x1286 -x1287 x1288 -x1283 -x1284 x1285 x1280 -x1281 -x1282 -x1277 -x1278 x1279 x1274
70.23/70.56 v -x1275 -x1276 x1271 -x1272 -x1273 -x1268 -x1269 x1270 -x1265 -x1266 x1267 x1262 -x1263 -x1264 -x1259 -x1260 x1261 x1256 -x1257
70.23/70.56 v -x1258 x1253 -x1254 -x1255 -x1250 -x1251 x1252 -x1247 -x1248 x1249 x1244 -x1245 -x1246 x1241 -x1242 -x1243 -x1238 -x1239 x1240
70.23/70.56 v x1235 -x1236 -x1237 -x1232 -x1233 x1234 -x1229 x1230 -x1231 -x1226 x1227 -x1228 x1223 -x1224 -x1225 -x1220 -x1221 x1222 x1217
70.23/70.56 v -x1218 -x1219 -x1214 -x1215 x1216 -x1211 -x1212 x1213 x1208 -x1209 -x1210 -x1205 -x1206 x1207 x1202 -x1203 -x1204 x1199
70.23/70.56 v -x1200 -x1201 -x1196 -x1197 x1198 x1193 -x1194 -x1195 -x1190 -x1191 x1192 x1187 -x1188 -x1189 -x1184 -x1185 x1186 x1181 -x1182
70.23/70.56 v -x1183 -x1178 -x1179 x1180 x1175 -x1176 -x1177 -x1172 -x1173 x1174 -x1169 -x1170 x1171 x1166 -x1167 -x1168 -x1163 -x1164 x1165
70.23/70.56 v x1160 -x1161 -x1162 -x1157 -x1158 x1159 x1154 -x1155 -x1156 x1151 -x1152 -x1153 -x1148 -x1149 x1150 x1145 -x1146 -x1147 -x1142
70.23/70.56 v -x1143 x1144 -x1139 -x1140 x1141 x1136 -x1137 -x1138 -x1133 -x1134 x1135 x1130 -x1131 -x1132 -x1127 -x1128 x1129 x1124
70.23/70.56 v -x1125 -x1126 -x1121 -x1122 x1123 x1118 -x1119 -x1120 -x1115 -x1116 x1117 x1112 -x1113 -x1114 x1109 -x1110 -x1111 -x1106 -x1107
70.23/70.56 v x1108 x1103 -x1104 -x1105 -x1100 -x1101 x1102 x1097 -x1098 -x1099 -x1094 -x1095 x1096 x1091 -x1092 -x1093 -x1088 -x1089 x1090
70.23/70.56 v -x1085 -x1086 x1087 x1082 -x1083 -x1084 -x1079 -x1080 x1081 x1076 -x1077 -x1078 x1073 -x1074 -x1075 -x1070 -x1071 x1072 x1067
70.23/70.56 v -x1068 -x1069 -x1064 -x1065 x1066 x1061 -x1062 -x1063 -x1058 -x1059 x1060 x1055 -x1056 -x1057 -x1052 -x1053 x1054 -x1049
70.23/70.56 v -x1050 x1051 x1046 -x1047 -x1048 -x1043 -x1044 x1045 x1040 -x1041 -x1042 -x1037 -x1038 x1039 x1034 -x1035 -x1036 -x1031 -x1032
70.23/70.56 v x1033 x1028 -x1029 -x1030 -x1025 -x1026 x1027 x1022 -x1023 -x1024 -x1019 -x1020 x1021 x1016 -x1017 -x1018 x1013 -x1014 -x1015
70.23/70.56 v -x1010 -x1011 x1012 x1007 -x1008 -x1009 -x1004 -x1005 x1006 -x1001 -x1002 x1003 x998 -x999 -x1000 -x995 -x996 x997 x992 -x993
70.23/70.56 v -x994 x989 -x990 -x991 -x986 -x987 x988 -x983 -x984 x985 x980 -x981 -x982 x977 -x978 -x979 -x974 -x975 x976 x971 -x972 -x973
70.23/70.56 v -x968 -x969 x970 -x965 -x966 x967 x962 -x963 -x964 -x959 -x960 x961 x956 -x957 -x958 x953 -x954 -x955 -x950 -x951 x952 -x947
70.23/70.56 v -x948 x949 x944 -x945 -x946 x941 -x942 -x943 -x938 -x939 x940 x935 -x936 -x937 -x932 -x933 x934 x929 -x930 -x931 -x926 -x927
70.23/70.56 v x928 -x923 -x924 x925 x920 -x921 -x922 x917 -x918 -x919 -x914 -x915 x916 -x911 -x912 x913 x908 -x909 -x910 -x905 -x906 x907
70.23/70.56 v x902 -x903 -x904 -x899 -x900 x901 x896 -x897 -x898 -x893 -x894 x895 x890 -x891 -x892 -x887 -x888 x889 x884 -x885 -x886 x881
70.23/70.56 v -x882 -x883 -x878 -x879 x880 x875 -x876 -x877 -x872 -x873 x874 x869 -x870 -x871 -x866 -x867 x868 x863 -x864 -x865 -x860 -x861
70.23/70.56 v x862 -x857 -x858 x859 x854 -x855 -x856 -x851 -x852 x853 x848 -x849 -x850 -x845 -x846 x847 x842 -x843 -x844 -x839 -x840 x841
70.23/70.56 v x836 -x837 -x838 -x833 -x834 x835 x830 -x831 -x832 x827 -x828 -x829 -x824 -x825 x826 x821 -x822 -x823 -x818 -x819 x820 x815
70.23/70.56 v -x816 -x817 -x812 -x813 x814 -x809 -x810 x811 x806 -x807 -x808 -x803 -x804 x805 x800 -x801 -x802 -x797 -x798 x799 x794 -x795
70.23/70.56 v -x796 -x791 -x792 x793 x788 -x789 -x790 x785 -x786 -x787 -x782 -x783 x784 -x779 -x780 x781 x776 -x777 -x778 x773 -x774 -x775
70.23/70.56 v -x770 -x771 x772 x767 -x768 -x769 -x764 -x765 x766 x761 -x762 -x763 -x758 -x759 x760 x755 -x756 -x757 -x752 -x753 x754 -x749
70.23/70.56 v -x750 x751 x746 -x747 -x748 -x743 -x744 x745 x740 -x741 -x742 x737 -x738 -x739 -x734 -x735 x736 -x731 -x732 x733 x728 -x729
70.23/70.56 v -x730 -x725 -x726 x727 x722 -x723 -x724 x719 -x720 -x721 -x716 -x717 x718 x713 -x714 -x715 -x710 -x711 x712 -x707 -x708 x709
70.23/70.56 v x704 -x705 -x706 -x701 -x702 x703 x698 -x699 -x700 -x695 -x696 x697 x692 -x693 -x694 -x689 -x690 x691 x686 -x687 -x688 x683
70.23/70.56 v -x684 -x685 -x680 -x681 x682 -x677 -x678 x679 x674 -x675 -x676 x671 -x672 -x673 -x668 -x669 x670 -x665 -x666 x667 x662 -x663
70.23/70.56 v -x664 x659 -x660 -x661 -x656 -x657 x658 x653 -x654 -x655 -x650 -x651 x652 x647 -x648 -x649 -x644 -x645 x646 -x641 -x642 x643
70.23/70.56 v x638 -x639 -x640 x635 -x636 -x637 -x632 -x633 x634 -x629 -x630 x631 x626 -x627 -x628 x623 -x624 -x625 -x620 -x621 x622 x617 -x618
70.23/70.56 v -x619 -x614 -x615 x616 -x611 -x612 x613 x608 -x609 -x610 x605 -x606 -x607 -x602 -x603 x604 -x599 -x600 x601 x596 -x597 -x598
70.23/70.56 v x593 -x594 -x595 -x590 -x591 x592 x587 -x588 -x589 -x584 -x585 x586 x581 -x582 -x583 -x578 -x579 x580 x575 -x576 -x577 -x572
70.23/70.56 v -x573 x574 -x569 -x570 x571 x566 -x567 -x568 x563 -x564 -x565 -x560 -x561 x562 x557 -x558 -x559 -x554 -x555 x556 x551 -x552
70.23/70.56 v -x553 -x548 -x549 x550 -x545 -x546 x547 x542 -x543 -x544 -x539 -x540 x541 x536 -x537 -x538 x533 -x534 -x535 -x530 -x531 x532
70.23/70.56 v -x527 -x528 x529 x524 -x525 -x526 x521 -x522 -x523 -x518 -x519 x520 -x515 -x516 x517 x512 -x513 -x514 -x509 -x510 x511 x506
70.23/70.56 v -x507 -x508 -x503 -x504 x505 x500 -x501 -x502 -x497 -x498 x499 x494 -x495 -x496 x491 -x492 -x493 -x488 -x489 x490 -x485 -x486
70.23/70.56 v x487 x482 -x483 -x484 -x479 -x480 x481 x476 -x477 -x478 -x473 -x474 x475 x470 -x471 -x472 -x467 -x468 x469 x464 -x465 -x466
70.23/70.56 v x461 -x462 -x463 -x458 -x459 x460 -x455 -x456 x457 x452 -x453 -x454 x449 -x450 -x451 -x446 -x447 x448 -x443 -x444 x445 x440
70.23/70.56 v -x441 -x442 -x437 -x438 x439 x434 -x435 -x436 x431 -x432 -x433 -x428 -x429 x430 -x425 -x426 x427 x422 -x423 -x424 x419 -x420
70.23/70.56 v -x421 -x416 -x417 x418 x413 -x414 -x415 -x410 -x411 x412 -x407 -x408 x409 x404 -x405 -x406 -x401 -x402 x403 x398 -x399 -x400
70.23/70.56 v -x395 -x396 x397 x392 -x393 -x394 x389 -x390 -x391 -x386 -x387 x388 -x383 -x384 x385 x380 -x381 -x382 -x377 x378 -x379 -x374
70.23/70.56 v x375 -x376 -x371 -x372 x373 x368 -x369 -x370 x365 -x366 -x367 -x362 -x363 x364 -x359 -x360 x361 x356 -x357 -x358 x353 -x354
70.23/70.56 v -x355 -x350 -x351 x352 -x347 -x348 x349 x344 -x345 -x346 -x341 -x342 x343 x338 -x339 -x340 x335 -x336 -x337 -x332 -x333 x334
70.23/70.56 v x329 -x330 -x331 -x326 -x327 x328 -x323 -x324 x325 x320 -x321 -x322 -x317 -x318 x319 x314 -x315 -x316 -x311 -x312 x313 x308
70.23/70.56 v -x309 -x310 -x305 -x306 x307 x302 -x303 -x304 -x299 -x300 x301 x296 -x297 -x298 -x293 -x294 x295 x290 -x291 -x292 -x287 -x288
70.23/70.56 v x289 x284 -x285 -x286 x281 -x282 -x283 -x278 -x279 x280 -x275 -x276 x277 x272 -x273 -x274 x269 -x270 -x271 -x266 -x267 x268
70.23/70.56 v -x263 -x264 x265 x260 -x261 -x262 -x257 -x258 x259 x254 -x255 -x256 -x251 -x252 x253 x248 -x249 -x250 -x245 -x246 x247 x242 -x243
70.23/70.56 v -x244 -x239 -x240 x241 x236 -x237 -x238 -x233 -x234 x235 x230 -x231 -x232 -x227 -x228 x229 x224 -x225 -x226 x221 -x222 -x223
70.23/70.56 v -x218 -x219 x220 -x215 -x216 x217 x212 -x213 -x214 -x209 -x210 x211 x206 -x207 -x208 -x203 -x204 x205 x200 -x201 -x202 -x197
70.23/70.56 v -x198 x199 x194 -x195 -x196 -x191 -x192 x193 x188 -x189 -x190 -x185 -x186 x187 x182 -x183 -x184 -x179 -x180 x181 x176 -x177
70.23/70.56 v -x178 -x173 -x174 x175 x170 -x171 -x172 -x167 -x168 x169 x164 -x165 -x166 -x161 -x162 x163 x158 -x159 -x160 x155 -x156 -x157
70.23/70.56 v -x152 -x153 x154 -x149 -x150 x151 x146 -x147 -x148 -x143 -x144 x145 x140 -x141 -x142 x137 -x138 -x139 -x134 -x135 x136 -x131
70.23/70.56 v -x132 x133 x128 -x129 -x130 -x125 -x126 x127 x122 -x123 -x124 x119 -x120 -x121 -x116 -x117 x118 x113 -x114 -x115 -x110 -x111
70.23/70.56 v x112 -x107 -x108 x109 x104 -x105 -x106 -x101 -x102 x103 x98 -x99 -x100 -x95 -x96 x97 x92 -x93 -x94 -x89 -x90 x91 x86 -x87
70.23/70.56 v -x88 -x83 -x84 x85 x80 -x81 -x82 -x77 -x78 x79 x74 -x75 -x76 -x71 -x72 x73 x68 -x69 -x70 -x65 -x66 x67 x62 -x63 -x64 -x59 -x60
70.23/70.56 v x61 x56 -x57 -x58 -x53 -x54 x55 x50 -x51 -x52 -x47 -x48 x49 x44 -x45 -x46 x41 -x42 -x43 -x38 -x39 x40 -x35 -x36 x37 x32 -x33
70.23/70.56 v -x34 -x29 -x30 x31 x26 -x27 -x28 -x23 -x24 x25 x20 -x21 -x22 -x17 -x18 x19 x14 -x15 -x16 x11 -x12 -x13 -x8 -x9 x10 -x5 -x6
70.23/70.56 v x7 x2 -x3 -x4 x1
70.23/70.56 c SCIP Status : problem is solved [optimal solution found]
70.23/70.56 c Total Time : 70.55
70.23/70.56 c solving : 70.55
70.23/70.56 c presolving : 1.39 (included in solving)
70.23/70.56 c reading : 0.03 (included in solving)
70.23/70.56 c copying : 0.94 (43 #copies) (minimal 0.01, maximal 0.04, average 0.02)
70.23/70.56 c Original Problem :
70.23/70.56 c Problem name : HOME/instance-4545515-1753238426.opb
70.23/70.56 c Variables : 6099 (6099 binary, 0 integer, 0 implicit integer, 0 continuous)
70.23/70.56 c Constraints : 7394 initial, 7394 maximal
70.23/70.56 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
70.23/70.56 c Presolved Problem :
70.23/70.56 c Problem name : t_HOME/instance-4545515-1753238426.opb
70.23/70.56 c Variables : 3771 (3771 binary, 0 integer, 0 implicit integer, 0 continuous)
70.23/70.56 c Constraints : 7285 initial, 11067 maximal
70.23/70.56 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
70.23/70.56 c Nonzeros : 190006 constraint, 3378 clique table
70.23/70.56 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
70.23/70.56 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c domcol : 0.00 0.00 2 0 0 0 0 0 0 0 0 0
70.23/70.56 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c dualsparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
70.23/70.56 c gateextraction : 0.02 0.00 8 0 0 0 0 0 1392 464 0 0
70.23/70.56 c implics : 0.00 0.00 13 0 0 0 0 0 0 0 0 0
70.23/70.56 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c milp : 0.10 0.00 1 0 1595 0 0 0 7131 6067 0 0
70.23/70.56 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c sparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
70.23/70.56 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c trivial : 0.00 0.00 30 88 0 0 0 0 0 0 0 0
70.23/70.56 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c dualfix : 0.00 0.00 30 1 0 0 0 0 0 0 0 0
70.23/70.56 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c probing : 0.04 0.00 1 0 0 0 0 0 0 0 0 0
70.23/70.56 c pseudoobj : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
70.23/70.56 c symmetry : 0.05 0.00 1 0 0 0 0 0 0 0 0 0
70.23/70.56 c vbounds : 0.00 0.00 3 0 0 0 0 0 0 0 0 0
70.23/70.56 c knapsack : 0.06 0.00 32 0 0 0 0 0 490 1086 640 831
70.23/70.56 c setppc : 0.00 0.00 32 0 0 0 0 0 96 0 0 0
70.23/70.56 c and : 0.00 0.00 18 0 3 0 0 0 4 1 0 3
70.23/70.56 c linear : 0.09 0.01 39 617 24 0 614 0 657 270 1018 1904
70.23/70.56 c logicor : 0.96 0.03 29 0 0 0 0 0 234 0 0 2365
70.23/70.56 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c components : 0.02 0.00 2 0 0 0 0 0 0 0 0 0
70.23/70.56 c root node : - - - 3 - - 3 - - - - -
70.23/70.56 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
70.23/70.56 c benderslp : 0 0 0 0 9890 0 0 901 0 0 0 0 0 0 0
70.23/70.56 c integral : 0 0 0 0 9890 0 0 901 0 0 0 0 0 0 19776
70.23/70.56 c knapsack : 4526+ 4533 33 73918 1 0 0 894 322415 414 76424 6619 176 0 0
70.23/70.56 c setppc : 355+ 364 33 73507 1 0 0 759 28504 792 58492 9 0 0 0
70.23/70.56 c and : 460 460 5266 44508 0 0 0 9 197 1 13508 780 510 0 0
70.23/70.56 c linear : 77+ 103 30 72714 1 0 0 12 43623 6045 562319 0 0 0 0
70.23/70.56 c logicor : 1867+ 5631 30 17206 1 0 0 0 38255 123 3326 26 3 0 0
70.23/70.56 c benders : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
70.23/70.56 c fixedvar : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
70.23/70.56 c countsols : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
70.23/70.56 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
70.23/70.56 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c integral : 2.40 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c knapsack : 1.92 0.00 0.08 0.81 0.00 0.00 0.00 0.86 0.17 0.00
70.23/70.56 c setppc : 0.50 0.00 0.00 0.49 0.00 0.00 0.00 0.01 0.01 0.00
70.23/70.56 c and : 0.14 0.00 0.05 0.09 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c linear : 2.92 0.01 0.00 2.67 0.00 0.00 0.00 0.00 0.24 0.00
70.23/70.56 c logicor : 0.79 0.03 0.01 0.70 0.00 0.00 0.00 0.00 0.06 0.00
70.23/70.56 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c components : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c Propagators : #Propagate #ResProp Cutoffs DomReds
70.23/70.56 c dualfix : 4 0 0 0
70.23/70.56 c genvbounds : 0 0 0 0
70.23/70.56 c nlobbt : 0 0 0 0
70.23/70.56 c obbt : 0 0 0 0
70.23/70.56 c probing : 0 0 0 0
70.23/70.56 c pseudoobj : 0 0 0 0
70.23/70.56 c redcost : 0 0 0 0
70.23/70.56 c rootredcost : 0 0 0 0
70.23/70.56 c symmetry : 12163 0 0 11
70.23/70.56 c vbounds : 39743 0 0 0
70.23/70.56 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
70.23/70.56 c dualfix : 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c genvbounds : 0.01 0.00 0.00 0.01 0.00 0.00
70.23/70.56 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c probing : 0.04 0.00 0.04 0.00 0.00 0.00
70.23/70.56 c pseudoobj : 0.01 0.00 0.00 0.01 0.00 0.00
70.23/70.56 c redcost : 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c rootredcost : 0.00 0.00 0.00 0.00 0.00 0.00
70.23/70.56 c symmetry : 0.22 0.00 0.05 0.17 0.00 0.00
70.23/70.56 c vbounds : 0.53 0.00 0.00 0.53 0.00 0.00
70.23/70.56 c Symmetry :
70.23/70.56 c orbitopal red. : 0 reductions applied, 0 cutoffs
70.23/70.56 c orbital reduction: 0 reductions applied, 0 cutoffs
70.23/70.56 c lexicographic red: 11 reductions applied, 0 cutoffs
70.23/70.56 c shadow tree time : 0.03 s
70.23/70.56 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
70.23/70.56 c propagation : 1.12 3090 3086 - 77614 107.3 163 27.6 - - -
70.23/70.56 c infeasible LP : 0.12 138 138 - 2290 103.3 34 21.2 137 273.9 0
70.23/70.56 c bound exceed. LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
70.23/70.56 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
70.23/70.56 c pseudo solution : 0.00 1 1 - 1 0.0 0 0.0 - - -
70.23/70.56 c applied globally : 0.14 - - 1 19269 95.0 - - 134 - -
70.23/70.56 c applied locally : - - - 0 20 106.7 - - 3 - -
70.23/70.56 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
70.23/70.56 c cut pool : 0.70 - 1256 63 - - 20040 122828 - - - - - (maximal pool size: 11861)
70.23/70.56 c aggregation : 0.68 0.00 41 30 0 0 15536 101965 253 1301 1230 71 0
70.23/70.56 c > cmir : - - - - - - - 48049 24 486 484 2 -
70.23/70.56 c > flowcover : - - - - - - - 52574 7 719 718 1 -
70.23/70.56 c > knapsackcover : - - - - - - - 1342 222 96 28 68 -
70.23/70.56 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c clique : 0.18 0.00 30 30 0 0 0 0 0 0 0 0 0
70.23/70.56 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c gomory : 1.23 0.00 31 20 0 0 4451 19770 86 502 490 12 0
70.23/70.56 c > gomorymi : - - - - - - - 12844 44 264 258 6 -
70.23/70.56 c > strongcg : - - - - - - - 6926 42 238 232 6 -
70.23/70.56 c impliedbounds : 0.01 0.00 41 30 0 0 242 323 0 283 283 0 0
70.23/70.56 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c mcf : 0.01 0.00 2 2 0 0 0 0 0 0 0 0 0
70.23/70.56 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c multilinear : 0.00 0.00 59 33 0 0 0 0 0 0 0 0 0
70.23/70.56 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
70.23/70.56 c rapidlearning : 5.89 0.00 37 2 0 6579 0 0 0 0 0 0 202
70.23/70.56 c rlt : 0.53 0.00 26 20 0 0 86 292 26 33 8 25 0
70.23/70.56 c zerohalf : 0.18 0.00 40 30 0 0 121 478 31 71 64 7 0
70.23/70.56 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
70.23/70.56 c hybrid : 0.14 0.00 413 35 2880 4 127674 1099 4 105561
70.23/70.56 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c Pricers : ExecTime SetupTime Calls Vars
70.23/70.56 c problem variables: 0.00 - 0 0
70.23/70.56 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
70.23/70.56 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c inference : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c random : 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c relpscost : 2.40 0.00 9889 0 0 0 0 0 0 19776
70.23/70.56 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
70.23/70.56 c Primal Heuristics : ExecTime SetupTime Calls Found Best
70.23/70.56 c LP solutions : 0.00 - - 1 1
70.23/70.56 c relax solutions : 0.00 - - 0 0
70.23/70.56 c pseudo solutions : 0.00 - - 0 0
70.23/70.56 c strong branching : 0.00 - - 0 0
70.23/70.56 c actconsdiving : 0.00 0.00 0 0 0
70.23/70.56 c adaptivediving : 0.43 0.00 9 0 0
70.23/70.56 c alns : 0.21 0.00 4 0 0
70.23/70.56 c bound : 0.00 0.00 0 0 0
70.23/70.56 c clique : 0.03 0.00 1 0 0
70.23/70.56 c coefdiving : 0.00 0.00 0 0 0
70.23/70.56 c completesol : 0.00 0.00 0 0 0
70.23/70.56 c conflictdiving : 1.22 0.00 29 0 0
70.23/70.56 c crossover : 0.00 0.00 0 0 0
70.23/70.56 c dins : 0.00 0.00 0 0 0
70.23/70.56 c distributiondivin: 1.63 0.00 26 0 0
70.23/70.56 c dps : 0.00 0.00 0 0 0
70.23/70.56 c dualval : 0.00 0.00 0 0 0
70.23/70.56 c farkasdiving : 0.00 0.00 0 0 0
70.23/70.56 c feasjump : 0.03 0.00 2 0 0
70.23/70.56 c feaspump : 0.59 0.00 6 0 0
70.23/70.56 c fixandinfer : 0.00 0.00 0 0 0
70.23/70.56 c fracdiving : 0.78 0.00 27 0 0
70.23/70.56 c gins : 0.00 0.00 0 0 0
70.23/70.56 c guideddiving : 0.00 0.00 0 0 0
70.23/70.56 c indcoefdiving : 0.00 0.00 0 0 0
70.23/70.56 c indicator : 0.00 0.00 0 0 0
70.23/70.56 c indicatordiving : 0.00 0.00 0 0 0
70.23/70.56 c indoneopt : 0.00 0.00 0 0 0
70.23/70.56 c indrounding : 0.00 0.00 0 0 0
70.23/70.56 c indtwoopt : 0.00 0.00 0 0 0
70.23/70.56 c intdiving : 0.00 0.00 0 0 0
70.23/70.56 c intshifting : 0.00 0.00 0 0 0
70.23/70.56 c linesearchdiving : 0.62 0.00 26 0 0
70.23/70.56 c localbranching : 0.00 0.00 0 0 0
70.23/70.56 c locks : 0.01 0.00 1 0 0
70.23/70.56 c lpface : 0.05 0.00 0 0 0
70.23/70.56 c mpec : 0.00 0.00 0 0 0
70.23/70.56 c multistart : 0.00 0.00 0 0 0
70.23/70.56 c mutation : 0.00 0.00 0 0 0
70.23/70.56 c nlpdiving : 0.00 0.00 0 0 0
70.23/70.56 c objpscostdiving : 3.59 0.00 2 0 0
70.23/70.56 c octane : 0.00 0.00 0 0 0
70.23/70.56 c ofins : 0.00 0.00 0 0 0
70.23/70.56 c oneopt : 0.00 0.00 0 0 0
70.23/70.56 c padm : 0.00 0.00 0 0 0
70.23/70.56 c proximity : 0.00 0.00 0 0 0
70.23/70.56 c pscostdiving : 1.65 0.00 27 0 0
70.23/70.56 c randrounding : 1.26 0.00 916 0 0
70.23/70.56 c rens : 0.09 0.00 2 0 0
70.23/70.56 c reoptsols : 0.00 0.00 0 0 0
70.23/70.56 c repair : 0.00 0.00 0 0 0
70.23/70.56 c rins : 0.00 0.00 0 0 0
70.23/70.56 c rootsoldiving : 1.59 0.00 1 0 0
70.23/70.56 c rounding : 0.12 0.00 1389 0 0
70.23/70.56 c scheduler : 0.00 0.00 0 0 0
70.23/70.56 c shiftandpropagate: 0.06 0.00 2 0 0
70.23/70.56 c shifting : 0.82 0.00 443 0 0
70.23/70.56 c simplerounding : 0.00 0.00 0 0 0
70.23/70.56 c smallcard : 0.00 0.00 0 0 0
70.23/70.56 c subnlp : 0.00 0.00 0 0 0
70.23/70.56 c trivial : 0.00 0.00 4 0 0
70.23/70.56 c trivialnegation : 0.00 0.00 0 0 0
70.23/70.56 c trustregion : 0.00 0.00 0 0 0
70.23/70.56 c trysol : 0.00 0.00 0 0 0
70.23/70.56 c twoopt : 0.00 0.00 0 0 0
70.23/70.56 c undercover : 0.00 0.00 1 0 0
70.23/70.56 c vbounds : 0.03 0.00 2 0 0
70.23/70.56 c veclendiving : 0.55 0.00 26 0 0
70.23/70.56 c zeroobj : 0.00 0.00 0 0 0
70.23/70.56 c zirounding : 0.08 0.00 1000 0 0
70.23/70.56 c other solutions : - - - 0 -
70.23/70.56 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
70.23/70.56 c rens : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
70.23/70.56 c rins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
70.23/70.56 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
70.23/70.56 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
70.23/70.56 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
70.23/70.56 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
70.23/70.56 c dins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
70.23/70.56 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
70.23/70.56 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
70.23/70.56 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
70.23/70.56 c primal LP : 0.07 42 0 0.00 0.00 0.07 42
70.23/70.56 c dual LP : 25.95 10399 87952 8.47 3389.65 0.02 11
70.23/70.56 c lex dual LP : 0.00 0 0 0.00 -
70.23/70.56 c barrier LP : 0.00 0 0 0.00 - 0.00 0
70.23/70.56 c resolve instable : 0.00 0 0 0.00 -
70.23/70.56 c diving/probing LP: 9.96 1639 113139 69.03 11361.23
70.23/70.56 c strong branching : 1.28 57 10139 177.88 7925.56 - - 3
70.23/70.56 c (at root node) : - 57 10139 177.88 -
70.23/70.56 c conflict analysis: 0.00 0 0 0.00 -
70.23/70.56 c B&B Tree :
70.23/70.56 c number of runs : 2
70.23/70.56 c nodes : 14684 (8925 internal, 5759 leaves)
70.23/70.56 c feasible leaves : 1
70.23/70.56 c infeas. leaves : 5758
70.23/70.56 c objective leaves : 0
70.23/70.56 c nodes (total) : 15718 (9888 internal, 5830 leaves)
70.23/70.56 c nodes left : 0
70.23/70.56 c max depth : 160
70.23/70.56 c max depth (total): 160
70.23/70.56 c backtracks : 3400 (23.2%)
70.23/70.56 c early backtracks : 0 (0.0%)
70.23/70.56 c nodes exc. ref. : 0 (0.0%)
70.23/70.56 c delayed cutoffs : 2073
70.23/70.56 c repropagations : 4224 (75670 domain reductions, 911 cutoffs)
70.23/70.56 c avg switch length: 4.19
70.23/70.56 c switching time : 2.45
70.23/70.56 c Root Node :
70.23/70.56 c First LP value : +0.00000000000000e+00
70.23/70.56 c First LP Iters : 1792 (35835.70 Iter/sec)
70.23/70.56 c First LP Time : 0.05
70.23/70.56 c Final Dual Bound : +0.00000000000000e+00
70.23/70.56 c Final Root Iters : 9053
70.23/70.56 c Root LP Estimate : +4.15625346905513e-03
70.23/70.56 c Solution :
70.23/70.56 c Solutions found : 1 (1 improvements)
70.23/70.56 c First Solution : +0.00000000000000e+00 (in run 2, after 14684 nodes, 70.54 seconds, depth 110, found by <relaxation>)
70.23/70.56 c Gap First Sol. : 0.00 %
70.23/70.56 c Gap Last Sol. : 0.00 %
70.23/70.56 c Primal Bound : +0.00000000000000e+00 (in run 2, after 14684 nodes, 70.55 seconds, depth -1, found by <relaxation>)
70.23/70.56 c Dual Bound : +0.00000000000000e+00
70.23/70.56 c Gap : 0.00 %
70.23/70.56 c Integrals : Total Avg%
70.23/70.56 c primal-dual : 7054.36 99.99
70.23/70.56 c primal-ref : - - (not evaluated)
70.23/70.56 c dual-ref : - - (not evaluated)
70.33/70.61 c Time complete: 70.3519.