0.00/0.01 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.01 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.01 c
0.00/0.01 c user parameter file <scip.set> not found - using default parameters
0.00/0.01 c reading problem <HOME/instance-4542005-1753211116.opb>
0.00/0.03 c original problem has 1562 variables (1562 bin, 0 int, 0 impl, 0 cont) and 1982 constraints
0.00/0.03 c problem read in 0.01
0.00/0.03 c No objective function, only one solution is needed.
0.00/0.04 c presolving:
0.00/0.05 c (round 1, fast) 67 del vars, 66 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 990 clqs
0.00/0.06 c (0.0s) running MILP presolver
0.00/0.06 c (0.1s) MILP presolver (2 rounds): 0 aggregations, 0 fixings, 0 bound changes
0.00/0.08 c (round 2, exhaustive) 67 del vars, 66 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 1453 upgd conss, 0 impls, 990 clqs
0.00/0.08 c (round 3, fast) 67 del vars, 66 del conss, 0 add conss, 0 chg bounds, 1 chg sides, 86 chg coeffs, 1453 upgd conss, 0 impls, 990 clqs
0.00/0.09 c (round 4, exhaustive) 67 del vars, 1518 del conss, 484 add conss, 0 chg bounds, 1 chg sides, 86 chg coeffs, 1453 upgd conss, 0 impls, 991 clqs
0.10/0.11 c (0.1s) probing: 83/1495 (5.6%) - 0 fixings, 0 aggregations, 5 implications, 0 bound changes
0.10/0.11 c (0.1s) probing aborted: 50/50 successive totally useless probings
0.10/0.11 c (0.1s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
0.10/0.12 c (0.1s) no symmetry present (symcode time: 0.00)
0.10/0.12 c presolving (5 rounds: 5 fast, 3 medium, 3 exhaustive):
0.10/0.12 c 67 deleted vars, 1518 deleted constraints, 484 added constraints, 0 tightened bounds, 0 added holes, 1 changed sides, 86 changed coefficients
0.10/0.12 c 0 implications, 996 cliques
0.10/0.12 c presolved problem has 1495 variables (1495 bin, 0 int, 0 impl, 0 cont) and 948 constraints
0.10/0.12 c 1 constraints of type <knapsack>
0.10/0.12 c 484 constraints of type <and>
0.10/0.12 c 463 constraints of type <linear>
0.10/0.12 c transformed objective value is always integral (scale: 1)
0.10/0.12 c Presolving Time: 0.08
0.10/0.12 c - non default parameters ----------------------------------------------------------------------
0.10/0.12 c # SCIP version 10.0.0
0.10/0.12 c
0.10/0.12 c # maximal time in seconds to run
0.10/0.12 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
0.10/0.12 c limits/time = 3596.993014
0.10/0.12 c
0.10/0.12 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.10/0.12 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
0.10/0.12 c limits/memory = 27900
0.10/0.12 c
0.10/0.12 c # solving stops, if the given number of solutions were found; this limit is first checked in presolving (-1: no limit)
0.10/0.12 c # [type: int, advanced: FALSE, range: [-1,2147483647], default: -1]
0.10/0.12 c limits/solutions = 1
0.10/0.12 c
0.10/0.12 c # bitset describing used symmetry handling technique: (0: off; 1: constraint-based (orbitopes and/or symresacks); 2: orbital fixing; 3: orbitopes and orbital fixing; 4: Schreier Sims cuts; 5: Schreier Sims cuts and orbitopes; 6: Schreier Sims cuts and orbital fixing; 7: Schreier Sims cuts, orbitopes, and orbital fixing) See type_symmetry.h.
0.10/0.12 c # [type: int, advanced: FALSE, range: [0,7], default: 7]
0.10/0.12 c misc/usesymmetry = 3
0.10/0.12 c
0.10/0.12 c # belongs reading time to solving time?
0.10/0.12 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
0.10/0.12 c timing/reading = TRUE
0.10/0.12 c
0.10/0.12 c # Should we check whether the components of the symmetry group can be handled by double lex matrices?
0.10/0.12 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.10/0.12 c propagating/symmetry/detectdoublelex = FALSE
0.10/0.12 c
0.10/0.12 c # Should we try to detect symmetric subgroups of the symmetry group on binary variables?
0.10/0.12 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.10/0.12 c propagating/symmetry/detectsubgroups = FALSE
0.10/0.12 c
0.10/0.12 c # Type of symmetries that shall be computed?
0.10/0.12 c # [type: int, advanced: TRUE, range: [0,1], default: 0]
0.10/0.12 c propagating/symmetry/symtype = 1
0.10/0.12 c
0.10/0.12 c # Should components consisting of a single full reflection be handled?
0.10/0.12 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.10/0.12 c propagating/symmetry/usesimplesgncomp = FALSE
0.10/0.12 c
0.10/0.12 c -----------------------------------------------------------------------------------------------
0.10/0.12 c start solving
0.10/0.12 c
0.10/0.22 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
0.10/0.22 c 0.2s| 1 | 0 | 30 | - | 17M | 0 |1495 | 967 |1432 | 0 | 0 | 18 | 0 | 0.000000e+00 | -- | Inf | unknown
0.31/0.40 c 0.4s| 1 | 0 | 38 | - | 19M | 0 |1495 |1014 |1434 | 2 | 1 | 65 | 0 | 0.000000e+00 | -- | Inf | unknown
0.31/0.41 c 0.4s| 1 | 0 | 42 | - | 19M | 0 |1495 |1014 |1437 | 5 | 2 | 65 | 0 | 0.000000e+00 | -- | Inf | unknown
0.40/0.43 c 0.4s| 1 | 0 | 59 | - | 20M | 0 |1495 |1014 |1441 | 9 | 3 | 65 | 0 | 0.000000e+00 | -- | Inf | unknown
0.40/0.46 c 0.4s| 1 | 0 | 107 | - | 20M | 0 |1495 |1014 |1445 | 13 | 4 | 65 | 0 | 0.000000e+00 | -- | Inf | unknown
0.51/0.52 c 0.5s| 1 | 0 | 137 | - | 21M | 0 |1495 |1014 |1468 | 36 | 5 | 65 | 0 | 0.000000e+00 | -- | Inf | unknown
0.51/0.60 c (node 1) unresolved numerical troubles in LP 9 -- using pseudo solution instead (loop 1)
0.51/0.60 c 0.6s| 1 | 2 | 241 | - | 21M | 0 |1495 |1014 |1473 | 41 | 6 | 65 | 0 | 0.000000e+00 | -- | Inf | unknown
0.68/0.70 c * 0.7s| 7 | 0 | 546 | 55.7 | LP | 6 |1495 |1014 |1478 | 46 | 2 | 65 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%| 99.43%
0.68/0.70 c
0.68/0.70 c SCIP Status : problem is solved [optimal solution found]
0.68/0.70 c Solving Time (sec) : 0.68
0.68/0.70 c Solving Nodes : 7
0.68/0.70 c Primal Bound : +0.00000000000000e+00 (1 solutions)
0.68/0.70 c Dual Bound : +0.00000000000000e+00
0.68/0.70 c Gap : 0.00 %
0.68/0.70 c [linear] <linear5>: <x45>[B] (+0) +2<x67>[B] (+0) +4<x89>[B] (+0) +8<x111>[B] (+0) +16<x133>[B] (+0) +32<x155>[B] (+0) +64<x177>[B] (+0) +128<x199>[B] (+0) +256<x221>[B] (+0) +512<x243>[B] (+0) +1024<x265>[B] (+0) +2048<x287>[B] (+0) +4096<x309>[B] (+0) +8192<x331>[B] (+0) +16384<x353>[B] (+0) +32768<x375>[B] (+0) +65536<x397>[B] (+0) +131072<x419>[B] (+0) +262144<x441>[B] (+0) +524288<x463>[B] (+0) +1048576<x485>[B] (+0) +2097152<x507>[B] (+0) +2<x46>[B] (+0) +4<x68>[B] (+0) +8<x90>[B] (+1) +16<x112>[B] (+0) +32<x134>[B] (+0) +64<x156>[B] (+0) +128<x178>[B] (+0) +256<x200>[B] (+0) +512<x222>[B] (+0) +1024<x244>[B] (+0) +2048<x266>[B] (+0) +4096<x288>[B] (+0) +8192<x310>[B] (+0) +16384<x332>[B] (+0) +32768<x354>[B] (+0) +65536<x376>[B] (+0) +131072<x398>[B] (+0) +262144<x420>[B] (+0) +524288<x442>[B] (+0) +1048576<x464>[B] (+0) +2097152<x486>[B] (+0) +4194304<x508>[B] (+0) +4<x47>[B] (+0) +8<x69>[B] (+0) +16<x91>[B] (+0) +32<x113>[B] (+0) +64<x135>[B] (+0) +128<x157>[B] (+0) +256<x179>[B] (+0) +512<x201>[c B] (+0) +1024<x223>[B] (+0) +2048<x245>[B] (+0) +4096<x267>[B] (+0) +8192<x289>[B] (+0) +16384<x311>[B] (+0) +32768<x333>[B] (+0) +65536<x355>[B] (+0) +131072<x377>[B] (+0) +262144<x399>[B] (+0) +524288<x421>[B] (+0) +1048576<x443>[B] (+0) +2097152<x465>[B] (+0) +4194304<x487>[B] (+0) +8388608<x509>[B] (+0) +8<x48>[B] (+0) +16<x70>[B] (+0) +32<x92>[B] (+0) +64<x114>[B] (+0) +128<x136>[B] (+0) +256<x158>[B] (+0) +512<x180>[B] (+0) +1024<x202>[B] (+0) +2048<x224>[B] (+0) +4096<x246>[B] (+0) +8192<x268>[B] (+0) +16384<x290>[B] (+0) +32768<x312>[B] (+0) +65536<x334>[B] (+0) +131072<x356>[B] (+0) +262144<x378>[B] (+0) +524288<x400>[B] (+0) +1048576<x422>[B] (+0) +2097152<x444>[B] (+0) +4194304<x466>[B] (+0) +8388608<x488>[B] (+0) +16777216<x510>[B] (+0) +16<x49>[B] (+0) +32<x71>[B] (+0) +64<x93>[B] (+0) +128<x115>[B] (+0) +256<x137>[B] (+0) +512<x159>[B] (+0) +1024<x181>[B] (+0) +2048<x203>[B] (+0) +4096<x225>[B] (+0) +8192<x247>[B] (+0) +16384<x269>[B] (+0) +32768<x291>[B] (+0) +65536<x313>[B] (+0) +131072<x335c >[B] (+0) +262144<x357>[B] (+0) +524288<x379>[B] (+0) +1048576<x401>[B] (+0) +2097152<x423>[B] (+0) +4194304<x445>[B] (+0) +8388608<x467>[B] (+0) +16777216<x489>[B] (+0) +33554432<x511>[B] (+0) +32<x50>[B] (+0) +64<x72>[B] (+0) +128<x94>[B] (+0) +256<x116>[B] (+0) +512<x138>[B] (+0) +1024<x160>[B] (+0) +2048<x182>[B] (+0) +4096<x204>[B] (+0) +8192<x226>[B] (+0) +16384<x248>[B] (+0) +32768<x270>[B] (+0) +65536<x292>[B] (+0) +131072<x314>[B] (+0) +262144<x336>[B] (+0) +524288<x358>[B] (+0) +1048576<x380>[B] (+0) +2097152<x402>[B] (+0) +4194304<x424>[B] (+0) +8388608<x446>[B] (+0) +16777216<x468>[B] (+0) +33554432<x490>[B] (+0) +67108864<x512>[B] (+0) +64<x51>[B] (+0) +128<x73>[B] (+0) +256<x95>[B] (+0) +512<x117>[B] (+0) +1024<x139>[B] (+0) +2048<x161>[B] (+0) +4096<x183>[B] (+0) +8192<x205>[B] (+0) +16384<x227>[B] (+0) +32768<x249>[B] (+0) +65536<x271>[B] (+0) +131072<x293>[B] (+0) +262144<x315>[B] (+0) +524288<x337>[B] (+0) +1048576<x359>[B] (+0) +2097152<x381>[B] (+0) +4194304<x403>[B] (+0) +8388608<x425>[c B] (+0) +16777216<x447>[B] (+0) +33554432<x469>[B] (+0) +67108864<x491>[B] (+0) +134217728<x513>[B] (+0) +128<x52>[B] (+0) +256<x74>[B] (+0) +512<x96>[B] (+0) +1024<x118>[B] (+0) +2048<x140>[B] (+0) +4096<x162>[B] (+0) +8192<x184>[B] (+0) +16384<x206>[B] (+0) +32768<x228>[B] (+0) +65536<x250>[B] (+0) +131072<x272>[B] (+0) +262144<x294>[B] (+0) +524288<x316>[B] (+0) +1048576<x338>[B] (+0) +2097152<x360>[B] (+0) +4194304<x382>[B] (+0) +8388608<x404>[B] (+0) +16777216<x426>[B] (+0) +33554432<x448>[B] (+0) +67108864<x470>[B] (+0) +134217728<x492>[B] (+0) +268435456<x514>[B] (+0) +256<x53>[B] (+0) +512<x75>[B] (+0) +1024<x97>[B] (+0) +2048<x119>[B] (+0) +4096<x141>[B] (+0) +8192<x163>[B] (+0) +16384<x185>[B] (+0) +32768<x207>[B] (+0) +65536<x229>[B] (+0) +131072<x251>[B] (+0) +262144<x273>[B] (+0) +524288<x295>[B] (+0) +1048576<x317>[B] (+0) +2097152<x339>[B] (+0) +4194304<x361>[B] (+0) +8388608<x383>[B] (+0) +16777216<x405>[B] (+0) +33554432<x427>[B] (+0) +67108864<x449>[B] (+0) +134217728<x471>[B] (+0) +268435c 456<x493>[B] (+0) +536870912<x515>[B] (+0) +512<x54>[B] (+0) +1024<x76>[B] (+0) +2048<x98>[B] (+0) +4096<x120>[B] (+0) +8192<x142>[B] (+0) +16384<x164>[B] (+0) +32768<x186>[B] (+0) +65536<x208>[B] (+0) +131072<x230>[B] (+0) +262144<x252>[B] (+0) +524288<x274>[B] (+0) +1048576<x296>[B] (+0) +2097152<x318>[B] (+0) +4194304<x340>[B] (+0) +8388608<x362>[B] (+0) +16777216<x384>[B] (+0) +33554432<x406>[B] (+0) +67108864<x428>[B] (+0) +134217728<x450>[B] (+0) +268435456<x472>[B] (+0) +536870912<x494>[B] (+0) +1.07374182e+09<x516>[B] (+0) +1024<x55>[B] (+0) +2048<x77>[B] (+0) +4096<x99>[B] (+0) +8192<x121>[B] (+0) +16384<x143>[B] (+0) +32768<x165>[B] (+0) +65536<x187>[B] (+0) +131072<x209>[B] (+0) +262144<x231>[B] (+0) +524288<x253>[B] (+0) +1048576<x275>[B] (+0) +2097152<x297>[B] (+0) +4194304<x319>[B] (+0) +8388608<x341>[B] (+0) +16777216<x363>[B] (+0) +33554432<x385>[B] (+0) +67108864<x407>[B] (+0) +134217728<x429>[B] (+0) +268435456<x451>[B] (+0) +536870912<x473>[B] (+0) +1.07374182e+09<x495>[B] (+0) +2.1474836c 5e+09<x517>[B] (+0) +2048<x56>[B] (+0) +4096<x78>[B] (+0) +8192<x100>[B] (+0) +16384<x122>[B] (+0) +32768<x144>[B] (+0) +65536<x166>[B] (+0) +131072<x188>[B] (+0) +262144<x210>[B] (+0) +524288<x232>[B] (+0) +1048576<x254>[B] (+0) +2097152<x276>[B] (+0) +4194304<x298>[B] (+0) +8388608<x320>[B] (+0) +16777216<x342>[B] (+0) +33554432<x364>[B] (+0) +67108864<x386>[B] (+0) +134217728<x408>[B] (+0) +268435456<x430>[B] (+0) +536870912<x452>[B] (+0) +1.07374182e+09<x474>[B] (+0) +2.14748365e+09<x496>[B] (+0) +4.2949673e+09<x518>[B] (+0) +4096<x57>[B] (+0) +8192<x79>[B] (+0) +16384<x101>[B] (+0) +32768<x123>[B] (+0) +65536<x145>[B] (+0) +131072<x167>[B] (+0) +262144<x189>[B] (+0) +524288<x211>[B] (+0) +1048576<x233>[B] (+0) +2097152<x255>[B] (+0) +4194304<x277>[B] (+0) +8388608<x299>[B] (+0) +16777216<x321>[B] (+0) +33554432<x343>[B] (+0) +67108864<x365>[B] (+0) +134217728<x387>[B] (+0) +268435456<x409>[B] (+0) +536870912<x431>[B] (+0) +1.07374182e+09<x453>[B] (+0) +2.14748365e+09<x475>[B] (+0) +4.2949673e+09<x497>[c B] (+0) +8.58993459e+09<x519>[B] (+0) +8192<x58>[B] (+0) +16384<x80>[B] (+0) +32768<x102>[B] (+0) +65536<x124>[B] (+0) +131072<x146>[B] (+0) +262144<x168>[B] (+0) +524288<x190>[B] (+0) +1048576<x212>[B] (+0) +2097152<x234>[B] (+0) +4194304<x256>[B] (+0) +8388608<x278>[B] (+0) +16777216<x300>[B] (+0) +33554432<x322>[B] (+0) +67108864<x344>[B] (+0) +134217728<x366>[B] (+0) +268435456<x388>[B] (+0) +536870912<x410>[B] (+0) +1.07374182e+09<x432>[B] (+0) +2.14748365e+09<x454>[B] (+0) +4.2949673e+09<x476>[B] (+0) +8.58993459e+09<x498>[B] (+0) +1.71798692e+10<x520>[B] (+0) +16384<x59>[B] (+0) +32768<x81>[B] (+0) +65536<x103>[B] (+0) +131072<x125>[B] (+0) +262144<x147>[B] (+0) +524288<x169>[B] (+0) +1048576<x191>[B] (+0) +2097152<x213>[B] (+0) +4194304<x235>[B] (+0) +8388608<x257>[B] (+0) +16777216<x279>[B] (+0) +33554432<x301>[B] (+0) +67108864<x323>[B] (+0) +134217728<x345>[B] (+0) +268435456<x367>[B] (+0) +536870912<x389>[B] (+0) +1.07374182e+09<x411>[B] (+0) +2.14748365e+09<x433>[B] (+0) +4.2949673e+09<x455>[B]c (+0) +8.58993459e+09<x477>[B] (+0) +1.71798692e+10<x499>[B] (+0) +3.43597384e+10<x521>[B] (+0) +32768<x60>[B] (+0) +65536<x82>[B] (+0) +131072<x104>[B] (+0) +262144<x126>[B] (+0) +524288<x148>[B] (+0) +1048576<x170>[B] (+0) +2097152<x192>[B] (+0) +4194304<x214>[B] (+0) +8388608<x236>[B] (+0) +16777216<x258>[B] (+0) +33554432<x280>[B] (+0) +67108864<x302>[B] (+0) +134217728<x324>[B] (+0) +268435456<x346>[B] (+0) +536870912<x368>[B] (+0) +1.07374182e+09<x390>[B] (+0) +2.14748365e+09<x412>[B] (+0) +4.2949673e+09<x434>[B] (+0) +8.58993459e+09<x456>[B] (+0) +1.71798692e+10<x478>[B] (+0) +3.43597384e+10<x500>[B] (+0) +6.87194767e+10<x522>[B] (+0) +65536<x61>[B] (+0) +131072<x83>[B] (+0) +262144<x105>[B] (+0) +524288<x127>[B] (+0) +1048576<x149>[B] (+0) +2097152<x171>[B] (+0) +4194304<x193>[B] (+0) +8388608<x215>[B] (+0) +16777216<x237>[B] (+0) +33554432<x259>[B] (+0) +67108864<x281>[B] (+0) +134217728<x303>[B] (+0) +268435456<x325>[B] (+0) +536870912<x347>[B] (+0) +1.07374182e+09<x369>[B] (+0) +2.14748365e+09<x3c 91>[B] (+0) +4.2949673e+09<x413>[B] (+0) +8.58993459e+09<x435>[B] (+0) +1.71798692e+10<x457>[B] (+0) +3.43597384e+10<x479>[B] (+0) +6.87194767e+10<x501>[B] (+0) +1.37438953e+11<x523>[B] (+0) +131072<x62>[B] (+0) +262144<x84>[B] (+0) +524288<x106>[B] (+0) +1048576<x128>[B] (+0) +2097152<x150>[B] (+0) +4194304<x172>[B] (+0) +8388608<x194>[B] (+0) +16777216<x216>[B] (+0) +33554432<x238>[B] (+0) +67108864<x260>[B] (+0) +134217728<x282>[B] (+0) +268435456<x304>[B] (+0) +536870912<x326>[B] (+0) +1.07374182e+09<x348>[B] (+0) +2.14748365e+09<x370>[B] (+0) +4.2949673e+09<x392>[B] (+0) +8.58993459e+09<x414>[B] (+0) +1.71798692e+10<x436>[B] (+0) +3.43597384e+10<x458>[B] (+0) +6.87194767e+10<x480>[B] (+0) +1.37438953e+11<x502>[B] (+0) +2.74877907e+11<x524>[B] (+0) +262144<x63>[B] (+0) +524288<x85>[B] (+0) +1048576<x107>[B] (+0) +2097152<x129>[B] (+0) +4194304<x151>[B] (+0) +8388608<x173>[B] (+0) +16777216<x195>[B] (+0) +33554432<x217>[B] (+0) +67108864<x239>[B] (+0) +134217728<x261>[B] (+0) +268435456<x283>[B] (+0) +53c 6870912<x305>[B] (+0) +1.07374182e+09<x327>[B] (+0) +2.14748365e+09<x349>[B] (+0) +4.2949673e+09<x371>[B] (+0) +8.58993459e+09<x393>[B] (+0) +1.71798692e+10<x415>[B] (+0) +3.43597384e+10<x437>[B] (+0) +6.87194767e+10<x459>[B] (+0) +1.37438953e+11<x481>[B] (+0) +2.74877907e+11<x503>[B] (+0) +5.49755814e+11<x525>[B] (+0) +524288<x64>[B] (+0) +1048576<x86>[B] (+0) +2097152<x108>[B] (+0) +4194304<x130>[B] (+0) +8388608<x152>[B] (+0) +16777216<x174>[B] (+0) +33554432<x196>[B] (+0) +67108864<x218>[B] (+0) +134217728<x240>[B] (+0) +268435456<x262>[B] (+0) +536870912<x284>[B] (+0) +1.07374182e+09<x306>[B] (+0) +2.14748365e+09<x328>[B] (+0) +4.2949673e+09<x350>[B] (+0) +8.58993459e+09<x372>[B] (+0) +1.71798692e+10<x394>[B] (+0) +3.43597384e+10<x416>[B] (+0) +6.87194767e+10<x438>[B] (+0) +1.37438953e+11<x460>[B] (+0) +2.74877907e+11<x482>[B] (+0) +5.49755814e+11<x504>[B] (+0) +1.09951163e+12<x526>[B] (+0) +1048576<x65>[B] (+0) +2097152<x87>[B] (+0) +4194304<x109>[B] (+0) +8388608<x131>[B] (+0) +16777216<x153>[B] (+0)c +33554432<x175>[B] (+0) +67108864<x197>[B] (+0) +134217728<x219>[B] (+0) +268435456<x241>[B] (+0) +536870912<x263>[B] (+0) +1.07374182e+09<x285>[B] (+0) +2.14748365e+09<x307>[B] (+0) +4.2949673e+09<x329>[B] (+0) +8.58993459e+09<x351>[B] (+0) +1.71798692e+10<x373>[B] (+0) +3.43597384e+10<x395>[B] (+0) +6.87194767e+10<x417>[B] (+0) +1.37438953e+11<x439>[B] (+0) +2.74877907e+11<x461>[B] (+0) +5.49755814e+11<x483>[B] (+0) +1.09951163e+12<x505>[B] (+0) +2.19902326e+12<x527>[B] (+0) +2097152<x66>[B] (+0) +4194304<x88>[B] (+0) +8388608<x110>[B] (+0) +16777216<x132>[B] (+0) +33554432<x154>[B] (+0) +67108864<x176>[B] (+0) +134217728<x198>[B] (+0) +268435456<x220>[B] (+0) +536870912<x242>[B] (+0) +1.07374182e+09<x264>[B] (+0) +2.14748365e+09<x286>[B] (+0) +4.2949673e+09<x308>[B] (+0) +8.58993459e+09<x330>[B] (+0) +1.71798692e+10<x352>[B] (+0) +3.43597384e+10<x374>[B] (+0) +6.87194767e+10<x396>[B] (+0) +1.37438953e+11<x418>[B] (+0) +2.74877907e+11<x440>[B] (+0) +5.49755814e+11<x462>[B] (+0) +1.09951163e+12<x484>[B] (c +0) +2.19902326e+12<x506>[B] (+0) +4.39804651e+12<x528>[B] (+0) -<x1519>[B] (+0) -2<x1520>[B] (+0) -4<x1521>[B] (+0) -8<x1522>[B] (+0) -16<x1523>[B] (+0) -32<x1524>[B] (+0) -64<x1525>[B] (+0) -128<x1526>[B] (+0) -256<x1527>[B] (+0) -512<x1528>[B] (+0) -1024<x1529>[B] (+0) -2048<x1530>[B] (+0) -4096<x1531>[B] (+0) -8192<x1532>[B] (+0) -16384<x1533>[B] (+0) -32768<x1534>[B] (+0) -65536<x1535>[B] (+0) -131072<x1536>[B] (+0) -262144<x1537>[B] (+0) -524288<x1538>[B] (+0) -1048576<x1539>[B] (+0) -2097152<x1540>[B] (+0) -4194304<x1541>[B] (+0) -8388608<x1542>[B] (+0) -16777216<x1543>[B] (+0) -33554432<x1544>[B] (+0) -67108864<x1545>[B] (+0) -134217728<x1546>[B] (+0) -268435456<x1547>[B] (+0) -536870912<x1548>[B] (+0) -1.07374182e+09<x1549>[B] (+0) -2.14748365e+09<x1550>[B] (+0) -4.2949673e+09<x1551>[B] (+0) -8.58993459e+09<x1552>[B] (+0) -1.71798692e+10<x1553>[B] (+0) -3.43597384e+10<x1554>[B] (+0) -6.87194767e+10<x1555>[B] (+0) -1.37438953e+11<x1556>[B] (+0) -2.74877907e+11<x1557>[B] (+0) -5.49755814e+11<x1558>[Bc ] (+0) -1.09951163e+12<x1559>[B] (+0) -2.19902326e+12<x1560>[B] (+0) -4.39804651e+12<x1561>[B] (+0) -8.79609302e+12<x1562>[B] (+0) == 0;
0.68/0.70 c ;
0.68/0.70 c violation: right hand side is violated by 8
0.68/0.70 c best solution is not feasible in original problem
0.68/0.70 c internal error
0.68/0.70 s UNKNOWN
0.68/0.70 c SCIP Status : problem is solved [optimal solution found]
0.68/0.70 c Total Time : 0.68
0.68/0.70 c solving : 0.68
0.68/0.70 c presolving : 0.08 (included in solving)
0.68/0.70 c reading : 0.01 (included in solving)
0.68/0.70 c copying : 0.02 (2 #copies) (minimal 0.01, maximal 0.01, average 0.01)
0.68/0.70 c Original Problem :
0.68/0.70 c Problem name : HOME/instance-4542005-1753211116.opb
0.68/0.70 c Variables : 1562 (1562 binary, 0 integer, 0 implicit integer, 0 continuous)
0.68/0.70 c Constraints : 1982 initial, 1982 maximal
0.68/0.70 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
0.68/0.70 c Presolved Problem :
0.68/0.70 c Problem name : t_HOME/instance-4542005-1753211116.opb
0.68/0.70 c Variables : 1495 (1495 binary, 0 integer, 0 implicit integer, 0 continuous)
0.68/0.70 c Constraints : 948 initial, 1014 maximal
0.68/0.70 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
0.68/0.70 c Nonzeros : 4352 constraint, 1992 clique table
0.68/0.70 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
0.68/0.70 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c domcol : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c dualsparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c gateextraction : 0.00 0.00 1 0 0 0 0 0 1452 484 0 0
0.68/0.70 c implics : 0.00 0.00 3 0 0 0 0 0 0 0 0 0
0.68/0.70 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c milp : 0.02 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c sparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c trivial : 0.00 0.00 5 0 0 0 0 0 0 0 0 0
0.68/0.70 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c dualfix : 0.00 0.00 5 0 0 0 0 0 0 0 0 0
0.68/0.70 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c probing : 0.02 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c symmetry : 0.01 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c vbounds : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c knapsack : 0.00 0.00 6 0 0 0 0 0 0 0 1 86
0.68/0.70 c and : 0.01 0.00 2 0 0 0 0 0 0 0 0 0
0.68/0.70 c linear : 0.02 0.00 7 0 67 0 0 0 66 0 0 0
0.68/0.70 c logicor : 0.00 0.00 3 0 0 0 0 0 0 0 0 0
0.68/0.70 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c components : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c root node : - - - 0 - - 0 - - - - -
0.68/0.70 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
0.68/0.70 c benderslp : 0 0 0 0 2 0 5 14 0 0 0 0 0 0 0
0.68/0.70 c integral : 0 0 0 0 2 0 0 14 0 0 0 0 0 0 2
0.68/0.70 c knapsack : 1 1 6 3710 1 0 5 9 26 1 0 0 0 0 0
0.68/0.70 c and : 484 484 10 3674 1 0 5 4 3430 0 44 16 5 0 0
0.68/0.70 c linear : 463 463 6 3712 1 0 5 3 7035 15 43 0 0 0 0
0.68/0.70 c logicor : 0+ 66 6 72 0 0 0 0 7 1 0 32 3 0 0
0.68/0.70 c benders : 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0
0.68/0.70 c fixedvar : 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0
0.68/0.70 c countsols : 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0
0.68/0.70 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
0.68/0.70 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c integral : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c knapsack : 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c and : 0.04 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c linear : 0.08 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.02 0.00
0.68/0.70 c logicor : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c components : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c Propagators : #Propagate #ResProp Cutoffs DomReds
0.68/0.70 c dualfix : 1 0 0 0
0.68/0.70 c genvbounds : 0 0 0 0
0.68/0.70 c nlobbt : 0 0 0 0
0.68/0.70 c obbt : 0 0 0 0
0.68/0.70 c probing : 0 0 0 0
0.68/0.70 c pseudoobj : 0 0 0 0
0.68/0.70 c redcost : 0 0 0 0
0.68/0.70 c rootredcost : 0 0 0 0
0.68/0.70 c symmetry : 0 0 0 0
0.68/0.70 c vbounds : 291 0 0 0
0.68/0.70 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
0.68/0.70 c dualfix : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c genvbounds : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c probing : 0.02 0.00 0.02 0.00 0.00 0.00
0.68/0.70 c pseudoobj : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c redcost : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c rootredcost : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c symmetry : 0.01 0.00 0.01 0.00 0.00 0.00
0.68/0.70 c vbounds : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.70 c Symmetry :
0.68/0.70 c orbitopal red. : 0 reductions applied, 0 cutoffs
0.68/0.70 c orbital reduction: 0 reductions applied, 0 cutoffs
0.68/0.70 c lexicographic red: 0 reductions applied, 0 cutoffs
0.68/0.70 c shadow tree time : 0.00 s
0.68/0.70 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
0.68/0.70 c propagation : 0.05 14 14 - 317 385.5 0 0.0 - - -
0.68/0.70 c infeasible LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
0.68/0.70 c bound exceed. LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
0.68/0.70 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
0.68/0.70 c pseudo solution : 0.00 1 1 - 1 0.0 0 0.0 - - -
0.68/0.70 c applied globally : 0.00 - - 0 65 75.4 - - 0 - -
0.68/0.70 c applied locally : - - - 0 0 0.0 - - 0 - -
0.68/0.70 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
0.68/0.70 c cut pool : 0.00 - 9 9 - - 156 232 - - - - - (maximal pool size: 156)
0.68/0.70 c aggregation : 0.01 0.00 5 5 0 0 50 52 0 25 25 0 0
0.68/0.70 c > cmir : - - - - - - - 1 0 0 0 0 -
0.68/0.70 c > flowcover : - - - - - - - 27 0 24 24 0 -
0.68/0.70 c > knapsackcover : - - - - - - - 24 0 1 1 0 -
0.68/0.70 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c clique : 0.00 0.00 5 5 0 0 0 0 0 0 0 0 0
0.68/0.70 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c gomory : 0.14 0.00 5 5 0 0 90 159 0 2 2 0 0
0.68/0.70 c > gomorymi : - - - - - - - 70 0 2 2 0 -
0.68/0.70 c > strongcg : - - - - - - - 89 0 0 0 0 -
0.68/0.70 c impliedbounds : 0.00 0.00 5 5 0 0 8 10 0 8 8 0 0
0.68/0.70 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c mcf : 0.00 0.00 1 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c multilinear : 0.00 0.00 6 6 0 0 0 0 0 0 0 0 0
0.68/0.70 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.70 c rapidlearning : 0.12 0.00 2 1 0 0 0 0 0 0 0 0 0
0.68/0.70 c rlt : 0.01 0.00 6 6 0 0 3 4 0 2 2 0 0
0.68/0.70 c zerohalf : 0.01 0.00 5 5 0 0 5 7 0 1 1 0 0
0.68/0.70 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
0.68/0.70 c hybrid : 0.00 0.00 8 6 46 0 234 41 0 234
0.68/0.70 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c Pricers : ExecTime SetupTime Calls Vars
0.68/0.70 c problem variables: 0.00 - 0 0
0.68/0.70 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
0.68/0.70 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c inference : 0.00 0.00 0 0 5 0 0 0 0 10
0.68/0.70 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c random : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c relpscost : 0.00 0.00 1 0 0 0 0 0 0 2
0.68/0.70 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.70 c Primal Heuristics : ExecTime SetupTime Calls Found Best
0.68/0.70 c LP solutions : 0.00 - - 1 1
0.68/0.70 c relax solutions : 0.00 - - 0 0
0.68/0.70 c pseudo solutions : 0.00 - - 0 0
0.68/0.70 c strong branching : 0.00 - - 0 0
0.68/0.70 c actconsdiving : 0.00 0.00 0 0 0
0.68/0.70 c adaptivediving : 0.00 0.00 0 0 0
0.68/0.70 c alns : 0.00 0.00 0 0 0
0.68/0.70 c bound : 0.00 0.00 0 0 0
0.68/0.70 c clique : 0.02 0.00 1 0 0
0.68/0.70 c coefdiving : 0.00 0.00 0 0 0
0.68/0.70 c completesol : 0.00 0.00 0 0 0
0.68/0.70 c conflictdiving : 0.00 0.00 0 0 0
0.68/0.70 c crossover : 0.00 0.00 0 0 0
0.68/0.70 c dins : 0.00 0.00 0 0 0
0.68/0.70 c distributiondivin: 0.00 0.00 0 0 0
0.68/0.70 c dps : 0.00 0.00 0 0 0
0.68/0.70 c dualval : 0.00 0.00 0 0 0
0.68/0.70 c farkasdiving : 0.00 0.00 0 0 0
0.68/0.70 c feasjump : 0.03 0.00 1 0 0
0.68/0.70 c feaspump : 0.00 0.00 0 0 0
0.68/0.70 c fixandinfer : 0.00 0.00 0 0 0
0.68/0.70 c fracdiving : 0.00 0.00 0 0 0
0.68/0.70 c gins : 0.00 0.00 0 0 0
0.68/0.70 c guideddiving : 0.00 0.00 0 0 0
0.68/0.70 c indcoefdiving : 0.00 0.00 0 0 0
0.68/0.70 c indicator : 0.00 0.00 0 0 0
0.68/0.70 c indicatordiving : 0.00 0.00 0 0 0
0.68/0.70 c indoneopt : 0.00 0.00 0 0 0
0.68/0.70 c indrounding : 0.00 0.00 0 0 0
0.68/0.70 c indtwoopt : 0.00 0.00 0 0 0
0.68/0.70 c intdiving : 0.00 0.00 0 0 0
0.68/0.70 c intshifting : 0.00 0.00 0 0 0
0.68/0.70 c linesearchdiving : 0.00 0.00 0 0 0
0.68/0.70 c localbranching : 0.00 0.00 0 0 0
0.68/0.70 c locks : 0.01 0.00 1 0 0
0.68/0.70 c lpface : 0.00 0.00 0 0 0
0.68/0.70 c mpec : 0.00 0.00 0 0 0
0.68/0.70 c multistart : 0.00 0.00 0 0 0
0.68/0.70 c mutation : 0.00 0.00 0 0 0
0.68/0.70 c nlpdiving : 0.00 0.00 0 0 0
0.68/0.70 c objpscostdiving : 0.00 0.00 0 0 0
0.68/0.70 c octane : 0.00 0.00 0 0 0
0.68/0.70 c ofins : 0.00 0.00 0 0 0
0.68/0.70 c oneopt : 0.00 0.00 0 0 0
0.68/0.70 c padm : 0.00 0.00 0 0 0
0.68/0.70 c proximity : 0.00 0.00 0 0 0
0.68/0.70 c pscostdiving : 0.00 0.00 0 0 0
0.68/0.70 c randrounding : 0.00 0.00 5 0 0
0.68/0.70 c rens : 0.00 0.00 0 0 0
0.68/0.70 c reoptsols : 0.00 0.00 0 0 0
0.68/0.70 c repair : 0.00 0.00 0 0 0
0.68/0.70 c rins : 0.00 0.00 0 0 0
0.68/0.70 c rootsoldiving : 0.00 0.00 0 0 0
0.68/0.70 c rounding : 0.00 0.00 8 0 0
0.68/0.70 c scheduler : 0.00 0.00 0 0 0
0.68/0.70 c shiftandpropagate: 0.04 0.00 1 0 0
0.68/0.70 c shifting : 0.00 0.00 5 0 0
0.68/0.70 c simplerounding : 0.00 0.00 0 0 0
0.68/0.70 c smallcard : 0.00 0.00 0 0 0
0.68/0.70 c subnlp : 0.00 0.00 0 0 0
0.68/0.70 c trivial : 0.00 0.00 2 0 0
0.68/0.70 c trivialnegation : 0.00 0.00 0 0 0
0.68/0.70 c trustregion : 0.00 0.00 0 0 0
0.68/0.70 c trysol : 0.00 0.00 0 0 0
0.68/0.70 c twoopt : 0.00 0.00 0 0 0
0.68/0.70 c undercover : 0.11 0.00 1 0 0
0.68/0.70 c vbounds : 0.00 0.00 0 0 0
0.68/0.70 c veclendiving : 0.00 0.00 0 0 0
0.68/0.70 c zeroobj : 0.00 0.00 0 0 0
0.68/0.70 c zirounding : 0.00 0.00 1 0 0
0.68/0.70 c other solutions : - - - 0 -
0.68/0.70 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
0.68/0.70 c rens : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.70 c rins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.70 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.70 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.70 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.70 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.70 c dins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.70 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
0.68/0.70 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
0.68/0.70 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
0.68/0.70 c primal LP : 0.00 0 0 0.00 - 0.00 0
0.68/0.70 c dual LP : 0.05 29 517 28.72 9875.65 0.01 11
0.68/0.70 c lex dual LP : 0.00 0 0 0.00 -
0.68/0.70 c barrier LP : 0.00 0 0 0.00 - 0.00 0
0.68/0.70 c resolve instable : 0.00 0 0 0.00 -
0.68/0.70 c diving/probing LP: 0.00 1 29 29.00 -
0.68/0.70 c strong branching : 0.00 0 0 0.00 - - - 0
0.68/0.70 c (at root node) : - 0 0 0.00 -
0.68/0.70 c conflict analysis: 0.00 0 0 0.00 -
0.68/0.70 c B&B Tree :
0.68/0.70 c number of runs : 1
0.68/0.70 c nodes : 7 (6 internal, 1 leaves)
0.68/0.70 c feasible leaves : 1
0.68/0.70 c infeas. leaves : 0
0.68/0.70 c objective leaves : 0
0.68/0.70 c nodes (total) : 7 (6 internal, 1 leaves)
0.68/0.70 c nodes left : 0
0.68/0.70 c max depth : 6
0.68/0.70 c max depth (total): 6
0.68/0.70 c backtracks : 0 (0.0%)
0.68/0.70 c early backtracks : 0 (0.0%)
0.68/0.70 c nodes exc. ref. : 0 (0.0%)
0.68/0.70 c delayed cutoffs : 0
0.68/0.70 c repropagations : 0 (0 domain reductions, 0 cutoffs)
0.68/0.70 c avg switch length: 2.00
0.68/0.70 c switching time : 0.00
0.68/0.70 c Root Node :
0.68/0.70 c First LP value : +0.00000000000000e+00
0.68/0.70 c First LP Iters : 1 (385.36 Iter/sec)
0.68/0.70 c First LP Time : 0.00
0.68/0.70 c Final Dual Bound : +0.00000000000000e+00
0.68/0.70 c Final Root Iters : 212
0.68/0.70 c Root LP Estimate : -
0.68/0.70 c Solution :
0.68/0.70 c Solutions found : 1 (1 improvements)
0.68/0.70 c First Solution : +0.00000000000000e+00 (in run 1, after 7 nodes, 0.68 seconds, depth 6, found by <relaxation>)
0.68/0.70 c Gap First Sol. : 0.00 %
0.68/0.70 c Gap Last Sol. : 0.00 %
0.68/0.70 c Primal Bound : +0.00000000000000e+00 (in run 1, after 7 nodes, 0.68 seconds, depth -1, found by <relaxation>)
0.68/0.70 c Dual Bound : +0.00000000000000e+00
0.68/0.70 c Gap : 0.00 %
0.68/0.70 c Integrals : Total Avg%
0.68/0.70 c primal-dual : 68.46 99.97
0.68/0.70 c primal-ref : - - (not evaluated)
0.68/0.70 c dual-ref : - - (not evaluated)
0.68/0.71 c Time complete: 0.70145.