0.00/0.00 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.00 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.00 c
0.00/0.01 c user parameter file <scip.set> not found - using default parameters
0.00/0.01 c reading problem <HOME/instance-4507634-1751189386.opb>
0.00/0.02 c original problem has 4125 variables (4125 bin, 0 int, 0 impl, 0 cont) and 4277 constraints
0.00/0.02 c problem read in 0.01
0.00/0.02 c No objective function, only one solution is needed.
0.00/0.03 c presolving:
0.00/0.04 c (round 1, fast) 174 del vars, 2 del conss, 0 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 782 clqs
0.00/0.04 c (round 2, fast) 434 del vars, 190 del conss, 0 add conss, 60 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 769 clqs
0.00/0.04 c (round 3, fast) 551 del vars, 276 del conss, 0 add conss, 116 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 766 clqs
0.00/0.04 c (round 4, fast) 644 del vars, 346 del conss, 0 add conss, 154 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 777 clqs
0.00/0.04 c (round 5, fast) 701 del vars, 391 del conss, 0 add conss, 176 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 799 clqs
0.00/0.04 c (round 6, fast) 723 del vars, 410 del conss, 0 add conss, 183 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 817 clqs
0.00/0.04 c (round 7, fast) 727 del vars, 414 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 826 clqs
0.00/0.05 c (0.0s) running MILP presolver
0.20/0.21 c (0.2s) MILP presolver (22 rounds): 4 aggregations, 174 fixings, 0 bound changes
0.20/0.21 c (round 8, medium) 905 del vars, 414 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 709 clqs
0.20/0.21 c (round 9, fast) 905 del vars, 592 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 711 clqs
0.20/0.22 c (round 10, exhaustive) 905 del vars, 663 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 711 clqs
0.20/0.23 c (round 11, exhaustive) 905 del vars, 663 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 3614 upgd conss, 0 impls, 711 clqs
0.20/0.24 c (round 12, exhaustive) 932 del vars, 663 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 31 chg coeffs, 3614 upgd conss, 0 impls, 711 clqs
0.20/0.25 c (round 13, fast) 959 del vars, 690 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 31 chg coeffs, 3614 upgd conss, 0 impls, 713 clqs
0.58/0.68 c (round 14, exhaustive) 984 del vars, 691 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 31 chg coeffs, 3614 upgd conss, 0 impls, 23588 clqs
0.58/0.68 c (round 15, fast) 984 del vars, 716 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 56 chg coeffs, 3614 upgd conss, 0 impls, 23589 clqs
0.68/0.70 c (round 16, exhaustive) 1009 del vars, 716 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 56 chg coeffs, 3614 upgd conss, 0 impls, 23586 clqs
0.68/0.70 c (round 17, fast) 1009 del vars, 741 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 84 chg coeffs, 3614 upgd conss, 0 impls, 23586 clqs
0.98/1.03 c (1.0s) probing: 1000/3464 (28.9%) - 65 fixings, 2 aggregations, 379165 implications, 0 bound changes
1.18/1.22 c (round 18, exhaustive) 1034 del vars, 741 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 84 chg coeffs, 3614 upgd conss, 0 impls, 24058 clqs
1.18/1.22 c (round 19, fast) 1034 del vars, 766 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 125 chg coeffs, 3614 upgd conss, 0 impls, 24061 clqs
1.18/1.27 c (round 20, exhaustive) 1059 del vars, 766 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 125 chg coeffs, 3614 upgd conss, 0 impls, 24068 clqs
1.18/1.27 c (round 21, fast) 1059 del vars, 791 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 158 chg coeffs, 3614 upgd conss, 0 impls, 24073 clqs
1.68/1.71 c (1.7s) probing: 2000/3464 (57.7%) - 116 fixings, 2 aggregations, 700384 implications, 0 bound changes
1.78/1.84 c (round 22, exhaustive) 1084 del vars, 791 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 158 chg coeffs, 3614 upgd conss, 0 impls, 24079 clqs
1.78/1.84 c (round 23, fast) 1084 del vars, 816 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 199 chg coeffs, 3614 upgd conss, 0 impls, 24084 clqs
2.27/2.35 c (2.3s) probing: 3000/3464 (86.6%) - 138 fixings, 2 aggregations, 1027150 implications, 0 bound changes
2.37/2.48 c (2.5s) probing: 3230/3464 (93.2%) - 138 fixings, 2 aggregations, 1092249 implications, 0 bound changes
2.37/2.48 c (2.5s) probing aborted: 1000/1000 successive useless probings
2.37/2.48 c (round 24, exhaustive) 1099 del vars, 816 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 199 chg coeffs, 3614 upgd conss, 0 impls, 24090 clqs
2.37/2.48 c (round 25, fast) 1099 del vars, 831 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 221 chg coeffs, 3614 upgd conss, 0 impls, 24090 clqs
2.47/2.56 c (2.6s) probing: 3330/3464 (96.1%) - 138 fixings, 2 aggregations, 1120651 implications, 0 bound changes
2.47/2.56 c (2.6s) probing aborted: 1000/1000 successive useless probings
2.47/2.57 c (2.6s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
2.47/2.58 c (2.6s) symmetry computation finished: 3 generators found (max: 1500, log10 of symmetry group size: 0.0) (symcode time: 0.01)
2.47/2.58 c dynamic symmetry handling statistics:
2.47/2.58 c orbitopal reduction: no components
2.47/2.58 c orbital reduction: no components
2.47/2.58 c lexicographic reduction: 3 permutations with support sizes 336, 130, 124
2.47/2.58 c handled 3 out of 3 symmetry components
2.47/2.59 c presolving (26 rounds: 26 fast, 11 medium, 10 exhaustive):
2.47/2.59 c 1099 deleted vars, 831 deleted constraints, 0 added constraints, 184 tightened bounds, 0 added holes, 0 changed sides, 221 changed coefficients
2.47/2.59 c 0 implications, 24103 cliques
2.47/2.59 c presolved problem has 3324 variables (3324 bin, 0 int, 0 impl, 0 cont) and 3446 constraints
2.47/2.59 c 704 constraints of type <setppc>
2.47/2.59 c 2742 constraints of type <logicor>
2.47/2.59 c transformed objective value is always integral (scale: 1)
2.47/2.59 c Presolving Time: 2.56
2.47/2.59 c - non default parameters ----------------------------------------------------------------------
2.47/2.59 c # SCIP version 10.0.0
2.47/2.59 c
2.47/2.59 c # maximal time in seconds to run
2.47/2.59 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
2.47/2.59 c limits/time = 3596.997027
2.47/2.59 c
2.47/2.59 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
2.47/2.59 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
2.47/2.59 c limits/memory = 27900
2.47/2.59 c
2.47/2.59 c # solving stops, if the given number of solutions were found; this limit is first checked in presolving (-1: no limit)
2.47/2.59 c # [type: int, advanced: FALSE, range: [-1,2147483647], default: -1]
2.47/2.59 c limits/solutions = 1
2.47/2.59 c
2.47/2.59 c # bitset describing used symmetry handling technique: (0: off; 1: constraint-based (orbitopes and/or symresacks); 2: orbital fixing; 3: orbitopes and orbital fixing; 4: Schreier Sims cuts; 5: Schreier Sims cuts and orbitopes; 6: Schreier Sims cuts and orbital fixing; 7: Schreier Sims cuts, orbitopes, and orbital fixing) See type_symmetry.h.
2.47/2.59 c # [type: int, advanced: FALSE, range: [0,7], default: 7]
2.47/2.59 c misc/usesymmetry = 3
2.47/2.59 c
2.47/2.59 c # belongs reading time to solving time?
2.47/2.59 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
2.47/2.59 c timing/reading = TRUE
2.47/2.59 c
2.47/2.59 c # Should we check whether the components of the symmetry group can be handled by double lex matrices?
2.47/2.59 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
2.47/2.59 c propagating/symmetry/detectdoublelex = FALSE
2.47/2.59 c
2.47/2.59 c # Should we try to detect symmetric subgroups of the symmetry group on binary variables?
2.47/2.59 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
2.47/2.59 c propagating/symmetry/detectsubgroups = FALSE
2.47/2.59 c
2.47/2.59 c # Type of symmetries that shall be computed?
2.47/2.59 c # [type: int, advanced: TRUE, range: [0,1], default: 0]
2.47/2.59 c propagating/symmetry/symtype = 1
2.47/2.59 c
2.47/2.59 c # Should components consisting of a single full reflection be handled?
2.47/2.59 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
2.47/2.59 c propagating/symmetry/usesimplesgncomp = FALSE
2.47/2.59 c
2.47/2.59 c -----------------------------------------------------------------------------------------------
2.47/2.59 c start solving
2.47/2.59 c
4.08/4.19 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
4.08/4.19 c 4.2s| 1 | 0 | 7812 | - | 54M | 0 |3324 |3604 |3446 | 0 | 0 | 166 | 0 | 0.000000e+00 | -- | Inf | unknown
16.83/16.92 c 16.9s| 1 | 0 | 49913 | - | 60M | 0 |3324 |3809 |3453 | 7 | 1 | 171 | 0 | 0.000000e+00 | -- | Inf | unknown
17.63/17.70 c 17.7s| 1 | 0 | 52064 | - | 61M | 0 |3324 |3813 |3461 | 15 | 2 | 175 | 0 | 0.000000e+00 | -- | Inf | unknown
18.13/18.21 c 18.2s| 1 | 0 | 52972 | - | 63M | 0 |3324 |3816 |3465 | 19 | 3 | 179 | 0 | 0.000000e+00 | -- | Inf | unknown
19.13/19.21 c 19.2s| 1 | 0 | 55725 | - | 64M | 0 |3324 |3825 |3476 | 30 | 4 | 189 | 0 | 0.000000e+00 | -- | Inf | unknown
19.93/20.04 c 20.0s| 1 | 0 | 57781 | - | 64M | 0 |3324 |3827 |3483 | 37 | 5 | 192 | 0 | 0.000000e+00 | -- | Inf | unknown
21.02/21.13 c 21.1s| 1 | 0 | 60873 | - | 65M | 0 |3324 |3834 |3494 | 48 | 6 | 199 | 0 | 0.000000e+00 | -- | Inf | unknown
22.12/22.22 c 22.2s| 1 | 0 | 63642 | - | 66M | 0 |3324 |3836 |3506 | 60 | 7 | 201 | 0 | 0.000000e+00 | -- | Inf | unknown
23.31/23.41 c 23.4s| 1 | 0 | 66761 | - | 66M | 0 |3324 |3839 |3515 | 69 | 8 | 204 | 0 | 0.000000e+00 | -- | Inf | unknown
24.51/24.68 c 24.7s| 1 | 0 | 70023 | - | 67M | 0 |3324 |3839 |3530 | 84 | 9 | 209 | 0 | 0.000000e+00 | -- | Inf | unknown
25.80/25.97 c 26.0s| 1 | 0 | 73532 | - | 69M | 0 |3324 |3839 |3541 | 95 | 10 | 212 | 0 | 0.000000e+00 | -- | Inf | unknown
26.40/26.56 c 26.6s| 1 | 0 | 75164 | - | 69M | 0 |3324 |3837 |3544 | 98 | 11 | 214 | 0 | 0.000000e+00 | -- | Inf | unknown
40.86/41.02 c 41.0s| 1 | 2 |116887 | - | 70M | 0 |3324 |3800 |3544 | 98 | 11 | 232 | 11 | 0.000000e+00 | -- | Inf | unknown
92.89/93.26 c 93.3s| 100 | 51 |313545 |2407.9 | 81M | 20 |3324 |3889 |3506 | 166 | 1 | 386 | 11 | 0.000000e+00 | -- | Inf | unknown
219.89/220.65 c 221s| 200 | 104 |806867 |3676.9 | 88M | 20 |3324 |4136 |3500 | 221 | 1 | 807 | 11 | 0.000000e+00 | -- | Inf | 1.61%
261.36/262.25 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
261.36/262.25 c 262s| 300 | 149 |984400 |3040.9 | 93M | 21 |3324 |4476 |3502 | 321 | 0 |1380 | 11 | 0.000000e+00 | -- | Inf | 1.62%
276.91/277.87 c 278s| 400 | 149 | 1049k|2441.1 | 95M | 21 |3324 |4700 |3506 | 374 | 0 |1845 | 11 | 0.000000e+00 | -- | Inf | 1.72%
317.18/318.23 c 318s| 500 | 183 | 1215k|2286.0 | 98M | 25 |3324 |4550 |3512 | 500 | 0 |2072 | 11 | 0.000000e+00 | -- | Inf | 2.16%
356.25/357.40 c 357s| 600 | 203 | 1376k|2172.2 | 100M | 29 |3324 |4824 |3506 | 622 | 0 |2636 | 11 | 0.000000e+00 | -- | Inf | 2.39%
398.72/400.03 c 400s| 700 | 240 | 1554k|2116.5 | 102M | 29 |3324 |4706 |3502 | 650 | 1 |2881 | 11 | 0.000000e+00 | -- | Inf | 2.42%
404.09/405.45 c 405s| 800 | 242 | 1584k|1888.7 | 103M | 39 |3324 |4791 |3500 | 680 | 0 |3009 | 11 | 0.000000e+00 | -- | Inf | 2.43%
415.36/416.74 c 417s| 900 | 247 | 1636k|1736.5 | 103M | 39 |3324 |4781 |3502 | 793 | 1 |3060 | 11 | 0.000000e+00 | -- | Inf | 2.45%
429.62/431.08 c 431s| 1000 | 252 | 1703k|1630.1 | 105M | 39 |3324 |4742 |3512 | 865 | 1 |3117 | 11 | 0.000000e+00 | -- | Inf | 2.52%
436.29/437.70 c Restart triggered after 50 consecutive estimations that the remaining tree will be large
436.29/437.70 c (run 1, node 1038) performing user restart
436.29/437.70 c
436.29/437.71 c (restart) converted 47 cuts from the global cut pool into linear constraints
436.29/437.71 c
436.29/437.72 c presolving:
436.29/437.73 c (round 1, fast) 0 del vars, 48 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 24103 clqs
436.29/437.74 c (round 2, exhaustive) 0 del vars, 53 del conss, 0 add conss, 0 chg bounds, 6 chg sides, 2 chg coeffs, 0 upgd conss, 0 impls, 24103 clqs
436.29/437.75 c (round 3, exhaustive) 0 del vars, 53 del conss, 0 add conss, 0 chg bounds, 6 chg sides, 2 chg coeffs, 236 upgd conss, 0 impls, 24103 clqs
436.29/437.75 c (round 4, medium) 0 del vars, 56 del conss, 6 add conss, 0 chg bounds, 22 chg sides, 27 chg coeffs, 236 upgd conss, 0 impls, 24103 clqs
436.29/437.76 c (round 5, exhaustive) 0 del vars, 64 del conss, 6 add conss, 0 chg bounds, 22 chg sides, 54 chg coeffs, 236 upgd conss, 0 impls, 24103 clqs
436.39/437.83 c (round 6, exhaustive) 0 del vars, 122 del conss, 6 add conss, 0 chg bounds, 22 chg sides, 1555 chg coeffs, 236 upgd conss, 0 impls, 24103 clqs
436.49/437.91 c presolving (7 rounds: 7 fast, 6 medium, 5 exhaustive):
436.49/437.91 c 0 deleted vars, 122 deleted constraints, 6 added constraints, 0 tightened bounds, 0 added holes, 22 changed sides, 1601 changed coefficients
436.49/437.91 c 0 implications, 24103 cliques
436.49/437.91 c presolved problem has 3324 variables (3324 bin, 0 int, 0 impl, 0 cont) and 4686 constraints
436.49/437.91 c 34 constraints of type <knapsack>
436.49/437.91 c 988 constraints of type <setppc>
436.49/437.91 c 4 constraints of type <linear>
436.49/437.91 c 3660 constraints of type <logicor>
436.49/437.91 c transformed objective value is always integral (scale: 1)
436.49/437.91 c Presolving Time: 2.75
436.49/437.91 c
438.69/440.10 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
438.69/440.10 c 440s| 1 | 0 | 1742k| - | 106M | 0 |3324 |4733 |3488 | 0 | 0 |3223 | 11 | 0.000000e+00 | -- | Inf | unknown
439.69/441.17 c 441s| 1 | 0 | 1745k| - | 108M | 0 |3324 |4728 |3503 | 15 | 1 |3226 | 11 | 0.000000e+00 | -- | Inf | unknown
440.68/442.13 c 442s| 1 | 0 | 1748k| - | 108M | 0 |3324 |4732 |3518 | 30 | 2 |3236 | 11 | 0.000000e+00 | -- | Inf | unknown
441.68/443.15 c 443s| 1 | 0 | 1750k| - | 109M | 0 |3324 |4732 |3534 | 46 | 3 |3237 | 11 | 0.000000e+00 | -- | Inf | unknown
442.58/444.05 c 444s| 1 | 0 | 1753k| - | 109M | 0 |3324 |4736 |3552 | 64 | 4 |3245 | 11 | 0.000000e+00 | -- | Inf | unknown
443.58/445.07 c 445s| 1 | 0 | 1755k| - | 109M | 0 |3324 |4734 |3564 | 76 | 5 |3249 | 11 | 0.000000e+00 | -- | Inf | unknown
445.07/446.55 c 447s| 1 | 0 | 1759k| - | 111M | 0 |3324 |4733 |3575 | 87 | 6 |3250 | 11 | 0.000000e+00 | -- | Inf | unknown
446.86/448.34 c 448s| 1 | 0 | 1764k| - | 111M | 0 |3324 |4730 |3588 | 100 | 7 |3251 | 11 | 0.000000e+00 | -- | Inf | unknown
448.46/449.94 c 450s| 1 | 0 | 1769k| - | 112M | 0 |3324 |4728 |3599 | 111 | 8 |3254 | 11 | 0.000000e+00 | -- | Inf | unknown
449.95/451.45 c 451s| 1 | 0 | 1773k| - | 113M | 0 |3324 |4726 |3605 | 117 | 9 |3255 | 11 | 0.000000e+00 | -- | Inf | unknown
451.45/452.90 c 453s| 1 | 0 | 1776k| - | 113M | 0 |3324 |4715 |3580 | 130 | 10 |3256 | 11 | 0.000000e+00 | -- | Inf | unknown
452.75/454.20 c 454s| 1 | 0 | 1780k| - | 113M | 0 |3324 |4712 |3592 | 142 | 11 |3264 | 11 | 0.000000e+00 | -- | Inf | unknown
464.71/466.20 c 466s| 1 | 2 | 1807k| - | 113M | 0 |3324 |4669 |3592 | 142 | 11 |3277 | 22 | 0.000000e+00 | -- | Inf | unknown
492.24/493.86 c 494s| 100 | 24 | 1913k|1574.4 | 114M | 31 |3324 |4774 |3539 | 176 | 0 |3470 | 22 | 0.000000e+00 | -- | Inf | 25.01%
504.00/505.65 c 506s| 200 | 30 | 1971k|1493.8 | 115M | 31 |3324 |4758 | 0 | 195 | 0 |3603 | 22 | 0.000000e+00 | -- | Inf | 26.33%
515.67/517.37 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
515.67/517.37 c 517s| 300 | 36 | 2031k|1427.0 | 115M | 34 |3324 |4763 |3528 | 208 | 1 |3657 | 22 | 0.000000e+00 | -- | Inf | 26.35%
526.94/528.62 c 529s| 400 | 30 | 2088k|1367.6 | 116M | 34 |3324 |4747 |3541 | 228 | 1 |3700 | 22 | 0.000000e+00 | -- | Inf | 26.37%
538.01/539.73 c 540s| 500 | 34 | 2145k|1315.9 | 117M | 35 |3324 |4851 |3542 | 256 | 0 |3840 | 22 | 0.000000e+00 | -- | Inf | 26.37%
548.19/550.00 c 550s| 600 | 37 | 2197k|1267.2 | 118M | 36 |3324 |4999 |3541 | 263 | 1 |4048 | 22 | 0.000000e+00 | -- | Inf | 26.38%
556.46/558.25 c 558s| 700 | 31 | 2240k|1219.1 | 119M | 37 |3324 |5050 |3538 | 277 | 1 |4183 | 22 | 0.000000e+00 | -- | Inf | 26.38%
565.64/567.49 c 567s| 800 | 34 | 2288k|1178.4 | 119M | 37 |3324 |5122 |3526 | 283 | 0 |4283 | 22 | 0.000000e+00 | -- | Inf | 26.40%
569.83/571.69 c 572s| 900 | 34 | 2312k|1129.9 | 120M | 37 |3324 |5184 | 0 | 291 | 0 |4350 | 22 | 0.000000e+00 | -- | Inf | 26.40%
573.52/575.35 c 575s| 1000 | 34 | 2332k|1084.7 | 121M | 39 |3324 |5287 |3528 | 300 | 0 |4481 | 22 | 0.000000e+00 | -- | Inf | 26.40%
579.10/580.92 c 581s| 1100 | 33 | 2363k|1048.1 | 121M | 39 |3324 |5324 |3527 | 305 | 1 |4543 | 22 | 0.000000e+00 | -- | Inf | 26.40%
585.09/586.93 c 587s| 1200 | 33 | 2396k|1016.2 | 121M | 39 |3324 |5295 | 0 | 314 | 0 |4623 | 22 | 0.000000e+00 | -- | Inf | 26.40%
588.48/590.36 c 590s| 1300 | 33 | 2416k| 981.4 | 122M | 39 |3324 |5345 |3528 | 320 | 1 |4695 | 22 | 0.000000e+00 | -- | Inf | 26.40%
592.67/594.59 c 595s| 1400 | 33 | 2441k| 951.4 | 122M | 39 |3324 |5384 |3527 | 324 | 0 |4746 | 22 | 0.000000e+00 | -- | Inf | 26.41%
596.86/598.78 c 599s| 1500 | 33 | 2466k| 923.7 | 122M | 39 |3324 |5435 |3528 | 327 | 0 |4801 | 22 | 0.000000e+00 | -- | Inf | 26.41%
600.15/602.04 c 602s| 1600 | 30 | 2485k| 895.9 | 123M | 39 |3324 |5541 |3529 | 331 | 0 |4920 | 22 | 0.000000e+00 | -- | Inf | 26.41%
605.24/607.16 c 607s| 1700 | 35 | 2513k| 873.2 | 123M | 39 |3324 |5484 |3539 | 332 | 0 |4998 | 22 | 0.000000e+00 | -- | Inf | 26.41%
613.41/615.33 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
613.41/615.33 c 615s| 1800 | 33 | 2555k| 857.4 | 124M | 39 |3324 |5539 |3539 | 332 | 0 |5080 | 22 | 0.000000e+00 | -- | Inf | 26.41%
622.39/624.32 c 624s| 1900 | 35 | 2601k| 843.8 | 124M | 40 |3324 |5585 |3542 | 352 | 1 |5155 | 22 | 0.000000e+00 | -- | Inf | 26.41%
628.57/630.59 c 631s| 2000 | 33 | 2635k| 827.2 | 124M | 40 |3324 |5494 |3542 | 356 | 0 |5232 | 22 | 0.000000e+00 | -- | Inf | 26.41%
635.06/637.07 c 637s| 2100 | 35 | 2670k| 811.9 | 125M | 40 |3324 |5517 |3528 | 370 | 1 |5299 | 22 | 0.000000e+00 | -- | Inf | 26.41%
641.44/643.47 c 643s| 2200 | 33 | 2704k| 797.3 | 125M | 41 |3324 |5547 |3530 | 387 | 1 |5357 | 22 | 0.000000e+00 | -- | Inf | 26.41%
649.12/651.12 c 651s| 2300 | 31 | 2744k| 785.4 | 126M | 41 |3324 |5600 |3544 | 392 | 1 |5430 | 22 | 0.000000e+00 | -- | Inf | 26.41%
657.79/659.88 c 660s| 2400 | 30 | 2788k| 775.4 | 127M | 41 |3324 |5662 |3525 | 411 | 1 |5569 | 22 | 0.000000e+00 | -- | Inf | 26.41%
667.27/669.35 c 669s| 2500 | 40 | 2837k| 767.3 | 128M | 41 |3324 |5639 |3529 | 443 | 1 |5633 | 22 | 0.000000e+00 | -- | Inf | 26.41%
673.55/675.64 c 676s| 2600 | 40 | 2869k| 755.1 | 128M | 41 |3324 |5650 |3531 | 449 | 1 |5690 | 22 | 0.000000e+00 | -- | Inf | 26.41%
679.34/681.48 c 681s| 2700 | 41 | 2900k| 743.2 | 128M | 41 |3324 |5675 |3530 | 451 | 1 |5720 | 22 | 0.000000e+00 | -- | Inf | 26.41%
686.42/688.51 c 689s| 2800 | 47 | 2938k| 733.7 | 128M | 41 |3324 |5680 |3530 | 453 | 0 |5747 | 22 | 0.000000e+00 | -- | Inf | 26.41%
692.10/694.23 c 694s| 2900 | 43 | 2968k| 722.7 | 128M | 41 |3324 |5718 |3527 | 453 | 1 |5790 | 22 | 0.000000e+00 | -- | Inf | 26.41%
698.78/700.92 c 701s| 3000 | 41 | 3003k| 713.5 | 128M | 41 |3324 |5753 |3530 | 456 | 0 |5837 | 22 | 0.000000e+00 | -- | Inf | 26.41%
706.06/708.23 c 708s| 3100 | 41 | 3041k| 705.3 | 128M | 41 |3324 |5717 |3530 | 456 | 0 |5864 | 22 | 0.000000e+00 | -- | Inf | 26.41%
713.15/715.38 c 715s| 3200 | 39 | 3077k| 697.3 | 128M | 41 |3324 |5746 |3530 | 456 | 0 |5899 | 22 | 0.000000e+00 | -- | Inf | 26.41%
720.63/722.84 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
720.63/722.84 c 723s| 3300 | 43 | 3115k| 690.0 | 128M | 41 |3324 |5768 |3529 | 461 | 0 |5934 | 22 | 0.000000e+00 | -- | Inf | 26.41%
728.01/730.22 c 730s| 3400 | 43 | 3155k| 683.3 | 128M | 41 |3324 |5792 |3528 | 465 | 0 |5961 | 22 | 0.000000e+00 | -- | Inf | 26.41%
734.99/737.25 c 737s| 3500 | 41 | 3192k| 676.4 | 128M | 41 |3324 |5842 |3527 | 465 | 0 |6014 | 22 | 0.000000e+00 | -- | Inf | 26.41%
742.77/745.10 c 745s| 3600 | 39 | 3233k| 670.7 | 128M | 41 |3324 |5874 |3527 | 466 | 0 |6049 | 22 | 0.000000e+00 | -- | Inf | 26.41%
751.04/753.34 c 753s| 3700 | 39 | 3276k| 665.6 | 128M | 41 |3324 |5887 |3528 | 470 | 1 |6077 | 22 | 0.000000e+00 | -- | Inf | 26.41%
760.42/762.76 c 763s| 3800 | 41 | 3324k| 661.8 | 128M | 41 |3324 |5896 |3528 | 478 | 0 |6102 | 22 | 0.000000e+00 | -- | Inf | 26.41%
768.99/771.35 c 771s| 3900 | 39 | 3367k| 657.1 | 129M | 41 |3324 |5903 |3530 | 491 | 1 |6140 | 22 | 0.000000e+00 | -- | Inf | 26.41%
779.36/781.75 c 782s| 4000 | 43 | 3419k| 654.5 | 129M | 41 |3324 |5917 |3530 | 503 | 1 |6161 | 22 | 0.000000e+00 | -- | Inf | 26.41%
789.84/792.22 c 792s| 4100 | 39 | 3473k| 652.1 | 129M | 41 |3324 |5951 |3532 | 517 | 1 |6196 | 22 | 0.000000e+00 | -- | Inf | 26.41%
799.91/802.39 c 802s| 4200 | 39 | 3526k| 649.8 | 129M | 41 |3324 |5968 |3529 | 529 | 0 |6229 | 22 | 0.000000e+00 | -- | Inf | 26.41%
809.59/812.10 c 812s| 4300 | 44 | 3577k| 647.2 | 129M | 41 |3324 |6016 |3530 | 538 | 0 |6284 | 22 | 0.000000e+00 | -- | Inf | 26.41%
818.76/821.26 c 821s| 4400 | 44 | 3625k| 644.2 | 129M | 41 |3324 |6042 | 0 | 550 | 0 |6328 | 22 | 0.000000e+00 | -- | Inf | 26.41%
826.84/829.33 c 829s| 4500 | 46 | 3667k| 640.1 | 129M | 41 |3324 |6050 |3531 | 556 | 1 |6346 | 22 | 0.000000e+00 | -- | Inf | 26.41%
836.51/839.08 c 839s| 4600 | 44 | 3717k| 637.6 | 130M | 41 |3324 |6055 |3528 | 594 | 1 |6357 | 22 | 0.000000e+00 | -- | Inf | 26.41%
844.29/846.81 c 847s| 4700 | 44 | 3757k| 633.5 | 130M | 41 |3324 |6094 |3530 | 599 | 0 |6402 | 22 | 0.000000e+00 | -- | Inf | 26.41%
854.36/856.92 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
854.36/856.92 c 857s| 4800 | 46 | 3809k| 631.5 | 130M | 41 |3324 |6109 |3530 | 610 | 0 |6418 | 22 | 0.000000e+00 | -- | Inf | 26.41%
863.83/866.46 c 866s| 4900 | 40 | 3857k| 629.0 | 131M | 41 |3324 |6125 |3529 | 630 | 0 |6444 | 22 | 0.000000e+00 | -- | Inf | 26.41%
875.00/877.69 c 878s| 5000 | 40 | 3914k| 628.0 | 131M | 41 |3324 |6136 |3535 | 657 | 1 |6456 | 22 | 0.000000e+00 | -- | Inf | 26.41%
885.58/888.21 c 888s| 5100 | 40 | 3967k| 626.4 | 132M | 41 |3324 |6177 |3536 | 673 | 1 |6499 | 22 | 0.000000e+00 | -- | Inf | 26.41%
895.55/898.23 c 898s| 5200 | 38 | 4018k| 624.6 | 132M | 41 |3324 |6187 |3534 | 690 | 1 |6521 | 22 | 0.000000e+00 | -- | Inf | 26.41%
907.12/909.80 c 910s| 5300 | 40 | 4076k| 623.8 | 132M | 41 |3324 |6208 |3531 | 723 | 1 |6546 | 22 | 0.000000e+00 | -- | Inf | 26.41%
918.09/920.80 c 921s| 5400 | 36 | 4132k| 622.8 | 132M | 41 |3324 |6237 |3531 | 754 | 0 |6580 | 22 | 0.000000e+00 | -- | Inf | 26.41%
929.06/931.86 c 932s| 5500 | 38 | 4189k| 621.9 | 132M | 41 |3324 |6260 |3535 | 787 | 1 |6619 | 22 | 0.000000e+00 | -- | Inf | 26.41%
939.73/942.54 c 943s| 5600 | 36 | 4245k| 621.0 | 132M | 41 |3324 |6276 |3535 | 803 | 0 |6640 | 22 | 0.000000e+00 | -- | Inf | 26.41%
951.00/953.89 c 954s| 5700 | 38 | 4301k| 620.2 | 132M | 41 |3324 |6266 |3530 | 824 | 0 |6658 | 22 | 0.000000e+00 | -- | Inf | 26.41%
964.46/967.37 c 967s| 5800 | 38 | 4373k| 621.6 | 132M | 41 |3324 |6271 |3541 | 843 | 1 |6665 | 22 | 0.000000e+00 | -- | Inf | 26.41%
980.32/983.25 c 983s| 5900 | 38 | 4458k| 624.9 | 133M | 41 |3324 |6278 |3540 | 888 | 1 |6672 | 22 | 0.000000e+00 | -- | Inf | 26.41%
990.99/993.99 c 994s| 6000 | 33 | 4513k| 623.8 | 133M | 45 |3324 |6283 |3527 | 914 | 1 |6699 | 22 | 0.000000e+00 | -- | Inf | 26.42%
1002.76/1005.72 c 1006s| 6100 | 37 | 4572k| 623.4 | 134M | 45 |3324 |6314 |3532 | 952 | 0 |6745 | 22 | 0.000000e+00 | -- | Inf | 26.42%
1012.83/1015.81 c 1016s| 6200 | 41 | 4624k| 621.9 | 134M | 45 |3324 |6333 |3534 | 968 | 1 |6787 | 22 | 0.000000e+00 | -- | Inf | 26.42%
1025.20/1028.21 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1025.20/1028.21 c 1028s| 6300 | 37 | 4686k| 621.9 | 134M | 45 |3324 |6354 |3532 | 977 | 1 |6821 | 22 | 0.000000e+00 | -- | Inf | 26.42%
1037.66/1040.79 c 1041s| 6400 | 37 | 4749k| 622.0 | 134M | 45 |3324 |6351 |3530 | 985 | 0 |6841 | 22 | 0.000000e+00 | -- | Inf | 26.42%
1046.94/1050.00 c 1050s| 6500 | 39 | 4796k| 620.1 | 134M | 45 |3324 |6378 |3536 |1009 | 0 |6883 | 22 | 0.000000e+00 | -- | Inf | 26.42%
1057.51/1060.69 c 1061s| 6600 | 37 | 4850k| 619.0 | 134M | 45 |3324 |6421 |3533 |1042 | 1 |6934 | 22 | 0.000000e+00 | -- | Inf | 26.42%
1066.39/1069.54 c 1070s| 6700 | 38 | 4895k| 616.8 | 134M | 45 |3324 |6468 |3529 |1060 | 1 |6994 | 22 | 0.000000e+00 | -- | Inf | 26.42%
1077.66/1080.88 c 1081s| 6800 | 35 | 4952k| 616.2 | 134M | 45 |3324 |6544 |3536 |1071 | 0 |7113 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1087.23/1090.48 c 1090s| 6900 | 35 | 5001k| 614.6 | 134M | 45 |3324 |6572 |3543 |1080 | 1 |7152 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1096.91/1100.17 c 1100s| 7000 | 35 | 5051k| 613.2 | 134M | 45 |3324 |6568 |3531 |1091 | 0 |7190 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1108.97/1112.26 c 1112s| 7100 | 39 | 5113k| 613.2 | 134M | 45 |3324 |6535 |3532 |1118 | 1 |7214 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1119.55/1122.82 c 1123s| 7200 | 39 | 5167k| 612.4 | 134M | 45 |3324 |6529 |3533 |1133 | 0 |7245 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1133.01/1136.31 c 1136s| 7300 | 36 | 5238k| 613.6 | 134M | 45 |3324 |6544 |3533 |1157 | 0 |7276 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1146.08/1149.46 c 1149s| 7400 | 37 | 5305k| 614.2 | 134M | 45 |3324 |6574 |3533 |1159 | 1 |7315 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1152.66/1156.09 c 1156s| 7500 | 36 | 5341k| 611.3 | 134M | 45 |3324 |6579 |3525 |1175 | 1 |7360 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1157.54/1160.95 c 1161s| 7600 | 37 | 5368k| 607.3 | 134M | 45 |3324 |6628 |3533 |1188 | 1 |7418 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1162.03/1165.40 c 1165s| 7700 | 35 | 5393k| 603.2 | 135M | 45 |3324 |6666 |3531 |1192 | 1 |7471 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1170.61/1174.06 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1170.61/1174.06 c 1174s| 7800 | 35 | 5437k| 601.4 | 135M | 45 |3324 |6658 |3539 |1205 | 2 |7520 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1181.38/1184.80 c 1185s| 7900 | 39 | 5490k| 600.5 | 135M | 45 |3324 |6608 |3539 |1213 | 0 |7636 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1188.57/1192.01 c 1192s| 8000 | 41 | 5529k| 598.2 | 135M | 45 |3324 |6654 |3532 |1226 | 1 |7738 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1195.55/1199.06 c 1199s| 8100 | 41 | 5569k| 596.0 | 135M | 45 |3324 |6602 |3531 |1237 | 0 |7920 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1201.73/1205.24 c 1205s| 8200 | 45 | 5602k| 593.2 | 135M | 45 |3324 |6612 |3531 |1246 | 0 |8002 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1206.71/1210.26 c 1210s| 8300 | 41 | 5630k| 589.8 | 135M | 45 |3324 |6663 |3531 |1246 | 1 |8087 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1212.90/1216.45 c 1216s| 8400 | 41 | 5664k| 587.2 | 135M | 45 |3324 |6698 |3533 |1264 | 0 |8161 | 22 | 0.000000e+00 | -- | Inf | 26.43%
1218.88/1222.42 c 1222s| 8500 | 47 | 5696k| 584.4 | 135M | 45 |3324 |6609 |3531 |1277 | 1 |8219 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1223.97/1227.58 c 1228s| 8600 | 45 | 5723k| 581.1 | 136M | 51 |3324 |6659 |3539 |1287 | 0 |8297 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1230.65/1234.23 c 1234s| 8700 | 45 | 5758k| 578.7 | 136M | 51 |3324 |6715 |3542 |1303 | 0 |8400 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1236.44/1240.09 c 1240s| 8800 | 45 | 5789k| 576.0 | 136M | 52 |3324 |6762 |3539 |1335 | 0 |8470 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1243.91/1247.57 c 1248s| 8900 | 47 | 5828k| 574.1 | 136M | 52 |3324 |6771 |3538 |1389 | 1 |8520 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1250.29/1253.98 c 1254s| 9000 | 45 | 5862k| 571.8 | 136M | 52 |3324 |6865 |3539 |1417 | 1 |8644 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1259.37/1263.02 c 1263s| 9100 | 43 | 5907k| 570.6 | 139M | 52 |3324 |6885 |3537 |1471 | 1 |8706 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1267.94/1271.62 c 1272s| 9200 | 48 | 5953k| 569.5 | 140M | 52 |3324 |6803 |3535 |1512 | 1 |8812 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1274.83/1278.56 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1274.83/1278.56 c 1279s| 9300 | 44 | 5989k| 567.5 | 140M | 54 |3324 |6856 |3539 |1545 | 2 |8886 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1282.41/1286.14 c 1286s| 9400 | 46 | 6029k| 565.9 | 140M | 54 |3324 |6869 | 0 |1553 | 0 |8956 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1290.18/1294.00 c 1294s| 9500 | 50 | 6070k| 564.5 | 140M | 54 |3324 |6857 |3534 |1563 | 0 |8992 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1297.46/1301.23 c 1301s| 9600 | 50 | 6109k| 562.8 | 140M | 54 |3324 |6902 |3541 |1593 | 1 |9041 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1306.54/1310.36 c 1310s| 9700 | 51 | 6158k| 562.1 | 140M | 54 |3324 |6899 |3547 |1611 | 0 |9092 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1316.61/1320.47 c 1320s| 9800 | 47 | 6210k| 561.7 | 140M | 54 |3324 |6907 |3534 |1624 | 1 |9134 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1324.49/1328.30 c 1328s| 9900 | 54 | 6251k| 560.3 | 140M | 54 |3324 |6929 |3532 |1631 | 0 |9187 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1330.97/1334.86 c 1335s| 10000 | 52 | 6285k| 558.3 | 140M | 54 |3324 |6967 | 0 |1635 | 0 |9232 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1339.75/1343.62 c 1344s| 10100 | 51 | 6331k| 557.4 | 140M | 54 |3324 |6996 |3536 |1642 | 0 |9271 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1347.52/1351.45 c 1351s| 10200 | 50 | 6372k| 556.1 | 141M | 54 |3324 |6930 |3536 |1662 | 0 |9329 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1355.80/1359.76 c 1360s| 10300 | 55 | 6414k| 554.9 | 141M | 54 |3324 |6976 |3535 |1689 | 1 |9400 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1362.28/1366.28 c 1366s| 10400 | 53 | 6449k| 553.1 | 141M | 54 |3324 |7011 |3535 |1692 | 1 |9449 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1369.56/1373.51 c 1374s| 10500 | 51 | 6486k| 551.5 | 141M | 54 |3324 |7058 |3536 |1696 | 1 |9505 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1377.54/1381.54 c 1382s| 10600 | 51 | 6528k| 550.4 | 141M | 54 |3324 |7025 |3535 |1711 | 1 |9541 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1385.82/1389.82 c 1390s| 10700 | 51 | 6571k| 549.3 | 141M | 54 |3324 |7069 |3541 |1722 | 0 |9589 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1394.30/1398.32 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1394.30/1398.32 c 1398s| 10800 | 51 | 6615k| 548.4 | 141M | 54 |3324 |7100 |3536 |1746 | 1 |9624 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1402.37/1406.49 c 1406s| 10900 | 49 | 6657k| 547.4 | 141M | 54 |3324 |7136 |3542 |1774 | 0 |9671 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1412.35/1416.44 c 1416s| 11000 | 51 | 6708k| 547.1 | 141M | 54 |3324 |7167 |3542 |1795 | 1 |9706 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1423.02/1427.19 c 1427s| 11100 | 49 | 6763k| 547.1 | 141M | 54 |3324 |7192 |3536 |1822 | 1 |9740 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1431.00/1435.19 c 1435s| 11200 | 49 | 6805k| 546.0 | 141M | 54 |3324 |7217 |3535 |1839 | 1 |9785 | 22 | 0.000000e+00 | -- | Inf | 26.44%
1436.99/1441.14 c *1441s| 11268 | 0 | 6835k| 545.5 | LP | 54 |3324 |7228 |3533 |1855 | 1 |9813 | 22 | 0.000000e+00 | 0.000000e+00 | 0.00%| 100.00%
1436.99/1441.14 c
1436.99/1441.14 c SCIP Status : problem is solved [optimal solution found]
1436.99/1441.14 c Solving Time (sec) : 1441.14
1436.99/1441.14 c Solving Nodes : 11268 (total of 12306 nodes in 2 runs)
1436.99/1441.14 c Primal Bound : +0.00000000000000e+00 (1 solutions)
1436.99/1441.14 c Dual Bound : +0.00000000000000e+00
1436.99/1441.14 c Gap : 0.00 %
1436.99/1441.15 s SATISFIABLE
1436.99/1441.15 v x4125 x4124 -x4123 -x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116 -x4115 -x4114 -x4113 -x4112 -x4111 -x4110 -x4109 -x4108 -x4107
1436.99/1441.15 v -x4106 -x4105 -x4104 -x4103 -x4102 -x4101 -x4100 -x4099 -x4098 -x4097 -x4096 -x4095 -x4094 -x4093 -x4092 -x4091 -x4090 -x4089
1436.99/1441.15 v -x4088 -x4087 -x4086 -x4085 -x4084 -x4083 -x4082 -x4081 -x4080 -x4079 -x4078 -x4077 -x4076 -x4075 -x4074 -x4073 -x4072 -x4071
1436.99/1441.15 v -x4070 -x4069 -x4068 -x4067 -x4066 -x4065 -x4064 -x4063 -x4062 -x4061 -x4060 -x4059 -x4058 -x4057 -x4056 -x4055 -x4054
1436.99/1441.15 v -x4053 -x4052 -x4051 -x4050 -x4049 -x4048 -x4047 -x4046 -x4045 -x4044 -x4043 -x4042 -x4041 -x4040 x4039 -x4038 x4037 -x4036 -x4035
1436.99/1441.15 v -x4034 -x4033 -x4032 -x4031 -x4030 -x4029 -x4028 -x4027 -x4026 -x4025 -x4024 -x4023 -x4022 -x4021 -x4020 -x4019 -x4018
1436.99/1441.15 v -x4017 x4016 -x4015 -x4014 -x4013 -x4012 -x4011 -x4010 -x4009 -x4008 -x4007 -x4006 -x4005 -x4004 -x4003 -x4002 -x4001 -x4000
1436.99/1441.15 v -x3999 -x3998 -x3997 -x3996 -x3995 -x3994 -x3993 -x3992 -x3991 -x3990 -x3989 -x3988 -x3987 -x3986 -x3985 -x3984 -x3983 -x3982
1436.99/1441.15 v -x3981 -x3980 -x3979 -x3978 -x3977 -x3976 -x3975 -x3974 -x3973 -x3972 -x3971 -x3970 -x3969 -x3968 -x3967 -x3966 x3965 -x3964
1436.99/1441.15 v -x3963 -x3962 -x3961 -x3960 -x3959 -x3958 -x3957 -x3956 -x3955 -x3954 -x3953 -x3952 -x3951 -x3950 -x3949 -x3948 -x3947 -x3946
1436.99/1441.15 v -x3945 -x3944 -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937 -x3936 -x3935 -x3934 -x3933 -x3932 -x3931 -x3930 -x3929 -x3928
1436.99/1441.15 v -x3927 -x3926 -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917 -x3916 -x3915 -x3914 -x3913 -x3912 -x3911 -x3910
1436.99/1441.15 v -x3909 -x3908 -x3907 -x3906 -x3905 -x3904 -x3903 -x3902 -x3901 -x3900 -x3899 -x3898 -x3897 -x3896 -x3895 -x3894 -x3893 -x3892
1436.99/1441.15 v -x3891 -x3890 -x3889 -x3888 -x3887 x3886 -x3885 -x3884 -x3883 -x3882 -x3881 -x3880 -x3879 -x3878 -x3877 -x3876 -x3875 -x3874
1436.99/1441.15 v -x3873 -x3872 -x3871 -x3870 -x3869 -x3868 -x3867 -x3866 x3865 -x3864 -x3863 -x3862 -x3861 -x3860 -x3859 -x3858 -x3857 -x3856
1436.99/1441.15 v -x3855 -x3854 -x3853 -x3852 -x3851 -x3850 -x3849 -x3848 -x3847 -x3846 -x3845 -x3844 -x3843 -x3842 -x3841 -x3840 -x3839 -x3838
1436.99/1441.15 v -x3837 -x3836 -x3835 -x3834 -x3833 -x3832 -x3831 -x3830 -x3829 -x3828 -x3827 -x3826 -x3825 -x3824 -x3823 -x3822 -x3821
1436.99/1441.15 v -x3820 -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813 -x3812 -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805 -x3804 -x3803
1436.99/1441.15 v x3802 -x3801 -x3800 -x3799 -x3798 -x3797 -x3796 -x3795 -x3794 -x3793 -x3792 -x3791 -x3790 -x3789 -x3788 -x3787 -x3786 -x3785
1436.99/1441.15 v -x3784 -x3783 -x3782 -x3781 -x3780 -x3779 -x3778 -x3777 -x3776 -x3775 -x3774 -x3773 -x3772 -x3771 -x3770 -x3769 -x3768 -x3767
1436.99/1441.15 v -x3766 -x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758 -x3757 -x3756 -x3755 -x3754 -x3753 -x3752 -x3751 -x3750 -x3749
1436.99/1441.15 v -x3748 -x3747 -x3746 -x3745 -x3744 -x3743 -x3742 -x3741 -x3740 -x3739 -x3738 -x3737 -x3736 -x3735 -x3734 -x3733 -x3732 -x3731
1436.99/1441.15 v -x3730 -x3729 -x3728 -x3727 x3726 -x3725 -x3724 -x3723 -x3722 -x3721 -x3720 -x3719 -x3718 -x3717 -x3716 -x3715 -x3714 -x3713
1436.99/1441.15 v -x3712 -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703 -x3702 -x3701 -x3700 -x3699 -x3698 -x3697 -x3696 -x3695
1436.99/1441.15 v -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677
1436.99/1441.15 v -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667 -x3666 -x3665 -x3664 x3663 -x3662 -x3661 -x3660 -x3659
1436.99/1441.15 v -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642
1436.99/1441.15 v -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624
1436.99/1441.15 v -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606
1436.99/1441.15 v -x3605 -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 -x3596 -x3595 -x3594 -x3593 -x3592 -x3591 -x3590 -x3589 -x3588
1436.99/1441.15 v -x3587 -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570
1436.99/1441.15 v -x3569 x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552
1436.99/1441.15 v -x3551 -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534
1436.99/1441.15 v -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516
1436.99/1441.15 v -x3515 -x3514 -x3513 -x3512 -x3511 -x3510 -x3509 -x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499
1436.99/1441.15 v -x3498 -x3497 -x3496 -x3495 x3494 -x3493 -x3492 -x3491 -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481
1436.99/1441.15 v -x3480 -x3479 -x3478 -x3477 -x3476 -x3475 -x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463
1436.99/1441.15 v -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445
1436.99/1441.15 v -x3444 -x3443 -x3442 -x3441 -x3440 -x3439 -x3438 -x3437 -x3436 -x3435 -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427
1436.99/1441.15 v -x3426 -x3425 -x3424 -x3423 -x3422 -x3421 x3420 -x3419 -x3418 -x3417 -x3416 -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409
1436.99/1441.15 v -x3408 -x3407 -x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391
1436.99/1441.15 v -x3390 -x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373
1436.99/1441.15 v -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355
1436.99/1441.15 v -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337
1436.99/1441.15 v -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320
1436.99/1441.15 v -x3319 -x3318 -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302
1436.99/1441.15 v -x3301 -x3300 -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284
1436.99/1441.15 v -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273 x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266
1436.99/1441.15 v -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248
1436.99/1441.15 v -x3247 -x3246 -x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230
1436.99/1441.15 v -x3229 -x3228 -x3227 -x3226 -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212
1436.99/1441.15 v -x3211 -x3210 -x3209 -x3208 -x3207 -x3206 -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 x3198 -x3197 -x3196 -x3195 -x3194
1436.99/1441.15 v -x3193 -x3192 -x3191 -x3190 -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176
1436.99/1441.15 v -x3175 -x3174 -x3173 -x3172 -x3171 -x3170 -x3169 -x3168 -x3167 -x3166 -x3165 -x3164 -x3163 -x3162 -x3161 -x3160 -x3159
1436.99/1441.15 v -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152 -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141
1436.99/1441.15 v -x3140 -x3139 -x3138 -x3137 -x3136 -x3135 -x3134 -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 x3124 -x3123
1436.99/1441.15 v -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105
1436.99/1441.15 v -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087
1436.99/1441.15 v -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069
1436.99/1441.15 v -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051
1436.99/1441.15 v x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043 x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033
1436.99/1441.15 v -x3032 -x3031 -x3030 -x3029 -x3028 -x3027 -x3026 -x3025 -x3024 -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016 -x3015
1436.99/1441.15 v -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997
1436.99/1441.15 v -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989 -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980
1436.99/1441.15 v -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973 -x2972 -x2971 -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962
1436.99/1441.15 v -x2961 -x2960 -x2959 -x2958 -x2957 x2956 -x2955 x2954 -x2953 -x2952 -x2951 -x2950 x2949 -x2948 x2947 -x2946 -x2945 -x2944 -x2943
1436.99/1441.15 v -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935 -x2934 -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925
1436.99/1441.15 v -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908
1436.99/1441.15 v -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898 -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890
1436.99/1441.15 v -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880 -x2879 -x2878 x2877 -x2876 -x2875 -x2874 -x2873 -x2872
1436.99/1441.15 v -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862 -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854
1436.99/1441.15 v -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844 -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836
1436.99/1441.15 v -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827 -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818
1436.99/1441.15 v -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810 -x2809 -x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802 -x2801 -x2800
1436.99/1441.15 v -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791 -x2790 -x2789 -x2788 x2787 -x2786 -x2785 -x2784 -x2783 -x2782
1436.99/1441.15 v -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764
1436.99/1441.15 v -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747
1436.99/1441.15 v -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 -x2739 -x2738 -x2737 -x2736 -x2735 -x2734 x2733 -x2732 -x2731 -x2730 -x2729
1436.99/1441.15 v -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 -x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711
1436.99/1441.15 v -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693
1436.99/1441.15 v -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682 -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675
1436.99/1441.15 v -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657
1436.99/1441.15 v -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639
1436.99/1441.15 v -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 x2631 -x2630 -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621
1436.99/1441.15 v -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603
1436.99/1441.15 v -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593 -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586
1436.99/1441.15 v -x2585 -x2584 -x2583 -x2582 -x2581 x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568
1436.99/1441.15 v -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555 -x2554 -x2553 -x2552 -x2551 -x2550
1436.99/1441.15 v -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537 -x2536 -x2535 -x2534 -x2533 -x2532
1436.99/1441.15 v -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514
1436.99/1441.15 v -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 -x2499 x2498 -x2497 -x2496
1436.99/1441.15 v -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478
1436.99/1441.15 v -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 -x2468 -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460
1436.99/1441.15 v -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442
1436.99/1441.15 v -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428 -x2427 -x2426 x2425 -x2424
1436.99/1441.15 v -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413 -x2412 -x2411 -x2410 -x2409 -x2408 -x2407
1436.99/1441.15 v -x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395 -x2394 -x2393 -x2392 -x2391 -x2390 -x2389
1436.99/1441.15 v -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373 -x2372 -x2371
1436.99/1441.15 v -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357 -x2356 -x2355 -x2354 -x2353
1436.99/1441.15 v -x2352 x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341 -x2340 -x2339 -x2338 -x2337 -x2336 -x2335
1436.99/1441.15 v -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 -x2321 -x2320 -x2319 -x2318 -x2317
1436.99/1441.15 v -x2316 -x2315 -x2314 -x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301 -x2300 -x2299
1436.99/1441.15 v -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283 -x2282 -x2281
1436.99/1441.15 v -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268 -x2267 -x2266 x2265 -x2264 -x2263
1436.99/1441.15 v -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248 -x2247 -x2246
1436.99/1441.15 v -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230 -x2229 -x2228
1436.99/1441.15 v -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 -x2213 -x2212 -x2211 -x2210
1436.99/1441.15 v -x2209 -x2208 -x2207 -x2206 -x2205 -x2204 x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 -x2195 -x2194 -x2193 -x2192
1436.99/1441.15 v -x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178 -x2177 -x2176 -x2175 -x2174
1436.99/1441.15 v -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161 -x2160 -x2159 -x2158 -x2157 -x2156
1436.99/1441.15 v -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139 -x2138
1436.99/1441.15 v -x2137 -x2136 -x2135 -x2134 -x2133 x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122 x2121 -x2120
1436.99/1441.15 v -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104 -x2103 -x2102
1436.99/1441.15 v -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089 -x2088 -x2087 -x2086 -x2085 -x2084
1436.99/1441.15 v -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 -x2071 -x2070 -x2069 -x2068 -x2067
1436.99/1441.15 v -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049
1436.99/1441.15 v -x2048 -x2047 -x2046 x2045 -x2044 -x2043 -x2042 -x2041 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032 -x2031
1436.99/1441.15 v -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 -x2018 -x2017 -x2016 -x2015 -x2014 -x2013
1436.99/1441.15 v -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996 -x1995
1436.99/1441.15 v -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977
1436.99/1441.15 v -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960 -x1959
1436.99/1441.15 v -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941
1436.99/1441.15 v -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 -x1925 -x1924 -x1923
1436.99/1441.15 v -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 -x1906
1436.99/1441.15 v -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896 -x1895 -x1894 x1893 -x1892 -x1891 -x1890 -x1889 -x1888
1436.99/1441.15 v -x1887 -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870
1436.99/1441.15 v -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 -x1857 -x1856 -x1855 -x1854 -x1853 -x1852
1436.99/1441.15 v -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834
1436.99/1441.15 v -x1833 -x1832 -x1831 -x1830 -x1829 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 -x1819 -x1818 x1817 -x1816
1436.99/1441.15 v -x1815 -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798
1436.99/1441.15 v -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780
1436.99/1441.15 v -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 -x1764 -x1763 -x1762
1436.99/1441.15 v -x1761 -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745
1436.99/1441.15 v -x1744 -x1743 -x1742 x1741 -x1740 x1739 -x1738 -x1737 -x1736 -x1735 -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 -x1728 -x1727 -x1726
1436.99/1441.15 v -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713 -x1712 -x1711 -x1710 -x1709
1436.99/1441.15 v -x1708 -x1707 -x1706 -x1705 -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691
1436.99/1441.15 v -x1690 -x1689 -x1688 -x1687 -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679 -x1678 -x1677 -x1676 -x1675 -x1674 -x1673
1436.99/1441.15 v -x1672 -x1671 -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 x1663 -x1662 x1661 -x1660 -x1659 -x1658 -x1657 -x1656 -x1655
1436.99/1441.15 v -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 -x1648 -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637
1436.99/1441.15 v -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619
1436.99/1441.15 v -x1618 -x1617 -x1616 -x1615 -x1614 -x1613 -x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603 -x1602 -x1601
1436.99/1441.15 v -x1600 -x1599 -x1598 -x1597 -x1596 -x1595 -x1594 -x1593 -x1592 -x1591 -x1590 -x1589 -x1588 -x1587 -x1586 x1585 -x1584 -x1583
1436.99/1441.15 v -x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565
1436.99/1441.15 v -x1564 -x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547
1436.99/1441.15 v -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 -x1534 -x1533 -x1532 -x1531 -x1530
1436.99/1441.15 v -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 -x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514 -x1513 -x1512
1436.99/1441.15 v -x1511 -x1510 x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502 -x1501 -x1500 -x1499 -x1498 -x1497 -x1496 -x1495 -x1494
1436.99/1441.15 v -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 -x1481 -x1480 -x1479 -x1478 -x1477 -x1476
1436.99/1441.15 v -x1475 -x1474 -x1473 -x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460 -x1459 -x1458
1436.99/1441.15 v -x1457 -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440
1436.99/1441.15 v -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 x1433 -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422
1436.99/1441.15 v -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405 -x1404
1436.99/1441.15 v -x1403 -x1402 -x1401 -x1400 -x1399 -x1398 -x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 -x1386
1436.99/1441.15 v -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 -x1370 -x1369
1436.99/1441.15 v -x1368 -x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359 -x1358 x1357 -x1356 -x1355 -x1354 -x1353 -x1352 -x1351
1436.99/1441.15 v -x1350 -x1349 -x1348 -x1347 -x1346 -x1345 -x1344 -x1343 -x1342 -x1341 -x1340 -x1339 -x1338 -x1337 -x1336 -x1335 -x1334 -x1333
1436.99/1441.15 v -x1332 -x1331 -x1330 -x1329 x1328 -x1327 -x1326 -x1325 -x1324 -x1323 -x1322 -x1321 -x1320 -x1319 -x1318 -x1317 -x1316 -x1315
1436.99/1441.15 v -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305 -x1304 -x1303 -x1302 -x1301 -x1300 -x1299 -x1298 -x1297
1436.99/1441.15 v -x1296 -x1295 -x1294 -x1293 -x1292 -x1291 -x1290 -x1289 -x1288 -x1287 -x1286 -x1285 -x1284 -x1283 -x1282 -x1281 -x1280 -x1279
1436.99/1441.15 v -x1278 -x1277 -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268 -x1267 x1266 -x1265 -x1264 -x1263 -x1262 -x1261
1436.99/1441.15 v -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252 -x1251 -x1250 -x1249 -x1248 -x1247 -x1246 -x1245 -x1244 -x1243
1436.99/1441.15 v -x1242 -x1241 -x1240 -x1239 -x1238 -x1237 -x1236 -x1235 -x1234 -x1233 -x1232 -x1231 -x1230 -x1229 -x1228 -x1227 -x1226 -x1225
1436.99/1441.15 v -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212 -x1211 -x1210 -x1209 -x1208 -x1207
1436.99/1441.15 v -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 -x1199 -x1198 -x1197 -x1196 -x1195 -x1194 -x1193 -x1192 -x1191 -x1190
1436.99/1441.15 v -x1189 -x1188 -x1187 -x1186 -x1185 -x1184 -x1183 -x1182 -x1181 -x1180 -x1179 -x1178 -x1177 -x1176 -x1175 -x1174 -x1173 -x1172
1436.99/1441.15 v -x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 x1159 -x1158 -x1157 -x1156 -x1155 -x1154
1436.99/1441.15 v -x1153 -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145 -x1144 -x1143 -x1142 -x1141 -x1140 -x1139 -x1138 -x1137 -x1136
1436.99/1441.15 v -x1135 -x1134 -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127 -x1126 -x1125 -x1124 -x1123 -x1122 -x1121 -x1120 -x1119 -x1118
1436.99/1441.15 v -x1117 -x1116 -x1115 -x1114 -x1113 -x1112 -x1111 x1110 -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 -x1100
1436.99/1441.15 v -x1099 -x1098 -x1097 -x1096 -x1095 -x1094 -x1093 -x1092 -x1091 -x1090 x1089 -x1088 -x1087 -x1086 -x1085 -x1084 -x1083 -x1082
1436.99/1441.15 v -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066 -x1065 -x1064
1436.99/1441.15 v -x1063 -x1062 -x1061 -x1060 -x1059 -x1058 -x1057 -x1056 -x1055 -x1054 -x1053 -x1052 -x1051 -x1050 -x1049 -x1048 -x1047 -x1046
1436.99/1441.15 v -x1045 -x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031 -x1030 -x1029 -x1028
1436.99/1441.15 v -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 -x1021 -x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011
1436.99/1441.15 v -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 -x1003 -x1002 -x1001 -x1000 -x999 -x998 -x997 -x996 -x995 -x994 -x993 -x992
1436.99/1441.15 v -x991 -x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 -x981 x980 -x979 -x978 -x977 -x976 -x975 -x974 -x973 -x972 x971 -x970
1436.99/1441.15 v -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 -x960 -x959 -x958 -x957 -x956 -x955 -x954 -x953 -x952 -x951 -x950
1436.99/1441.15 v -x949 -x948 -x947 -x946 -x945 -x944 -x943 -x942 -x941 -x940 -x939 -x938 -x937 -x936 -x935 -x934 -x933 -x932 -x931 -x930 -x929
1436.99/1441.15 v -x928 -x927 -x926 -x925 -x924 -x923 -x922 -x921 -x920 -x919 -x918 -x917 -x916 -x915 -x914 -x913 -x912 -x911 -x910 -x909 -x908
1436.99/1441.15 v -x907 -x906 -x905 -x904 -x903 -x902 -x901 -x900 -x899 -x898 -x897 -x896 -x895 x894 -x893 -x892 -x891 -x890 -x889 -x888 -x887
1436.99/1441.15 v -x886 -x885 -x884 -x883 -x882 -x881 -x880 -x879 -x878 -x877 -x876 -x875 -x874 -x873 -x872 -x871 -x870 -x869 -x868 -x867 -x866
1436.99/1441.15 v -x865 -x864 -x863 -x862 -x861 -x860 -x859 -x858 -x857 -x856 -x855 -x854 -x853 -x852 -x851 -x850 -x849 -x848 -x847 -x846 -x845
1436.99/1441.15 v -x844 -x843 -x842 -x841 -x840 -x839 -x838 -x837 -x836 -x835 -x834 -x833 -x832 -x831 -x830 -x829 -x828 -x827 -x826 -x825 -x824
1436.99/1441.15 v -x823 -x822 -x821 -x820 -x819 -x818 x817 -x816 -x815 -x814 -x813 -x812 -x811 -x810 x809 -x808 -x807 -x806 x805 -x804 -x803
1436.99/1441.15 v -x802 -x801 -x800 -x799 -x798 -x797 -x796 -x795 -x794 -x793 -x792 -x791 -x790 -x789 x788 -x787 -x786 -x785 -x784 -x783 -x782
1436.99/1441.15 v -x781 -x780 -x779 -x778 -x777 -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 -x768 -x767 -x766 -x765 -x764 -x763 -x762 -x761
1436.99/1441.15 v -x760 -x759 -x758 -x757 -x756 -x755 -x754 -x753 -x752 -x751 -x750 -x749 -x748 -x747 -x746 -x745 -x744 -x743 -x742 -x741 -x740
1436.99/1441.15 v -x739 -x738 -x737 -x736 -x735 -x734 -x733 x732 -x731 -x730 -x729 -x728 -x727 -x726 -x725 -x724 -x723 -x722 -x721 -x720 -x719
1436.99/1441.15 v -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710 -x709 -x708 -x707 -x706 -x705 -x704 -x703 -x702 -x701 -x700 -x699
1436.99/1441.15 v -x698 -x697 -x696 -x695 -x694 -x693 -x692 -x691 -x690 -x689 -x688 -x687 -x686 -x685 -x684 -x683 -x682 -x681 -x680 -x679 -x678
1436.99/1441.15 v -x677 -x676 -x675 -x674 -x673 -x672 -x671 x670 -x669 x668 -x667 -x666 -x665 -x664 -x663 -x662 -x661 -x660 -x659 x658 -x657 x656
1436.99/1441.15 v -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646 -x645 -x644 -x643 -x642 -x641 -x640 -x639 -x638 -x637 -x636 -x635
1436.99/1441.15 v -x634 -x633 -x632 -x631 -x630 -x629 -x628 -x627 -x626 -x625 -x624 -x623 -x622 -x621 -x620 -x619 -x618 -x617 -x616 -x615
1436.99/1441.15 v -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603 -x602 -x601 -x600 -x599 -x598 -x597 -x596 -x595 -x594
1436.99/1441.15 v -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 -x585 -x584 -x583 -x582 -x581 -x580 -x579 -x578 -x577 -x576 -x575 -x574 -x573
1436.99/1441.15 v -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564 -x563 x562 -x561 -x560 -x559 -x558 -x557 -x556 -x555 -x554 -x553 -x552
1436.99/1441.15 v -x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 -x531
1436.99/1441.15 v -x530 -x529 -x528 -x527 -x526 -x525 -x524 -x523 -x522 -x521 -x520 -x519 -x518 -x517 -x516 -x515 -x514 -x513 -x512 -x511 -x510
1436.99/1441.15 v -x509 -x508 -x507 -x506 -x505 x504 -x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489
1436.99/1441.15 v -x488 -x487 -x486 -x485 -x484 -x483 -x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468
1436.99/1441.15 v -x467 -x466 -x465 -x464 -x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448
1436.99/1441.15 v -x447 -x446 -x445 -x444 -x443 -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 -x429 -x428 -x427
1436.99/1441.15 v -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 x411 -x410 -x409 -x408 -x407 -x406
1436.99/1441.15 v -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386 -x385
1436.99/1441.15 v -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364
1436.99/1441.15 v -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 -x350 -x349 -x348 -x347 -x346 -x345 -x344 -x343
1436.99/1441.15 v -x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322
1436.99/1441.15 v -x321 -x320 -x319 -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 x303 -x302 -x301
1436.99/1441.15 v -x300 -x299 x298 -x297 -x296 -x295 -x294 -x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 -x281 -x280
1436.99/1441.15 v -x279 -x278 -x277 -x276 -x275 -x274 -x273 -x272 -x271 -x270 -x269 -x268 -x267 -x266 -x265 -x264 -x263 -x262 -x261 x260 -x259
1436.99/1441.15 v -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 -x239
1436.99/1441.15 v -x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 -x230 -x229 -x228 -x227 -x226 -x225 -x224 -x223 x222 -x221 -x220 -x219 -x218
1436.99/1441.15 v -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197
1436.99/1441.15 v -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 -x177 -x176
1436.99/1441.15 v -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 -x156 -x155
1436.99/1441.15 v -x154 -x153 -x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145 -x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134
1436.99/1441.15 v -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 -x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113
1436.99/1441.15 v -x112 -x111 -x110 -x109 -x108 -x107 -x106 -x105 -x104 -x103 -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 -x93 -x92 -x91
1436.99/1441.15 v -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 x79 -x78 x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66
1436.99/1441.15 v -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43 -x42 -x41
1436.99/1441.15 v -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 -x28 -x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 -x17 -x16
1436.99/1441.15 v -x15 -x14 -x13 -x12 -x11 -x10 -x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2 x1
1436.99/1441.15 c SCIP Status : problem is solved [optimal solution found]
1436.99/1441.15 c Total Time : 1441.14
1436.99/1441.15 c solving : 1441.14
1436.99/1441.15 c presolving : 2.75 (included in solving)
1436.99/1441.15 c reading : 0.01 (included in solving)
1436.99/1441.15 c copying : 1.22 (106 #copies) (minimal 0.01, maximal 0.01, average 0.01)
1436.99/1441.15 c Original Problem :
1436.99/1441.15 c Problem name : HOME/instance-4507634-1751189386.opb
1436.99/1441.15 c Variables : 4125 (4125 binary, 0 integer, 0 implicit integer, 0 continuous)
1436.99/1441.15 c Constraints : 4277 initial, 4277 maximal
1436.99/1441.15 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
1436.99/1441.15 c Presolved Problem :
1436.99/1441.15 c Problem name : t_HOME/instance-4507634-1751189386.opb
1436.99/1441.15 c Variables : 3324 (3324 binary, 0 integer, 0 implicit integer, 0 continuous)
1436.99/1441.15 c Constraints : 4686 initial, 7235 maximal
1436.99/1441.15 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
1436.99/1441.15 c Nonzeros : 53316 constraint, 51579 clique table
1436.99/1441.15 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
1436.99/1441.15 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c domcol : 0.04 0.00 8 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c dualsparsify : 0.01 0.00 1 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c gateextraction : 0.03 0.00 13 0 0 0 0 0 1 0 0 0
1436.99/1441.15 c implics : 0.00 0.00 17 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c milp : 0.17 0.00 1 174 4 0 0 0 0 0 0 0
1436.99/1441.15 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c sparsify : 0.04 0.00 2 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c trivial : 0.00 0.00 33 298 0 0 0 0 0 0 0 0
1436.99/1441.15 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c dualfix : 0.00 0.00 33 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c probing : 2.12 0.00 7 138 2 0 0 0 0 0 0 0
1436.99/1441.15 c pseudoobj : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c symmetry : 0.02 0.00 1 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c vbounds : 0.01 0.00 3 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c knapsack : 0.01 0.00 18 0 0 0 0 0 0 6 17 77
1436.99/1441.15 c setppc : 0.02 0.00 49 0 0 0 0 0 22 0 0 0
1436.99/1441.15 c linear : 0.03 0.00 24 184 1 0 184 0 668 0 5 0
1436.99/1441.15 c logicor : 0.24 0.01 46 27 0 0 0 0 262 0 0 1745
1436.99/1441.15 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c components : 0.01 0.00 2 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c root node : - - - 0 - - 0 - - - - -
1436.99/1441.15 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
1436.99/1441.15 c benderslp : 0 0 0 0 6345 0 0 767 0 0 0 0 0 0 0
1436.99/1441.15 c integral : 0 0 0 0 6345 0 0 767 0 0 0 0 0 0 12688
1436.99/1441.15 c knapsack : 34+ 36 11 82335 0 0 0 0 159631 11 21662 0 0 0 0
1436.99/1441.15 c setppc : 988+ 1086 22 155593 1 0 0 760 2590829 309 304261 1 1 0 0
1436.99/1441.15 c linear : 4+ 17 11 104967 0 0 0 3 6782 41 3650 3 1 0 0
1436.99/1441.15 c logicor : 3660+ 6103 22 122741 1 0 0 0 5651631 834 477406 57 41 0 0
1436.99/1441.15 c benders : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1436.99/1441.15 c fixedvar : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1436.99/1441.15 c countsols : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1436.99/1441.15 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
1436.99/1441.15 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c integral : 6.90 0.00 0.00 0.00 6.90 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c knapsack : 0.25 0.00 0.03 0.18 0.00 0.00 0.00 0.00 0.04 0.00
1436.99/1441.15 c setppc : 1.45 0.00 0.00 0.85 0.00 0.00 0.00 0.01 0.59 0.00
1436.99/1441.15 c linear : 0.10 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.02 0.00
1436.99/1441.15 c logicor : 4.15 0.01 0.01 2.13 0.00 0.00 0.00 0.00 1.99 0.01
1436.99/1441.15 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c components : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c Propagators : #Propagate #ResProp Cutoffs DomReds
1436.99/1441.15 c dualfix : 2 0 0 0
1436.99/1441.15 c genvbounds : 0 0 0 0
1436.99/1441.15 c nlobbt : 0 0 0 0
1436.99/1441.15 c obbt : 0 0 0 0
1436.99/1441.15 c probing : 0 0 0 0
1436.99/1441.15 c pseudoobj : 0 0 0 0
1436.99/1441.15 c redcost : 0 0 0 0
1436.99/1441.15 c rootredcost : 0 0 0 0
1436.99/1441.15 c symmetry : 2106 0 0 3
1436.99/1441.15 c vbounds : 69880 0 0 0
1436.99/1441.15 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
1436.99/1441.15 c dualfix : 0.00 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c genvbounds : 0.01 0.00 0.00 0.01 0.00 0.00
1436.99/1441.15 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
1436.99/1441.15 c probing : 2.12 0.00 2.12 0.00 0.00 0.00
1436.99/1441.15 c pseudoobj : 0.01 0.00 0.00 0.01 0.00 0.00
1436.99/1441.15 c redcost : 0.01 0.00 0.00 0.01 0.00 0.00
1436.99/1441.15 c rootredcost : 0.01 0.00 0.00 0.01 0.00 0.00
1436.99/1441.15 c symmetry : 0.06 0.00 0.02 0.05 0.00 0.00
1436.99/1441.15 c vbounds : 1.04 0.00 0.01 1.03 0.00 0.00
1436.99/1441.15 c Symmetry :
1436.99/1441.15 c orbitopal red. : 0 reductions applied, 0 cutoffs
1436.99/1441.15 c orbital reduction: 0 reductions applied, 0 cutoffs
1436.99/1441.15 c lexicographic red: 3 reductions applied, 0 cutoffs
1436.99/1441.15 c shadow tree time : 0.02 s
1436.99/1441.15 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
1436.99/1441.15 c propagation : 0.40 1154 1028 - 7360 104.3 199 34.9 - - -
1436.99/1441.15 c infeasible LP : 12.96 5607 3523 - 67301 647.5 39 13.9 59 290.1 0
1436.99/1441.15 c bound exceed. LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
1436.99/1441.15 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
1436.99/1441.15 c pseudo solution : 0.00 1 1 - 1 0.0 0 0.0 - - -
1436.99/1441.15 c applied globally : 0.34 - - 0 9750 94.2 - - 57 - -
1436.99/1441.15 c applied locally : - - - 0 4 704.8 - - 2 - -
1436.99/1441.15 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
1436.99/1441.15 c cut pool : 0.13 - 1254 42 - - 1765 15965 - - - - - (maximal pool size: 755)
1436.99/1441.15 c aggregation : 0.11 0.00 158 22 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c > cmir : - - - - - - - 0 0 0 0 0 -
1436.99/1441.15 c > flowcover : - - - - - - - 0 0 0 0 0 -
1436.99/1441.15 c > knapsackcover : - - - - - - - 0 0 0 0 0 -
1436.99/1441.15 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c clique : 0.38 0.00 22 22 0 0 153 475 0 231 231 0 0
1436.99/1441.15 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c gomory : 8.19 0.00 156 20 0 0 1636 13377 296 1102 1091 11 0
1436.99/1441.15 c > gomorymi : - - - - - - - 6081 148 748 742 6 -
1436.99/1441.15 c > strongcg : - - - - - - - 7296 148 354 349 5 -
1436.99/1441.15 c impliedbounds : 0.13 0.00 158 22 0 0 57 343 0 220 220 0 0
1436.99/1441.15 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c mcf : 0.00 0.00 2 2 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c multilinear : 0.00 0.00 146 22 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c rapidlearning : 14.29 0.00 100 2 0 7555 0 0 0 0 0 0 386
1436.99/1441.15 c rlt : 0.00 0.00 97 20 0 0 0 0 0 0 0 0 0
1436.99/1441.15 c zerohalf : 4.30 0.00 158 22 0 0 457 1770 242 1150 930 220 0
1436.99/1441.15 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
1436.99/1441.15 c hybrid : 0.02 0.00 839 22 2747 0 13518 240 0 190
1436.99/1441.15 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c Pricers : ExecTime SetupTime Calls Vars
1436.99/1441.15 c problem variables: 0.00 - 0 0
1436.99/1441.15 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
1436.99/1441.15 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c inference : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c random : 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c relpscost : 6.89 0.00 6344 0 0 0 0 0 0 12688
1436.99/1441.15 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
1436.99/1441.15 c Primal Heuristics : ExecTime SetupTime Calls Found Best
1436.99/1441.15 c LP solutions : 0.00 - - 1 1
1436.99/1441.15 c relax solutions : 0.00 - - 0 0
1436.99/1441.15 c pseudo solutions : 0.00 - - 0 0
1436.99/1441.15 c strong branching : 0.00 - - 0 0
1436.99/1441.15 c actconsdiving : 0.00 0.00 0 0 0
1436.99/1441.15 c adaptivediving : 12.49 0.00 12 0 0
1436.99/1441.15 c alns : 0.15 0.00 4 0 0
1436.99/1441.15 c bound : 0.00 0.00 0 0 0
1436.99/1441.15 c clique : 0.01 0.00 1 0 0
1436.99/1441.15 c coefdiving : 0.00 0.00 0 0 0
1436.99/1441.15 c completesol : 0.00 0.00 0 0 0
1436.99/1441.15 c conflictdiving : 38.67 0.00 20 0 0
1436.99/1441.15 c crossover : 0.00 0.00 0 0 0
1436.99/1441.15 c dins : 0.00 0.00 0 0 0
1436.99/1441.15 c distributiondivin: 20.50 0.00 19 0 0
1436.99/1441.15 c dps : 0.00 0.00 0 0 0
1436.99/1441.15 c dualval : 0.00 0.00 0 0 0
1436.99/1441.15 c farkasdiving : 0.00 0.00 0 0 0
1436.99/1441.15 c feasjump : 0.03 0.00 2 0 0
1436.99/1441.15 c feaspump : 14.93 0.00 8 0 0
1436.99/1441.15 c fixandinfer : 0.00 0.00 0 0 0
1436.99/1441.15 c fracdiving : 16.57 0.00 19 0 0
1436.99/1441.15 c gins : 0.00 0.00 0 0 0
1436.99/1441.15 c guideddiving : 0.00 0.00 0 0 0
1436.99/1441.15 c indcoefdiving : 0.00 0.00 0 0 0
1436.99/1441.15 c indicator : 0.00 0.00 0 0 0
1436.99/1441.15 c indicatordiving : 0.00 0.00 0 0 0
1436.99/1441.15 c indoneopt : 0.00 0.00 0 0 0
1436.99/1441.15 c indrounding : 0.00 0.00 0 0 0
1436.99/1441.15 c indtwoopt : 0.00 0.00 0 0 0
1436.99/1441.15 c intdiving : 0.00 0.00 0 0 0
1436.99/1441.15 c intshifting : 0.00 0.00 0 0 0
1436.99/1441.15 c linesearchdiving : 14.78 0.00 19 0 0
1436.99/1441.15 c localbranching : 0.00 0.00 0 0 0
1436.99/1441.15 c locks : 0.00 0.00 1 0 0
1436.99/1441.15 c lpface : 0.03 0.00 0 0 0
1436.99/1441.15 c mpec : 0.00 0.00 0 0 0
1436.99/1441.15 c multistart : 0.00 0.00 0 0 0
1436.99/1441.15 c mutation : 0.00 0.00 0 0 0
1436.99/1441.15 c nlpdiving : 0.00 0.00 0 0 0
1436.99/1441.15 c objpscostdiving : 38.63 0.00 6 0 0
1436.99/1441.15 c octane : 0.00 0.00 0 0 0
1436.99/1441.15 c ofins : 0.00 0.00 0 0 0
1436.99/1441.15 c oneopt : 0.00 0.00 0 0 0
1436.99/1441.15 c padm : 0.00 0.00 0 0 0
1436.99/1441.15 c proximity : 0.00 0.00 0 0 0
1436.99/1441.15 c pscostdiving : 23.72 0.00 19 0 0
1436.99/1441.15 c randrounding : 0.18 0.00 775 0 0
1436.99/1441.15 c rens : 0.12 0.00 2 0 0
1436.99/1441.15 c reoptsols : 0.00 0.00 0 0 0
1436.99/1441.15 c repair : 0.00 0.00 0 0 0
1436.99/1441.15 c rins : 0.00 0.00 0 0 0
1436.99/1441.15 c rootsoldiving : 10.30 0.00 7 0 0
1436.99/1441.15 c rounding : 0.13 0.00 1151 0 0
1436.99/1441.15 c scheduler : 0.00 0.00 0 0 0
1436.99/1441.15 c shiftandpropagate: 0.06 0.00 2 0 0
1436.99/1441.15 c shifting : 0.33 0.00 498 0 0
1436.99/1441.15 c simplerounding : 0.00 0.00 0 0 0
1436.99/1441.15 c smallcard : 0.00 0.00 0 0 0
1436.99/1441.15 c subnlp : 0.00 0.00 0 0 0
1436.99/1441.15 c trivial : 0.00 0.00 4 0 0
1436.99/1441.15 c trivialnegation : 0.00 0.00 0 0 0
1436.99/1441.15 c trustregion : 0.00 0.00 0 0 0
1436.99/1441.15 c trysol : 0.00 0.00 0 0 0
1436.99/1441.15 c twoopt : 0.00 0.00 0 0 0
1436.99/1441.15 c undercover : 0.00 0.00 0 0 0
1436.99/1441.15 c vbounds : 0.02 0.00 2 0 0
1436.99/1441.15 c veclendiving : 23.05 0.00 19 0 0
1436.99/1441.15 c zeroobj : 0.00 0.00 0 0 0
1436.99/1441.15 c zirounding : 0.06 0.00 1000 0 0
1436.99/1441.15 c other solutions : - - - 0 -
1436.99/1441.15 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
1436.99/1441.15 c rens : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1436.99/1441.15 c rins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1436.99/1441.15 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1436.99/1441.15 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1436.99/1441.15 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1436.99/1441.15 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1436.99/1441.15 c dins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1436.99/1441.15 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
1436.99/1441.15 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
1436.99/1441.15 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
1436.99/1441.15 c primal LP : 0.46 282 0 0.00 0.00 0.46 282
1436.99/1441.15 c dual LP : 1163.76 12736 5977482 469.71 5136.34 0.01 10
1436.99/1441.15 c lex dual LP : 0.00 0 0 0.00 -
1436.99/1441.15 c barrier LP : 0.00 0 0 0.00 - 0.00 0
1436.99/1441.15 c resolve instable : 0.00 0 0 0.00 -
1436.99/1441.15 c diving/probing LP: 211.52 1329 858298 645.82 4057.71
1436.99/1441.15 c strong branching : 5.36 22 16176 735.27 3019.07 - - 28
1436.99/1441.15 c (at root node) : - 22 16176 735.27 -
1436.99/1441.15 c conflict analysis: 0.00 0 0 0.00 -
1436.99/1441.15 c B&B Tree :
1436.99/1441.15 c number of runs : 2
1436.99/1441.15 c nodes : 11268 (5687 internal, 5581 leaves)
1436.99/1441.15 c feasible leaves : 1
1436.99/1441.15 c infeas. leaves : 5580
1436.99/1441.15 c objective leaves : 0
1436.99/1441.15 c nodes (total) : 12306 (6344 internal, 5962 leaves)
1436.99/1441.15 c nodes left : 0
1436.99/1441.15 c max depth : 54
1436.99/1441.15 c max depth (total): 54
1436.99/1441.15 c backtracks : 1461 (13.0%)
1436.99/1441.15 c early backtracks : 0 (0.0%)
1436.99/1441.15 c nodes exc. ref. : 0 (0.0%)
1436.99/1441.15 c delayed cutoffs : 57
1436.99/1441.15 c repropagations : 9609 (46168 domain reductions, 45 cutoffs)
1436.99/1441.15 c avg switch length: 3.56
1436.99/1441.15 c switching time : 2.45
1436.99/1441.15 c Root Node :
1436.99/1441.15 c First LP value : +0.00000000000000e+00
1436.99/1441.15 c First LP Iters : 7812 (5159.51 Iter/sec)
1436.99/1441.15 c First LP Time : 1.51
1436.99/1441.15 c Final Dual Bound : +0.00000000000000e+00
1436.99/1441.15 c Final Root Iters : 123364
1436.99/1441.15 c Root LP Estimate : +2.69839310053363e-02
1436.99/1441.15 c Solution :
1436.99/1441.15 c Solutions found : 1 (1 improvements)
1436.99/1441.15 c First Solution : +0.00000000000000e+00 (in run 2, after 11268 nodes, 1441.13 seconds, depth 29, found by <relaxation>)
1436.99/1441.15 c Gap First Sol. : 0.00 %
1436.99/1441.15 c Gap Last Sol. : 0.00 %
1436.99/1441.15 c Primal Bound : +0.00000000000000e+00 (in run 2, after 11268 nodes, 1441.14 seconds, depth -1, found by <relaxation>)
1436.99/1441.15 c Dual Bound : +0.00000000000000e+00
1436.99/1441.15 c Gap : 0.00 %
1436.99/1441.15 c Integrals : Total Avg%
1436.99/1441.15 c primal-dual : 144113.49 100.00
1436.99/1441.15 c primal-ref : - - (not evaluated)
1436.99/1441.15 c dual-ref : - - (not evaluated)
1436.99/1441.17 c Time complete: 1437.07.