0.00/0.02 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.02 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.02 c
0.00/0.02 c user parameter file <scip.set> not found - using default parameters
0.00/0.02 c reading problem <HOME/instance-4504306-1751446425.opb>
0.00/0.11 c original problem has 6810 variables (6810 bin, 0 int, 0 impl, 0 cont) and 15202 constraints
0.00/0.11 c problem read in 0.09
0.09/0.17 c presolving:
0.09/0.22 c (round 1, fast) 900 del vars, 423 del conss, 0 add conss, 45 chg bounds, 105 chg sides, 315 chg coeffs, 0 upgd conss, 0 impls, 8521 clqs
0.21/0.28 c (0.3s) running MILP presolver
0.30/0.33 c (0.3s) MILP presolver (2 rounds): 0 aggregations, 0 fixings, 0 bound changes
0.30/0.36 c (round 2, exhaustive) 900 del vars, 528 del conss, 0 add conss, 45 chg bounds, 105 chg sides, 315 chg coeffs, 0 upgd conss, 0 impls, 8521 clqs
0.41/0.43 c (round 3, exhaustive) 900 del vars, 528 del conss, 0 add conss, 45 chg bounds, 105 chg sides, 315 chg coeffs, 14671 upgd conss, 0 impls, 8521 clqs
0.41/0.50 c (round 4, medium) 900 del vars, 3468 del conss, 8190 add conss, 45 chg bounds, 105 chg sides, 315 chg coeffs, 14671 upgd conss, 0 impls, 16711 clqs
0.50/0.55 c (round 5, exhaustive) 900 del vars, 14598 del conss, 11130 add conss, 45 chg bounds, 105 chg sides, 315 chg coeffs, 14671 upgd conss, 0 impls, 16711 clqs
1.98/2.11 c (2.1s) probing: 1000/5910 (16.9%) - 0 fixings, 0 aggregations, 108421 implications, 0 bound changes
2.08/2.11 c (2.1s) probing: 1001/5910 (16.9%) - 0 fixings, 0 aggregations, 108548 implications, 0 bound changes
2.08/2.11 c (2.1s) probing aborted: 1000/1000 successive useless probings
2.08/2.11 c (2.1s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
2.08/2.12 c (2.1s) no symmetry present (symcode time: 0.00)
2.08/2.13 c presolving (6 rounds: 6 fast, 5 medium, 4 exhaustive):
2.08/2.13 c 900 deleted vars, 14598 deleted constraints, 11130 added constraints, 45 tightened bounds, 0 added holes, 105 changed sides, 315 changed coefficients
2.08/2.13 c 0 implications, 46268 cliques
2.08/2.13 c presolved problem has 5910 variables (5910 bin, 0 int, 0 impl, 0 cont) and 11734 constraints
2.08/2.13 c 150 constraints of type <knapsack>
2.08/2.13 c 8521 constraints of type <setppc>
2.08/2.13 c 2940 constraints of type <and>
2.08/2.13 c 3 constraints of type <linear>
2.08/2.13 c 120 constraints of type <logicor>
2.08/2.13 c transformed objective value is always integral (scale: 1)
2.08/2.13 c Presolving Time: 1.97
2.08/2.13 c - non default parameters ----------------------------------------------------------------------
2.08/2.13 c # SCIP version 10.0.0
2.08/2.13 c
2.08/2.13 c # maximal time in seconds to run
2.08/2.13 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
2.08/2.13 c limits/time = 3596.993156
2.08/2.13 c
2.08/2.13 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
2.08/2.13 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
2.08/2.13 c limits/memory = 27900
2.08/2.13 c
2.08/2.13 c # belongs reading time to solving time?
2.08/2.13 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
2.08/2.13 c timing/reading = TRUE
2.08/2.13 c
2.08/2.13 c -----------------------------------------------------------------------------------------------
2.08/2.13 c start solving
2.08/2.13 c
2.37/2.44 o 227982241
2.37/2.44 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
2.37/2.44 c L 2.4s| 1 | 0 | 123 | - |feasjump| 0 |5910 | 11k| 14k| 0 | 0 | 117 | 0 |-4.000000e+00 | 2.279822e+08 | Inf | unknown
2.37/2.48 c 2.5s| 1 | 0 | 542 | - | 102M | 0 |5910 | 11k| 14k| 0 | 0 | 117 | 0 | 2.222167e+06 | 2.279822e+08 | Large | unknown
2.98/3.09 c 3.1s| 1 | 0 | 701 | - | 107M | 0 |5910 | 11k| 14k| 18 | 1 | 127 | 0 | 2.562009e+06 | 2.279822e+08 |8798.57%| unknown
3.56/3.61 c 3.6s| 1 | 0 | 901 | - | 112M | 0 |5910 | 11k| 14k| 33 | 2 | 128 | 0 | 3.344527e+06 | 2.279822e+08 |6716.58%| unknown
3.76/3.83 c 3.8s| 1 | 0 | 1056 | - | 116M | 0 |5910 | 11k| 14k| 42 | 3 | 130 | 0 | 3.554114e+06 | 2.279822e+08 |6314.60%| unknown
4.07/4.19 c 4.2s| 1 | 0 | 1264 | - | 122M | 0 |5910 | 11k| 14k| 48 | 4 | 131 | 0 | 4.122558e+06 | 2.279822e+08 |5430.12%| unknown
4.46/4.57 c 4.6s| 1 | 0 | 1408 | - | 126M | 0 |5910 | 11k| 14k| 67 | 5 | 133 | 0 | 4.291588e+06 | 2.279822e+08 |5212.30%| unknown
5.56/5.60 c 5.6s| 1 | 0 | 1510 | - | 133M | 0 |5910 | 11k| 14k| 74 | 6 | 136 | 0 | 4.423956e+06 | 2.279822e+08 |5053.36%| unknown
6.66/6.70 c 6.7s| 1 | 0 | 1592 | - | 142M | 0 |5910 | 11k| 14k| 86 | 7 | 136 | 0 | 4.452504e+06 | 2.279822e+08 |5020.32%| unknown
7.46/7.55 c 7.5s| 1 | 0 | 1680 | - | 145M | 0 |5910 | 11k| 14k| 92 | 8 | 142 | 0 | 4.483840e+06 | 2.279822e+08 |4984.53%| unknown
8.75/8.89 c 8.9s| 1 | 0 | 1739 | - | 155M | 0 |5910 | 11k| 14k| 103 | 9 | 143 | 0 | 4.509338e+06 | 2.279822e+08 |4955.78%| unknown
9.65/9.74 c 9.7s| 1 | 0 | 1850 | - | 163M | 0 |5910 | 11k| 14k| 116 | 10 | 148 | 0 | 4.581449e+06 | 2.279822e+08 |4876.20%| unknown
9.75/9.81 c 9.8s| 1 | 0 | 2018 | - | 165M | 0 |5910 | 11k| 14k| 122 | 11 | 149 | 0 | 4.777905e+06 | 2.279822e+08 |4671.59%| unknown
9.75/9.86 c 9.8s| 1 | 0 | 2082 | - | 166M | 0 |5910 | 11k| 14k| 129 | 12 | 150 | 0 | 4.822826e+06 | 2.279822e+08 |4627.15%| unknown
9.85/9.92 c 9.9s| 1 | 0 | 2166 | - | 168M | 0 |5910 | 11k| 14k| 133 | 13 | 150 | 0 | 4.944972e+06 | 2.279822e+08 |4510.38%| unknown
9.85/9.98 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
9.85/9.98 c 10.0s| 1 | 0 | 2281 | - | 170M | 0 |5910 | 11k| 14k| 140 | 14 | 150 | 0 | 5.144953e+06 | 2.279822e+08 |4331.18%| unknown
9.96/10.01 c 10.0s| 1 | 0 | 2292 | - | 171M | 0 |5910 | 11k| 14k| 141 | 15 | 152 | 0 | 5.146386e+06 | 2.279822e+08 |4329.95%| unknown
9.96/10.06 c 10.0s| 1 | 0 | 2387 | - | 173M | 0 |5910 | 11k| 14k| 148 | 16 | 153 | 0 | 5.190639e+06 | 2.279822e+08 |4292.18%| unknown
9.96/10.11 c 10.1s| 1 | 0 | 2429 | - | 174M | 0 |5910 | 11k| 14k| 151 | 17 | 153 | 0 | 5.199119e+06 | 2.279822e+08 |4285.02%| unknown
10.06/10.15 c 10.1s| 1 | 0 | 2476 | - | 176M | 0 |5910 | 11k| 14k| 159 | 18 | 159 | 0 | 5.252359e+06 | 2.279822e+08 |4240.57%| unknown
10.06/10.19 c 10.2s| 1 | 0 | 2504 | - | 178M | 0 |5910 | 11k| 14k| 162 | 19 | 160 | 0 | 5.255088e+06 | 2.279822e+08 |4238.31%| unknown
10.15/10.23 c 10.2s| 1 | 0 | 2513 | - | 179M | 0 |5910 | 11k| 14k| 167 | 20 | 162 | 0 | 5.256187e+06 | 2.279822e+08 |4237.41%| unknown
10.15/10.26 c 10.2s| 1 | 0 | 2522 | - | 179M | 0 |5910 | 11k| 14k| 168 | 21 | 163 | 0 | 5.256379e+06 | 2.279822e+08 |4237.25%| unknown
10.25/10.30 c 10.3s| 1 | 0 | 2524 | - | 180M | 0 |5910 | 11k| 14k| 169 | 22 | 164 | 0 | 5.256663e+06 | 2.279822e+08 |4237.01%| unknown
11.44/11.50 o 6642531
11.44/11.50 c d11.5s| 1 | 0 | 6686 | - |farkasdi| 0 |5910 | 11k| 14k| 0 | 23 | 185 | 0 | 5.256663e+06 | 6.642531e+06 | 26.36%| unknown
12.05/12.16 c 12.1s| 1 | 0 | 9536 | - | 183M | 0 |5910 | 11k| 14k| 169 | 23 | 259 | 0 | 5.256663e+06 | 6.642531e+06 | 26.36%| unknown
12.05/12.18 c 12.2s| 1 | 0 | 9536 | - | 183M | 0 |5910 | 11k| 14k| 169 | 23 | 260 | 0 | 5.256663e+06 | 6.642531e+06 | 26.36%| unknown
12.14/12.20 c 12.2s| 1 | 0 | 9536 | - | 183M | 0 |5910 | 10k| 14k| 169 | 24 | 260 | 0 | 5.256663e+06 | 6.642531e+06 | 26.36%| unknown
12.34/12.41 c 12.4s| 1 | 0 | 9814 | - | 185M | 0 |5910 | 10k| 14k| 169 | 25 | 263 | 4 | 5.440682e+06 | 6.642531e+06 | 22.09%| unknown
12.34/12.43 c 12.4s| 1 | 0 | 9814 | - | 185M | 0 |5910 | 10k| 12k| 169 | 25 | 266 | 4 | 5.440682e+06 | 6.642531e+06 | 22.09%| unknown
12.34/12.47 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
12.34/12.47 c 12.5s| 1 | 0 | 9883 | - | 185M | 0 |5910 |9764 | 12k| 171 | 26 | 266 | 4 | 5.471259e+06 | 6.642531e+06 | 21.41%| unknown
12.34/12.49 c 12.5s| 1 | 0 | 9883 | - | 185M | 0 |5910 |9773 | 12k| 171 | 26 | 275 | 4 | 5.471259e+06 | 6.642531e+06 | 21.41%| unknown
12.44/12.50 c 12.5s| 1 | 0 | 9885 | - | 185M | 0 |5910 |9773 | 12k| 172 | 27 | 275 | 4 | 5.471290e+06 | 6.642531e+06 | 21.41%| unknown
12.44/12.52 c 12.5s| 1 | 0 | 9885 | - | 186M | 0 |5910 |9753 | 12k| 172 | 27 | 277 | 4 | 5.471290e+06 | 6.642531e+06 | 21.41%| unknown
12.44/12.54 c 12.5s| 1 | 0 | 9886 | - | 186M | 0 |5910 |9753 | 12k| 173 | 28 | 277 | 4 | 5.471290e+06 | 6.642531e+06 | 21.41%| unknown
13.05/13.20 c 13.2s| 1 | 0 | 9932 | - | 186M | 0 |5910 |9716 | 12k| 173 | 29 | 277 | 20 | 5.483916e+06 | 6.642531e+06 | 21.13%| unknown
13.44/13.59 c 13.6s| 1 | 0 | 10016 | - | 186M | 0 |5910 |9681 | 12k| 173 | 30 | 280 | 28 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
13.54/13.61 c 13.6s| 1 | 0 | 10016 | - | 186M | 0 |5910 |9681 | 12k| 173 | 30 | 280 | 28 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
13.54/13.64 c 13.6s| 1 | 0 | 10020 | - | 186M | 0 |5910 |9679 | 12k| 174 | 31 | 280 | 28 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
13.54/13.66 c 13.6s| 1 | 0 | 10025 | - | 186M | 0 |5910 |9683 | 12k| 175 | 32 | 284 | 28 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
13.54/13.67 c 13.7s| 1 | 0 | 10025 | - | 186M | 0 |5910 |9681 | 12k| 175 | 32 | 288 | 28 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
13.54/13.69 c 13.7s| 1 | 0 | 10036 | - | 186M | 0 |5910 |9681 | 12k| 176 | 33 | 288 | 28 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
13.74/13.80 c 13.8s| 1 | 0 | 10047 | - | 187M | 0 |5910 |9679 | 12k| 176 | 34 | 288 | 31 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
13.74/13.80 c (run 1, node 1) restarting after 642 global fixings of integer variables
13.74/13.80 c
13.74/13.81 c (restart) converted 121 cuts from the global cut pool into linear constraints
13.74/13.81 c
13.74/13.85 c presolving:
13.74/13.86 c (round 1, fast) 643 del vars, 172 del conss, 0 add conss, 0 chg bounds, 1 chg sides, 1846 chg coeffs, 52 upgd conss, 0 impls, 39919 clqs
13.74/13.87 c (round 2, medium) 643 del vars, 201 del conss, 37 add conss, 0 chg bounds, 1 chg sides, 1846 chg coeffs, 52 upgd conss, 0 impls, 39919 clqs
13.74/13.89 c (round 3, exhaustive) 643 del vars, 201 del conss, 37 add conss, 0 chg bounds, 1 chg sides, 1846 chg coeffs, 165 upgd conss, 0 impls, 39919 clqs
13.84/13.91 c (round 4, exhaustive) 643 del vars, 227 del conss, 38 add conss, 0 chg bounds, 2 chg sides, 1876 chg coeffs, 165 upgd conss, 0 impls, 39919 clqs
13.84/13.94 c (round 5, exhaustive) 1136 del vars, 227 del conss, 38 add conss, 0 chg bounds, 2 chg sides, 2130 chg coeffs, 165 upgd conss, 0 impls, 35397 clqs
13.84/13.94 c (round 6, fast) 1629 del vars, 1611 del conss, 38 add conss, 0 chg bounds, 2 chg sides, 2741 chg coeffs, 165 upgd conss, 0 impls, 35397 clqs
13.84/13.97 c presolving (7 rounds: 7 fast, 5 medium, 4 exhaustive):
13.84/13.97 c 1629 deleted vars, 1611 deleted constraints, 38 added constraints, 0 tightened bounds, 0 added holes, 2 changed sides, 2741 changed coefficients
13.84/13.97 c 0 implications, 35397 cliques
13.84/13.97 c presolved problem has 4774 variables (4774 bin, 0 int, 0 impl, 0 cont) and 8227 constraints
13.84/13.97 c 55 constraints of type <knapsack>
13.84/13.97 c 5289 constraints of type <setppc>
13.84/13.97 c 2669 constraints of type <and>
13.84/13.97 c 7 constraints of type <linear>
13.84/13.97 c 207 constraints of type <logicor>
13.84/13.97 c transformed objective value is always integral (scale: 1)
13.84/13.97 c Presolving Time: 2.08
13.84/13.97 c transformed 2/3 original solutions to the transformed problem space
13.84/13.97 c
13.95/14.07 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
13.95/14.07 c 14.0s| 1 | 0 | 10729 | - | 186M | 0 |4774 |8227 | 10k| 0 | 0 | 288 | 31 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
13.95/14.08 c 14.1s| 1 | 0 | 10729 | - | 186M | 0 |4774 |8230 | 10k| 0 | 0 | 291 | 31 | 5.505153e+06 | 6.642531e+06 | 20.66%| unknown
14.33/14.41 c 14.4s| 1 | 0 | 10772 | - | 188M | 0 |4774 |8230 | 10k| 8 | 1 | 291 | 31 | 5.509101e+06 | 6.642531e+06 | 20.57%| unknown
14.63/14.75 c 14.7s| 1 | 0 | 10795 | - | 191M | 0 |4774 |8231 | 10k| 16 | 2 | 292 | 31 | 5.514260e+06 | 6.642531e+06 | 20.46%| unknown
14.94/15.10 c 15.1s| 1 | 0 | 10887 | - | 194M | 0 |4774 |8236 | 10k| 25 | 3 | 297 | 31 | 5.526748e+06 | 6.642531e+06 | 20.19%| unknown
15.43/15.51 c 15.5s| 1 | 0 | 10923 | - | 199M | 0 |4774 |8240 | 10k| 30 | 4 | 301 | 31 | 5.531522e+06 | 6.642531e+06 | 20.09%| unknown
15.73/15.84 c 15.8s| 1 | 0 | 10966 | - | 203M | 0 |4774 |8240 | 10k| 39 | 5 | 301 | 31 | 5.534059e+06 | 6.642531e+06 | 20.03%| unknown
16.13/16.24 c 16.2s| 1 | 0 | 10999 | - | 206M | 0 |4774 |8240 | 10k| 43 | 6 | 301 | 31 | 5.538879e+06 | 6.642531e+06 | 19.93%| unknown
16.73/16.81 c 16.8s| 1 | 0 | 11038 | - | 211M | 0 |4774 |8242 | 10k| 49 | 7 | 303 | 31 | 5.541195e+06 | 6.642531e+06 | 19.88%| unknown
17.13/17.25 c 17.2s| 1 | 0 | 11098 | - | 217M | 0 |4774 |8243 | 10k| 54 | 8 | 305 | 31 | 5.543650e+06 | 6.642531e+06 | 19.82%| unknown
17.62/17.78 c 17.8s| 1 | 0 | 11173 | - | 219M | 0 |4774 |8245 | 10k| 60 | 9 | 307 | 31 | 5.549440e+06 | 6.642531e+06 | 19.70%| unknown
18.32/18.43 c 18.4s| 1 | 0 | 11397 | - | 226M | 0 |4774 |8246 | 10k| 93 | 10 | 308 | 31 | 5.575688e+06 | 6.642531e+06 | 19.13%| unknown
18.32/18.45 c 18.4s| 1 | 0 | 11397 | - | 226M | 0 |4774 |8246 | 10k| 93 | 10 | 308 | 31 | 5.575688e+06 | 6.642531e+06 | 19.13%| unknown
18.32/18.49 c 18.5s| 1 | 0 | 11443 | - | 227M | 0 |4774 |8244 | 10k| 97 | 11 | 308 | 31 | 5.578705e+06 | 6.642531e+06 | 19.07%| unknown
18.42/18.53 c 18.5s| 1 | 0 | 11488 | - | 228M | 0 |4774 |8247 | 10k| 100 | 12 | 311 | 31 | 5.580044e+06 | 6.642531e+06 | 19.04%| unknown
18.42/18.57 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
18.42/18.57 c 18.6s| 1 | 0 | 11520 | - | 230M | 0 |4774 |8250 | 10k| 103 | 13 | 314 | 31 | 5.581931e+06 | 6.642531e+06 | 19.00%| unknown
18.52/18.62 c 18.6s| 1 | 0 | 11551 | - | 231M | 0 |4774 |8250 | 10k| 107 | 14 | 314 | 31 | 5.584384e+06 | 6.642531e+06 | 18.95%| unknown
18.52/18.66 c 18.6s| 1 | 0 | 11553 | - | 232M | 0 |4774 |8252 | 10k| 108 | 15 | 316 | 31 | 5.584476e+06 | 6.642531e+06 | 18.95%| unknown
18.62/18.71 c 18.7s| 1 | 0 | 11576 | - | 233M | 0 |4774 |8253 | 10k| 111 | 16 | 317 | 31 | 5.586156e+06 | 6.642531e+06 | 18.91%| unknown
18.62/18.75 c 18.7s| 1 | 0 | 11592 | - | 234M | 0 |4774 |8253 | 10k| 112 | 17 | 317 | 31 | 5.586932e+06 | 6.642531e+06 | 18.89%| unknown
18.62/18.79 c 18.8s| 1 | 0 | 11605 | - | 236M | 0 |4774 |8257 | 10k| 115 | 18 | 321 | 31 | 5.587009e+06 | 6.642531e+06 | 18.89%| unknown
18.73/18.84 c 18.8s| 1 | 0 | 11624 | - | 238M | 0 |4774 |8258 | 10k| 117 | 19 | 322 | 31 | 5.587419e+06 | 6.642531e+06 | 18.88%| unknown
18.73/18.88 c 18.9s| 1 | 0 | 11643 | - | 239M | 0 |4774 |8258 | 10k| 119 | 20 | 322 | 31 | 5.587635e+06 | 6.642531e+06 | 18.88%| unknown
18.83/18.92 c 18.9s| 1 | 0 | 11649 | - | 239M | 0 |4774 |8268 | 10k| 120 | 21 | 332 | 31 | 5.587651e+06 | 6.642531e+06 | 18.88%| unknown
18.83/18.96 c 18.9s| 1 | 0 | 11658 | - | 239M | 0 |4774 |8268 | 10k| 122 | 22 | 332 | 31 | 5.587678e+06 | 6.642531e+06 | 18.88%| unknown
18.83/19.00 c 19.0s| 1 | 0 | 11658 | - | 239M | 0 |4774 |8268 | 10k| 122 | 23 | 332 | 31 | 5.587678e+06 | 6.642531e+06 | 18.88%| unknown
19.72/19.81 c 19.8s| 1 | 0 | 12147 | - | 239M | 0 |4774 |6744 | 10k| 122 | 24 | 332 | 40 | 5.593458e+06 | 6.642531e+06 | 18.76%| unknown
19.72/19.85 c 19.8s| 1 | 0 | 12165 | - | 239M | 0 |4774 |6742 | 10k| 127 | 25 | 333 | 40 | 5.593458e+06 | 6.642531e+06 | 18.76%| unknown
19.72/19.87 c 19.9s| 1 | 0 | 12171 | - | 239M | 0 |4774 |6742 | 10k| 128 | 26 | 333 | 40 | 5.593458e+06 | 6.642531e+06 | 18.76%| unknown
19.72/19.88 c (run 2, node 1) restarting after 598 global fixings of integer variables
19.72/19.88 c
19.72/19.88 c (restart) converted 120 cuts from the global cut pool into linear constraints
19.72/19.88 c
19.82/19.95 c presolving:
19.82/19.96 c (round 1, fast) 598 del vars, 48 del conss, 6 add conss, 0 chg bounds, 1 chg sides, 411 chg coeffs, 0 upgd conss, 0 impls, 29202 clqs
19.82/19.98 c (round 2, exhaustive) 598 del vars, 48 del conss, 6 add conss, 0 chg bounds, 2 chg sides, 412 chg coeffs, 103 upgd conss, 0 impls, 29202 clqs
19.93/20.02 c (round 3, exhaustive) 909 del vars, 51 del conss, 6 add conss, 0 chg bounds, 4 chg sides, 436 chg coeffs, 103 upgd conss, 0 impls, 26432 clqs
19.93/20.02 c (round 4, fast) 1220 del vars, 857 del conss, 6 add conss, 0 chg bounds, 4 chg sides, 915 chg coeffs, 103 upgd conss, 0 impls, 26432 clqs
19.93/20.05 c presolving (5 rounds: 5 fast, 3 medium, 3 exhaustive):
19.93/20.05 c 1220 deleted vars, 857 deleted constraints, 6 added constraints, 0 tightened bounds, 0 added holes, 4 changed sides, 915 changed coefficients
19.93/20.05 c 0 implications, 26432 cliques
19.93/20.05 c presolved problem has 3865 variables (3865 bin, 0 int, 0 impl, 0 cont) and 6018 constraints
19.93/20.05 c 69 constraints of type <knapsack>
19.93/20.05 c 3432 constraints of type <setppc>
19.93/20.05 c 2299 constraints of type <and>
19.93/20.05 c 13 constraints of type <linear>
19.93/20.05 c 205 constraints of type <logicor>
19.93/20.05 c transformed objective value is always integral (scale: 1)
19.93/20.05 c Presolving Time: 2.18
19.93/20.05 c transformed 2/3 original solutions to the transformed problem space
19.93/20.05 c
20.03/20.15 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
20.03/20.15 c 20.1s| 1 | 0 | 12896 | - | 232M | 0 |3865 |6018 |8211 | 0 | 0 | 340 | 40 | 5.593458e+06 | 6.642531e+06 | 18.76%| unknown
20.32/20.47 c 20.5s| 1 | 0 | 13146 | - | 234M | 0 |3865 |6025 |8227 | 16 | 1 | 347 | 40 | 5.654388e+06 | 6.642531e+06 | 17.48%| unknown
20.32/20.49 c 20.5s| 1 | 0 | 13146 | - | 234M | 0 |3865 |6025 |8225 | 16 | 1 | 347 | 40 | 5.654388e+06 | 6.642531e+06 | 17.48%| unknown
20.62/20.76 c 20.7s| 1 | 0 | 13201 | - | 235M | 0 |3865 |6025 |8236 | 27 | 2 | 347 | 40 | 5.665962e+06 | 6.642531e+06 | 17.24%| unknown
21.03/21.12 c 21.1s| 1 | 0 | 13275 | - | 236M | 0 |3865 |6025 |8250 | 41 | 3 | 347 | 40 | 5.680504e+06 | 6.642531e+06 | 16.94%| unknown
21.32/21.43 c 21.4s| 1 | 0 | 13352 | - | 237M | 0 |3865 |6025 |8262 | 53 | 4 | 347 | 40 | 5.695302e+06 | 6.642531e+06 | 16.63%| unknown
21.71/21.89 c 21.9s| 1 | 0 | 13389 | - | 238M | 0 |3865 |6032 |8266 | 57 | 5 | 354 | 40 | 5.698287e+06 | 6.642531e+06 | 16.57%| unknown
22.21/22.33 c 22.3s| 1 | 0 | 13426 | - | 240M | 0 |3865 |6032 |8274 | 65 | 6 | 354 | 40 | 5.706964e+06 | 6.642531e+06 | 16.39%| unknown
22.81/22.99 c 23.0s| 1 | 0 | 13764 | - | 244M | 0 |3865 |6035 |8318 | 109 | 7 | 357 | 40 | 5.806799e+06 | 6.642531e+06 | 14.39%| unknown
22.92/23.01 c 23.0s| 1 | 0 | 13764 | - | 244M | 0 |3865 |6035 |8297 | 109 | 7 | 357 | 40 | 5.806799e+06 | 6.642531e+06 | 14.39%| unknown
23.21/23.33 c 23.3s| 1 | 0 | 13809 | - | 245M | 0 |3865 |6035 |8301 | 113 | 8 | 357 | 40 | 5.819290e+06 | 6.642531e+06 | 14.15%| unknown
23.21/23.34 c 23.3s| 1 | 0 | 13809 | - | 245M | 0 |3865 |6035 |8296 | 113 | 8 | 357 | 40 | 5.819290e+06 | 6.642531e+06 | 14.15%| unknown
23.61/23.77 c 23.8s| 1 | 0 | 13879 | - | 246M | 0 |3865 |6035 |8311 | 128 | 9 | 357 | 40 | 5.825401e+06 | 6.642531e+06 | 14.03%| unknown
23.61/23.79 c 23.8s| 1 | 0 | 13879 | - | 246M | 0 |3865 |6036 |8310 | 128 | 9 | 358 | 40 | 5.825401e+06 | 6.642531e+06 | 14.03%| unknown
24.11/24.25 c 24.2s| 1 | 0 | 13974 | - | 251M | 0 |3865 |6036 |8319 | 137 | 10 | 358 | 40 | 5.835223e+06 | 6.642531e+06 | 13.84%| unknown
24.11/24.26 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
24.11/24.26 c 24.2s| 1 | 0 | 13974 | - | 251M | 0 |3865 |6038 |8316 | 137 | 10 | 360 | 40 | 5.835223e+06 | 6.642531e+06 | 13.84%| unknown
24.21/24.31 c 24.3s| 1 | 0 | 14025 | - | 252M | 0 |3865 |6038 |8321 | 142 | 11 | 360 | 40 | 5.839203e+06 | 6.642531e+06 | 13.76%| unknown
24.21/24.33 c 24.3s| 1 | 0 | 14025 | - | 252M | 0 |3865 |6039 |8320 | 142 | 11 | 361 | 40 | 5.839203e+06 | 6.642531e+06 | 13.76%| unknown
24.21/24.38 c 24.4s| 1 | 0 | 14042 | - | 253M | 0 |3865 |6039 |8266 | 145 | 12 | 361 | 40 | 5.839583e+06 | 6.642531e+06 | 13.75%| unknown
24.31/24.43 c 24.4s| 1 | 0 | 14079 | - | 253M | 0 |3865 |6042 |8268 | 147 | 13 | 364 | 40 | 5.844385e+06 | 6.642531e+06 | 13.66%| unknown
24.31/24.45 c 24.4s| 1 | 0 | 14079 | - | 253M | 0 |3865 |6043 |8267 | 147 | 13 | 365 | 40 | 5.844385e+06 | 6.642531e+06 | 13.66%| unknown
24.31/24.49 c 24.5s| 1 | 0 | 14086 | - | 254M | 0 |3865 |6043 |8269 | 149 | 14 | 365 | 40 | 5.844702e+06 | 6.642531e+06 | 13.65%| unknown
24.41/24.54 c 24.5s| 1 | 0 | 14110 | - | 255M | 0 |3865 |6043 |8272 | 152 | 15 | 365 | 40 | 5.845783e+06 | 6.642531e+06 | 13.63%| unknown
24.41/24.59 c 24.6s| 1 | 0 | 14130 | - | 256M | 0 |3865 |6044 |8275 | 155 | 16 | 366 | 40 | 5.846011e+06 | 6.642531e+06 | 13.63%| unknown
24.51/24.64 c 24.6s| 1 | 0 | 14179 | - | 257M | 0 |3865 |6044 |8279 | 159 | 17 | 366 | 40 | 5.848153e+06 | 6.642531e+06 | 13.58%| unknown
24.51/24.66 c 24.6s| 1 | 0 | 14179 | - | 257M | 0 |3865 |6045 |8278 | 159 | 17 | 367 | 40 | 5.848153e+06 | 6.642531e+06 | 13.58%| unknown
24.61/24.71 c 24.7s| 1 | 0 | 14193 | - | 257M | 0 |3865 |6045 |8266 | 160 | 18 | 367 | 40 | 5.848779e+06 | 6.642531e+06 | 13.57%| unknown
24.61/24.76 c 24.7s| 1 | 0 | 14220 | - | 257M | 0 |3865 |6045 |8268 | 162 | 19 | 367 | 40 | 5.849581e+06 | 6.642531e+06 | 13.56%| unknown
24.71/24.81 c 24.8s| 1 | 0 | 14250 | - | 258M | 0 |3865 |6044 |8272 | 166 | 20 | 368 | 40 | 5.850201e+06 | 6.642531e+06 | 13.54%| unknown
24.71/24.86 c 24.8s| 1 | 0 | 14252 | - | 258M | 0 |3865 |6044 |8274 | 168 | 21 | 368 | 40 | 5.850203e+06 | 6.642531e+06 | 13.54%| unknown
24.81/24.91 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
24.81/24.91 c 24.9s| 1 | 0 | 14255 | - | 258M | 0 |3865 |6046 |8275 | 169 | 22 | 371 | 40 | 5.850210e+06 | 6.642531e+06 | 13.54%| unknown
24.81/24.96 c 24.9s| 1 | 0 | 14256 | - | 258M | 0 |3865 |6048 |8276 | 170 | 23 | 373 | 40 | 5.850214e+06 | 6.642531e+06 | 13.54%| unknown
24.81/25.00 c 25.0s| 1 | 0 | 14256 | - | 258M | 0 |3865 |6049 |8311 | 170 | 24 | 374 | 40 | 5.850214e+06 | 6.642531e+06 | 13.54%| unknown
25.10/25.28 o 6071752
25.10/25.28 c d25.3s| 1 | 0 | 15002 | - |farkasdi| 0 |3865 |6047 |8311 | 0 | 25 | 374 | 40 | 5.850214e+06 | 6.071752e+06 | 3.79%| unknown
25.30/25.42 c 25.4s| 1 | 0 | 15106 | - | 259M | 0 |3865 |6047 |8311 | 170 | 25 | 375 | 40 | 5.850214e+06 | 6.071752e+06 | 3.79%| unknown
25.30/25.44 c 25.4s| 1 | 0 | 15106 | - | 260M | 0 |3865 |6048 |6292 | 170 | 25 | 376 | 40 | 5.850214e+06 | 6.071752e+06 | 3.79%| unknown
25.30/25.48 c 25.5s| 1 | 0 | 15106 | - | 260M | 0 |3865 |5439 |6292 | 170 | 26 | 376 | 40 | 5.850214e+06 | 6.071752e+06 | 3.79%| unknown
25.30/25.49 c 25.5s| 1 | 0 | 15106 | - | 260M | 0 |3865 |5145 |7113 | 170 | 26 | 376 | 40 | 5.850214e+06 | 6.071752e+06 | 3.79%| unknown
25.40/25.52 c (run 3, node 1) restarting after 1426 global fixings of integer variables
25.40/25.52 c
25.40/25.53 c (restart) converted 156 cuts from the global cut pool into linear constraints
25.40/25.53 c
25.50/25.62 c presolving:
25.50/25.63 c (round 1, fast) 1452 del vars, 31 del conss, 0 add conss, 26 chg bounds, 0 chg sides, 205 chg coeffs, 0 upgd conss, 0 impls, 15571 clqs
25.50/25.63 c (round 2, fast) 1452 del vars, 63 del conss, 0 add conss, 26 chg bounds, 0 chg sides, 231 chg coeffs, 0 upgd conss, 0 impls, 15571 clqs
25.50/25.66 c (round 3, medium) 1454 del vars, 65 del conss, 5 add conss, 26 chg bounds, 0 chg sides, 231 chg coeffs, 0 upgd conss, 0 impls, 15557 clqs
25.50/25.68 c (round 4, exhaustive) 1454 del vars, 69 del conss, 5 add conss, 26 chg bounds, 0 chg sides, 236 chg coeffs, 123 upgd conss, 0 impls, 15557 clqs
25.60/25.74 c presolving (5 rounds: 5 fast, 3 medium, 2 exhaustive):
25.60/25.74 c 1454 deleted vars, 71 deleted constraints, 5 added constraints, 26 tightened bounds, 0 added holes, 2 changed sides, 283 changed coefficients
25.60/25.74 c 0 implications, 15557 cliques
25.60/25.74 c presolved problem has 2411 variables (2411 bin, 0 int, 0 impl, 0 cont) and 5235 constraints
25.60/25.74 c 86 constraints of type <knapsack>
25.60/25.74 c 3752 constraints of type <setppc>
25.60/25.74 c 1161 constraints of type <and>
25.60/25.74 c 19 constraints of type <linear>
25.60/25.74 c 217 constraints of type <logicor>
25.60/25.74 c transformed objective value is always integral (scale: 1)
25.60/25.74 c Presolving Time: 2.31
25.60/25.75 c transformed 2/5 original solutions to the transformed problem space
25.60/25.75 c
25.70/25.86 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
25.70/25.86 c 25.8s| 1 | 0 | 16011 | - | 257M | 0 |2411 |5235 |6276 | 0 | 0 | 376 | 40 | 5.853980e+06 | 6.071752e+06 | 3.72%| unknown
25.70/25.88 c 25.9s| 1 | 0 | 16011 | - | 257M | 0 |2411 |5235 |6093 | 0 | 0 | 376 | 40 | 5.853980e+06 | 6.071752e+06 | 3.72%| unknown
26.10/26.23 c 26.2s| 1 | 0 | 16054 | - | 259M | 0 |2411 |5096 |6099 | 6 | 1 | 376 | 40 | 5.856079e+06 | 6.071752e+06 | 3.68%| unknown
26.10/26.25 c 26.2s| 1 | 0 | 16054 | - | 259M | 0 |2411 |5104 |6095 | 6 | 1 | 384 | 40 | 5.856079e+06 | 6.071752e+06 | 3.68%| unknown
26.50/26.63 c 26.6s| 1 | 0 | 16082 | - | 261M | 0 |2411 |5102 |6100 | 11 | 2 | 384 | 40 | 5.856866e+06 | 6.071752e+06 | 3.67%| unknown
26.50/26.64 c 26.6s| 1 | 0 | 16082 | - | 261M | 0 |2411 |5105 |6098 | 11 | 2 | 387 | 40 | 5.856866e+06 | 6.071752e+06 | 3.67%| unknown
26.79/26.99 c 27.0s| 1 | 0 | 16194 | - | 271M | 0 |2411 |5105 |6103 | 16 | 3 | 387 | 40 | 5.860107e+06 | 6.071752e+06 | 3.61%| unknown
26.79/27.00 c 27.0s| 1 | 0 | 16194 | - | 271M | 0 |2411 |5106 |6045 | 16 | 3 | 388 | 40 | 5.860107e+06 | 6.071752e+06 | 3.61%| unknown
27.29/27.49 c 27.5s| 1 | 0 | 16240 | - | 281M | 0 |2411 |5067 |6050 | 21 | 4 | 388 | 40 | 5.862489e+06 | 6.071752e+06 | 3.57%| unknown
27.39/27.50 c 27.5s| 1 | 0 | 16240 | - | 281M | 0 |2411 |5067 |6045 | 21 | 4 | 388 | 40 | 5.862489e+06 | 6.071752e+06 | 3.57%| unknown
27.70/27.88 c 27.9s| 1 | 0 | 16290 | - | 289M | 0 |2411 |5067 |6052 | 28 | 5 | 388 | 40 | 5.865255e+06 | 6.071752e+06 | 3.52%| unknown
27.80/27.90 c 27.9s| 1 | 0 | 16290 | - | 289M | 0 |2411 |5067 |6044 | 28 | 5 | 388 | 40 | 5.865255e+06 | 6.071752e+06 | 3.52%| unknown
28.19/28.33 c 28.3s| 1 | 0 | 16359 | - | 296M | 0 |2411 |5067 |6048 | 32 | 6 | 388 | 40 | 5.866576e+06 | 6.071752e+06 | 3.50%| unknown
28.19/28.34 c 28.3s| 1 | 0 | 16359 | - | 297M | 0 |2411 |5074 |6028 | 32 | 6 | 395 | 40 | 5.866576e+06 | 6.071752e+06 | 3.50%| unknown
28.79/28.93 c 28.9s| 1 | 0 | 16434 | - | 306M | 0 |2411 |5056 |6041 | 45 | 7 | 395 | 40 | 5.868438e+06 | 6.071752e+06 | 3.46%| unknown
28.79/28.95 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
28.79/28.95 c 28.9s| 1 | 0 | 16434 | - | 306M | 0 |2411 |5056 |6039 | 45 | 7 | 395 | 40 | 5.868438e+06 | 6.071752e+06 | 3.46%| unknown
29.29/29.49 c 29.5s| 1 | 0 | 16564 | - | 313M | 0 |2411 |5056 |6040 | 46 | 8 | 395 | 40 | 5.873793e+06 | 6.071752e+06 | 3.37%| unknown
29.29/29.50 c 29.5s| 1 | 0 | 16564 | - | 313M | 0 |2411 |5057 |6013 | 46 | 8 | 396 | 40 | 5.873793e+06 | 6.071752e+06 | 3.37%| unknown
29.79/29.90 c 29.9s| 1 | 0 | 16581 | - | 328M | 0 |2411 |5054 |6017 | 50 | 9 | 396 | 40 | 5.876198e+06 | 6.071752e+06 | 3.33%| unknown
29.79/29.92 c 29.9s| 1 | 0 | 16640 | - | 328M | 0 |2411 |5054 |6004 | 50 | 9 | 397 | 40 | 5.877920e+06 | 6.071752e+06 | 3.30%| unknown
29.79/29.93 c 29.9s| 1 | 0 | 16640 | - | 328M | 0 |2411 |5054 |5921 | 50 | 9 | 397 | 40 | 5.877920e+06 | 6.071752e+06 | 3.30%| unknown
30.28/30.44 c 30.4s| 1 | 0 | 16691 | - | 341M | 0 |2411 |4978 |5926 | 55 | 10 | 397 | 40 | 5.879478e+06 | 6.071752e+06 | 3.27%| unknown
30.28/30.45 c 30.4s| 1 | 0 | 16691 | - | 341M | 0 |2411 |4980 |5921 | 55 | 10 | 399 | 40 | 5.879478e+06 | 6.071752e+06 | 3.27%| unknown
30.38/30.53 c 30.5s| 1 | 0 | 16719 | - | 341M | 0 |2411 |4978 |5922 | 56 | 11 | 399 | 40 | 5.879906e+06 | 6.071752e+06 | 3.26%| unknown
30.48/30.62 c 30.6s| 1 | 0 | 16737 | - | 342M | 0 |2411 |4985 |5923 | 57 | 12 | 407 | 40 | 5.880220e+06 | 6.071752e+06 | 3.26%| unknown
30.58/30.72 c 30.7s| 1 | 0 | 16751 | - | 343M | 0 |2411 |4995 |5925 | 59 | 13 | 417 | 40 | 5.880446e+06 | 6.071752e+06 | 3.25%| unknown
30.68/30.81 c 30.8s| 1 | 0 | 16767 | - | 343M | 0 |2411 |4996 |5927 | 61 | 14 | 418 | 40 | 5.880741e+06 | 6.071752e+06 | 3.25%| unknown
30.78/30.91 c 30.9s| 1 | 0 | 16776 | - | 344M | 0 |2411 |4998 |5831 | 64 | 15 | 420 | 40 | 5.880813e+06 | 6.071752e+06 | 3.25%| unknown
30.78/30.93 c 30.9s| 1 | 0 | 16776 | - | 344M | 0 |2411 |4998 |5830 | 64 | 15 | 420 | 40 | 5.880813e+06 | 6.071752e+06 | 3.25%| unknown
30.78/31.00 c 31.0s| 1 | 0 | 16810 | - | 344M | 0 |2411 |4998 |5832 | 66 | 16 | 420 | 40 | 5.881344e+06 | 6.071752e+06 | 3.24%| unknown
30.89/31.01 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
30.89/31.01 c 31.0s| 1 | 0 | 16833 | - | 345M | 0 |2411 |4999 |5831 | 66 | 16 | 421 | 40 | 5.881677e+06 | 6.071752e+06 | 3.23%| unknown
30.89/31.10 c 31.1s| 1 | 0 | 16838 | - | 345M | 0 |2411 |5007 |5832 | 67 | 17 | 429 | 40 | 5.881745e+06 | 6.071752e+06 | 3.23%| unknown
30.99/31.18 c 31.2s| 1 | 0 | 16851 | - | 346M | 0 |2411 |5007 |5833 | 68 | 18 | 429 | 40 | 5.881911e+06 | 6.071752e+06 | 3.23%| unknown
31.08/31.27 c 31.3s| 1 | 0 | 16867 | - | 346M | 0 |2411 |5007 |5835 | 70 | 19 | 429 | 40 | 5.882188e+06 | 6.071752e+06 | 3.22%| unknown
31.08/31.28 c 31.3s| 1 | 0 | 16867 | - | 346M | 0 |2411 |5008 |5790 | 70 | 19 | 430 | 40 | 5.882188e+06 | 6.071752e+06 | 3.22%| unknown
31.18/31.36 c 31.3s| 1 | 0 | 16886 | - | 347M | 0 |2411 |4964 |5781 | 74 | 20 | 430 | 40 | 5.882452e+06 | 6.071752e+06 | 3.22%| unknown
31.18/31.37 c 31.4s| 1 | 0 | 16886 | - | 347M | 0 |2411 |4964 |5761 | 74 | 20 | 430 | 40 | 5.882452e+06 | 6.071752e+06 | 3.22%| unknown
31.18/31.38 c 31.4s| 1 | 0 | 16886 | - | 347M | 0 |2411 |4927 |5869 | 74 | 20 | 430 | 40 | 5.882452e+06 | 6.071752e+06 | 3.22%| unknown
31.48/31.68 o 6026220
31.48/31.68 c L31.7s| 1 | 0 | 17627 | - | rens| 0 |2411 |4924 |5869 | 74 | 21 | 430 | 40 | 5.882452e+06 | 6.026220e+06 | 2.44%| unknown
31.48/31.69 c 31.7s| 1 | 0 | 17627 | - | 347M | 0 |2411 |4923 |5869 | 74 | 21 | 430 | 40 | 5.882452e+06 | 6.026220e+06 | 2.44%| unknown
31.58/31.70 c 31.7s| 1 | 0 | 17627 | - | 347M | 0 |2411 |4924 |5197 | 74 | 21 | 431 | 40 | 5.882452e+06 | 6.026220e+06 | 2.44%| unknown
31.58/31.77 c 31.8s| 1 | 0 | 17627 | - | 347M | 0 |2411 |4521 |5188 | 74 | 22 | 431 | 40 | 5.882452e+06 | 6.026220e+06 | 2.44%| unknown
31.58/31.77 c 31.8s| 1 | 0 | 17627 | - | 347M | 0 |2411 |4440 |5383 | 74 | 22 | 431 | 40 | 5.882452e+06 | 6.026220e+06 | 2.44%| unknown
31.68/31.83 c (run 4, node 1) restarting after 591 global fixings of integer variables
31.68/31.83 c
31.68/31.83 c (restart) converted 61 cuts from the global cut pool into linear constraints
31.68/31.83 c
31.78/31.97 c presolving:
31.78/31.98 c (round 1, fast) 599 del vars, 14 del conss, 0 add conss, 6 chg bounds, 0 chg sides, 232 chg coeffs, 0 upgd conss, 0 impls, 11453 clqs
31.78/31.98 c (round 2, fast) 599 del vars, 27 del conss, 0 add conss, 6 chg bounds, 0 chg sides, 238 chg coeffs, 0 upgd conss, 0 impls, 11454 clqs
31.89/32.06 c (round 3, exhaustive) 601 del vars, 29 del conss, 1 add conss, 6 chg bounds, 0 chg sides, 245 chg coeffs, 0 upgd conss, 0 impls, 11441 clqs
31.89/32.09 c (round 4, exhaustive) 601 del vars, 32 del conss, 2 add conss, 6 chg bounds, 0 chg sides, 246 chg coeffs, 0 upgd conss, 0 impls, 11441 clqs
31.89/32.10 c (round 5, exhaustive) 601 del vars, 33 del conss, 2 add conss, 6 chg bounds, 0 chg sides, 247 chg coeffs, 46 upgd conss, 0 impls, 11441 clqs
31.99/32.11 c (round 6, exhaustive) 601 del vars, 37 del conss, 2 add conss, 6 chg bounds, 0 chg sides, 268 chg coeffs, 46 upgd conss, 0 impls, 11441 clqs
31.99/32.12 c (round 7, exhaustive) 601 del vars, 41 del conss, 2 add conss, 6 chg bounds, 0 chg sides, 269 chg coeffs, 46 upgd conss, 0 impls, 11441 clqs
31.99/32.13 c presolving (8 rounds: 8 fast, 6 medium, 6 exhaustive):
31.99/32.13 c 601 deleted vars, 41 deleted constraints, 2 added constraints, 6 tightened bounds, 0 added holes, 0 changed sides, 300 changed coefficients
31.99/32.13 c 0 implications, 11441 cliques
31.99/32.13 c presolved problem has 1810 variables (1810 bin, 0 int, 0 impl, 0 cont) and 4462 constraints
31.99/32.13 c 95 constraints of type <knapsack>
31.99/32.13 c 3292 constraints of type <setppc>
31.99/32.13 c 805 constraints of type <and>
31.99/32.13 c 27 constraints of type <linear>
31.99/32.13 c 243 constraints of type <logicor>
31.99/32.13 c transformed objective value is always integral (scale: 1)
31.99/32.13 c Presolving Time: 2.47
31.99/32.14 c transformed 3/6 original solutions to the transformed problem space
31.99/32.14 c
32.08/32.24 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
32.08/32.24 c 32.2s| 1 | 0 | 18657 | - | 341M | 0 |1810 |4462 |5116 | 0 | 0 | 431 | 40 | 5.882583e+06 | 6.026220e+06 | 2.44%| unknown
32.08/32.25 c 32.2s| 1 | 0 | 18657 | - | 341M | 0 |1810 |4463 |5112 | 0 | 0 | 432 | 40 | 5.882583e+06 | 6.026220e+06 | 2.44%| unknown
32.48/32.62 c 32.6s| 1 | 0 | 18740 | - | 342M | 0 |1810 |4463 |5113 | 3 | 1 | 432 | 40 | 5.885105e+06 | 6.026220e+06 | 2.40%| unknown
32.48/32.63 c 32.6s| 1 | 0 | 18740 | - | 342M | 0 |1810 |4465 |5033 | 3 | 1 | 434 | 40 | 5.885105e+06 | 6.026220e+06 | 2.40%| unknown
32.78/32.98 c 33.0s| 1 | 0 | 18761 | - | 343M | 0 |1810 |4401 |5037 | 7 | 2 | 434 | 40 | 5.885550e+06 | 6.026220e+06 | 2.39%| unknown
32.78/32.99 c 33.0s| 1 | 0 | 18780 | - | 343M | 0 |1810 |4401 |5036 | 7 | 2 | 435 | 40 | 5.885749e+06 | 6.026220e+06 | 2.39%| unknown
32.78/33.00 c 33.0s| 1 | 0 | 18780 | - | 343M | 0 |1810 |4404 |5034 | 7 | 2 | 438 | 40 | 5.885749e+06 | 6.026220e+06 | 2.39%| unknown
33.18/33.36 c 33.3s| 1 | 0 | 18853 | - | 343M | 0 |1810 |4401 |5038 | 11 | 3 | 438 | 40 | 5.887667e+06 | 6.026220e+06 | 2.35%| unknown
33.18/33.37 c 33.4s| 1 | 0 | 18853 | - | 343M | 0 |1810 |4403 |5030 | 11 | 3 | 440 | 40 | 5.887667e+06 | 6.026220e+06 | 2.35%| unknown
33.67/33.83 c 33.8s| 1 | 0 | 18891 | - | 344M | 0 |1810 |4402 |5034 | 15 | 4 | 440 | 40 | 5.888585e+06 | 6.026220e+06 | 2.34%| unknown
33.67/33.84 c 33.8s| 1 | 0 | 18891 | - | 344M | 0 |1810 |4403 |5031 | 15 | 4 | 441 | 40 | 5.888585e+06 | 6.026220e+06 | 2.34%| unknown
34.07/34.28 c 34.3s| 1 | 0 | 18970 | - | 344M | 0 |1810 |4403 |5033 | 17 | 5 | 441 | 40 | 5.889410e+06 | 6.026220e+06 | 2.32%| unknown
34.07/34.29 c 34.3s| 1 | 0 | 18970 | - | 344M | 0 |1810 |4403 |5032 | 17 | 5 | 441 | 40 | 5.889410e+06 | 6.026220e+06 | 2.32%| unknown
34.67/34.87 c 34.9s| 1 | 0 | 19036 | - | 344M | 0 |1810 |4403 |5036 | 21 | 6 | 441 | 40 | 5.889971e+06 | 6.026220e+06 | 2.31%| unknown
34.67/34.88 c 34.9s| 1 | 0 | 19036 | - | 344M | 0 |1810 |4413 |5035 | 21 | 6 | 451 | 40 | 5.889971e+06 | 6.026220e+06 | 2.31%| unknown
35.27/35.46 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
35.27/35.46 c 35.4s| 1 | 0 | 19088 | - | 345M | 0 |1810 |4413 |5038 | 24 | 7 | 451 | 40 | 5.890395e+06 | 6.026220e+06 | 2.31%| unknown
36.07/36.22 c 36.2s| 1 | 0 | 19142 | - | 346M | 0 |1810 |4414 |5040 | 26 | 8 | 452 | 40 | 5.890643e+06 | 6.026220e+06 | 2.30%| unknown
36.98/37.17 c 37.2s| 1 | 0 | 19189 | - | 347M | 0 |1810 |4414 |5043 | 29 | 9 | 452 | 40 | 5.890928e+06 | 6.026220e+06 | 2.30%| unknown
36.98/37.18 c 37.2s| 1 | 0 | 19201 | - | 347M | 0 |1810 |4415 |5041 | 29 | 9 | 454 | 40 | 5.890948e+06 | 6.026220e+06 | 2.30%| unknown
37.97/38.16 c 38.1s| 1 | 0 | 19248 | - | 350M | 0 |1810 |4417 |5042 | 30 | 10 | 456 | 40 | 5.891353e+06 | 6.026220e+06 | 2.29%| unknown
37.97/38.17 c 38.2s| 1 | 0 | 19248 | - | 350M | 0 |1810 |4418 |5035 | 30 | 10 | 457 | 40 | 5.891353e+06 | 6.026220e+06 | 2.29%| unknown
38.06/38.26 c 38.2s| 1 | 0 | 19290 | - | 350M | 0 |1810 |4413 |5037 | 32 | 11 | 457 | 40 | 5.891627e+06 | 6.026220e+06 | 2.28%| unknown
38.06/38.27 c 38.3s| 1 | 0 | 19290 | - | 350M | 0 |1810 |4413 |5035 | 32 | 11 | 457 | 40 | 5.891627e+06 | 6.026220e+06 | 2.28%| unknown
38.16/38.35 c 38.3s| 1 | 0 | 19296 | - | 350M | 0 |1810 |4413 |5036 | 33 | 12 | 457 | 40 | 5.891630e+06 | 6.026220e+06 | 2.28%| unknown
38.26/38.45 c 38.4s| 1 | 0 | 19329 | - | 350M | 0 |1810 |4413 |4929 | 35 | 13 | 457 | 40 | 5.891676e+06 | 6.026220e+06 | 2.28%| unknown
38.36/38.53 c 38.5s| 1 | 0 | 19335 | - | 351M | 0 |1810 |4423 |4930 | 36 | 14 | 467 | 40 | 5.891685e+06 | 6.026220e+06 | 2.28%| unknown
38.46/38.60 c 38.6s| 1 | 0 | 19375 | - | 351M | 0 |1810 |4424 |4932 | 38 | 15 | 468 | 40 | 5.892260e+06 | 6.026220e+06 | 2.27%| unknown
38.46/38.62 c 38.6s| 1 | 0 | 19375 | - | 351M | 0 |1810 |4424 |4925 | 38 | 15 | 468 | 40 | 5.892260e+06 | 6.026220e+06 | 2.27%| unknown
38.46/38.62 c 38.6s| 1 | 0 | 19375 | - | 351M | 0 |1810 |4401 |4966 | 38 | 15 | 468 | 40 | 5.892260e+06 | 6.026220e+06 | 2.27%| unknown
38.46/38.69 c 38.7s| 1 | 0 | 19376 | - | 352M | 0 |1810 |4401 |4967 | 39 | 16 | 468 | 40 | 5.892276e+06 | 6.026220e+06 | 2.27%| unknown
38.56/38.78 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
38.56/38.78 c 38.8s| 1 | 0 | 19394 | - | 352M | 0 |1810 |4401 |4968 | 40 | 17 | 468 | 40 | 5.892388e+06 | 6.026220e+06 | 2.27%| unknown
38.56/38.79 c 38.8s| 1 | 0 | 19394 | - | 352M | 0 |1810 |4403 |4957 | 40 | 17 | 470 | 40 | 5.892388e+06 | 6.026220e+06 | 2.27%| unknown
38.66/38.86 c 38.8s| 1 | 0 | 19397 | - | 353M | 0 |1810 |4401 |4958 | 41 | 18 | 470 | 40 | 5.892391e+06 | 6.026220e+06 | 2.27%| unknown
38.76/38.95 c 38.9s| 1 | 0 | 19408 | - | 353M | 0 |1810 |4402 |4948 | 42 | 19 | 471 | 40 | 5.892415e+06 | 6.026220e+06 | 2.27%| unknown
38.87/39.03 c 39.0s| 1 | 0 | 19426 | - | 354M | 0 |1810 |4402 |4949 | 43 | 20 | 471 | 40 | 5.892489e+06 | 6.026220e+06 | 2.27%| unknown
38.87/39.11 c 39.1s| 1 | 0 | 19443 | - | 354M | 0 |1810 |4404 |4951 | 45 | 21 | 473 | 40 | 5.892617e+06 | 6.026220e+06 | 2.27%| unknown
38.97/39.12 c 39.1s| 1 | 0 | 19443 | - | 354M | 0 |1810 |4406 |4950 | 45 | 21 | 475 | 40 | 5.892617e+06 | 6.026220e+06 | 2.27%| unknown
38.97/39.19 c 39.2s| 1 | 0 | 19446 | - | 354M | 0 |1810 |4406 |4951 | 46 | 22 | 475 | 40 | 5.892619e+06 | 6.026220e+06 | 2.27%| unknown
39.06/39.26 c 39.2s| 1 | 0 | 19452 | - | 354M | 0 |1810 |4407 |4952 | 47 | 23 | 476 | 40 | 5.892625e+06 | 6.026220e+06 | 2.27%| unknown
39.06/39.28 c 39.3s| 1 | 0 | 19452 | - | 354M | 0 |1810 |4407 |4948 | 47 | 23 | 476 | 40 | 5.892625e+06 | 6.026220e+06 | 2.27%| unknown
39.16/39.35 c 39.3s| 1 | 0 | 19455 | - | 354M | 0 |1810 |4405 |4949 | 48 | 24 | 476 | 40 | 5.892629e+06 | 6.026220e+06 | 2.27%| unknown
39.26/39.43 c 39.4s| 1 | 0 | 19457 | - | 354M | 0 |1810 |4410 |4942 | 49 | 25 | 482 | 40 | 5.892631e+06 | 6.026220e+06 | 2.27%| unknown
39.35/39.51 c 39.5s| 1 | 0 | 19461 | - | 354M | 0 |1810 |4412 |4943 | 50 | 26 | 484 | 40 | 5.892645e+06 | 6.026220e+06 | 2.27%| unknown
39.35/39.52 c 39.5s| 1 | 0 | 19461 | - | 354M | 0 |1810 |4414 |4947 | 50 | 26 | 486 | 40 | 5.892645e+06 | 6.026220e+06 | 2.27%| unknown
39.87/40.02 c 40.0s| 1 | 0 | 19817 | - | 354M | 0 |1810 |4401 |4947 | 50 | 27 | 487 | 50 | 5.894978e+06 | 6.026220e+06 | 2.23%| unknown
40.15/40.35 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
40.15/40.35 c 40.3s| 1 | 0 | 19817 | - | 354M | 0 |1810 |4378 |4947 | 50 | 28 | 488 | 58 | 5.900988e+06 | 6.026220e+06 | 2.12%| unknown
40.25/40.46 c 40.4s| 1 | 0 | 19817 | - | 354M | 0 |1810 |4374 |4953 | 50 | 29 | 488 | 59 | 5.900988e+06 | 6.026220e+06 | 2.12%| unknown
40.55/40.72 c 40.7s| 1 | 0 | 19977 | - | 354M | 0 |1810 |3983 |4953 | 50 | 30 | 492 | 65 | 5.902710e+06 | 6.026220e+06 | 2.09%| unknown
40.55/40.73 c 40.7s| 1 | 0 | 19977 | - | 354M | 0 |1810 |3985 |4057 | 50 | 30 | 494 | 65 | 5.902710e+06 | 6.026220e+06 | 2.09%| unknown
40.55/40.78 c 40.8s| 1 | 0 | 20026 | - | 354M | 0 |1810 |3577 |3730 | 53 | 31 | 494 | 65 | 5.903802e+06 | 6.026220e+06 | 2.07%| unknown
40.55/40.79 c 40.8s| 1 | 0 | 20026 | - | 354M | 0 |1810 |3577 |3671 | 53 | 31 | 494 | 65 | 5.903802e+06 | 6.026220e+06 | 2.07%| unknown
40.65/40.80 c 40.8s| 1 | 0 | 20036 | - | 354M | 0 |1810 |3577 |3672 | 54 | 32 | 494 | 65 | 5.903859e+06 | 6.026220e+06 | 2.07%| unknown
40.65/40.80 c 40.8s| 1 | 0 | 20036 | - | 354M | 0 |1810 |3578 |3665 | 54 | 32 | 495 | 65 | 5.903859e+06 | 6.026220e+06 | 2.07%| unknown
40.65/40.81 c 40.8s| 1 | 0 | 20036 | - | 354M | 0 |1810 |2313 |3703 | 54 | 32 | 495 | 65 | 5.903859e+06 | 6.026220e+06 | 2.07%| unknown
40.65/40.85 c 40.8s| 1 | 0 | 20068 | - | 354M | 0 |1810 |2313 |3705 | 56 | 33 | 495 | 65 | 5.907674e+06 | 6.026220e+06 | 2.01%| unknown
40.65/40.86 c 40.8s| 1 | 0 | 20068 | - | 354M | 0 |1810 |2313 |2618 | 56 | 33 | 495 | 65 | 5.907674e+06 | 6.026220e+06 | 2.01%| unknown
40.65/40.86 c 40.8s| 1 | 0 | 20068 | - | 354M | 0 |1810 |2307 |2621 | 56 | 34 | 495 | 65 | 5.907674e+06 | 6.026220e+06 | 2.01%| unknown
40.65/40.89 c (run 5, node 1) restarting after 835 global fixings of integer variables
40.65/40.89 c
40.75/40.90 c (restart) converted 45 cuts from the global cut pool into linear constraints
40.75/40.90 c
40.86/41.03 c presolving:
40.86/41.04 c (round 1, fast) 836 del vars, 66 del conss, 13 add conss, 0 chg bounds, 0 chg sides, 439 chg coeffs, 0 upgd conss, 0 impls, 4893 clqs
40.86/41.06 c (round 2, medium) 839 del vars, 74 del conss, 22 add conss, 0 chg bounds, 13 chg sides, 459 chg coeffs, 0 upgd conss, 0 impls, 4879 clqs
40.86/41.07 c (round 3, fast) 839 del vars, 81 del conss, 22 add conss, 0 chg bounds, 15 chg sides, 474 chg coeffs, 0 upgd conss, 0 impls, 4879 clqs
40.86/41.07 c (round 4, exhaustive) 839 del vars, 83 del conss, 23 add conss, 0 chg bounds, 15 chg sides, 474 chg coeffs, 0 upgd conss, 0 impls, 4879 clqs
40.86/41.08 c (round 5, exhaustive) 839 del vars, 83 del conss, 23 add conss, 0 chg bounds, 15 chg sides, 520 chg coeffs, 0 upgd conss, 0 impls, 4879 clqs
40.86/41.09 c (round 6, medium) 839 del vars, 83 del conss, 24 add conss, 0 chg bounds, 16 chg sides, 522 chg coeffs, 0 upgd conss, 0 impls, 4879 clqs
40.86/41.09 c (round 7, exhaustive) 839 del vars, 83 del conss, 24 add conss, 0 chg bounds, 16 chg sides, 544 chg coeffs, 0 upgd conss, 0 impls, 4879 clqs
40.86/41.10 c (round 8, exhaustive) 840 del vars, 83 del conss, 24 add conss, 0 chg bounds, 16 chg sides, 549 chg coeffs, 0 upgd conss, 0 impls, 4874 clqs
40.96/41.12 c (round 9, exhaustive) 840 del vars, 85 del conss, 25 add conss, 0 chg bounds, 16 chg sides, 549 chg coeffs, 0 upgd conss, 0 impls, 4874 clqs
40.96/41.13 c (round 10, exhaustive) 840 del vars, 87 del conss, 25 add conss, 0 chg bounds, 16 chg sides, 549 chg coeffs, 0 upgd conss, 0 impls, 4874 clqs
40.96/41.13 c (round 11, exhaustive) 840 del vars, 88 del conss, 25 add conss, 0 chg bounds, 16 chg sides, 549 chg coeffs, 32 upgd conss, 0 impls, 4874 clqs
40.96/41.13 c (round 12, fast) 840 del vars, 90 del conss, 25 add conss, 0 chg bounds, 16 chg sides, 549 chg coeffs, 32 upgd conss, 0 impls, 4874 clqs
40.96/41.14 c (round 13, medium) 840 del vars, 90 del conss, 26 add conss, 0 chg bounds, 18 chg sides, 552 chg coeffs, 32 upgd conss, 0 impls, 4874 clqs
40.96/41.15 c (round 14, exhaustive) 840 del vars, 95 del conss, 26 add conss, 0 chg bounds, 18 chg sides, 573 chg coeffs, 32 upgd conss, 0 impls, 4874 clqs
40.96/41.16 c (round 15, exhaustive) 868 del vars, 96 del conss, 26 add conss, 0 chg bounds, 18 chg sides, 606 chg coeffs, 32 upgd conss, 0 impls, 4646 clqs
40.96/41.17 c (round 16, fast) 896 del vars, 179 del conss, 26 add conss, 0 chg bounds, 18 chg sides, 654 chg coeffs, 32 upgd conss, 0 impls, 4648 clqs
40.96/41.19 c (round 17, exhaustive) 896 del vars, 182 del conss, 26 add conss, 0 chg bounds, 18 chg sides, 655 chg coeffs, 32 upgd conss, 0 impls, 4648 clqs
41.05/41.20 c presolving (18 rounds: 18 fast, 14 medium, 11 exhaustive):
41.05/41.20 c 896 deleted vars, 182 deleted constraints, 26 added constraints, 0 tightened bounds, 0 added holes, 18 changed sides, 655 changed coefficients
41.05/41.20 c 0 implications, 4648 cliques
41.05/41.20 c presolved problem has 942 variables (942 bin, 0 int, 0 impl, 0 cont) and 2196 constraints
41.05/41.20 c 90 constraints of type <knapsack>
41.05/41.20 c 1480 constraints of type <setppc>
41.05/41.20 c 419 constraints of type <and>
41.05/41.20 c 40 constraints of type <linear>
41.05/41.20 c 167 constraints of type <logicor>
41.05/41.20 c transformed objective value is always integral (scale: 1)
41.05/41.20 c Presolving Time: 2.65
41.05/41.20 c transformed 2/7 original solutions to the transformed problem space
41.05/41.20 c
41.05/41.25 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
41.05/41.25 c 41.2s| 1 | 0 | 20699 | - | 353M | 0 | 942 |2059 |2340 | 0 | 0 | 495 | 65 | 5.907674e+06 | 6.026220e+06 | 2.01%| unknown
41.05/41.25 c 41.2s| 1 | 0 | 20747 | - | 353M | 0 | 942 |2059 |2272 | 0 | 0 | 496 | 65 | 5.919441e+06 | 6.026220e+06 | 1.80%| unknown
41.05/41.26 c 41.2s| 1 | 0 | 20747 | - | 354M | 0 | 942 |2060 |2132 | 0 | 0 | 497 | 65 | 5.919441e+06 | 6.026220e+06 | 1.80%| unknown
41.25/41.41 c 41.4s| 1 | 0 | 20777 | - | 354M | 0 | 942 |1923 |2125 | 4 | 1 | 497 | 65 | 5.926308e+06 | 6.026220e+06 | 1.69%| unknown
41.25/41.42 c 41.4s| 1 | 0 | 20777 | - | 354M | 0 | 942 |1923 |1907 | 4 | 1 | 497 | 65 | 5.926308e+06 | 6.026220e+06 | 1.69%| unknown
41.35/41.58 c 41.6s| 1 | 0 | 20799 | - | 354M | 0 | 942 |1762 |1899 | 6 | 2 | 497 | 65 | 5.929006e+06 | 6.026220e+06 | 1.64%| unknown
41.35/41.58 c 41.6s| 1 | 0 | 20799 | - | 354M | 0 | 942 |1763 |1873 | 6 | 2 | 498 | 65 | 5.929006e+06 | 6.026220e+06 | 1.64%| unknown
41.55/41.75 c 41.7s| 1 | 0 | 20852 | - | 356M | 0 | 942 |1738 |1875 | 9 | 3 | 498 | 65 | 5.933776e+06 | 6.026220e+06 | 1.56%| unknown
41.55/41.75 c 41.7s| 1 | 0 | 20852 | - | 357M | 0 | 942 |1744 |1860 | 9 | 3 | 504 | 65 | 5.933776e+06 | 6.026220e+06 | 1.56%| unknown
41.75/41.92 c 41.9s| 1 | 0 | 20900 | - | 357M | 0 | 942 |1733 |1863 | 12 | 4 | 504 | 65 | 5.936951e+06 | 6.026220e+06 | 1.50%| unknown
41.75/41.92 c 41.9s| 1 | 0 | 20935 | - | 357M | 0 | 942 |1733 |1820 | 12 | 4 | 505 | 65 | 5.938773e+06 | 6.026220e+06 | 1.47%| unknown
41.75/41.93 c 41.9s| 1 | 0 | 20935 | - | 357M | 0 | 942 |1734 |1798 | 12 | 4 | 506 | 65 | 5.938773e+06 | 6.026220e+06 | 1.47%| unknown
41.86/42.09 c 42.1s| 1 | 0 | 20969 | - | 358M | 0 | 942 |1700 |1793 | 14 | 5 | 506 | 65 | 5.942219e+06 | 6.026220e+06 | 1.41%| unknown
41.86/42.10 c 42.1s| 1 | 0 | 20969 | - | 358M | 0 | 942 |1704 |1791 | 14 | 5 | 510 | 65 | 5.942219e+06 | 6.026220e+06 | 1.41%| unknown
42.05/42.24 c 42.2s| 1 | 0 | 20997 | - | 360M | 0 | 942 |1696 |1793 | 16 | 6 | 510 | 65 | 5.943154e+06 | 6.026220e+06 | 1.40%| unknown
42.05/42.24 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
42.05/42.24 c 42.2s| 1 | 0 | 20997 | - | 360M | 0 | 942 |1697 |1790 | 16 | 6 | 511 | 65 | 5.943154e+06 | 6.026220e+06 | 1.40%| unknown
42.25/42.40 c 42.4s| 1 | 0 | 21004 | - | 362M | 0 | 942 |1695 |1792 | 18 | 7 | 511 | 65 | 5.943475e+06 | 6.026220e+06 | 1.39%| unknown
42.35/42.52 c 42.5s| 1 | 0 | 21018 | - | 363M | 0 | 942 |1695 |1793 | 19 | 8 | 511 | 65 | 5.945328e+06 | 6.026220e+06 | 1.36%| unknown
42.35/42.53 c 42.5s| 1 | 0 | 21018 | - | 363M | 0 | 942 |1695 |1777 | 19 | 8 | 511 | 65 | 5.945328e+06 | 6.026220e+06 | 1.36%| unknown
42.45/42.63 c 42.6s| 1 | 0 | 21031 | - | 364M | 0 | 942 |1684 |1779 | 21 | 9 | 511 | 65 | 5.945913e+06 | 6.026220e+06 | 1.35%| unknown
42.45/42.63 c 42.6s| 1 | 0 | 21031 | - | 364M | 0 | 942 |1684 |1774 | 21 | 9 | 511 | 65 | 5.945913e+06 | 6.026220e+06 | 1.35%| unknown
42.55/42.74 c 42.7s| 1 | 0 | 21049 | - | 365M | 0 | 942 |1684 |1652 | 22 | 10 | 511 | 65 | 5.946709e+06 | 6.026220e+06 | 1.34%| unknown
42.55/42.75 c 42.7s| 1 | 0 | 21049 | - | 365M | 0 | 942 |1684 |1639 | 22 | 10 | 511 | 65 | 5.946709e+06 | 6.026220e+06 | 1.34%| unknown
42.55/42.78 c 42.8s| 1 | 0 | 21057 | - | 365M | 0 | 942 |1670 |1636 | 25 | 11 | 511 | 65 | 5.946727e+06 | 6.026220e+06 | 1.34%| unknown
42.65/42.82 c 42.8s| 1 | 0 | 21073 | - | 365M | 0 | 942 |1665 |1637 | 26 | 12 | 511 | 65 | 5.947166e+06 | 6.026220e+06 | 1.33%| unknown
42.65/42.82 c 42.8s| 1 | 0 | 21073 | - | 365M | 0 | 942 |1666 |1636 | 26 | 12 | 512 | 65 | 5.947166e+06 | 6.026220e+06 | 1.33%| unknown
42.65/42.86 c 42.8s| 1 | 0 | 21076 | - | 365M | 0 | 942 |1666 |1638 | 28 | 13 | 512 | 65 | 5.947193e+06 | 6.026220e+06 | 1.33%| unknown
42.65/42.90 c 42.9s| 1 | 0 | 21084 | - | 365M | 0 | 942 |1666 |1639 | 29 | 14 | 512 | 65 | 5.947323e+06 | 6.026220e+06 | 1.33%| unknown
42.75/42.93 c 42.9s| 1 | 0 | 21093 | - | 365M | 0 | 942 |1666 |1640 | 30 | 15 | 512 | 65 | 5.947467e+06 | 6.026220e+06 | 1.32%| unknown
42.75/42.98 c 43.0s| 1 | 0 | 21104 | - | 366M | 0 | 942 |1668 |1625 | 31 | 16 | 514 | 65 | 5.947517e+06 | 6.026220e+06 | 1.32%| unknown
42.86/43.01 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
42.86/43.01 c 43.0s| 1 | 0 | 21110 | - | 366M | 0 | 942 |1668 |1626 | 32 | 17 | 514 | 65 | 5.947529e+06 | 6.026220e+06 | 1.32%| unknown
42.86/43.05 c 43.0s| 1 | 0 | 21114 | - | 366M | 0 | 942 |1669 |1627 | 33 | 18 | 515 | 65 | 5.947537e+06 | 6.026220e+06 | 1.32%| unknown
42.86/43.09 c 43.1s| 1 | 0 | 21116 | - | 366M | 0 | 942 |1670 |1628 | 34 | 19 | 516 | 65 | 5.947537e+06 | 6.026220e+06 | 1.32%| unknown
42.96/43.13 c 43.1s| 1 | 0 | 21116 | - | 366M | 0 | 942 | 729 |1649 | 34 | 20 | 516 | 65 | 5.947537e+06 | 6.026220e+06 | 1.32%| unknown
42.96/43.18 o 5963820
42.96/43.18 c d43.2s| 1 | 0 | 21312 | - |farkasdi| 0 | 942 | 729 |1649 | 0 | 21 | 516 | 65 | 5.947537e+06 | 5.963820e+06 | 0.27%| unknown
42.96/43.19 c (run 6, node 1) restarting after 621 global fixings of integer variables
42.96/43.19 c
42.96/43.19 c (restart) converted 27 cuts from the global cut pool into linear constraints
42.96/43.19 c
43.04/43.25 c presolving:
43.04/43.25 c (round 1, fast) 672 del vars, 87 del conss, 17 add conss, 17 chg bounds, 8 chg sides, 1067 chg coeffs, 0 upgd conss, 0 impls, 650 clqs
43.04/43.26 c (round 2, fast) 708 del vars, 183 del conss, 19 add conss, 17 chg bounds, 8 chg sides, 1091 chg coeffs, 6 upgd conss, 0 impls, 638 clqs
43.04/43.26 c (round 3, fast) 708 del vars, 186 del conss, 19 add conss, 17 chg bounds, 8 chg sides, 1091 chg coeffs, 6 upgd conss, 0 impls, 643 clqs
43.04/43.26 c (round 4, medium) 720 del vars, 188 del conss, 20 add conss, 17 chg bounds, 9 chg sides, 1096 chg coeffs, 6 upgd conss, 0 impls, 586 clqs
43.04/43.26 c (round 5, fast) 722 del vars, 223 del conss, 20 add conss, 17 chg bounds, 9 chg sides, 1104 chg coeffs, 7 upgd conss, 0 impls, 593 clqs
43.04/43.27 c (round 6, exhaustive) 722 del vars, 223 del conss, 20 add conss, 17 chg bounds, 9 chg sides, 1107 chg coeffs, 7 upgd conss, 0 impls, 594 clqs
43.04/43.27 c (round 7, exhaustive) 722 del vars, 227 del conss, 20 add conss, 17 chg bounds, 9 chg sides, 1108 chg coeffs, 7 upgd conss, 0 impls, 594 clqs
43.04/43.27 c (round 8, exhaustive) 727 del vars, 229 del conss, 22 add conss, 17 chg bounds, 9 chg sides, 1109 chg coeffs, 7 upgd conss, 0 impls, 582 clqs
43.04/43.27 c (round 9, fast) 729 del vars, 234 del conss, 22 add conss, 17 chg bounds, 11 chg sides, 1231 chg coeffs, 8 upgd conss, 0 impls, 572 clqs
43.04/43.27 c (round 10, fast) 729 del vars, 239 del conss, 22 add conss, 17 chg bounds, 13 chg sides, 1350 chg coeffs, 8 upgd conss, 0 impls, 572 clqs
43.04/43.28 c (round 11, medium) 729 del vars, 240 del conss, 22 add conss, 17 chg bounds, 13 chg sides, 1350 chg coeffs, 8 upgd conss, 0 impls, 572 clqs
43.04/43.28 c (round 12, exhaustive) 729 del vars, 241 del conss, 23 add conss, 17 chg bounds, 13 chg sides, 1351 chg coeffs, 8 upgd conss, 0 impls, 572 clqs
43.04/43.28 c (round 13, fast) 729 del vars, 242 del conss, 23 add conss, 17 chg bounds, 13 chg sides, 1351 chg coeffs, 8 upgd conss, 0 impls, 573 clqs
43.04/43.28 c (round 14, exhaustive) 729 del vars, 244 del conss, 23 add conss, 17 chg bounds, 13 chg sides, 1351 chg coeffs, 8 upgd conss, 0 impls, 573 clqs
43.04/43.28 c (round 15, exhaustive) 729 del vars, 244 del conss, 23 add conss, 17 chg bounds, 13 chg sides, 1351 chg coeffs, 14 upgd conss, 0 impls, 573 clqs
43.04/43.28 c (round 16, exhaustive) 729 del vars, 245 del conss, 23 add conss, 17 chg bounds, 13 chg sides, 1351 chg coeffs, 14 upgd conss, 0 impls, 573 clqs
43.04/43.28 c (round 17, exhaustive) 730 del vars, 245 del conss, 23 add conss, 17 chg bounds, 13 chg sides, 1353 chg coeffs, 14 upgd conss, 0 impls, 564 clqs
43.04/43.28 c (round 18, fast) 734 del vars, 251 del conss, 23 add conss, 17 chg bounds, 13 chg sides, 1353 chg coeffs, 14 upgd conss, 0 impls, 564 clqs
43.04/43.29 c presolving (19 rounds: 19 fast, 11 medium, 9 exhaustive):
43.04/43.29 c 734 deleted vars, 251 deleted constraints, 23 added constraints, 17 tightened bounds, 0 added holes, 13 changed sides, 1353 changed coefficients
43.04/43.29 c 0 implications, 564 cliques
43.04/43.29 c presolved problem has 242 variables (242 bin, 0 int, 0 impl, 0 cont) and 516 constraints
43.04/43.29 c 64 constraints of type <knapsack>
43.04/43.29 c 248 constraints of type <setppc>
43.04/43.29 c 92 constraints of type <and>
43.04/43.29 c 51 constraints of type <linear>
43.04/43.29 c 61 constraints of type <logicor>
43.04/43.29 c transformed objective value is always integral (scale: 1)
43.04/43.29 c Presolving Time: 2.69
43.04/43.29 c transformed 2/8 original solutions to the transformed problem space
43.04/43.29 c
43.14/43.30 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
43.14/43.30 c 43.3s| 1 | 0 | 21637 | - | 360M | 0 | 242 | 516 | 572 | 0 | 0 | 517 | 65 | 5.947537e+06 | 5.963820e+06 | 0.27%| unknown
43.14/43.30 c 43.3s| 1 | 0 | 21637 | - | 360M | 0 | 242 | 516 | 432 | 0 | 0 | 517 | 65 | 5.947537e+06 | 5.963820e+06 | 0.27%| unknown
43.14/43.35 c 43.3s| 1 | 0 | 21659 | - | 360M | 0 | 242 | 425 | 418 | 1 | 1 | 517 | 65 | 5.948005e+06 | 5.963820e+06 | 0.27%| unknown
43.14/43.35 c 43.3s| 1 | 0 | 21659 | - | 360M | 0 | 242 | 429 | 417 | 1 | 1 | 521 | 65 | 5.948005e+06 | 5.963820e+06 | 0.27%| unknown
43.14/43.39 c 43.4s| 1 | 0 | 21681 | - | 360M | 0 | 242 | 410 | 418 | 3 | 2 | 521 | 65 | 5.948493e+06 | 5.963820e+06 | 0.26%| unknown
43.14/43.39 c 43.4s| 1 | 0 | 21681 | - | 360M | 0 | 242 | 411 | 414 | 3 | 2 | 522 | 65 | 5.948493e+06 | 5.963820e+06 | 0.26%| unknown
43.24/43.42 c 43.4s| 1 | 0 | 21686 | - | 360M | 0 | 242 | 406 | 415 | 4 | 3 | 522 | 65 | 5.948594e+06 | 5.963820e+06 | 0.26%| unknown
43.24/43.46 c 43.4s| 1 | 0 | 21690 | - | 361M | 0 | 242 | 408 | 416 | 5 | 4 | 524 | 65 | 5.948601e+06 | 5.963820e+06 | 0.26%| unknown
43.34/43.50 c 43.5s| 1 | 0 | 21702 | - | 361M | 0 | 242 | 408 | 417 | 6 | 5 | 524 | 65 | 5.948739e+06 | 5.963820e+06 | 0.25%| unknown
43.34/43.54 c 43.5s| 1 | 0 | 21716 | - | 362M | 0 | 242 | 409 | 418 | 7 | 6 | 527 | 65 | 5.948999e+06 | 5.963820e+06 | 0.25%| unknown
43.34/43.58 c 43.6s| 1 | 0 | 21730 | - | 362M | 0 | 242 | 410 | 420 | 9 | 7 | 528 | 65 | 5.949479e+06 | 5.963820e+06 | 0.24%| unknown
43.44/43.62 c 43.6s| 1 | 0 | 21736 | - | 362M | 0 | 242 | 412 | 423 | 12 | 8 | 530 | 65 | 5.949515e+06 | 5.963820e+06 | 0.24%| unknown
43.44/43.65 c 43.6s| 1 | 0 | 21744 | - | 363M | 0 | 242 | 416 | 425 | 14 | 9 | 534 | 65 | 5.949586e+06 | 5.963820e+06 | 0.24%| unknown
43.44/43.69 c 43.7s| 1 | 0 | 21747 | - | 365M | 0 | 242 | 417 | 426 | 15 | 10 | 535 | 65 | 5.949602e+06 | 5.963820e+06 | 0.24%| unknown
43.54/43.71 c 43.7s| 1 | 0 | 21748 | - | 365M | 0 | 242 | 420 | 427 | 16 | 11 | 538 | 65 | 5.949603e+06 | 5.963820e+06 | 0.24%| unknown
43.54/43.74 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
43.54/43.74 c 43.7s| 1 | 0 | 21760 | - | 365M | 0 | 242 | 426 | 428 | 17 | 12 | 544 | 65 | 5.949762e+06 | 5.963820e+06 | 0.24%| unknown
43.54/43.76 c 43.7s| 1 | 0 | 21763 | - | 365M | 0 | 242 | 430 | 429 | 18 | 13 | 548 | 65 | 5.949826e+06 | 5.963820e+06 | 0.24%| unknown
43.54/43.78 c 43.8s| 1 | 0 | 21778 | - | 365M | 0 | 242 | 430 | 329 | 20 | 14 | 548 | 65 | 5.950042e+06 | 5.963820e+06 | 0.23%| unknown
43.54/43.79 c 43.8s| 1 | 0 | 21785 | - | 365M | 0 | 242 | 428 | 325 | 21 | 15 | 549 | 65 | 5.950068e+06 | 5.963820e+06 | 0.23%| unknown
43.64/43.80 c 43.8s| 1 | 0 | 21796 | - | 365M | 0 | 242 | 429 | 327 | 23 | 16 | 551 | 65 | 5.950132e+06 | 5.963820e+06 | 0.23%| unknown
43.64/43.82 c 43.8s| 1 | 0 | 21800 | - | 365M | 0 | 242 | 431 | 328 | 24 | 17 | 553 | 65 | 5.950159e+06 | 5.963820e+06 | 0.23%| unknown
43.64/43.83 c 43.8s| 1 | 0 | 21803 | - | 365M | 0 | 242 | 432 | 329 | 25 | 18 | 554 | 65 | 5.950178e+06 | 5.963820e+06 | 0.23%| unknown
43.64/43.84 c 43.8s| 1 | 0 | 21807 | - | 365M | 0 | 242 | 436 | 331 | 27 | 19 | 558 | 65 | 5.950205e+06 | 5.963820e+06 | 0.23%| unknown
43.64/43.86 c 43.8s| 1 | 0 | 21810 | - | 365M | 0 | 242 | 436 | 322 | 28 | 20 | 558 | 65 | 5.950252e+06 | 5.963820e+06 | 0.23%| unknown
43.64/43.86 c 43.8s| 1 | 0 | 21810 | - | 365M | 0 | 242 | 438 | 321 | 28 | 20 | 560 | 65 | 5.950252e+06 | 5.963820e+06 | 0.23%| unknown
43.64/43.87 c 43.9s| 1 | 0 | 21812 | - | 365M | 0 | 242 | 437 | 322 | 29 | 21 | 560 | 65 | 5.950253e+06 | 5.963820e+06 | 0.23%| unknown
43.64/43.88 c 43.9s| 1 | 0 | 21813 | - | 365M | 0 | 242 | 439 | 323 | 30 | 22 | 562 | 65 | 5.950254e+06 | 5.963820e+06 | 0.23%| unknown
43.74/43.90 c 43.9s| 1 | 0 | 21814 | - | 365M | 0 | 242 | 439 | 324 | 31 | 23 | 562 | 65 | 5.950255e+06 | 5.963820e+06 | 0.23%| unknown
43.74/43.91 c 43.9s| 1 | 0 | 21817 | - | 365M | 0 | 242 | 439 | 325 | 32 | 24 | 562 | 65 | 5.950257e+06 | 5.963820e+06 | 0.23%| unknown
43.74/43.91 c 43.9s| 1 | 0 | 21824 | - | 365M | 0 | 242 | 366 | 337 | 32 | 24 | 563 | 65 | 5.950301e+06 | 5.963820e+06 | 0.23%| unknown
43.74/43.92 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
43.74/43.92 c 43.9s| 1 | 0 | 21825 | - | 365M | 0 | 242 | 368 | 329 | 33 | 25 | 565 | 65 | 5.950301e+06 | 5.963820e+06 | 0.23%| unknown
43.74/43.94 c 43.9s| 1 | 0 | 21828 | - | 365M | 0 | 242 | 368 | 330 | 34 | 26 | 565 | 65 | 5.950302e+06 | 5.963820e+06 | 0.23%| unknown
43.74/43.96 o 5961789
43.74/43.96 c d43.9s| 1 | 0 | 21930 | - |conflict| 0 | 242 | 374 | 330 | 0 | 27 | 571 | 65 | 5.950302e+06 | 5.961789e+06 | 0.19%| unknown
43.74/43.96 c (run 7, node 1) restarting after 121 global fixings of integer variables
43.74/43.96 c
43.74/43.96 c (restart) converted 24 cuts from the global cut pool into linear constraints
43.74/43.96 c
43.74/43.97 c presolving:
43.74/43.97 c (round 1, fast) 126 del vars, 14 del conss, 0 add conss, 0 chg bounds, 2 chg sides, 222 chg coeffs, 0 upgd conss, 0 impls, 208 clqs
43.74/43.97 c (round 2, medium) 130 del vars, 14 del conss, 0 add conss, 0 chg bounds, 2 chg sides, 222 chg coeffs, 0 upgd conss, 0 impls, 191 clqs
43.74/43.97 c (round 3, fast) 131 del vars, 21 del conss, 0 add conss, 0 chg bounds, 2 chg sides, 225 chg coeffs, 0 upgd conss, 0 impls, 190 clqs
43.74/43.98 c (round 4, exhaustive) 132 del vars, 23 del conss, 2 add conss, 0 chg bounds, 2 chg sides, 225 chg coeffs, 0 upgd conss, 0 impls, 187 clqs
43.74/43.98 c (round 5, fast) 132 del vars, 27 del conss, 2 add conss, 0 chg bounds, 2 chg sides, 227 chg coeffs, 0 upgd conss, 0 impls, 187 clqs
43.74/43.98 c (round 6, exhaustive) 132 del vars, 28 del conss, 3 add conss, 0 chg bounds, 2 chg sides, 227 chg coeffs, 0 upgd conss, 0 impls, 187 clqs
43.74/43.98 c (round 7, fast) 132 del vars, 29 del conss, 3 add conss, 0 chg bounds, 2 chg sides, 227 chg coeffs, 0 upgd conss, 0 impls, 187 clqs
43.74/43.98 c (round 8, exhaustive) 132 del vars, 29 del conss, 3 add conss, 0 chg bounds, 2 chg sides, 227 chg coeffs, 7 upgd conss, 0 impls, 187 clqs
43.74/43.98 c (round 9, exhaustive) 132 del vars, 29 del conss, 3 add conss, 0 chg bounds, 2 chg sides, 228 chg coeffs, 7 upgd conss, 0 impls, 187 clqs
43.74/43.98 c (round 10, exhaustive) 132 del vars, 31 del conss, 3 add conss, 0 chg bounds, 2 chg sides, 230 chg coeffs, 7 upgd conss, 0 impls, 187 clqs
43.74/43.98 c (round 11, exhaustive) 132 del vars, 31 del conss, 3 add conss, 0 chg bounds, 2 chg sides, 234 chg coeffs, 7 upgd conss, 0 impls, 187 clqs
43.74/43.98 c presolving (12 rounds: 12 fast, 8 medium, 7 exhaustive):
43.74/43.98 c 132 deleted vars, 31 deleted constraints, 3 added constraints, 0 tightened bounds, 0 added holes, 2 changed sides, 234 changed coefficients
43.74/43.98 c 0 implications, 188 cliques
43.74/43.98 c presolved problem has 110 variables (110 bin, 0 int, 0 impl, 0 cont) and 370 constraints
43.74/43.98 c 70 constraints of type <knapsack>
43.74/43.98 c 104 constraints of type <setppc>
43.74/43.98 c 41 constraints of type <and>
43.74/43.98 c 68 constraints of type <linear>
43.74/43.98 c 87 constraints of type <logicor>
43.74/43.98 c transformed objective value is always integral (scale: 1)
43.74/43.98 c Presolving Time: 2.70
43.74/43.98 c transformed 2/9 original solutions to the transformed problem space
43.74/43.98 c
43.74/43.99 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
43.74/43.99 c 44.0s| 1 | 0 | 22162 | - | 366M | 0 | 110 | 370 | 339 | 0 | 0 | 571 | 65 | 5.950302e+06 | 5.961789e+06 | 0.19%| unknown
43.74/43.99 c 44.0s| 1 | 0 | 22162 | - | 366M | 0 | 110 | 370 | 318 | 0 | 0 | 571 | 65 | 5.950302e+06 | 5.961789e+06 | 0.19%| unknown
43.85/44.02 c 44.0s| 1 | 0 | 22173 | - | 366M | 0 | 110 | 361 | 313 | 1 | 1 | 571 | 65 | 5.950359e+06 | 5.961789e+06 | 0.19%| unknown
43.85/44.04 c 44.0s| 1 | 0 | 22194 | - | 366M | 0 | 110 | 358 | 316 | 4 | 2 | 572 | 65 | 5.950434e+06 | 5.961789e+06 | 0.19%| unknown
43.85/44.07 c 44.1s| 1 | 0 | 22202 | - | 366M | 0 | 110 | 359 | 317 | 5 | 3 | 574 | 65 | 5.950493e+06 | 5.961789e+06 | 0.19%| unknown
43.85/44.07 c 44.1s| 1 | 0 | 22202 | - | 366M | 0 | 110 | 359 | 316 | 5 | 3 | 574 | 65 | 5.950493e+06 | 5.961789e+06 | 0.19%| unknown
43.85/44.09 c 44.1s| 1 | 0 | 22204 | - | 366M | 0 | 110 | 358 | 317 | 6 | 4 | 574 | 65 | 5.950495e+06 | 5.961789e+06 | 0.19%| unknown
43.85/44.11 c 44.1s| 1 | 0 | 22207 | - | 366M | 0 | 110 | 360 | 318 | 7 | 5 | 576 | 65 | 5.950501e+06 | 5.961789e+06 | 0.19%| unknown
43.95/44.13 c 44.1s| 1 | 0 | 22210 | - | 366M | 0 | 110 | 360 | 319 | 8 | 6 | 576 | 65 | 5.950509e+06 | 5.961789e+06 | 0.19%| unknown
43.95/44.13 o 5950590
43.95/44.13 c r44.1s| 1 | 0 | 22210 | - |randroun| 0 | 110 | 360 | 319 | 0 | 6 | 576 | 65 | 5.950509e+06 | 5.950590e+06 | 0.00%| unknown
43.95/44.15 c 44.1s| 1 | 0 | 22211 | - | 367M | 0 | 110 | 360 | 320 | 9 | 7 | 576 | 65 | 5.950511e+06 | 5.950590e+06 | 0.00%| unknown
43.95/44.15 c 44.1s| 1 | 0 | 22213 | - | 367M | 0 | 110 | 360 | 282 | 9 | 7 | 576 | 65 | 5.950512e+06 | 5.950590e+06 | 0.00%| unknown
43.95/44.17 c 44.2s| 1 | 0 | 22223 | - | 367M | 0 | 110 | 324 | 270 | 11 | 8 | 576 | 65 | 5.950530e+06 | 5.950590e+06 | 0.00%| unknown
43.95/44.19 c 44.2s| 1 | 0 | 22227 | - | 367M | 0 | 110 | 313 | 271 | 12 | 9 | 578 | 65 | 5.950540e+06 | 5.950590e+06 | 0.00%| unknown
43.95/44.19 c 44.2s| 1 | 0 | 22227 | - | 367M | 0 | 110 | 313 | 269 | 12 | 9 | 578 | 65 | 5.950540e+06 | 5.950590e+06 | 0.00%| unknown
44.04/44.20 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
44.04/44.20 c 44.2s| 1 | 0 | 22229 | - | 367M | 0 | 110 | 312 | 264 | 13 | 10 | 578 | 65 | 5.950545e+06 | 5.950590e+06 | 0.00%| unknown
44.04/44.22 c 44.2s| 1 | 0 | 22231 | - | 367M | 0 | 110 | 309 | 147 | 15 | 11 | 579 | 65 | 5.950556e+06 | 5.950590e+06 | 0.00%| unknown
44.04/44.22 c 44.2s| 1 | 0 | 22235 | - | 367M | 0 | 110 | 310 | 149 | 17 | 12 | 580 | 65 | 5.950590e+06 | 5.950590e+06 | 0.00%| unknown
44.04/44.22 c 44.2s| 1 | 0 | 22235 | - | 367M | 0 | 110 | 310 | 149 | 17 | 12 | 580 | 65 | 5.950590e+06 | 5.950590e+06 | 0.00%| unknown
44.04/44.22 c
44.04/44.22 c SCIP Status : problem is solved [optimal solution found]
44.04/44.22 c Solving Time (sec) : 44.21
44.04/44.22 c Solving Nodes : 1 (total of 8 nodes in 8 runs)
44.04/44.22 c Primal Bound : +5.95059000000000e+06 (10 solutions)
44.04/44.22 c Dual Bound : +5.95059000000000e+06
44.04/44.22 c Gap : 0.00 %
44.04/44.23 s OPTIMUM FOUND
44.04/44.23 v -x4590 -x4589 -x4588 -x4587 -x4586 -x4585 -x4584 -x4583 -x4582 -x4581 -x4580 -x4579 -x4578 -x4577 -x4576 -x4575 -x4574 -x4573 -x4572
44.04/44.23 v -x4571 -x4570 -x4569 -x4568 -x4567 -x4566 -x4565 -x4564 -x4563 -x4562 -x4561 -x4560 -x4559 -x4558 -x4557 -x4556 -x4555
44.04/44.23 v -x4554 -x4553 -x4552 -x4551 -x4550 -x4549 -x4548 -x4547 -x4546 -x4545 -x4544 -x4543 -x4542 -x4541 -x4540 -x4539 -x4538 -x4537
44.04/44.23 v -x4536 -x4535 -x4534 -x4533 -x4532 -x4531 -x4530 -x4529 -x4528 -x4527 -x4526 -x4707 -x4706 -x4705 -x4704 -x4703 -x4702 -x4701
44.04/44.23 v -x4700 -x4699 -x4698 -x4697 -x4696 -x4695 -x4694 -x4693 -x4692 -x4691 -x4690 -x4689 -x4688 -x4687 -x4686 -x4685 -x4684 -x4683
44.04/44.23 v -x4682 -x4681 -x4680 -x4679 -x4678 -x4677 -x4676 -x4675 -x4674 -x4673 -x4672 -x4671 -x4670 -x4669 -x4668 -x4667 -x4666 -x4665
44.04/44.23 v -x4664 -x4663 -x4662 -x4661 -x4660 -x4659 -x4658 -x4657 -x4656 -x4655 -x4654 -x4653 -x4652 -x4651 -x4650 -x4649 -x4648 -x4647
44.04/44.23 v -x4646 -x4645 -x4644 -x4643 -x4642 -x4641 -x4640 -x4639 -x4638 -x4637 -x4636 -x4635 -x4634 -x4633 -x4632 -x4631 -x4630 -x4629
44.04/44.23 v -x4628 -x4627 -x4626 -x4625 -x4624 -x4623 -x4622 -x4621 -x4620 -x4619 -x4618 -x4617 -x4616 -x4615 -x4614 -x4613 -x4612
44.04/44.23 v -x4611 -x4610 -x4609 -x4608 -x4607 -x4606 -x4605 -x4604 -x4603 -x4602 -x4601 -x4600 -x4599 -x4598 -x4597 -x4596 -x4595 -x4594
44.04/44.23 v -x4593 -x4592 -x4591 -x4408 -x4407 -x4406 -x4405 -x4404 -x4403 -x4402 -x4401 -x4400 -x4399 -x4398 -x4397 -x4396 -x4395 -x4394
44.04/44.23 v -x4393 -x4392 -x4391 -x4390 -x4389 -x4388 -x4387 -x4386 -x4385 -x4384 -x4383 -x4382 -x4381 -x4380 -x4379 -x4378 -x4377 -x4376
44.04/44.23 v -x4375 -x4374 -x4373 -x4372 -x4371 -x4370 -x4369 -x4368 -x4367 -x4366 -x4365 -x4364 -x4363 -x4362 -x4361 -x4360 -x4359 -x4358
44.04/44.23 v -x4357 -x4356 -x4355 -x4354 -x4353 -x4352 -x4351 -x4350 -x4349 -x4348 -x4347 -x4346 -x4345 -x4344 -x4525 -x4524 -x4523 -x4522
44.04/44.23 v -x4521 -x4520 -x4519 -x4518 -x4517 -x4516 -x4515 -x4514 -x4513 -x4512 -x4511 -x4510 -x4509 -x4508 -x4507 -x4506 -x4505 -x4504
44.04/44.23 v -x4503 -x4502 -x4501 -x4500 -x4499 -x4498 -x4497 -x4496 -x4495 -x4494 -x4493 -x4492 -x4491 -x4490 -x4489 -x4488 -x4487
44.04/44.23 v -x4486 -x4485 -x4484 -x4483 -x4482 -x4481 -x4480 -x4479 -x4478 -x4477 -x4476 -x4475 -x4474 -x4473 -x4472 -x4471 -x4470 -x4469
44.04/44.23 v -x4468 -x4467 -x4466 -x4465 -x4464 -x4463 -x4462 -x4461 -x4460 -x4459 -x4458 -x4457 -x4456 -x4455 -x4454 -x4453 -x4452 -x4451
44.04/44.23 v -x4450 -x4449 -x4448 -x4447 -x4446 -x4445 -x4444 -x4443 -x4442 -x4441 -x4440 -x4439 -x4438 -x4437 -x4436 -x4435 -x4434 -x4433
44.04/44.23 v -x4432 -x4431 -x4430 -x4429 -x4428 -x4427 -x4426 -x4425 -x4424 -x4423 -x4422 -x4421 -x4420 -x4419 -x4418 -x4417 -x4416 -x4415
44.04/44.23 v -x4414 -x4413 -x4412 -x4411 -x4410 -x4409 -x4226 -x4225 -x4224 -x4223 -x4222 -x4221 -x4220 -x4219 -x4218 -x4217 -x4216 -x4215
44.04/44.23 v -x4214 -x4213 -x4212 -x4211 -x4210 -x4209 -x4208 -x4207 -x4206 -x4205 -x4204 -x4203 -x4202 -x4201 -x4200 -x4199 -x4198 -x4197
44.04/44.23 v -x4196 -x4195 -x4194 -x4193 -x4192 -x4191 -x4190 -x4189 -x4188 -x4187 -x4186 -x4185 -x4184 -x4183 -x4182 -x4181 -x4180
44.04/44.23 v -x4179 -x4178 -x4177 -x4176 -x4175 -x4174 -x4173 -x4172 -x4171 -x4170 -x4169 -x4168 -x4167 -x4166 -x4165 -x4164 -x4163 -x4162
44.04/44.23 v -x4343 -x4342 -x4341 -x4340 -x4339 -x4338 -x4337 -x4336 -x4335 -x4334 -x4333 -x4332 -x4331 -x4330 -x4329 -x4328 -x4327 -x4326
44.04/44.23 v -x4325 -x4324 -x4323 -x4322 -x4321 -x4320 -x4319 -x4318 -x4317 -x4316 -x4315 -x4314 -x4313 -x4312 -x4311 -x4310 -x4309 -x4308
44.04/44.23 v -x4307 -x4306 -x4305 -x4304 -x4303 -x4302 -x4301 -x4300 -x4299 -x4298 -x4297 -x4296 -x4295 -x4294 -x4293 -x4292 -x4291 -x4290
44.04/44.23 v -x4289 -x4288 -x4287 -x4286 -x4285 -x4284 -x4283 -x4282 -x4281 -x4280 -x4279 -x4278 -x4277 -x4276 -x4275 -x4274 -x4273 -x4272
44.04/44.23 v -x4271 -x4270 -x4269 -x4268 -x4267 -x4266 -x4265 -x4264 -x4263 -x4262 -x4261 -x4260 -x4259 -x4258 -x4257 -x4256 -x4255 -x4254
44.04/44.23 v -x4253 -x4252 -x4251 -x4250 -x4249 -x4248 -x4247 -x4246 -x4245 -x4244 -x4243 -x4242 -x4241 -x4240 -x4239 -x4238 -x4237
44.04/44.23 v -x4236 -x4235 -x4234 -x4233 -x4232 -x4231 -x4230 -x4229 -x4228 -x4227 -x4044 -x4043 -x4042 -x4041 -x4040 x4039 -x4038 -x4037
44.04/44.23 v -x4036 -x4035 -x4034 -x4033 -x4032 -x4031 -x4030 -x4029 -x4028 -x4027 -x4026 -x4025 -x4024 -x4023 -x4022 -x4021 -x4020 -x4019
44.04/44.23 v -x4018 -x4017 -x4016 -x4015 -x4014 -x4013 -x4012 -x4011 -x4010 -x4009 -x4008 -x4007 -x4006 -x4005 -x4004 -x4003 -x4002 -x4001
44.04/44.23 v -x4000 -x3999 -x3998 -x3997 -x3996 -x3995 -x3994 -x3993 -x3992 -x3991 -x3990 -x3989 -x3988 -x3987 -x3986 -x3985 -x3984 -x3983
44.04/44.23 v -x3982 -x3981 -x3980 -x4161 -x4160 -x4159 -x4158 -x4157 -x4156 -x4155 -x4154 -x4153 -x4152 -x4151 -x4150 -x4149 -x4148 -x4147
44.04/44.23 v -x4146 -x4145 -x4144 -x4143 -x4142 -x4141 -x4140 -x4139 -x4138 -x4137 -x4136 -x4135 -x4134 -x4133 -x4132 -x4131 -x4130 -x4129
44.04/44.23 v -x4128 -x4127 -x4126 -x4125 -x4124 -x4123 -x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116 -x4115 -x4114 -x4113 -x4112 -x4111
44.04/44.23 v -x4110 -x4109 -x4108 -x4107 -x4106 -x4105 -x4104 -x4103 -x4102 -x4101 -x4100 -x4099 -x4098 -x4097 -x4096 -x4095 -x4094
44.04/44.23 v -x4093 -x4092 -x4091 -x4090 -x4089 -x4088 -x4087 -x4086 -x4085 -x4084 -x4083 -x4082 -x4081 -x4080 -x4079 -x4078 -x4077 -x4076
44.04/44.23 v -x4075 -x4074 -x4073 -x4072 -x4071 -x4070 -x4069 -x4068 -x4067 -x4066 -x4065 -x4064 -x4063 -x4062 -x4061 -x4060 -x4059 -x4058
44.04/44.23 v -x4057 -x4056 -x4055 -x4054 -x4053 -x4052 -x4051 -x4050 -x4049 -x4048 -x4047 -x4046 -x4045 -x3862 -x3861 -x3860 -x3859 -x3858
44.04/44.23 v -x3857 -x3856 -x3855 -x3854 -x3853 -x3852 -x3851 -x3850 -x3849 -x3848 -x3847 -x3846 -x3845 -x3844 -x3843 -x3842 -x3841 -x3840
44.04/44.23 v -x3839 -x3838 -x3837 -x3836 -x3835 -x3834 -x3833 -x3832 -x3831 -x3830 -x3829 -x3828 -x3827 -x3826 -x3825 -x3824 -x3823 -x3822
44.04/44.23 v -x3821 -x3820 -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813 -x3812 -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805 -x3804
44.04/44.23 v -x3803 -x3802 -x3801 -x3800 -x3799 -x3798 -x3979 -x3978 -x3977 -x3976 -x3975 -x3974 -x3973 -x3972 -x3971 -x3970 -x3969
44.04/44.23 v -x3968 -x3967 -x3966 -x3965 -x3964 -x3963 -x3962 -x3961 -x3960 -x3959 -x3958 -x3957 -x3956 -x3955 -x3954 -x3953 -x3952 -x3951
44.04/44.23 v -x3950 -x3949 -x3948 -x3947 -x3946 -x3945 -x3944 -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937 -x3936 -x3935 -x3934 -x3933
44.04/44.23 v -x3932 -x3931 -x3930 -x3929 -x3928 -x3927 -x3926 -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917 -x3916 -x3915
44.04/44.23 v -x3914 -x3913 -x3912 -x3911 -x3910 -x3909 -x3908 -x3907 -x3906 -x3905 -x3904 -x3903 -x3902 -x3901 -x3900 -x3899 -x3898 -x3897
44.04/44.23 v -x3896 -x3895 -x3894 -x3893 -x3892 -x3891 -x3890 -x3889 -x3888 -x3887 -x3886 -x3885 -x3884 -x3883 -x3882 -x3881 -x3880 -x3879
44.04/44.23 v -x3878 -x3877 -x3876 -x3875 -x3874 -x3873 -x3872 -x3871 -x3870 -x3869 -x3868 -x3867 -x3866 -x3865 -x3864 -x3863 -x3680 -x3679
44.04/44.23 v -x3678 -x3677 -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667 -x3666 -x3665 -x3664 -x3663 -x3662
44.04/44.23 v -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644
44.04/44.23 v -x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 -x3627 -x3626
44.04/44.23 v -x3625 -x3624 -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3797 -x3796 -x3795 -x3794 -x3793 -x3792 -x3791 -x3790
44.04/44.23 v -x3789 -x3788 -x3787 -x3786 -x3785 -x3784 -x3783 -x3782 -x3781 -x3780 -x3779 -x3778 -x3777 -x3776 -x3775 -x3774 -x3773 -x3772
44.04/44.23 v -x3771 -x3770 -x3769 -x3768 -x3767 -x3766 -x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758 -x3757 -x3756 -x3755 -x3754
44.04/44.23 v -x3753 -x3752 -x3751 -x3750 -x3749 -x3748 -x3747 -x3746 -x3745 -x3744 -x3743 -x3742 -x3741 -x3740 -x3739 -x3738 -x3737 -x3736
44.04/44.23 v -x3735 -x3734 -x3733 -x3732 -x3731 -x3730 -x3729 -x3728 -x3727 -x3726 -x3725 -x3724 -x3723 -x3722 -x3721 -x3720 -x3719
44.04/44.23 v -x3718 -x3717 -x3716 -x3715 -x3714 -x3713 -x3712 -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703 -x3702 -x3701
44.04/44.23 v -x3700 -x3699 -x3698 -x3697 -x3696 -x3695 -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683
44.04/44.23 v -x3682 -x3681 -x6241 -x6240 -x6239 -x6238 -x6237 -x6236 -x6235 -x6234 -x6233 -x6232 -x6231 -x6230 -x6229 -x6228 -x6227 -x6226
44.04/44.23 v -x6225 -x6224 -x6223 -x6222 -x6221 -x6220 -x6219 -x6218 -x6217 -x6216 -x6215 -x6214 -x6213 -x6212 -x6211 -x6210 -x6209 -x6208
44.04/44.23 v -x6207 -x6206 -x6205 -x6204 -x6203 -x6202 -x6201 -x6200 -x6199 -x6198 -x6197 -x6196 -x6195 -x6194 -x6193 -x6192 -x6191 -x6190
44.04/44.23 v -x6189 -x6188 -x6187 -x6186 -x6185 -x6184 -x6183 -x6182 -x6181 -x6180 -x6179 -x6178 -x6177 -x6176 -x6175 -x6174 -x6173 -x6172
44.04/44.23 v -x6171 -x6170 -x6169 -x6168 -x6167 -x6166 -x6165 -x6164 -x6345 -x6344 -x6343 -x6342 -x6341 -x6340 -x6339 -x6338 -x6337
44.04/44.23 v -x6336 -x6335 -x6334 -x6333 -x6332 -x6331 -x6330 -x6329 -x6328 -x6327 -x6326 -x6325 -x6324 -x6323 -x6322 -x6321 -x6320 -x6319
44.04/44.23 v -x6318 -x6317 -x6316 -x6315 -x6314 -x6313 -x6312 -x6311 -x6310 -x6309 -x6308 -x6307 -x6306 -x6305 -x6304 -x6303 -x6302 -x6301
44.04/44.23 v -x6300 -x6299 -x6298 -x6297 -x6296 -x6295 -x6294 -x6293 -x6292 -x6291 -x6290 -x6289 -x6288 -x6287 -x6286 -x6285 -x6284 -x6283
44.04/44.23 v -x6282 -x6281 -x6280 -x6279 -x6278 -x6277 -x6276 -x6275 -x6274 -x6273 -x6272 -x6271 -x6270 -x6269 -x6268 -x6267 -x6266 -x6265
44.04/44.23 v -x6264 -x6263 -x6262 -x6261 -x6260 -x6259 -x6258 -x6257 -x6256 -x6255 -x6254 -x6253 -x6252 -x6251 -x6250 -x6249 -x6248 -x6247
44.04/44.23 v -x6246 -x6245 -x6244 -x6243 -x6242 -x6059 -x6058 -x6057 -x6056 -x6055 -x6054 -x6053 -x6052 -x6051 -x6050 -x6049 -x6048 -x6047
44.04/44.23 v -x6046 -x6045 -x6044 -x6043 -x6042 -x6041 -x6040 -x6039 -x6038 -x6037 -x6036 -x6035 -x6034 -x6033 -x6032 -x6031 -x6030
44.04/44.23 v -x6029 -x6028 -x6027 -x6026 -x6025 -x6024 -x6023 -x6022 -x6021 -x6020 -x6019 -x6018 -x6017 -x6016 -x6015 -x6014 -x6013 -x6012
44.04/44.23 v -x6011 -x6010 -x6009 -x6008 -x6007 -x6006 -x6005 -x6004 -x6003 -x6002 -x6001 -x6000 -x5999 -x5998 -x5997 -x5996 -x5995 -x5994
44.04/44.23 v -x5993 -x5992 -x5991 -x5990 -x5989 -x5988 -x5987 -x5986 -x5985 -x5984 -x5983 -x5982 -x6163 -x6162 -x6161 -x6160 -x6159 -x6158
44.04/44.23 v -x6157 -x6156 -x6155 -x6154 -x6153 -x6152 -x6151 -x6150 -x6149 -x6148 -x6147 -x6146 -x6145 -x6144 -x6143 -x6142 -x6141 -x6140
44.04/44.23 v -x6139 -x6138 -x6137 -x6136 -x6135 -x6134 -x6133 -x6132 -x6131 -x6130 -x6129 -x6128 -x6127 -x6126 -x6125 -x6124 -x6123 -x6122
44.04/44.23 v -x6121 -x6120 -x6119 -x6118 -x6117 -x6116 -x6115 -x6114 -x6113 -x6112 -x6111 -x6110 -x6109 -x6108 -x6107 -x6106 -x6105 -x6104
44.04/44.23 v -x6103 -x6102 -x6101 -x6100 -x6099 -x6098 -x6097 -x6096 -x6095 -x6094 -x6093 -x6092 -x6091 -x6090 -x6089 -x6088 -x6087
44.04/44.23 v -x6086 -x6085 -x6084 -x6083 -x6082 -x6081 -x6080 -x6079 -x6078 -x6077 -x6076 -x6075 -x6074 -x6073 -x6072 -x6071 -x6070 -x6069
44.04/44.23 v -x6068 -x6067 -x6066 -x6065 -x6064 -x6063 -x6062 -x6061 -x6060 -x5877 -x5876 -x5875 -x5874 -x5873 -x5872 -x5871 -x5870 -x5869
44.04/44.23 v -x5868 -x5867 -x5866 -x5865 -x5864 -x5863 -x5862 -x5861 -x5860 -x5859 -x5858 -x5857 -x5856 -x5855 -x5854 -x5853 -x5852 -x5851
44.04/44.23 v -x5850 -x5849 -x5848 -x5847 -x5846 -x5845 -x5844 -x5843 -x5842 -x5841 -x5840 -x5839 -x5838 -x5837 -x5836 -x5835 -x5834 -x5833
44.04/44.23 v -x5832 -x5831 -x5830 -x5829 -x5828 -x5827 -x5826 -x5825 -x5824 -x5823 -x5822 -x5821 -x5820 -x5819 -x5818 -x5817 -x5816 -x5815
44.04/44.23 v -x5814 -x5813 -x5812 -x5811 -x5810 -x5809 -x5808 -x5807 -x5806 -x5805 -x5804 -x5803 -x5802 -x5801 -x5800 -x5981 -x5980 -x5979
44.04/44.23 v -x5978 -x5977 -x5976 -x5975 -x5974 -x5973 -x5972 -x5971 -x5970 -x5969 -x5968 -x5967 -x5966 -x5965 -x5964 -x5963 -x5962
44.04/44.23 v -x5961 -x5960 -x5959 -x5958 -x5957 -x5956 -x5955 -x5954 -x5953 -x5952 -x5951 -x5950 -x5949 -x5948 -x5947 -x5946 -x5945 -x5944
44.04/44.23 v -x5943 -x5942 -x5941 -x5940 -x5939 -x5938 -x5937 -x5936 -x5935 -x5934 -x5933 -x5932 -x5931 -x5930 -x5929 -x5928 -x5927 -x5926
44.04/44.23 v -x5925 -x5924 -x5923 -x5922 -x5921 -x5920 -x5919 -x5918 -x5917 -x5916 -x5915 -x5914 -x5913 -x5912 -x5911 -x5910 -x5909 -x5908
44.04/44.23 v -x5907 -x5906 -x5905 -x5904 -x5903 -x5902 -x5901 -x5900 -x5899 -x5898 -x5897 -x5896 -x5895 -x5894 -x5893 -x5892 -x5891 -x5890
44.04/44.23 v -x5889 -x5888 -x5887 -x5886 -x5885 -x5884 -x5883 -x5882 -x5881 -x5880 -x5879 -x5878 -x5695 -x5694 -x5693 -x5692 -x5691 -x5690
44.04/44.23 v -x5689 -x5688 -x5687 -x5686 -x5685 -x5684 -x5683 -x5682 -x5681 -x5680 -x5679 -x5678 -x5677 -x5676 -x5675 -x5674 -x5673 -x5672
44.04/44.23 v -x5671 -x5670 -x5669 -x5668 -x5667 -x5666 -x5665 -x5664 -x5663 -x5662 -x5661 -x5660 -x5659 -x5658 -x5657 -x5656 -x5655
44.04/44.23 v -x5654 -x5653 -x5652 -x5651 -x5650 -x5649 -x5648 -x5647 -x5646 -x5645 -x5644 -x5643 -x5642 -x5641 -x5640 -x5639 -x5638 -x5637
44.04/44.23 v -x5636 -x5635 -x5634 -x5633 -x5632 -x5631 -x5630 -x5629 -x5628 -x5627 -x5626 -x5625 -x5624 -x5623 -x5622 -x5621 -x5620 -x5619
44.04/44.23 v -x5618 -x5799 -x5798 -x5797 -x5796 -x5795 -x5794 -x5793 -x5792 -x5791 -x5790 -x5789 -x5788 -x5787 -x5786 -x5785 -x5784 -x5783
44.04/44.23 v -x5782 -x5781 -x5780 -x5779 -x5778 -x5777 -x5776 -x5775 -x5774 -x5773 -x5772 -x5771 -x5770 -x5769 -x5768 -x5767 -x5766 -x5765
44.04/44.23 v -x5764 -x5763 -x5762 -x5761 -x5760 -x5759 -x5758 -x5757 -x5756 -x5755 -x5754 -x5753 -x5752 -x5751 -x5750 -x5749 -x5748 -x5747
44.04/44.23 v -x5746 -x5745 -x5744 -x5743 -x5742 -x5741 -x5740 -x5739 -x5738 -x5737 -x5736 -x5735 -x5734 -x5733 -x5732 -x5731 -x5730 -x5729
44.04/44.23 v -x5728 -x5727 -x5726 -x5725 -x5724 -x5723 -x5722 -x5721 -x5720 -x5719 -x5718 -x5717 -x5716 -x5715 -x5714 -x5713 -x5712
44.04/44.23 v -x5711 -x5710 -x5709 -x5708 -x5707 -x5706 -x5705 -x5704 -x5703 -x5702 -x5701 -x5700 -x5699 -x5698 -x5697 -x5696 -x5513 -x5512
44.04/44.23 v -x5511 -x5510 -x5509 -x5508 -x5507 -x5506 -x5505 -x5504 -x5503 -x5502 -x5501 -x5500 -x5499 -x5498 -x5497 x5496 -x5495 -x5494
44.04/44.23 v -x5493 -x5492 -x5491 -x5490 -x5489 -x5488 -x5487 -x5486 -x5485 -x5484 -x5483 -x5482 -x5481 -x5480 -x5479 -x5478 -x5477 -x5476
44.04/44.23 v -x5475 -x5474 -x5473 -x5472 -x5471 -x5470 -x5469 -x5468 -x5467 -x5466 -x5465 -x5464 -x5463 -x5462 -x5461 -x5460 -x5459 -x5458
44.04/44.23 v -x5457 -x5456 -x5455 -x5454 -x5453 -x5452 -x5451 -x5450 -x5449 -x5448 -x5447 -x5446 -x5445 -x5444 -x5443 -x5442 -x5441 -x5440
44.04/44.23 v -x5439 -x5438 -x5437 -x5436 -x5617 -x5616 -x5615 -x5614 -x5613 -x5612 -x5611 -x5610 -x5609 -x5608 -x5607 -x5606 -x5605 -x5604
44.04/44.23 v -x5603 -x5602 -x5601 -x5600 -x5599 -x5598 -x5597 -x5596 -x5595 -x5594 -x5593 -x5592 -x5591 -x5590 -x5589 -x5588 -x5587 x5586
44.04/44.23 v -x5585 -x5584 -x5583 -x5582 -x5581 -x5580 -x5579 -x5578 -x5577 -x5576 -x5575 -x5574 -x5573 -x5572 -x5571 -x5570 -x5569 -x5568
44.04/44.23 v -x5567 -x5566 -x5565 -x5564 -x5563 -x5562 -x5561 -x5560 -x5559 -x5558 -x5557 -x5556 -x5555 -x5554 -x5553 -x5552 -x5551
44.04/44.23 v -x5550 -x5549 -x5548 -x5547 -x5546 -x5545 -x5544 -x5543 -x5542 -x5541 -x5540 -x5539 -x5538 -x5537 -x5536 -x5535 -x5534 -x5533
44.04/44.23 v -x5532 -x5531 -x5530 -x5529 -x5528 -x5527 -x5526 -x5525 -x5524 -x5523 -x5522 -x5521 -x5520 -x5519 -x5518 -x5517 -x5516 -x5515
44.04/44.23 v -x5514 -x5331 -x5330 -x5329 -x5328 -x5327 -x5326 -x5325 -x5324 -x5323 -x5322 -x5321 -x5320 -x5319 -x5318 -x5317 -x5316 -x5315
44.04/44.23 v -x5314 -x5313 -x5312 -x5311 -x5310 -x5309 -x5308 -x5307 -x5306 -x5305 -x5304 -x5303 -x5302 -x5301 -x5300 -x5299 -x5298 -x5297
44.04/44.23 v -x5296 -x5295 -x5294 -x5293 -x5292 -x5291 -x5290 -x5289 -x5288 -x5287 -x5286 -x5285 -x5284 -x5283 -x5282 -x5281 -x5280 -x5279
44.04/44.23 v -x5278 -x5277 -x5276 -x5275 -x5274 -x5273 -x5272 -x5271 -x5270 -x5269 -x5268 -x5267 -x5266 -x5265 -x5264 -x5263 -x5262 -x5261
44.04/44.23 v -x5260 -x5259 -x5258 -x5257 -x5256 -x5255 -x5254 -x5435 -x5434 -x5433 -x5432 -x5431 -x5430 -x5429 -x5428 -x5427 -x5426
44.04/44.23 v -x5425 -x5424 -x5423 -x5422 -x5421 -x5420 -x5419 -x5418 -x5417 -x5416 -x5415 -x5414 -x5413 -x5412 -x5411 -x5410 -x5409 -x5408
44.04/44.23 v -x5407 -x5406 -x5405 -x5404 -x5403 -x5402 -x5401 -x5400 -x5399 -x5398 -x5397 -x5396 -x5395 -x5394 -x5393 -x5392 -x5391 -x5390
44.04/44.23 v -x5389 -x5388 -x5387 -x5386 -x5385 -x5384 -x5383 -x5382 -x5381 -x5380 -x5379 -x5378 -x5377 -x5376 -x5375 -x5374 -x5373 -x5372
44.04/44.23 v -x5371 -x5370 -x5369 -x5368 -x5367 -x5366 -x5365 -x5364 -x5363 -x5362 -x5361 -x5360 -x5359 -x5358 -x5357 -x5356 -x5355 -x5354
44.04/44.23 v -x5353 -x5352 -x5351 -x5350 -x5349 -x5348 -x5347 -x5346 -x5345 -x5344 -x5343 -x5342 -x5341 -x5340 -x5339 -x5338 -x5337 -x5336
44.04/44.23 v -x5335 -x5334 -x5333 -x5332 -x5149 -x5148 -x5147 -x5146 -x5145 -x5144 -x5143 -x5142 -x5141 -x5140 -x5139 -x5138 -x5137 -x5136
44.04/44.23 v -x5135 -x5134 -x5133 -x5132 -x5131 -x5130 -x5129 -x5128 -x5127 -x5126 -x5125 -x5124 -x5123 -x5122 -x5121 -x5120 -x5119
44.04/44.23 v -x5118 -x5117 -x5116 -x5115 -x5114 -x5113 -x5112 -x5111 -x5110 -x5109 -x5108 -x5107 -x5106 -x5105 -x5104 -x5103 -x5102 -x5101
44.04/44.23 v -x5100 -x5099 -x5098 -x5097 -x5096 -x5095 -x5094 -x5093 -x5092 -x5091 -x5090 -x5089 -x5088 -x5087 -x5086 -x5085 -x5084 -x5083
44.04/44.23 v -x5082 -x5081 -x5080 -x5079 -x5078 -x5077 -x5076 -x5075 -x5074 -x5073 -x5072 -x5253 -x5252 -x5251 -x5250 -x5249 -x5248 -x5247
44.04/44.23 v -x5246 -x5245 -x5244 -x5243 -x5242 -x5241 -x5240 -x5239 -x5238 -x5237 -x5236 -x5235 -x5234 -x5233 -x5232 -x5231 -x5230 -x5229
44.04/44.23 v -x5228 -x5227 -x5226 -x5225 -x5224 -x5223 -x5222 -x5221 -x5220 -x5219 -x5218 -x5217 -x5216 -x5215 -x5214 -x5213 -x5212 -x5211
44.04/44.23 v -x5210 -x5209 -x5208 -x5207 -x5206 -x5205 -x5204 -x5203 -x5202 -x5201 -x5200 -x5199 -x5198 -x5197 -x5196 -x5195 -x5194 -x5193
44.04/44.23 v -x5192 -x5191 -x5190 -x5189 -x5188 -x5187 -x5186 -x5185 -x5184 -x5183 -x5182 -x5181 -x5180 -x5179 -x5178 -x5177 -x5176
44.04/44.23 v -x5175 -x5174 -x5173 -x5172 -x5171 -x5170 -x5169 -x5168 -x5167 -x5166 -x5165 -x5164 -x5163 -x5162 -x5161 -x5160 -x5159 -x5158
44.04/44.23 v -x5157 -x5156 -x5155 -x5154 -x5153 -x5152 -x5151 -x5150 -x4967 -x4966 -x4965 -x4964 -x4963 -x4962 -x4961 -x4960 -x4959 -x4958
44.04/44.23 v -x4957 -x4956 -x4955 -x4954 -x4953 -x4952 -x4951 -x4950 -x4949 -x4948 -x4947 -x4946 -x4945 -x4944 -x4943 -x4942 -x4941 -x4940
44.04/44.23 v -x4939 x4938 -x4937 -x4936 -x4935 -x4934 -x4933 -x4932 -x4931 -x4930 -x4929 -x4928 -x4927 -x4926 -x4925 -x4924 -x4923 -x4922
44.04/44.23 v -x4921 -x4920 -x4919 -x4918 -x4917 -x4916 -x4915 -x4914 -x4913 -x4912 -x4911 -x4910 -x4909 -x4908 -x4907 -x4906 -x4905 -x4904
44.04/44.23 v -x4903 -x4902 -x4901 -x4900 -x4899 -x4898 -x4897 -x4896 -x4895 -x4894 -x4893 -x4892 -x4891 -x4890 -x5071 -x5070 -x5069 -x5068
44.04/44.23 v -x5067 -x5066 -x5065 -x5064 -x5063 -x5062 -x5061 -x5060 -x5059 -x5058 -x5057 -x5056 -x5055 -x5054 -x5053 -x5052 -x5051 -x5050
44.04/44.23 v -x5049 -x5048 -x5047 -x5046 -x5045 -x5044 -x5043 -x5042 -x5041 -x5040 -x5039 -x5038 -x5037 -x5036 -x5035 -x5034 -x5033
44.04/44.23 v -x5032 -x5031 -x5030 -x5029 -x5028 -x5027 -x5026 -x5025 -x5024 -x5023 -x5022 -x5021 -x5020 -x5019 -x5018 -x5017 -x5016 -x5015
44.04/44.23 v -x5014 -x5013 -x5012 -x5011 -x5010 -x5009 -x5008 -x5007 -x5006 -x5005 -x5004 -x5003 -x5002 -x5001 -x5000 -x4999 -x4998 -x4997
44.04/44.23 v -x4996 -x4995 -x4994 -x4993 -x4992 -x4991 -x4990 x4989 -x4988 -x4987 -x4986 -x4985 -x4984 -x4983 -x4982 -x4981 -x4980 -x4979
44.04/44.23 v -x4978 -x4977 -x4976 -x4975 -x4974 -x4973 -x4972 -x4971 -x4970 -x4969 -x4968 -x4785 -x4784 -x4783 -x4782 -x4781 -x4780 -x4779
44.04/44.23 v -x4778 -x4777 -x4776 -x4775 -x4774 -x4773 -x4772 -x4771 -x4770 -x4769 -x4768 -x4767 -x4766 -x4765 -x4764 -x4763 -x4762 -x4761
44.04/44.23 v -x4760 -x4759 -x4758 -x4757 -x4756 -x4755 -x4754 -x4753 -x4752 -x4751 -x4750 -x4749 -x4748 -x4747 -x4746 -x4745 -x4744 -x4743
44.04/44.23 v -x4742 -x4741 -x4740 -x4739 -x4738 -x4737 -x4736 -x4735 -x4734 -x4733 -x4732 -x4731 -x4730 -x4729 -x4728 -x4727 -x4726 -x4725
44.04/44.23 v -x4724 -x4723 -x4722 -x4721 -x4720 -x4719 -x4718 -x4717 -x4716 -x4715 -x4714 -x4713 -x4712 -x4711 -x4710 -x4709 -x4708
44.04/44.23 v -x4889 -x4888 -x4887 -x4886 -x4885 -x4884 -x4883 -x4882 -x4881 -x4880 -x4879 -x4878 -x4877 -x4876 -x4875 -x4874 -x4873 -x4872
44.04/44.23 v -x4871 -x4870 -x4869 -x4868 -x4867 -x4866 -x4865 -x4864 -x4863 -x4862 -x4861 -x4860 -x4859 -x4858 -x4857 -x4856 -x4855 -x4854
44.04/44.23 v -x4853 -x4852 -x4851 -x4850 -x4849 -x4848 -x4847 -x4846 -x4845 -x4844 -x4843 -x4842 -x4841 -x4840 -x4839 -x4838 -x4837 -x4836
44.04/44.23 v -x4835 -x4834 -x4833 -x4832 -x4831 -x4830 -x4829 -x4828 -x4827 -x4826 -x4825 -x4824 -x4823 -x4822 -x4821 -x4820 -x4819 -x4818
44.04/44.23 v -x4817 -x4816 -x4815 -x4814 -x4813 -x4812 -x4811 -x4810 -x4809 -x4808 -x4807 -x4806 -x4805 -x4804 -x4803 -x4802 -x4801 -x4800
44.04/44.23 v -x4799 -x4798 -x4797 -x4796 -x4795 -x4794 -x4793 -x4792 -x4791 -x4790 -x4789 -x4788 -x4787 -x4786 -x6675 -x6659 -x6643 -x6627
44.04/44.23 v -x6611 -x6595 -x6804 -x6788 -x6772 -x6756 -x6740 -x6724 -x6708 -x6692 -x6676 -x3480 -x3464 -x3448 -x3432 -x3416 -x3400
44.04/44.23 v -x3609 -x3593 -x3577 -x3561 -x3545 -x3529 -x3513 -x3497 -x3481 -x6435 -x1230 -x1229 -x1228 -x1227 -x1226 -x1225 -x1224 -x1223
44.04/44.23 v -x1222 -x1221 -x1220 -x1219 -x1218 -x1217 -x1216 -x6419 -x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 -x981 -x980 -x979
44.04/44.23 v -x978 -x977 -x976 -x6403 -x750 -x749 -x748 -x747 -x746 -x745 -x744 -x743 -x742 -x741 -x740 -x739 -x738 -x737 -x736 -x6387
44.04/44.23 v -x510 -x509 -x508 -x507 -x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x6371 -x270 -x269 -x268 -x267 -x266
44.04/44.23 v -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x6355 -x30 -x29 -x28 -x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20
44.04/44.23 v -x19 -x18 -x17 -x16 -x6564 -x3390 -x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377
44.04/44.23 v -x3376 -x6548 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136 -x6532
44.04/44.23 v -x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898 -x2897 -x2896 -x6516 -x2670 -x2669
44.04/44.23 v -x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x6500 -x2430 -x2429 -x2428 -x2427
44.04/44.23 v -x2426 -x2425 -x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x6484 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185
44.04/44.23 v -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178 -x2177 -x2176 -x6468 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943
44.04/44.23 v -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x6452 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705 -x1704 -x1703 -x1702 -x1701
44.04/44.23 v -x1700 -x1699 -x1698 -x1697 -x1696 -x6436 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460
44.04/44.23 v -x1459 -x1458 -x1457 -x1456 -x15 -x14 -x13 -x12 -x11 -x10 -x9 -x8 -x7 -x6 -x5 x4 -x3 -x2 -x1 -x6674 -x6673 -x6672 -x6671 -x6670
44.04/44.23 v -x6669 -x6668 -x6667 -x6666 -x6665 -x6664 -x6663 -x6662 -x6661 -x6660 -x6658 -x6657 -x6656 -x6655 -x6654 -x6653 -x6652 -x6651
44.04/44.23 v -x6650 -x6649 -x6648 -x6647 -x6646 -x6645 -x6644 -x6642 -x6641 -x6640 -x6639 -x6638 -x6637 -x6636 -x6635 -x6634 -x6633 -x6632
44.04/44.23 v -x6631 -x6630 -x6629 -x6628 -x6626 -x6625 -x6624 -x6623 -x6622 -x6621 -x6620 -x6619 -x6618 -x6617 -x6616 -x6615 -x6614 -x6613
44.04/44.23 v -x6612 -x6610 -x6609 x6608 -x6607 -x6606 -x6605 x6604 -x6603 -x6602 -x6601 -x6600 -x6599 -x6598 -x6597 -x6596 x6594 -x6593
44.04/44.23 v -x6592 -x6591 -x6590 x6589 -x6588 -x6587 -x6586 -x6810 -x6809 -x6808 -x6807 -x6806 x6805 x6803 -x6802 -x6801 -x6800 x6799
44.04/44.23 v -x6798 -x6797 -x6796 -x6795 -x6794 -x6793 -x6792 x6791 -x6790 x6789 -x6787 -x6786 -x6785 x6784 -x6783 -x6782 -x6781 -x6780 -x6779
44.04/44.23 v -x6778 -x6777 -x6776 -x6775 -x6774 -x6773 -x6771 -x6770 -x6769 -x6768 -x6767 -x6766 -x6765 -x6764 -x6763 -x6762 -x6761
44.04/44.23 v -x6760 -x6759 -x6758 -x6757 -x6755 -x6754 -x6753 -x6752 -x6751 -x6750 -x6749 -x6748 -x6747 -x6746 -x6745 -x6744 -x6743 -x6742
44.04/44.23 v -x6741 -x6739 -x6738 -x6737 -x6736 -x6735 -x6734 -x6733 -x6732 x6731 x6730 x6729 x6728 -x6727 -x6726 -x6725 -x6723 -x6722 -x6721
44.04/44.23 v -x6720 -x6719 -x6718 -x6717 -x6716 -x6715 -x6714 -x6713 -x6712 -x6711 -x6710 -x6709 -x6707 -x6706 -x6705 -x6704 -x6703 -x6702
44.04/44.23 v -x6701 -x6700 -x6699 -x6698 -x6697 -x6696 -x6695 -x6694 -x6693 -x6691 -x6690 -x6689 -x6688 -x6687 -x6686 -x6685 -x6684
44.04/44.23 v -x6683 -x6682 -x6681 -x6680 -x6679 -x6678 -x6677 -x6585 -x6584 -x6583 -x6582 x6581 x6580 x6579 x6578 -x6577 -x6576 -x6575 -x6574
44.04/44.23 v -x6573 -x6572 -x6571 -x1215 -x1214 -x1213 -x1212 -x1211 -x1210 -x1209 -x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201
44.04/44.23 v -x1200 -x1199 -x1198 -x1197 -x1196 -x1195 -x1194 -x1193 -x1192 -x1191 -x1190 -x1189 -x1188 -x1187 -x1186 -x1185 -x1184 -x1183
44.04/44.23 v -x1182 -x1181 -x1180 -x1179 -x1178 -x1177 -x1176 -x1175 -x1174 -x1173 -x1172 -x1171 -x1170 -x1169 -x1168 -x1167 -x1166
44.04/44.23 v -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 -x1155 -x1154 -x1153 -x1152 -x1151 -x1150 -x1149 -x1148
44.04/44.23 v -x1147 -x1146 -x1145 -x1144 -x1143 -x1142 -x1141 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359 -x1358 -x1357 -x1356 -x1355
44.04/44.23 v -x1354 -x1353 -x1352 -x1351 -x1350 -x1349 -x1348 -x1347 -x1346 -x1345 -x1344 -x1343 -x1342 -x1341 -x1340 -x1339 -x1338 -x1337
44.04/44.23 v -x1336 -x1335 -x1334 -x1333 -x1332 -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325 -x1324 -x1323 -x1322 -x1321 -x1320 -x1319
44.04/44.23 v -x1318 -x1317 -x1316 -x1315 -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305 -x1304 -x1303 -x1302 -x1301
44.04/44.23 v -x1300 -x1299 -x1298 -x1297 -x1296 -x1295 -x1294 -x1293 -x1292 -x1291 -x1290 -x1289 -x1288 -x1287 -x1286 -x1285 -x1284 -x1283
44.04/44.23 v -x1282 -x1281 -x1280 -x1279 -x1278 -x1277 -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268 -x1267 -x1266
44.04/44.23 v -x1265 -x1264 -x1263 -x1262 -x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252 -x1251 -x1250 -x1249 -x1248
44.04/44.23 v -x1247 -x1246 -x1245 -x1244 -x1243 -x1242 -x1241 -x1240 -x1239 -x1238 -x1237 -x1236 -x1235 -x1234 -x1233 -x1232 -x1231 -x1005
44.04/44.23 v -x1004 -x1003 -x1002 -x1001 -x1000 -x999 -x998 -x997 -x996 -x995 -x994 -x993 -x992 -x991 -x975 -x974 -x973 -x972 -x971 -x970
44.04/44.23 v -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 -x960 -x959 -x958 -x957 -x956 -x955 -x954 -x953 -x952 -x951 -x950 -x949
44.04/44.23 v -x948 -x947 -x946 -x945 -x944 -x943 -x942 -x941 -x940 -x939 -x938 -x937 -x936 -x935 -x934 -x933 -x932 -x931 -x930 -x929 -x928
44.04/44.23 v -x927 -x926 -x925 -x924 -x923 -x922 -x921 -x920 -x919 -x918 -x917 -x916 -x1140 -x1139 -x1138 -x1137 -x1136 -x1135 -x1134
44.04/44.23 v -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127 -x1126 -x1125 -x1124 -x1123 -x1122 -x1121 -x1120 -x1119 -x1118 -x1117 -x1116
44.04/44.23 v -x1115 -x1114 -x1113 -x1112 -x1111 -x1110 -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 -x1100 -x1099 -x1098
44.04/44.23 v -x1097 -x1096 -x1095 -x1094 -x1093 -x1092 -x1091 -x1090 -x1089 -x1088 -x1087 -x1086 -x1085 -x1084 -x1083 -x1082 -x1081 -x1080
44.04/44.23 v -x1079 -x1078 -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066 -x1065 -x1064 -x1063 -x1062
44.04/44.23 v -x1061 -x1060 -x1059 -x1058 -x1057 -x1056 -x1055 -x1054 -x1053 -x1052 -x1051 -x1050 -x1049 -x1048 -x1047 -x1046 -x1045 -x1044
44.04/44.23 v -x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031 -x1030 -x1029 -x1028 -x1027 -x1026
44.04/44.23 v -x1025 -x1024 -x1023 -x1022 -x1021 -x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009
44.04/44.23 v -x1008 -x1007 -x1006 -x780 -x779 -x778 -x777 -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 -x768 -x767 -x766 -x765 -x764 -x763
44.04/44.23 v -x762 -x761 -x760 -x759 -x758 -x757 -x756 -x755 -x754 -x753 -x752 -x751 -x735 -x734 -x733 -x732 -x731 -x730 -x729 -x728 -x727
44.04/44.23 v -x726 -x725 -x724 -x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710 -x709 -x708 -x707
44.04/44.23 v -x706 -x705 -x704 -x703 -x702 -x701 -x700 -x699 -x698 -x697 -x696 -x695 -x694 -x693 -x692 -x691 -x915 -x914 -x913 -x912 -x911
44.04/44.23 v -x910 -x909 -x908 -x907 -x906 -x905 -x904 -x903 -x902 -x901 -x900 -x899 -x898 -x897 -x896 -x895 -x894 -x893 -x892 -x891 -x890
44.04/44.23 v -x889 -x888 -x887 -x886 -x885 -x884 -x883 -x882 -x881 -x880 -x879 -x878 -x877 -x876 -x875 -x874 -x873 -x872 -x871 -x870 -x869
44.04/44.23 v -x868 -x867 -x866 -x865 -x864 -x863 -x862 -x861 -x860 -x859 -x858 -x857 -x856 -x855 -x854 -x853 -x852 -x851 -x850 -x849 -x848
44.04/44.23 v -x847 -x846 -x845 -x844 -x843 -x842 -x841 -x840 -x839 -x838 -x837 -x836 -x835 -x834 -x833 -x832 -x831 -x830 -x829 -x828 -x827
44.04/44.23 v -x826 -x825 -x824 -x823 -x822 -x821 -x820 -x819 -x818 -x817 -x816 -x815 -x814 -x813 -x812 -x811 -x810 -x809 -x808 -x807
44.04/44.23 v -x806 -x805 -x804 -x803 -x802 -x801 -x800 -x799 -x798 -x797 -x796 -x795 -x794 -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786
44.04/44.23 v -x785 -x784 -x783 -x782 -x781 -x555 -x554 -x553 -x552 -x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540
44.04/44.23 v -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 -x531 -x530 -x529 -x528 -x527 -x526 -x525 -x524 -x523 -x522 -x521 -x520 -x519
44.04/44.23 v -x518 -x517 -x516 -x515 -x514 -x513 -x512 -x511 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 -x486 -x485 -x484 -x483
44.04/44.23 v -x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 -x466 -x690 -x689 -x688 -x687
44.04/44.23 v -x686 -x685 -x684 -x683 -x682 -x681 -x680 -x679 -x678 -x677 -x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669 -x668 -x667
44.04/44.23 v -x666 -x665 -x664 -x663 -x662 -x661 -x660 -x659 -x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646
44.04/44.23 v -x645 -x644 -x643 -x642 -x641 -x640 -x639 -x638 -x637 -x636 -x635 -x634 -x633 -x632 -x631 -x630 -x629 -x628 -x627 -x626 -x625
44.04/44.23 v -x624 -x623 -x622 -x621 -x620 -x619 -x618 -x617 -x616 -x615 -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604
44.04/44.23 v -x603 -x602 -x601 -x600 -x599 -x598 -x597 -x596 -x595 -x594 -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 -x585 -x584 -x583
44.04/44.23 v -x582 -x581 -x580 -x579 -x578 -x577 -x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564 -x563 -x562
44.04/44.23 v -x561 -x560 -x559 -x558 -x557 -x556 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317
44.04/44.23 v -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 -x302 -x301 -x300 -x299 -x298 -x297 -x296
44.04/44.23 v -x295 -x294 -x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 -x281 -x280 -x279 -x278 -x277 -x276 -x275
44.04/44.23 v -x274 -x273 -x272 -x271 -x255 -x254 -x253 -x252 -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242 -x241 -x465 -x464
44.04/44.23 v -x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443
44.04/44.23 v -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422
44.04/44.23 v -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 -x403 -x402
44.04/44.23 v -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386 -x385 -x384 -x383 -x382 -x381
44.04/44.23 v -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360
44.04/44.23 v -x359 x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 -x350 -x349 x348 -x347 -x346 -x345 -x344 -x343 -x342 -x341 -x340 -x339
44.04/44.23 v -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x105 -x104 -x103 -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 -x93 -x92
44.04/44.23 v -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67
44.04/44.23 v -x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43 -x42
44.04/44.23 v -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x240 -x239 -x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 -x230 -x229
44.04/44.23 v -x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208
44.04/44.23 v -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187
44.04/44.23 v -x186 -x185 -x184 -x183 -x182 -x181 -x180 x179 -x178 -x177 -x176 -x175 -x174 -x173 x172 -x171 -x170 -x169 -x168 -x167 -x166
44.04/44.23 v -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 -x156 -x155 -x154 -x153 -x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145
44.04/44.23 v -x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124
44.04/44.23 v -x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110 -x109 -x108 -x107 -x106 -x3255 -x3254
44.04/44.23 v -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237 -x3236
44.04/44.23 v -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218
44.04/44.23 v -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206 -x3205 -x3204 -x3203 -x3202 -x3201 -x3200
44.04/44.23 v -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182
44.04/44.23 v -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170 -x3169 -x3168 -x3167 -x3166 -x3375
44.04/44.23 v -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 -x3361 -x3360 -x3359 -x3358 -x3357
44.04/44.23 v -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339
44.04/44.23 v -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321
44.04/44.23 v -x3320 -x3319 -x3318 -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303
44.04/44.23 v -x3302 -x3301 -x3300 -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 -x3288 -x3287 -x3286 -x3285
44.04/44.23 v -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273 -x3272 -x3271 -x3270 -x3269 -x3268 -x3267
44.04/44.23 v -x3266 -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3030 -x3029 -x3028 -x3027 -x3026 -x3025
44.04/44.23 v -x3024 -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007
44.04/44.23 v -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989
44.04/44.23 v -x2988 -x2987 -x2986 x2985 -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973 -x2972 -x2971
44.04/44.23 v -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 -x2953
44.04/44.23 v -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x3165 -x3164 -x3163 -x3162 -x3161 -x3160
44.04/44.23 v -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152 -x3151 -x3135 -x3134 -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127
44.04/44.23 v -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109
44.04/44.23 v -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092
44.04/44.23 v -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074
44.04/44.23 v -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056
44.04/44.23 v -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043 -x3042 -x3041 -x3040 -x3039 -x3038
44.04/44.23 v -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x2805 -x2804 -x2803 -x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795
44.04/44.23 v -x2794 -x2793 -x2792 -x2791 -x2790 -x2789 -x2788 -x2787 -x2786 -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777
44.04/44.23 v -x2776 -x2775 -x2774 -x2773 -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759
44.04/44.23 v -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742
44.04/44.23 v -x2741 -x2740 -x2739 -x2738 -x2737 -x2736 -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724
44.04/44.23 v -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 -x2717 -x2716 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935 -x2934 -x2933 -x2932 -x2931
44.04/44.23 v -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916 -x2915 -x2914 -x2913
44.04/44.23 v -x2912 -x2911 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880
44.04/44.23 v -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862
44.04/44.23 v -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844
44.04/44.23 v -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827
44.04/44.23 v -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810 -x2809
44.04/44.23 v -x2808 -x2807 -x2806 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568 -x2567 -x2566
44.04/44.23 v -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555 -x2554 -x2553 -x2552 -x2551 -x2550 -x2549 -x2548
44.04/44.23 v -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537 -x2536 -x2535 -x2534 -x2533 -x2532 -x2531 -x2530
44.04/44.23 v -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514 -x2513 -x2512
44.04/44.23 v -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495 -x2494
44.04/44.23 v -x2493 -x2492 -x2491 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702
44.04/44.23 v -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684
44.04/44.23 v -x2683 -x2682 -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2655 -x2654 -x2653 -x2652 -x2651
44.04/44.23 v -x2650 -x2649 -x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633
44.04/44.23 v -x2632 -x2631 -x2630 -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615
44.04/44.23 v -x2614 -x2613 -x2612 -x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597
44.04/44.23 v -x2596 -x2595 -x2594 -x2593 -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581 -x2355 -x2354
44.04/44.23 v -x2353 -x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341 -x2340 -x2339 -x2338 -x2337
44.04/44.23 v -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 -x2321 -x2320 -x2319
44.04/44.23 v -x2318 -x2317 -x2316 -x2315 -x2314 -x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301
44.04/44.23 v -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283
44.04/44.23 v -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268 -x2267 -x2266 -x2490
44.04/44.23 v -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472
44.04/44.23 v -x2471 -x2470 -x2469 -x2468 -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454
44.04/44.23 v -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437
44.04/44.23 v -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2415 -x2414 -x2413 -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404
44.04/44.23 v -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395 -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386
44.04/44.23 v -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368
44.04/44.23 v -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357 -x2356 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125
44.04/44.23 v -x2124 -x2123 -x2122 -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107
44.04/44.23 v -x2106 -x2105 -x2104 -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089
44.04/44.23 v -x2088 -x2087 -x2086 -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072
44.04/44.23 v -x2071 -x2070 -x2069 -x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054
44.04/44.23 v -x2053 -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2265 -x2264 -x2263 -x2262 -x2261
44.04/44.23 v -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243
44.04/44.23 v -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 -x2225
44.04/44.23 v -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207
44.04/44.23 v -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 -x2195 -x2194 -x2193 -x2192 -x2191 -x2175 -x2174
44.04/44.23 v -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161 -x2160 -x2159 -x2158 -x2157
44.04/44.23 v -x2156 -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139
44.04/44.23 v -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896
44.04/44.23 v -x1895 -x1894 -x1893 -x1892 -x1891 -x1890 -x1889 -x1888 -x1887 -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878
44.04/44.23 v -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860
44.04/44.23 v -x1859 -x1858 -x1857 -x1856 -x1855 -x1854 -x1853 -x1852 -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842
44.04/44.23 v -x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834 -x1833 -x1832 -x1831 -x1830 -x1829 -x1828 -x1827 -x1826 -x1825 -x1824
44.04/44.23 v -x1823 -x1822 -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032
44.04/44.23 v -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 -x2018 -x2017 -x2016 -x2015 -x2014
44.04/44.23 v -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996
44.04/44.23 v -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978
44.04/44.23 v -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960
44.04/44.23 v -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927
44.04/44.23 v -x1926 -x1925 -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913 -x1912 -x1911 -x1910 -x1909
44.04/44.23 v -x1908 -x1907 -x1906 -x1680 -x1679 -x1678 -x1677 -x1676 -x1675 -x1674 -x1673 -x1672 -x1671 -x1670 -x1669 -x1668 -x1667
44.04/44.23 v -x1666 -x1665 -x1664 -x1663 -x1662 -x1661 -x1660 -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649
44.04/44.23 v -x1648 -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632 -x1631
44.04/44.23 v -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617 -x1616 -x1615 -x1614 -x1613
44.04/44.23 v -x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603 -x1602 -x1601 -x1600 -x1599 -x1598 -x1597 -x1596 -x1595
44.04/44.23 v -x1594 -x1593 -x1592 -x1591 -x1815 -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804 -x1803 -x1802
44.04/44.23 v -x1801 -x1800 -x1799 -x1798 -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784
44.04/44.23 v -x1783 -x1782 -x1781 -x1780 -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767
44.04/44.23 v -x1766 -x1765 -x1764 -x1763 -x1762 -x1761 -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749
44.04/44.23 v -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742 -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735 -x1734 -x1733 -x1732 -x1731
44.04/44.23 v -x1730 -x1729 -x1728 -x1727 -x1726 -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713
44.04/44.23 v -x1712 -x1711 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688 -x1687 -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 -x1455
44.04/44.23 v -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440 -x1439 -x1438 -x1437
44.04/44.23 v -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419
44.04/44.23 v -x1418 -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405 -x1404 -x1403 -x1402
44.04/44.23 v -x1401 -x1400 -x1399 -x1398 -x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 -x1386 -x1385 -x1384
44.04/44.23 v -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368 -x1367 -x1366
44.04/44.23 v -x1590 -x1589 -x1588 -x1587 -x1586 -x1585 -x1584 -x1583 -x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573
44.04/44.23 v -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556 -x1555
44.04/44.23 v -x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537
44.04/44.23 v -x1536 -x1535 -x1534 -x1533 -x1532 -x1531 -x1530 -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 -x1522 -x1521 -x1520 -x1519
44.04/44.23 v -x1518 -x1517 -x1516 -x1515 -x1514 -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502
44.04/44.23 v -x1501 -x1500 -x1499 -x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485 -x1484
44.04/44.23 v -x1483 -x1482 -x1481 -x1480 -x1479 -x1478 -x1477 -x1476 -x1475 -x1474 -x1473 -x1472 -x1471 -x3479 -x3478 -x3477 -x3476 -x3475
44.04/44.23 v -x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456
44.04/44.23 v -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441 -x3440 -x3439 -x3438 -x3437
44.04/44.23 v -x3436 x3435 -x3434 -x3433 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 -x3418
44.04/44.23 v -x3417 -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407 -x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3399 -x3398
44.04/44.23 v -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3608 -x3607 -x3606 -x3605 -x3604
44.04/44.23 v -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 -x3596 -x3595 -x3594 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587 -x3586
44.04/44.23 v -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569 -x3568 -x3567
44.04/44.23 v -x3566 -x3565 -x3564 -x3563 -x3562 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548
44.04/44.23 v x3547 -x3546 -x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3528
44.04/44.23 v -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3512 -x3511 -x3510 -x3509
44.04/44.23 v x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 x3498 -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490
44.04/44.23 v -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x6434 -x6433 -x6432 -x6431 -x6430 -x6429 -x6428 -x6427 -x6426 -x6425
44.04/44.23 v -x6424 -x6423 -x6422 -x6421 -x6420 -x6418 -x6417 -x6416 -x6415 -x6414 -x6413 -x6412 -x6411 -x6410 -x6409 -x6408 -x6407 -x6406
44.04/44.23 v -x6405 -x6404 -x6402 -x6401 -x6400 -x6399 -x6398 -x6397 -x6396 -x6395 -x6394 -x6393 -x6392 -x6391 -x6390 -x6389 -x6388 -x6386
44.04/44.23 v -x6385 -x6384 x6383 -x6382 -x6381 -x6380 -x6379 -x6378 -x6377 -x6376 -x6375 -x6374 -x6373 -x6372 -x6370 -x6369 -x6368 -x6367
44.04/44.23 v -x6366 -x6365 -x6364 -x6363 x6362 -x6361 -x6360 -x6359 -x6358 -x6357 -x6356 -x6354 -x6353 -x6352 -x6351 x6350 -x6349 -x6348
44.04/44.23 v -x6347 -x6346 -x6570 -x6569 -x6568 -x6567 -x6566 -x6565 -x6563 -x6562 x6561 -x6560 -x6559 -x6558 -x6557 x6556 -x6555 -x6554
44.04/44.23 v -x6553 x6552 -x6551 -x6550 -x6549 -x6547 -x6546 -x6545 -x6544 -x6543 -x6542 -x6541 -x6540 -x6539 -x6538 -x6537 -x6536 -x6535
44.04/44.23 v -x6534 -x6533 -x6531 -x6530 -x6529 -x6528 -x6527 -x6526 -x6525 -x6524 -x6523 -x6522 -x6521 -x6520 x6519 -x6518 -x6517 -x6515
44.04/44.23 v -x6514 -x6513 -x6512 -x6511 -x6510 -x6509 -x6508 -x6507 -x6506 x6505 -x6504 -x6503 -x6502 -x6501 -x6499 -x6498 -x6497 -x6496
44.04/44.23 v -x6495 -x6494 -x6493 -x6492 -x6491 -x6490 -x6489 -x6488 -x6487 -x6486 -x6485 -x6483 -x6482 -x6481 -x6480 -x6479 -x6478 -x6477
44.04/44.23 v -x6476 -x6475 -x6474 -x6473 -x6472 -x6471 -x6470 -x6469 -x6467 -x6466 -x6465 -x6464 -x6463 -x6462 x6461 -x6460 -x6459 -x6458
44.04/44.23 v -x6457 -x6456 -x6455 -x6454 -x6453 -x6451 -x6450 -x6449 -x6448 -x6447 -x6446 -x6445 x6444 -x6443 -x6442 -x6441 -x6440 -x6439
44.04/44.23 v -x6438 -x6437
44.04/44.23 c SCIP Status : problem is solved [optimal solution found]
44.04/44.23 c Total Time : 44.21
44.04/44.23 c solving : 44.21
44.04/44.23 c presolving : 2.70 (included in solving)
44.04/44.23 c reading : 0.09 (included in solving)
44.04/44.23 c copying : 0.10 (6 #copies) (minimal 0.01, maximal 0.02, average 0.02)
44.04/44.23 c Original Problem :
44.04/44.23 c Problem name : HOME/instance-4504306-1751446425.opb
44.04/44.23 c Variables : 6810 (6810 binary, 0 integer, 0 implicit integer, 0 continuous)
44.04/44.23 c Constraints : 15202 initial, 15202 maximal
44.04/44.23 c Objective : minimize, 3795 non-zeros (abs.min = 1, abs.max = 7.4088e+07)
44.04/44.23 c Presolved Problem :
44.04/44.23 c Problem name : t_HOME/instance-4504306-1751446425.opb
44.04/44.23 c Variables : 110 (110 binary, 0 integer, 0 implicit integer, 0 continuous)
44.04/44.23 c Constraints : 370 initial, 370 maximal
44.04/44.23 c Objective : minimize, 77 non-zeros (abs.min = 1800, abs.max = 219160)
44.04/44.23 c Nonzeros : 8398 constraint, 147 clique table
44.04/44.23 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
44.04/44.23 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c domcol : 0.00 0.00 8 0 0 0 0 0 0 0 0 0
44.04/44.23 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c dualsparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
44.04/44.23 c gateextraction : 0.10 0.00 44 0 0 0 0 0 11135 2942 0 0
44.04/44.23 c implics : 0.00 0.00 55 0 0 0 0 0 0 0 0 0
44.04/44.23 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c milp : 0.10 0.00 1 0 0 0 0 0 0 0 0 0
44.04/44.23 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c sparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
44.04/44.23 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c trivial : 0.01 0.00 80 5703 0 0 0 0 0 0 0 0
44.04/44.23 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c dualfix : 0.00 0.00 80 645 0 0 0 0 0 0 0 0
44.04/44.23 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c probing : 1.52 0.00 1 0 0 0 0 0 0 0 0 0
44.04/44.23 c pseudoobj : 0.00 0.01 7 0 0 0 0 0 0 0 0 0
44.04/44.23 c symmetry : 0.01 0.00 1 0 0 0 0 0 0 0 0 0
44.04/44.23 c vbounds : 0.01 0.00 9 14 6 0 0 0 0 0 0 0
44.04/44.23 c knapsack : 0.38 0.00 172 1 0 0 0 0 3006 8282 41 970
44.04/44.23 c setppc : 0.15 0.01 168 5 0 0 0 0 2655 0 0 0
44.04/44.23 c and : 0.07 0.01 111 3 19 0 0 0 24 9 0 1695
44.04/44.23 c linear : 0.21 0.02 110 94 210 0 94 0 587 0 105 380
44.04/44.23 c logicor : 0.07 0.00 150 833 0 0 0 0 235 0 0 3751
44.04/44.23 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c components : 0.02 0.00 8 0 0 0 0 0 0 0 0 0
44.04/44.23 c root node : - - - 4891 - - 4891 - - - - -
44.04/44.23 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
44.04/44.23 c benderslp : 0 0 0 0 9 0 0 143 0 0 0 0 0 0 0
44.04/44.23 c integral : 0 0 0 0 9 0 0 143 0 0 423 0 0 0 0
44.04/44.23 c knapsack : 70 70 198 16392 0 0 0 124 1002 57 22 331 20 0 0
44.04/44.23 c setppc : 104 104 198 16262 0 0 0 81 7886 56 581 33 11 0 0
44.04/44.23 c and : 41 41 198 16102 0 0 0 72 1189 30 812 63 0 0 0
44.04/44.23 c linear : 68 68 198 16249 0 0 0 41 918 22 4 0 0 0 0
44.04/44.23 c logicor : 87 87 198 3850 0 0 0 25 1114 59 47 55 13 0 0
44.04/44.23 c benders : 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0
44.04/44.23 c fixedvar : 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0
44.04/44.23 c countsols : 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0
44.04/44.23 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
44.04/44.23 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c integral : 2.60 0.00 0.00 0.00 2.60 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c knapsack : 3.13 0.00 2.80 0.31 0.00 0.00 0.00 0.00 0.00 0.01
44.04/44.23 c setppc : 0.63 0.01 0.04 0.55 0.00 0.00 0.00 0.02 0.00 0.02
44.04/44.23 c and : 0.80 0.01 0.15 0.60 0.00 0.00 0.00 0.01 0.00 0.03
44.04/44.23 c linear : 0.45 0.02 0.39 0.05 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c logicor : 0.07 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c fixedvar : 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
44.04/44.23 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c components : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c Propagators : #Propagate #ResProp Cutoffs DomReds
44.04/44.23 c dualfix : 66 0 0 0
44.04/44.23 c genvbounds : 0 0 0 0
44.04/44.23 c nlobbt : 0 0 0 0
44.04/44.23 c obbt : 0 0 0 0
44.04/44.23 c probing : 0 0 0 0
44.04/44.23 c pseudoobj : 448 0 0 5
44.04/44.23 c redcost : 310 0 0 2712
44.04/44.23 c rootredcost : 0 0 0 0
44.04/44.23 c symmetry : 0 0 0 0
44.04/44.23 c vbounds : 6542 0 0 0
44.04/44.23 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
44.04/44.23 c dualfix : 0.01 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c genvbounds : 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c probing : 1.52 0.00 1.52 0.00 0.00 0.00
44.04/44.23 c pseudoobj : 0.05 0.01 0.00 0.04 0.00 0.00
44.04/44.23 c redcost : 0.03 0.00 0.00 0.03 0.00 0.00
44.04/44.23 c rootredcost : 0.00 0.00 0.00 0.00 0.00 0.00
44.04/44.23 c symmetry : 0.02 0.00 0.01 0.00 0.00 0.00
44.04/44.23 c vbounds : 0.03 0.00 0.01 0.01 0.00 0.00
44.04/44.23 c Symmetry :
44.04/44.23 c orbitopal red. : 0 reductions applied, 0 cutoffs
44.04/44.23 c orbital reduction: 0 reductions applied, 0 cutoffs
44.04/44.23 c lexicographic red: 0 reductions applied, 0 cutoffs
44.04/44.23 c shadow tree time : 0.00 s
44.04/44.23 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
44.04/44.23 c propagation : 0.01 197 196 - 795 59.7 21 2.8 - - -
44.04/44.23 c infeasible LP : 0.01 3 3 - 72 188.8 0 0.0 3 493.7 0
44.04/44.23 c bound exceed. LP : 0.05 25 88 - 22 7.6 1 2.0 76 2.4 151
44.04/44.23 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
44.04/44.23 c pseudo solution : 0.00 0 0 - 0 0.0 0 0.0 - - -
44.04/44.23 c applied globally : 0.01 - - 75 501 39.6 - - 79 - -
44.04/44.23 c applied locally : - - - 0 0 0.0 - - 0 - -
44.04/44.23 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
44.04/44.23 c cut pool : 0.27 - 347 347 - - 13531 26900 - - - - - (maximal pool size: 2159)
44.04/44.23 c aggregation : 2.60 0.00 198 198 0 0 47 72 0 16 16 0 0
44.04/44.23 c > cmir : - - - - - - - 14 0 0 0 0 -
44.04/44.23 c > flowcover : - - - - - - - 34 0 5 5 0 -
44.04/44.23 c > knapsackcover : - - - - - - - 24 0 11 11 0 -
44.04/44.23 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c clique : 0.37 0.00 198 198 0 0 3 4 0 1 1 0 0
44.04/44.23 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c gomory : 22.01 0.00 80 80 0 0 12914 26062 0 143 143 0 0
44.04/44.23 c > gomorymi : - - - - - - - 20334 0 123 123 0 -
44.04/44.23 c > strongcg : - - - - - - - 5728 0 20 20 0 -
44.04/44.23 c impliedbounds : 0.21 0.00 198 198 0 187 66 69 0 52 52 0 0
44.04/44.23 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c mcf : 0.02 0.00 8 8 0 0 0 0 0 0 0 0 0
44.04/44.23 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c multilinear : 0.00 0.00 198 198 0 0 0 0 0 0 0 0 0
44.04/44.23 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c rapidlearning : 0.02 0.00 0 0 0 0 0 0 0 0 0 0 0
44.04/44.23 c rlt : 1.52 0.00 80 80 0 0 330 349 0 329 329 0 0
44.04/44.23 c zerohalf : 0.31 0.00 152 152 0 0 171 344 0 104 104 0 0
44.04/44.23 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
44.04/44.23 c hybrid : 0.10 0.00 181 181 689 0 26693 689 0 26693
44.04/44.23 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c Pricers : ExecTime SetupTime Calls Vars
44.04/44.23 c problem variables: 0.00 - 0 0
44.04/44.23 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
44.04/44.23 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c inference : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c random : 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c relpscost : 2.60 0.00 9 0 0 0 423 0 0 0
44.04/44.23 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
44.04/44.23 c Primal Heuristics : ExecTime SetupTime Calls Found Best
44.04/44.23 c LP solutions : 0.00 - - 0 0
44.04/44.23 c relax solutions : 0.00 - - 0 0
44.04/44.23 c pseudo solutions : 0.00 - - 0 0
44.04/44.23 c strong branching : 0.00 - - 0 0
44.04/44.23 c actconsdiving : 0.00 0.00 0 0 0
44.04/44.23 c adaptivediving : 0.00 0.00 0 0 0
44.04/44.23 c alns : 0.06 0.00 1 0 0
44.04/44.23 c bound : 0.00 0.00 0 0 0
44.04/44.23 c clique : 0.08 0.00 1 0 0
44.04/44.23 c coefdiving : 0.00 0.00 0 0 0
44.04/44.23 c completesol : 0.00 0.00 0 0 0
44.04/44.23 c conflictdiving : 0.43 0.00 7 1 1
44.04/44.23 c crossover : 0.00 0.00 0 0 0
44.04/44.23 c dins : 0.00 0.00 0 0 0
44.04/44.23 c distributiondivin: 0.00 0.00 0 0 0
44.04/44.23 c dps : 0.00 0.00 0 0 0
44.04/44.23 c dualval : 0.00 0.00 0 0 0
44.04/44.23 c farkasdiving : 1.63 0.00 5 3 3
44.04/44.23 c feasjump : 0.01 0.00 1 1 1
44.04/44.23 c feaspump : 0.30 0.00 1 1 0
44.04/44.23 c fixandinfer : 0.00 0.00 0 0 0
44.04/44.23 c fracdiving : 0.00 0.00 0 0 0
44.04/44.23 c gins : 0.00 0.00 0 0 0
44.04/44.23 c guideddiving : 0.00 0.00 0 0 0
44.04/44.23 c indcoefdiving : 0.00 0.00 0 0 0
44.04/44.23 c indicator : 0.00 0.00 0 0 0
44.04/44.23 c indicatordiving : 0.00 0.00 0 0 0
44.04/44.23 c indoneopt : 0.00 0.00 0 0 0
44.04/44.23 c indrounding : 0.00 0.00 0 0 0
44.04/44.23 c indtwoopt : 0.00 0.00 0 0 0
44.04/44.23 c intdiving : 0.00 0.00 0 0 0
44.04/44.23 c intshifting : 0.00 0.00 0 0 0
44.04/44.23 c linesearchdiving : 0.00 0.00 0 0 0
44.04/44.23 c localbranching : 0.00 0.00 0 0 0
44.04/44.23 c locks : 0.03 0.00 1 0 0
44.04/44.23 c lpface : 0.00 0.00 0 0 0
44.04/44.23 c mpec : 0.00 0.00 0 0 0
44.04/44.23 c multistart : 0.00 0.00 0 0 0
44.04/44.23 c mutation : 0.00 0.00 0 0 0
44.04/44.23 c nlpdiving : 0.00 0.00 0 0 0
44.04/44.23 c objpscostdiving : 0.00 0.00 0 0 0
44.04/44.23 c octane : 0.00 0.00 0 0 0
44.04/44.23 c ofins : 0.00 0.00 0 0 0
44.04/44.23 c oneopt : 0.01 0.00 7 0 0
44.04/44.23 c padm : 0.00 0.00 0 0 0
44.04/44.23 c proximity : 0.00 0.00 0 0 0
44.04/44.23 c pscostdiving : 0.00 0.00 0 0 0
44.04/44.23 c randrounding : 1.32 0.00 204 1 1
44.04/44.23 c rens : 0.44 0.00 5 3 1
44.04/44.23 c reoptsols : 0.00 0.00 0 0 0
44.04/44.23 c repair : 0.00 0.00 0 0 0
44.04/44.23 c rins : 0.00 0.00 0 0 0
44.04/44.23 c rootsoldiving : 0.00 0.00 0 0 0
44.04/44.23 c rounding : 0.05 0.00 100 0 0
44.04/44.23 c scheduler : 0.00 0.00 0 0 0
44.04/44.23 c shiftandpropagate: 0.03 0.00 1 0 0
44.04/44.23 c shifting : 0.09 0.00 100 0 0
44.04/44.23 c simplerounding : 0.00 0.00 0 0 0
44.04/44.23 c smallcard : 0.00 0.00 0 0 0
44.04/44.23 c subnlp : 0.00 0.00 0 0 0
44.04/44.23 c trivial : 0.01 0.00 16 0 0
44.04/44.23 c trivialnegation : 0.00 0.00 0 0 0
44.04/44.23 c trustregion : 0.00 0.00 0 0 0
44.04/44.23 c trysol : 0.00 0.00 0 0 0
44.04/44.23 c twoopt : 0.00 0.00 0 0 0
44.04/44.23 c undercover : 0.10 0.00 1 0 0
44.04/44.23 c vbounds : 0.17 0.00 8 0 0
44.04/44.23 c veclendiving : 0.00 0.00 0 0 0
44.04/44.23 c zeroobj : 0.00 0.00 0 0 0
44.04/44.23 c zirounding : 0.00 0.00 7 0 0
44.04/44.23 c other solutions : - - - 0 -
44.04/44.23 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
44.04/44.23 c rens : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
44.04/44.23 c rins : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
44.04/44.23 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
44.04/44.23 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
44.04/44.23 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
44.04/44.23 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
44.04/44.23 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
44.04/44.23 c dins : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
44.04/44.23 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
44.04/44.23 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
44.04/44.23 c primal LP : 0.02 19 0 0.00 0.00 0.02 19
44.04/44.23 c dual LP : 1.65 304 11596 60.71 7048.38 0.11 113
44.04/44.23 c lex dual LP : 0.00 0 0 0.00 -
44.04/44.23 c barrier LP : 0.00 0 0 0.00 - 0.00 0
44.04/44.23 c resolve instable : 0.00 0 0 0.00 -
44.04/44.23 c diving/probing LP: 1.88 332 10639 32.05 5671.89
44.04/44.23 c strong branching : 2.25 65 13917 214.11 6188.13 - - 0
44.04/44.23 c (at root node) : - 65 13917 214.11 -
44.04/44.23 c conflict analysis: 0.03 16 151 9.44 4613.36
44.04/44.23 c B&B Tree :
44.04/44.23 c number of runs : 8
44.04/44.23 c nodes : 1 (0 internal, 1 leaves)
44.04/44.23 c feasible leaves : 0
44.04/44.23 c infeas. leaves : 0
44.04/44.23 c objective leaves : 0
44.04/44.23 c nodes (total) : 8 (0 internal, 8 leaves)
44.04/44.23 c nodes left : 0
44.04/44.23 c max depth : 0
44.04/44.23 c max depth (total): 0
44.04/44.23 c backtracks : 0 (0.0%)
44.04/44.23 c early backtracks : 0 (0.0%)
44.04/44.23 c nodes exc. ref. : 0 (0.0%)
44.04/44.23 c delayed cutoffs : 0
44.04/44.23 c repropagations : 0 (0 domain reductions, 0 cutoffs)
44.04/44.23 c avg switch length: 2.00
44.04/44.23 c switching time : 0.00
44.04/44.23 c Root Node :
44.04/44.23 c First LP value : +2.22216666666667e+06
44.04/44.23 c First LP Iters : 419 (13451.48 Iter/sec)
44.04/44.23 c First LP Time : 0.03
44.04/44.23 c Final Dual Bound : +5.95059000000000e+06
44.04/44.23 c Final Root Iters : 11833
44.04/44.23 c Root LP Estimate : -
44.04/44.23 c Solution :
44.04/44.23 c Solutions found : 10 (7 improvements)
44.04/44.23 c First Solution : +2.27982241000000e+08 (in run 1, after 1 nodes, 2.42 seconds, depth 0, found by <feasjump>)
44.04/44.23 c Gap First Sol. : infinite
44.04/44.23 c Gap Last Sol. : 0.00 %
44.04/44.23 c Primal Bound : +5.95059000000000e+06 (in run 8, after 1 nodes, 44.11 seconds, depth 14, found by <randrounding>)
44.04/44.23 c Dual Bound : +5.95059000000000e+06
44.04/44.23 c Gap : 0.00 %
44.04/44.23 c Integrals : Total Avg%
44.04/44.23 c primal-dual : 1395.21 31.56
44.04/44.23 c primal-ref : - - (not evaluated)
44.04/44.23 c dual-ref : - - (not evaluated)
44.04/44.26 c Time complete: 44.1084.