0.00/0.02 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.02 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.02 c
0.00/0.02 c user parameter file <scip.set> not found - using default parameters
0.00/0.02 c reading problem <HOME/instance-4541966-1753211115.opb>
0.00/0.03 c original problem has 1848 variables (1848 bin, 0 int, 0 impl, 0 cont) and 2354 constraints
0.00/0.03 c problem read in 0.02
0.00/0.03 c No objective function, only one solution is needed.
0.00/0.04 c presolving:
0.00/0.05 c (round 1, fast) 73 del vars, 72 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 1176 clqs
0.00/0.06 c (0.0s) running MILP presolver
0.00/0.07 c (0.1s) MILP presolver (2 rounds): 0 aggregations, 0 fixings, 0 bound changes
0.00/0.09 c (round 2, exhaustive) 73 del vars, 72 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 1729 upgd conss, 0 impls, 1176 clqs
0.00/0.09 c (round 3, fast) 73 del vars, 72 del conss, 0 add conss, 0 chg bounds, 1 chg sides, 94 chg coeffs, 1729 upgd conss, 0 impls, 1176 clqs
0.00/0.10 c (round 4, exhaustive) 73 del vars, 1800 del conss, 576 add conss, 0 chg bounds, 1 chg sides, 94 chg coeffs, 1729 upgd conss, 0 impls, 1177 clqs
0.10/0.14 c (0.1s) probing: 99/1775 (5.6%) - 0 fixings, 0 aggregations, 3 implications, 0 bound changes
0.10/0.14 c (0.1s) probing aborted: 50/50 successive totally useless probings
0.10/0.14 c (0.1s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
0.10/0.14 c (0.1s) no symmetry present (symcode time: 0.00)
0.10/0.15 c presolving (5 rounds: 5 fast, 3 medium, 3 exhaustive):
0.10/0.15 c 73 deleted vars, 1800 deleted constraints, 576 added constraints, 0 tightened bounds, 0 added holes, 1 changed sides, 94 changed coefficients
0.10/0.15 c 0 implications, 1180 cliques
0.10/0.15 c presolved problem has 1775 variables (1775 bin, 0 int, 0 impl, 0 cont) and 1130 constraints
0.10/0.15 c 1 constraints of type <knapsack>
0.10/0.15 c 576 constraints of type <and>
0.10/0.15 c 553 constraints of type <linear>
0.10/0.15 c transformed objective value is always integral (scale: 1)
0.10/0.15 c Presolving Time: 0.10
0.10/0.15 c - non default parameters ----------------------------------------------------------------------
0.10/0.15 c # SCIP version 10.0.0
0.10/0.15 c
0.10/0.15 c # maximal time in seconds to run
0.10/0.15 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
0.10/0.15 c limits/time = 3596.993096
0.10/0.15 c
0.10/0.15 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.10/0.15 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
0.10/0.15 c limits/memory = 27900
0.10/0.15 c
0.10/0.15 c # solving stops, if the given number of solutions were found; this limit is first checked in presolving (-1: no limit)
0.10/0.15 c # [type: int, advanced: FALSE, range: [-1,2147483647], default: -1]
0.10/0.15 c limits/solutions = 1
0.10/0.15 c
0.10/0.15 c # bitset describing used symmetry handling technique: (0: off; 1: constraint-based (orbitopes and/or symresacks); 2: orbital fixing; 3: orbitopes and orbital fixing; 4: Schreier Sims cuts; 5: Schreier Sims cuts and orbitopes; 6: Schreier Sims cuts and orbital fixing; 7: Schreier Sims cuts, orbitopes, and orbital fixing) See type_symmetry.h.
0.10/0.15 c # [type: int, advanced: FALSE, range: [0,7], default: 7]
0.10/0.15 c misc/usesymmetry = 3
0.10/0.15 c
0.10/0.15 c # belongs reading time to solving time?
0.10/0.15 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
0.10/0.15 c timing/reading = TRUE
0.10/0.15 c
0.10/0.15 c # Should we check whether the components of the symmetry group can be handled by double lex matrices?
0.10/0.15 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.10/0.15 c propagating/symmetry/detectdoublelex = FALSE
0.10/0.15 c
0.10/0.15 c # Should we try to detect symmetric subgroups of the symmetry group on binary variables?
0.10/0.15 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.10/0.15 c propagating/symmetry/detectsubgroups = FALSE
0.10/0.15 c
0.10/0.15 c # Type of symmetries that shall be computed?
0.10/0.15 c # [type: int, advanced: TRUE, range: [0,1], default: 0]
0.10/0.15 c propagating/symmetry/symtype = 1
0.10/0.15 c
0.10/0.15 c # Should components consisting of a single full reflection be handled?
0.10/0.15 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
0.10/0.15 c propagating/symmetry/usesimplesgncomp = FALSE
0.10/0.15 c
0.10/0.15 c -----------------------------------------------------------------------------------------------
0.10/0.15 c start solving
0.10/0.15 c
0.20/0.27 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
0.20/0.27 c 0.3s| 1 | 0 | 93 | - | 20M | 0 |1775 |1147 |1706 | 0 | 0 | 16 | 0 | 0.000000e+00 | -- | Inf | unknown
0.41/0.49 c 0.5s| 1 | 0 | 100 | - | 23M | 0 |1775 |1199 |1708 | 2 | 1 | 68 | 0 | 0.000000e+00 | -- | Inf | unknown
0.41/0.50 c 0.5s| 1 | 0 | 122 | - | 23M | 0 |1775 |1199 |1711 | 5 | 2 | 68 | 0 | 0.000000e+00 | -- | Inf | unknown
0.51/0.53 c (node 1) unresolved numerical troubles in LP 6 -- using pseudo solution instead (loop 1)
0.51/0.53 c 0.5s| 1 | 2 | 273 | - | 24M | 0 |1775 |1199 |1725 | 19 | 3 | 68 | 0 | 0.000000e+00 | -- | Inf | unknown
0.68/0.77 c d 0.8s| 11 | 0 | 1383 | 120.2 |conflict| 7 |1775 |1199 |1730 | 0 | 2 | 68 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%| 100.00%
0.68/0.77 c
0.68/0.77 c SCIP Status : problem is solved [optimal solution found]
0.68/0.77 c Solving Time (sec) : 0.75
0.68/0.77 c Solving Nodes : 11
0.68/0.77 c Primal Bound : +0.00000000000000e+00 (1 solutions)
0.68/0.77 c Dual Bound : +0.00000000000000e+00
0.68/0.77 c Gap : 0.00 %
0.68/0.77 c [linear] <linear5>: <x49>[B] (+1) +2<x73>[B] (+1) +4<x97>[B] (+0) +8<x121>[B] (+0) +16<x145>[B] (+0) +32<x169>[B] (+0) +64<x193>[B] (+0) +128<x217>[B] (+0) +256<x241>[B] (+0) +512<x265>[B] (+0) +1024<x289>[B] (+0) +2048<x313>[B] (+0) +4096<x337>[B] (+0) +8192<x361>[B] (+0) +16384<x385>[B] (+0) +32768<x409>[B] (+0) +65536<x433>[B] (+0) +131072<x457>[B] (+0) +262144<x481>[B] (+0) +524288<x505>[B] (+0) +1048576<x529>[B] (+0) +2097152<x553>[B] (+0) +4194304<x577>[B] (+0) +8388608<x601>[B] (+0) +2<x50>[B] (+1) +4<x74>[B] (+1) +8<x98>[B] (+0) +16<x122>[B] (+0) +32<x146>[B] (+0) +64<x170>[B] (+0) +128<x194>[B] (+0) +256<x218>[B] (+0) +512<x242>[B] (+0) +1024<x266>[B] (+0) +2048<x290>[B] (+0) +4096<x314>[B] (+0) +8192<x338>[B] (+0) +16384<x362>[B] (+0) +32768<x386>[B] (+0) +65536<x410>[B] (+0) +131072<x434>[B] (+0) +262144<x458>[B] (+0) +524288<x482>[B] (+0) +1048576<x506>[B] (+0) +2097152<x530>[B] (+0) +4194304<x554>[B] (+0) +8388608<x578>[B] (+0) +16777216<x602>[B] (+0) +4<x51>[B] (+1) +8<x75>[B] (+1) +16<x99>[c B] (+0) +32<x123>[B] (+0) +64<x147>[B] (+0) +128<x171>[B] (+0) +256<x195>[B] (+0) +512<x219>[B] (+0) +1024<x243>[B] (+0) +2048<x267>[B] (+0) +4096<x291>[B] (+0) +8192<x315>[B] (+0) +16384<x339>[B] (+0) +32768<x363>[B] (+0) +65536<x387>[B] (+0) +131072<x411>[B] (+0) +262144<x435>[B] (+0) +524288<x459>[B] (+0) +1048576<x483>[B] (+0) +2097152<x507>[B] (+0) +4194304<x531>[B] (+0) +8388608<x555>[B] (+0) +16777216<x579>[B] (+0) +33554432<x603>[B] (+0) +8<x52>[B] (+1) +16<x76>[B] (+1) +32<x100>[B] (+0) +64<x124>[B] (+0) +128<x148>[B] (+0) +256<x172>[B] (+0) +512<x196>[B] (+0) +1024<x220>[B] (+0) +2048<x244>[B] (+0) +4096<x268>[B] (+0) +8192<x292>[B] (+0) +16384<x316>[B] (+0) +32768<x340>[B] (+0) +65536<x364>[B] (+0) +131072<x388>[B] (+0) +262144<x412>[B] (+0) +524288<x436>[B] (+0) +1048576<x460>[B] (+0) +2097152<x484>[B] (+0) +4194304<x508>[B] (+0) +8388608<x532>[B] (+0) +16777216<x556>[B] (+0) +33554432<x580>[B] (+0) +67108864<x604>[B] (+0) +16<x53>[B] (+0) +32<x77>[B] (+0) +64<x101>[B] (+0) +128<x125>[B] (+0) +2c 56<x149>[B] (+0) +512<x173>[B] (+0) +1024<x197>[B] (+0) +2048<x221>[B] (+0) +4096<x245>[B] (+0) +8192<x269>[B] (+0) +16384<x293>[B] (+0) +32768<x317>[B] (+0) +65536<x341>[B] (+0) +131072<x365>[B] (+0) +262144<x389>[B] (+0) +524288<x413>[B] (+0) +1048576<x437>[B] (+0) +2097152<x461>[B] (+0) +4194304<x485>[B] (+0) +8388608<x509>[B] (+0) +16777216<x533>[B] (+0) +33554432<x557>[B] (+0) +67108864<x581>[B] (+0) +134217728<x605>[B] (+0) +32<x54>[B] (+0) +64<x78>[B] (+0) +128<x102>[B] (+0) +256<x126>[B] (+0) +512<x150>[B] (+0) +1024<x174>[B] (+0) +2048<x198>[B] (+0) +4096<x222>[B] (+0) +8192<x246>[B] (+0) +16384<x270>[B] (+0) +32768<x294>[B] (+0) +65536<x318>[B] (+0) +131072<x342>[B] (+0) +262144<x366>[B] (+0) +524288<x390>[B] (+0) +1048576<x414>[B] (+0) +2097152<x438>[B] (+0) +4194304<x462>[B] (+0) +8388608<x486>[B] (+0) +16777216<x510>[B] (+0) +33554432<x534>[B] (+0) +67108864<x558>[B] (+0) +134217728<x582>[B] (+0) +268435456<x606>[B] (+0) +64<x55>[B] (+0) +128<x79>[B] (+0) +256<x103>[B] (+0) +512<x127>[B] (+0) +c 1024<x151>[B] (+0) +2048<x175>[B] (+0) +4096<x199>[B] (+0) +8192<x223>[B] (+0) +16384<x247>[B] (+0) +32768<x271>[B] (+0) +65536<x295>[B] (+0) +131072<x319>[B] (+0) +262144<x343>[B] (+0) +524288<x367>[B] (+0) +1048576<x391>[B] (+0) +2097152<x415>[B] (+0) +4194304<x439>[B] (+0) +8388608<x463>[B] (+0) +16777216<x487>[B] (+0) +33554432<x511>[B] (+0) +67108864<x535>[B] (+0) +134217728<x559>[B] (+0) +268435456<x583>[B] (+0) +536870912<x607>[B] (+0) +128<x56>[B] (+0) +256<x80>[B] (+0) +512<x104>[B] (+0) +1024<x128>[B] (+0) +2048<x152>[B] (+0) +4096<x176>[B] (+0) +8192<x200>[B] (+0) +16384<x224>[B] (+0) +32768<x248>[B] (+0) +65536<x272>[B] (+0) +131072<x296>[B] (+0) +262144<x320>[B] (+0) +524288<x344>[B] (+0) +1048576<x368>[B] (+0) +2097152<x392>[B] (+0) +4194304<x416>[B] (+0) +8388608<x440>[B] (+0) +16777216<x464>[B] (+0) +33554432<x488>[B] (+0) +67108864<x512>[B] (+0) +134217728<x536>[B] (+0) +268435456<x560>[B] (+0) +536870912<x584>[B] (+0) +1.07374182e+09<x608>[B] (+0) +256<x57>[B] (+0) +512<x81>[B] (+0) +1024<c x105>[B] (+0) +2048<x129>[B] (+0) +4096<x153>[B] (+0) +8192<x177>[B] (+0) +16384<x201>[B] (+0) +32768<x225>[B] (+0) +65536<x249>[B] (+0) +131072<x273>[B] (+0) +262144<x297>[B] (+0) +524288<x321>[B] (+0) +1048576<x345>[B] (+0) +2097152<x369>[B] (+0) +4194304<x393>[B] (+0) +8388608<x417>[B] (+0) +16777216<x441>[B] (+0) +33554432<x465>[B] (+0) +67108864<x489>[B] (+0) +134217728<x513>[B] (+0) +268435456<x537>[B] (+0) +536870912<x561>[B] (+0) +1.07374182e+09<x585>[B] (+0) +2.14748365e+09<x609>[B] (+0) +512<x58>[B] (+0) +1024<x82>[B] (+0) +2048<x106>[B] (+0) +4096<x130>[B] (+0) +8192<x154>[B] (+0) +16384<x178>[B] (+0) +32768<x202>[B] (+0) +65536<x226>[B] (+0) +131072<x250>[B] (+0) +262144<x274>[B] (+0) +524288<x298>[B] (+0) +1048576<x322>[B] (+0) +2097152<x346>[B] (+0) +4194304<x370>[B] (+0) +8388608<x394>[B] (+0) +16777216<x418>[B] (+0) +33554432<x442>[B] (+0) +67108864<x466>[B] (+0) +134217728<x490>[B] (+0) +268435456<x514>[B] (+0) +536870912<x538>[B] (+0) +1.07374182e+09<x562>[B] (+0) +2.14748365e+09<x586>[B] c (+0) +4.2949673e+09<x610>[B] (+0) +1024<x59>[B] (+0) +2048<x83>[B] (+0) +4096<x107>[B] (+0) +8192<x131>[B] (+0) +16384<x155>[B] (+0) +32768<x179>[B] (+0) +65536<x203>[B] (+0) +131072<x227>[B] (+0) +262144<x251>[B] (+0) +524288<x275>[B] (+0) +1048576<x299>[B] (+0) +2097152<x323>[B] (+0) +4194304<x347>[B] (+0) +8388608<x371>[B] (+0) +16777216<x395>[B] (+0) +33554432<x419>[B] (+0) +67108864<x443>[B] (+0) +134217728<x467>[B] (+0) +268435456<x491>[B] (+0) +536870912<x515>[B] (+0) +1.07374182e+09<x539>[B] (+0) +2.14748365e+09<x563>[B] (+0) +4.2949673e+09<x587>[B] (+0) +8.58993459e+09<x611>[B] (+0) +2048<x60>[B] (+0) +4096<x84>[B] (+0) +8192<x108>[B] (+0) +16384<x132>[B] (+0) +32768<x156>[B] (+0) +65536<x180>[B] (+0) +131072<x204>[B] (+0) +262144<x228>[B] (+0) +524288<x252>[B] (+0) +1048576<x276>[B] (+0) +2097152<x300>[B] (+0) +4194304<x324>[B] (+0) +8388608<x348>[B] (+0) +16777216<x372>[B] (+0) +33554432<x396>[B] (+0) +67108864<x420>[B] (+0) +134217728<x444>[B] (+0) +268435456<x468>[B] (+0) +536870912<x492>[B] (+c 0) +1.07374182e+09<x516>[B] (+0) +2.14748365e+09<x540>[B] (+0) +4.2949673e+09<x564>[B] (+0) +8.58993459e+09<x588>[B] (+0) +1.71798692e+10<x612>[B] (+0) +4096<x61>[B] (+0) +8192<x85>[B] (+0) +16384<x109>[B] (+0) +32768<x133>[B] (+0) +65536<x157>[B] (+0) +131072<x181>[B] (+0) +262144<x205>[B] (+0) +524288<x229>[B] (+0) +1048576<x253>[B] (+0) +2097152<x277>[B] (+0) +4194304<x301>[B] (+0) +8388608<x325>[B] (+0) +16777216<x349>[B] (+0) +33554432<x373>[B] (+0) +67108864<x397>[B] (+0) +134217728<x421>[B] (+0) +268435456<x445>[B] (+0) +536870912<x469>[B] (+0) +1.07374182e+09<x493>[B] (+0) +2.14748365e+09<x517>[B] (+0) +4.2949673e+09<x541>[B] (+0) +8.58993459e+09<x565>[B] (+0) +1.71798692e+10<x589>[B] (+0) +3.43597384e+10<x613>[B] (+0) +8192<x62>[B] (+0) +16384<x86>[B] (+0) +32768<x110>[B] (+0) +65536<x134>[B] (+0) +131072<x158>[B] (+0) +262144<x182>[B] (+0) +524288<x206>[B] (+0) +1048576<x230>[B] (+0) +2097152<x254>[B] (+0) +4194304<x278>[B] (+0) +8388608<x302>[B] (+0) +16777216<x326>[B] (+0) +33554432<x350>[B] (+0c ) +67108864<x374>[B] (+0) +134217728<x398>[B] (+0) +268435456<x422>[B] (+0) +536870912<x446>[B] (+0) +1.07374182e+09<x470>[B] (+0) +2.14748365e+09<x494>[B] (+0) +4.2949673e+09<x518>[B] (+0) +8.58993459e+09<x542>[B] (+0) +1.71798692e+10<x566>[B] (+0) +3.43597384e+10<x590>[B] (+0) +6.87194767e+10<x614>[B] (+0) +16384<x63>[B] (+0) +32768<x87>[B] (+0) +65536<x111>[B] (+0) +131072<x135>[B] (+0) +262144<x159>[B] (+0) +524288<x183>[B] (+0) +1048576<x207>[B] (+0) +2097152<x231>[B] (+0) +4194304<x255>[B] (+0) +8388608<x279>[B] (+0) +16777216<x303>[B] (+0) +33554432<x327>[B] (+0) +67108864<x351>[B] (+0) +134217728<x375>[B] (+0) +268435456<x399>[B] (+0) +536870912<x423>[B] (+0) +1.07374182e+09<x447>[B] (+0) +2.14748365e+09<x471>[B] (+0) +4.2949673e+09<x495>[B] (+0) +8.58993459e+09<x519>[B] (+0) +1.71798692e+10<x543>[B] (+0) +3.43597384e+10<x567>[B] (+0) +6.87194767e+10<x591>[B] (+0) +1.37438953e+11<x615>[B] (+0) +32768<x64>[B] (+0) +65536<x88>[B] (+0) +131072<x112>[B] (+0) +262144<x136>[B] (+0) +524288<x160>[B] (+0) +c 1048576<x184>[B] (+0) +2097152<x208>[B] (+0) +4194304<x232>[B] (+0) +8388608<x256>[B] (+0) +16777216<x280>[B] (+0) +33554432<x304>[B] (+0) +67108864<x328>[B] (+0) +134217728<x352>[B] (+0) +268435456<x376>[B] (+0) +536870912<x400>[B] (+0) +1.07374182e+09<x424>[B] (+0) +2.14748365e+09<x448>[B] (+0) +4.2949673e+09<x472>[B] (+0) +8.58993459e+09<x496>[B] (+0) +1.71798692e+10<x520>[B] (+0) +3.43597384e+10<x544>[B] (+0) +6.87194767e+10<x568>[B] (+0) +1.37438953e+11<x592>[B] (+0) +2.74877907e+11<x616>[B] (+0) +65536<x65>[B] (+0) +131072<x89>[B] (+0) +262144<x113>[B] (+0) +524288<x137>[B] (+0) +1048576<x161>[B] (+0) +2097152<x185>[B] (+0) +4194304<x209>[B] (+0) +8388608<x233>[B] (+0) +16777216<x257>[B] (+0) +33554432<x281>[B] (+0) +67108864<x305>[B] (+0) +134217728<x329>[B] (+0) +268435456<x353>[B] (+0) +536870912<x377>[B] (+0) +1.07374182e+09<x401>[B] (+0) +2.14748365e+09<x425>[B] (+0) +4.2949673e+09<x449>[B] (+0) +8.58993459e+09<x473>[B] (+0) +1.71798692e+10<x497>[B] (+0) +3.43597384e+10<x521>[B] (+0) +6.87194767ec +10<x545>[B] (+0) +1.37438953e+11<x569>[B] (+0) +2.74877907e+11<x593>[B] (+0) +5.49755814e+11<x617>[B] (+0) +131072<x66>[B] (+0) +262144<x90>[B] (+0) +524288<x114>[B] (+0) +1048576<x138>[B] (+0) +2097152<x162>[B] (+0) +4194304<x186>[B] (+0) +8388608<x210>[B] (+0) +16777216<x234>[B] (+0) +33554432<x258>[B] (+0) +67108864<x282>[B] (+0) +134217728<x306>[B] (+0) +268435456<x330>[B] (+0) +536870912<x354>[B] (+0) +1.07374182e+09<x378>[B] (+0) +2.14748365e+09<x402>[B] (+0) +4.2949673e+09<x426>[B] (+0) +8.58993459e+09<x450>[B] (+0) +1.71798692e+10<x474>[B] (+0) +3.43597384e+10<x498>[B] (+0) +6.87194767e+10<x522>[B] (+0) +1.37438953e+11<x546>[B] (+0) +2.74877907e+11<x570>[B] (+0) +5.49755814e+11<x594>[B] (+0) +1.09951163e+12<x618>[B] (+0) +262144<x67>[B] (+0) +524288<x91>[B] (+0) +1048576<x115>[B] (+0) +2097152<x139>[B] (+0) +4194304<x163>[B] (+0) +8388608<x187>[B] (+0) +16777216<x211>[B] (+0) +33554432<x235>[B] (+0) +67108864<x259>[B] (+0) +134217728<x283>[B] (+0) +268435456<x307>[B] (+0) +536870912<x331>[B] (+0) +c 1.07374182e+09<x355>[B] (+0) +2.14748365e+09<x379>[B] (+0) +4.2949673e+09<x403>[B] (+0) +8.58993459e+09<x427>[B] (+0) +1.71798692e+10<x451>[B] (+0) +3.43597384e+10<x475>[B] (+0) +6.87194767e+10<x499>[B] (+0) +1.37438953e+11<x523>[B] (+0) +2.74877907e+11<x547>[B] (+0) +5.49755814e+11<x571>[B] (+0) +1.09951163e+12<x595>[B] (+0) +2.19902326e+12<x619>[B] (+0) +524288<x68>[B] (+0) +1048576<x92>[B] (+0) +2097152<x116>[B] (+0) +4194304<x140>[B] (+0) +8388608<x164>[B] (+0) +16777216<x188>[B] (+0) +33554432<x212>[B] (+0) +67108864<x236>[B] (+0) +134217728<x260>[B] (+0) +268435456<x284>[B] (+0) +536870912<x308>[B] (+0) +1.07374182e+09<x332>[B] (+0) +2.14748365e+09<x356>[B] (+0) +4.2949673e+09<x380>[B] (+0) +8.58993459e+09<x404>[B] (+0) +1.71798692e+10<x428>[B] (+0) +3.43597384e+10<x452>[B] (+0) +6.87194767e+10<x476>[B] (+0) +1.37438953e+11<x500>[B] (+0) +2.74877907e+11<x524>[B] (+0) +5.49755814e+11<x548>[B] (+0) +1.09951163e+12<x572>[B] (+0) +2.19902326e+12<x596>[B] (+0) +4.39804651e+12<x620>[B] (+0) +1048576<x69>[B]c (+0) +2097152<x93>[B] (+0) +4194304<x117>[B] (+0) +8388608<x141>[B] (+0) +16777216<x165>[B] (+0) +33554432<x189>[B] (+0) +67108864<x213>[B] (+0) +134217728<x237>[B] (+0) +268435456<x261>[B] (+0) +536870912<x285>[B] (+0) +1.07374182e+09<x309>[B] (+0) +2.14748365e+09<x333>[B] (+0) +4.2949673e+09<x357>[B] (+0) +8.58993459e+09<x381>[B] (+0) +1.71798692e+10<x405>[B] (+0) +3.43597384e+10<x429>[B] (+0) +6.87194767e+10<x453>[B] (+0) +1.37438953e+11<x477>[B] (+0) +2.74877907e+11<x501>[B] (+0) +5.49755814e+11<x525>[B] (+0) +1.09951163e+12<x549>[B] (+0) +2.19902326e+12<x573>[B] (+0) +4.39804651e+12<x597>[B] (+0) +8.79609302e+12<x621>[B] (+0) +2097152<x70>[B] (+0) +4194304<x94>[B] (+0) +8388608<x118>[B] (+0) +16777216<x142>[B] (+0) +33554432<x166>[B] (+0) +67108864<x190>[B] (+0) +134217728<x214>[B] (+0) +268435456<x238>[B] (+0) +536870912<x262>[B] (+0) +1.07374182e+09<x286>[B] (+0) +2.14748365e+09<x310>[B] (+0) +4.2949673e+09<x334>[B] (+0) +8.58993459e+09<x358>[B] (+0) +1.71798692e+10<x382>[B] (+0) +3.43597384e+10<x40c 6>[B] (+0) +6.87194767e+10<x430>[B] (+0) +1.37438953e+11<x454>[B] (+0) +2.74877907e+11<x478>[B] (+0) +5.49755814e+11<x502>[B] (+0) +1.09951163e+12<x526>[B] (+0) +2.19902326e+12<x550>[B] (+0) +4.39804651e+12<x574>[B] (+0) +8.79609302e+12<x598>[B] (+0) +1.7592186e+13<x622>[B] (+0) +4194304<x71>[B] (+0) +8388608<x95>[B] (+0) +16777216<x119>[B] (+0) +33554432<x143>[B] (+0) +67108864<x167>[B] (+0) +134217728<x191>[B] (+0) +268435456<x215>[B] (+0) +536870912<x239>[B] (+0) +1.07374182e+09<x263>[B] (+0) +2.14748365e+09<x287>[B] (+0) +4.2949673e+09<x311>[B] (+0) +8.58993459e+09<x335>[B] (+0) +1.71798692e+10<x359>[B] (+0) +3.43597384e+10<x383>[B] (+0) +6.87194767e+10<x407>[B] (+0) +1.37438953e+11<x431>[B] (+0) +2.74877907e+11<x455>[B] (+0) +5.49755814e+11<x479>[B] (+0) +1.09951163e+12<x503>[B] (+0) +2.19902326e+12<x527>[B] (+0) +4.39804651e+12<x551>[B] (+0) +8.79609302e+12<x575>[B] (+0) +1.7592186e+13<x599>[B] (+0) +3.51843721e+13<x623>[B] (+0) +8388608<x72>[B] (+0) +16777216<x96>[B] (+0) +33554432<x120>[B] (+0) +671c 08864<x144>[B] (+0) +134217728<x168>[B] (+0) +268435456<x192>[B] (+0) +536870912<x216>[B] (+0) +1.07374182e+09<x240>[B] (+0) +2.14748365e+09<x264>[B] (+0) +4.2949673e+09<x288>[B] (+0) +8.58993459e+09<x312>[B] (+0) +1.71798692e+10<x336>[B] (+0) +3.43597384e+10<x360>[B] (+0) +6.87194767e+10<x384>[B] (+0) +1.37438953e+11<x408>[B] (+0) +2.74877907e+11<x432>[B] (+0) +5.49755814e+11<x456>[B] (+0) +1.09951163e+12<x480>[B] (+0) +2.19902326e+12<x504>[B] (+0) +4.39804651e+12<x528>[B] (+0) +8.79609302e+12<x552>[B] (+0) +1.7592186e+13<x576>[B] (+0) +3.51843721e+13<x600>[B] (+0) +7.03687442e+13<x624>[B] (+0) -<x1801>[B] (+1) -2<x1802>[B] (+1) -4<x1803>[B] (+0) -8<x1804>[B] (+0) -16<x1805>[B] (+0) -32<x1806>[B] (+0) -64<x1807>[B] (+0) -128<x1808>[B] (+0) -256<x1809>[B] (+0) -512<x1810>[B] (+0) -1024<x1811>[B] (+0) -2048<x1812>[B] (+0) -4096<x1813>[B] (+0) -8192<x1814>[B] (+0) -16384<x1815>[B] (+0) -32768<x1816>[B] (+0) -65536<x1817>[B] (+0) -131072<x1818>[B] (+0) -262144<x1819>[B] (+0) -524288<x1820>[B] (+0) -1048576<x18c 21>[B] (+0) -2097152<x1822>[B] (+0) -4194304<x1823>[B] (+0) -8388608<x1824>[B] (+0) -16777216<x1825>[B] (+0) -33554432<x1826>[B] (+0) -67108864<x1827>[B] (+0) -134217728<x1828>[B] (+0) -268435456<x1829>[B] (+0) -536870912<x1830>[B] (+0) -1.07374182e+09<x1831>[B] (+0) -2.14748365e+09<x1832>[B] (+0) -4.2949673e+09<x1833>[B] (+0) -8.58993459e+09<x1834>[B] (+0) -1.71798692e+10<x1835>[B] (+0) -3.43597384e+10<x1836>[B] (+0) -6.87194767e+10<x1837>[B] (+0) -1.37438953e+11<x1838>[B] (+0) -2.74877907e+11<x1839>[B] (+0) -5.49755814e+11<x1840>[B] (+0) -1.09951163e+12<x1841>[B] (+0) -2.19902326e+12<x1842>[B] (+0) -4.39804651e+12<x1843>[B] (+0) -8.79609302e+12<x1844>[B] (+0) -1.7592186e+13<x1845>[B] (+0) -3.51843721e+13<x1846>[B] (+0) -7.03687442e+13<x1847>[B] (+0) -1.40737488e+14<x1848>[B] (+0) == 0;
0.68/0.77 c ;
0.68/0.77 c violation: right hand side is violated by 42
0.68/0.77 c best solution is not feasible in original problem
0.68/0.77 c internal error
0.68/0.77 s UNKNOWN
0.68/0.77 c SCIP Status : problem is solved [optimal solution found]
0.68/0.77 c Total Time : 0.75
0.68/0.77 c solving : 0.75
0.68/0.77 c presolving : 0.10 (included in solving)
0.68/0.77 c reading : 0.02 (included in solving)
0.68/0.77 c copying : 0.03 (3 #copies) (minimal 0.01, maximal 0.01, average 0.01)
0.68/0.77 c Original Problem :
0.68/0.77 c Problem name : HOME/instance-4541966-1753211115.opb
0.68/0.77 c Variables : 1848 (1848 binary, 0 integer, 0 implicit integer, 0 continuous)
0.68/0.77 c Constraints : 2354 initial, 2354 maximal
0.68/0.77 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
0.68/0.77 c Presolved Problem :
0.68/0.77 c Problem name : t_HOME/instance-4541966-1753211115.opb
0.68/0.77 c Variables : 1775 (1775 binary, 0 integer, 0 implicit integer, 0 continuous)
0.68/0.77 c Constraints : 1130 initial, 1199 maximal
0.68/0.77 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
0.68/0.77 c Nonzeros : 5180 constraint, 2360 clique table
0.68/0.77 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
0.68/0.77 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c domcol : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c dualsparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c gateextraction : 0.00 0.00 1 0 0 0 0 0 1728 576 0 0
0.68/0.77 c implics : 0.00 0.00 3 0 0 0 0 0 0 0 0 0
0.68/0.77 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c milp : 0.02 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c sparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c trivial : 0.00 0.00 5 0 0 0 0 0 0 0 0 0
0.68/0.77 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c dualfix : 0.00 0.00 5 0 0 0 0 0 0 0 0 0
0.68/0.77 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c probing : 0.02 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c symmetry : 0.01 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c vbounds : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c knapsack : 0.00 0.00 6 0 0 0 0 0 0 0 1 94
0.68/0.77 c and : 0.01 0.00 2 0 0 0 0 0 0 0 0 0
0.68/0.77 c linear : 0.03 0.00 7 0 73 0 0 0 72 0 0 0
0.68/0.77 c logicor : 0.00 0.00 3 0 0 0 0 0 0 0 0 0
0.68/0.77 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c components : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c root node : - - - 0 - - 0 - - - - -
0.68/0.77 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
0.68/0.77 c benderslp : 0 0 0 0 6 0 5 12 0 0 0 0 0 0 0
0.68/0.77 c integral : 0 0 0 0 6 0 0 12 0 0 0 0 0 0 12
0.68/0.77 c knapsack : 1 1 3 4502 0 0 5 7 55 1 0 0 0 0 0
0.68/0.77 c and : 576 576 12 4463 0 0 5 4 4075 0 52 11 8 0 0
0.68/0.77 c linear : 553 553 3 4504 0 0 5 5 8321 15 32 0 0 0 0
0.68/0.77 c logicor : 0+ 69 3 77 0 0 0 0 7 1 0 46 3 0 0
0.68/0.77 c benders : 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0
0.68/0.77 c fixedvar : 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0
0.68/0.77 c countsols : 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0
0.68/0.77 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
0.68/0.77 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c integral : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c knapsack : 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c and : 0.06 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c linear : 0.11 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.02 0.00
0.68/0.77 c logicor : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c components : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c Propagators : #Propagate #ResProp Cutoffs DomReds
0.68/0.77 c dualfix : 1 0 0 0
0.68/0.77 c genvbounds : 0 0 0 0
0.68/0.77 c nlobbt : 0 0 0 0
0.68/0.77 c obbt : 0 0 0 0
0.68/0.77 c probing : 0 0 0 0
0.68/0.77 c pseudoobj : 0 0 0 0
0.68/0.77 c redcost : 0 0 0 0
0.68/0.77 c rootredcost : 0 0 0 0
0.68/0.77 c symmetry : 0 0 0 0
0.68/0.77 c vbounds : 305 0 0 0
0.68/0.77 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
0.68/0.77 c dualfix : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c genvbounds : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c probing : 0.02 0.00 0.02 0.00 0.00 0.00
0.68/0.77 c pseudoobj : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c redcost : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c rootredcost : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c symmetry : 0.01 0.00 0.01 0.00 0.00 0.00
0.68/0.77 c vbounds : 0.00 0.00 0.00 0.00 0.00 0.00
0.68/0.77 c Symmetry :
0.68/0.77 c orbitopal red. : 0 reductions applied, 0 cutoffs
0.68/0.77 c orbital reduction: 0 reductions applied, 0 cutoffs
0.68/0.77 c lexicographic red: 0 reductions applied, 0 cutoffs
0.68/0.77 c shadow tree time : 0.00 s
0.68/0.77 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
0.68/0.77 c propagation : 0.07 15 15 - 343 459.6 0 0.0 - - -
0.68/0.77 c infeasible LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
0.68/0.77 c bound exceed. LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
0.68/0.77 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
0.68/0.77 c pseudo solution : 0.00 0 0 - 0 0.0 0 0.0 - - -
0.68/0.77 c applied globally : 0.00 - - 0 68 97.8 - - 0 - -
0.68/0.77 c applied locally : - - - 0 0 0.0 - - 0 - -
0.68/0.77 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
0.68/0.77 c cut pool : 0.00 - 3 3 - - 44 44 - - - - - (maximal pool size: 44)
0.68/0.77 c aggregation : 0.00 0.00 2 2 0 0 24 24 0 12 12 0 0
0.68/0.77 c > cmir : - - - - - - - 0 0 0 0 0 -
0.68/0.77 c > flowcover : - - - - - - - 11 0 11 11 0 -
0.68/0.77 c > knapsackcover : - - - - - - - 13 0 1 1 0 -
0.68/0.77 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c clique : 0.00 0.00 2 2 0 0 0 0 0 0 0 0 0
0.68/0.77 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c gomory : 0.00 0.00 2 2 0 0 16 16 0 1 1 0 0
0.68/0.77 c > gomorymi : - - - - - - - 7 0 1 1 0 -
0.68/0.77 c > strongcg : - - - - - - - 9 0 0 0 0 -
0.68/0.77 c impliedbounds : 0.00 0.00 2 2 0 0 3 3 0 3 3 0 0
0.68/0.77 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c mcf : 0.00 0.00 1 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c multilinear : 0.00 0.00 3 3 0 0 0 0 0 0 0 0 0
0.68/0.77 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.68/0.77 c rapidlearning : 0.17 0.00 3 1 0 0 0 0 0 0 0 0 0
0.68/0.77 c rlt : 0.00 0.00 3 3 0 0 0 0 0 0 0 0 0
0.68/0.77 c zerohalf : 0.00 0.00 2 2 0 0 1 1 0 0 0 0 0
0.68/0.77 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
0.68/0.77 c hybrid : 0.00 0.00 7 3 27 0 74 19 0 74
0.68/0.77 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c Pricers : ExecTime SetupTime Calls Vars
0.68/0.77 c problem variables: 0.00 - 0 0
0.68/0.77 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
0.68/0.77 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c inference : 0.00 0.00 0 0 5 0 0 0 0 10
0.68/0.77 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c random : 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c relpscost : 0.00 0.00 6 0 0 0 0 0 0 12
0.68/0.77 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
0.68/0.77 c Primal Heuristics : ExecTime SetupTime Calls Found Best
0.68/0.77 c LP solutions : 0.00 - - 0 0
0.68/0.77 c relax solutions : 0.00 - - 0 0
0.68/0.77 c pseudo solutions : 0.00 - - 0 0
0.68/0.77 c strong branching : 0.00 - - 0 0
0.68/0.77 c actconsdiving : 0.00 0.00 0 0 0
0.68/0.77 c adaptivediving : 0.01 0.00 1 0 0
0.68/0.77 c alns : 0.00 0.00 0 0 0
0.68/0.77 c bound : 0.00 0.00 0 0 0
0.68/0.77 c clique : 0.02 0.00 1 0 0
0.68/0.77 c coefdiving : 0.00 0.00 0 0 0
0.68/0.77 c completesol : 0.00 0.00 0 0 0
0.68/0.77 c conflictdiving : 0.01 0.00 1 1 1
0.68/0.77 c crossover : 0.00 0.00 0 0 0
0.68/0.77 c dins : 0.00 0.00 0 0 0
0.68/0.77 c distributiondivin: 0.00 0.00 0 0 0
0.68/0.77 c dps : 0.00 0.00 0 0 0
0.68/0.77 c dualval : 0.00 0.00 0 0 0
0.68/0.77 c farkasdiving : 0.00 0.00 0 0 0
0.68/0.77 c feasjump : 0.03 0.00 1 0 0
0.68/0.77 c feaspump : 0.00 0.00 0 0 0
0.68/0.77 c fixandinfer : 0.00 0.00 0 0 0
0.68/0.77 c fracdiving : 0.00 0.00 0 0 0
0.68/0.77 c gins : 0.00 0.00 0 0 0
0.68/0.77 c guideddiving : 0.00 0.00 0 0 0
0.68/0.77 c indcoefdiving : 0.00 0.00 0 0 0
0.68/0.77 c indicator : 0.00 0.00 0 0 0
0.68/0.77 c indicatordiving : 0.00 0.00 0 0 0
0.68/0.77 c indoneopt : 0.00 0.00 0 0 0
0.68/0.77 c indrounding : 0.00 0.00 0 0 0
0.68/0.77 c indtwoopt : 0.00 0.00 0 0 0
0.68/0.77 c intdiving : 0.00 0.00 0 0 0
0.68/0.77 c intshifting : 0.00 0.00 0 0 0
0.68/0.77 c linesearchdiving : 0.00 0.00 0 0 0
0.68/0.77 c localbranching : 0.00 0.00 0 0 0
0.68/0.77 c locks : 0.01 0.00 1 0 0
0.68/0.77 c lpface : 0.00 0.00 0 0 0
0.68/0.77 c mpec : 0.00 0.00 0 0 0
0.68/0.77 c multistart : 0.00 0.00 0 0 0
0.68/0.77 c mutation : 0.00 0.00 0 0 0
0.68/0.77 c nlpdiving : 0.00 0.00 0 0 0
0.68/0.77 c objpscostdiving : 0.00 0.00 0 0 0
0.68/0.77 c octane : 0.00 0.00 0 0 0
0.68/0.77 c ofins : 0.00 0.00 0 0 0
0.68/0.77 c oneopt : 0.00 0.00 0 0 0
0.68/0.77 c padm : 0.00 0.00 0 0 0
0.68/0.77 c proximity : 0.00 0.00 0 0 0
0.68/0.77 c pscostdiving : 0.00 0.00 0 0 0
0.68/0.77 c randrounding : 0.00 0.00 2 0 0
0.68/0.77 c rens : 0.00 0.00 0 0 0
0.68/0.77 c reoptsols : 0.00 0.00 0 0 0
0.68/0.77 c repair : 0.00 0.00 0 0 0
0.68/0.77 c rins : 0.00 0.00 0 0 0
0.68/0.77 c rootsoldiving : 0.00 0.00 0 0 0
0.68/0.77 c rounding : 0.00 0.00 12 0 0
0.68/0.77 c scheduler : 0.00 0.00 0 0 0
0.68/0.77 c shiftandpropagate: 0.05 0.00 1 0 0
0.68/0.77 c shifting : 0.00 0.00 2 0 0
0.68/0.77 c simplerounding : 0.00 0.00 0 0 0
0.68/0.77 c smallcard : 0.00 0.00 0 0 0
0.68/0.77 c subnlp : 0.00 0.00 0 0 0
0.68/0.77 c trivial : 0.00 0.00 2 0 0
0.68/0.77 c trivialnegation : 0.00 0.00 0 0 0
0.68/0.77 c trustregion : 0.00 0.00 0 0 0
0.68/0.77 c trysol : 0.00 0.00 0 0 0
0.68/0.77 c twoopt : 0.00 0.00 0 0 0
0.68/0.77 c undercover : 0.14 0.00 1 0 0
0.68/0.77 c vbounds : 0.00 0.00 0 0 0
0.68/0.77 c veclendiving : 0.00 0.00 0 0 0
0.68/0.77 c zeroobj : 0.00 0.00 0 0 0
0.68/0.77 c zirounding : 0.00 0.00 5 0 0
0.68/0.77 c other solutions : - - - 0 -
0.68/0.77 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
0.68/0.77 c rens : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.77 c rins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.77 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.77 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.77 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.77 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.77 c dins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.68/0.77 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
0.68/0.77 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
0.68/0.77 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
0.68/0.77 c primal LP : 0.00 0 0 0.00 - 0.00 0
0.68/0.77 c dual LP : 0.13 32 1141 51.86 8851.75 0.01 10
0.68/0.77 c lex dual LP : 0.00 0 0 0.00 -
0.68/0.77 c barrier LP : 0.00 0 0 0.00 - 0.00 0
0.68/0.77 c resolve instable : 0.00 0 0 0.00 -
0.68/0.77 c diving/probing LP: 0.02 8 242 30.25 13450.42
0.68/0.77 c strong branching : 0.00 0 0 0.00 - - - 0
0.68/0.77 c (at root node) : - 0 0 0.00 -
0.68/0.77 c conflict analysis: 0.00 0 0 0.00 -
0.68/0.77 c B&B Tree :
0.68/0.77 c number of runs : 1
0.68/0.77 c nodes : 11 (11 internal, 0 leaves)
0.68/0.77 c feasible leaves : 0
0.68/0.77 c infeas. leaves : 0
0.68/0.77 c objective leaves : 0
0.68/0.77 c nodes (total) : 11 (11 internal, 0 leaves)
0.68/0.77 c nodes left : 0
0.68/0.77 c max depth : 7
0.68/0.77 c max depth (total): 7
0.68/0.77 c backtracks : 1 (9.1%)
0.68/0.77 c early backtracks : 0 (0.0%)
0.68/0.77 c nodes exc. ref. : 0 (0.0%)
0.68/0.77 c delayed cutoffs : 0
0.68/0.77 c repropagations : 0 (0 domain reductions, 0 cutoffs)
0.68/0.77 c avg switch length: 2.00
0.68/0.77 c switching time : 0.00
0.68/0.77 c Root Node :
0.68/0.77 c First LP value : +0.00000000000000e+00
0.68/0.77 c First LP Iters : 1 (335.46 Iter/sec)
0.68/0.77 c First LP Time : 0.00
0.68/0.77 c Final Dual Bound : +0.00000000000000e+00
0.68/0.77 c Final Root Iters : 181
0.68/0.77 c Root LP Estimate : -
0.68/0.77 c Solution :
0.68/0.77 c Solutions found : 1 (1 improvements)
0.68/0.77 c First Solution : +0.00000000000000e+00 (in run 1, after 11 nodes, 0.75 seconds, depth 64, found by <conflictdiving>)
0.68/0.77 c Gap First Sol. : 0.00 %
0.68/0.77 c Gap Last Sol. : 0.00 %
0.68/0.77 c Primal Bound : +0.00000000000000e+00 (in run 1, after 11 nodes, 0.75 seconds, depth 64, found by <conflictdiving>)
0.68/0.77 c Dual Bound : +0.00000000000000e+00
0.68/0.77 c Gap : 0.00 %
0.68/0.77 c Integrals : Total Avg%
0.68/0.77 c primal-dual : 75.11 99.87
0.68/0.77 c primal-ref : - - (not evaluated)
0.68/0.77 c dual-ref : - - (not evaluated)
0.68/0.78 c Time complete: 0.767473.