0.00/0.01 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.01 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.01 c
0.00/0.01 c user parameter file <scip.set> not found - using default parameters
0.00/0.01 c reading problem <HOME/instance-4502128-1751168388.opb>
0.00/0.03 c original problem has 4774 variables (4774 bin, 0 int, 0 impl, 0 cont) and 14869 constraints
0.00/0.03 c problem read in 0.03
0.00/0.03 c No objective function, only one solution is needed.
0.00/0.06 c presolving:
0.00/0.09 c (round 1, fast) 2312 del vars, 2279 del conss, 0 add conss, 559 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 6454 clqs
0.00/0.10 c (round 2, fast) 3955 del vars, 8159 del conss, 0 add conss, 559 chg bounds, 19 chg sides, 23 chg coeffs, 0 upgd conss, 0 impls, 6252 clqs
0.00/0.10 c (round 3, fast) 3955 del vars, 8410 del conss, 0 add conss, 559 chg bounds, 19 chg sides, 23 chg coeffs, 0 upgd conss, 0 impls, 6508 clqs
0.09/0.11 c (0.1s) running MILP presolver
0.09/0.13 c (0.1s) MILP presolver (2 rounds): 0 aggregations, 20 fixings, 0 bound changes
0.09/0.13 c (round 4, medium) 3994 del vars, 8410 del conss, 0 add conss, 559 chg bounds, 19 chg sides, 23 chg coeffs, 0 upgd conss, 0 impls, 6235 clqs
0.09/0.13 c (round 5, fast) 4018 del vars, 8703 del conss, 0 add conss, 559 chg bounds, 19 chg sides, 23 chg coeffs, 0 upgd conss, 0 impls, 6222 clqs
0.09/0.13 c (round 6, fast) 4018 del vars, 8714 del conss, 0 add conss, 559 chg bounds, 19 chg sides, 23 chg coeffs, 0 upgd conss, 0 impls, 6222 clqs
0.09/0.15 c (round 7, exhaustive) 4018 del vars, 8717 del conss, 0 add conss, 559 chg bounds, 19 chg sides, 23 chg coeffs, 6152 upgd conss, 0 impls, 6222 clqs
0.09/0.16 c (round 8, medium) 4018 del vars, 8718 del conss, 22 add conss, 559 chg bounds, 51 chg sides, 104 chg coeffs, 6152 upgd conss, 0 impls, 6276 clqs
0.09/0.17 c (round 9, exhaustive) 4018 del vars, 11843 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6276 clqs
0.09/0.17 c (round 10, fast) 4020 del vars, 11847 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6395 clqs
0.09/0.17 c (round 11, fast) 4023 del vars, 11872 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6366 clqs
0.09/0.17 c (round 12, fast) 4025 del vars, 11896 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6340 clqs
0.09/0.17 c (round 13, fast) 4027 del vars, 11919 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6315 clqs
0.09/0.17 c (round 14, fast) 4028 del vars, 11939 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6314 clqs
0.09/0.17 c (round 15, fast) 4029 del vars, 11949 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6291 clqs
0.09/0.17 c (round 16, fast) 4030 del vars, 11961 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6290 clqs
0.09/0.17 c (round 17, fast) 4031 del vars, 11981 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6267 clqs
0.09/0.17 c (round 18, fast) 4033 del vars, 12002 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6243 clqs
0.09/0.18 c (round 19, fast) 4035 del vars, 12021 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6220 clqs
0.09/0.18 c (round 20, fast) 4037 del vars, 12040 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6197 clqs
0.09/0.18 c (round 21, fast) 4039 del vars, 12044 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6176 clqs
0.09/0.18 c (round 22, fast) 4040 del vars, 12061 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6175 clqs
0.09/0.18 c (round 23, fast) 4041 del vars, 12066 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6156 clqs
0.09/0.18 c (round 24, fast) 4043 del vars, 12080 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6136 clqs
0.09/0.18 c (round 25, fast) 4045 del vars, 12097 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6116 clqs
0.09/0.18 c (round 26, fast) 4046 del vars, 12112 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6115 clqs
0.09/0.18 c (round 27, fast) 4047 del vars, 12117 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6096 clqs
0.09/0.18 c (round 28, fast) 4049 del vars, 12132 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6079 clqs
0.09/0.18 c (round 29, fast) 4051 del vars, 12145 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6062 clqs
0.09/0.18 c (round 30, fast) 4053 del vars, 12158 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6045 clqs
0.09/0.18 c (round 31, fast) 4055 del vars, 12171 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6031 clqs
0.09/0.19 c (round 32, fast) 4056 del vars, 12182 del conss, 1013 add conss, 559 chg bounds, 53 chg sides, 111 chg coeffs, 6152 upgd conss, 0 impls, 6030 clqs
0.09/0.19 c (round 33, medium) 4067 del vars, 12198 del conss, 1013 add conss, 559 chg bounds, 56 chg sides, 114 chg coeffs, 6152 upgd conss, 0 impls, 5969 clqs
0.09/0.19 c (round 34, fast) 4070 del vars, 12211 del conss, 1017 add conss, 559 chg bounds, 56 chg sides, 114 chg coeffs, 6152 upgd conss, 0 impls, 5953 clqs
0.09/0.19 c (round 35, fast) 4070 del vars, 12222 del conss, 1017 add conss, 559 chg bounds, 56 chg sides, 114 chg coeffs, 6152 upgd conss, 0 impls, 5953 clqs
0.09/0.19 c (round 36, fast) 4071 del vars, 12228 del conss, 1017 add conss, 559 chg bounds, 56 chg sides, 114 chg coeffs, 6152 upgd conss, 0 impls, 5947 clqs
0.09/0.19 c (round 37, exhaustive) 4071 del vars, 12228 del conss, 1017 add conss, 559 chg bounds, 56 chg sides, 229 chg coeffs, 6152 upgd conss, 0 impls, 5947 clqs
0.09/0.20 c (round 38, medium) 4071 del vars, 12230 del conss, 1019 add conss, 559 chg bounds, 60 chg sides, 243 chg coeffs, 6152 upgd conss, 0 impls, 6045 clqs
0.09/0.20 c (round 39, exhaustive) 4071 del vars, 12230 del conss, 1019 add conss, 559 chg bounds, 60 chg sides, 266 chg coeffs, 6156 upgd conss, 0 impls, 6045 clqs
0.09/0.20 c (round 40, medium) 4074 del vars, 12233 del conss, 1019 add conss, 559 chg bounds, 60 chg sides, 266 chg coeffs, 6156 upgd conss, 0 impls, 6057 clqs
0.20/0.21 c (round 41, exhaustive) 4075 del vars, 12235 del conss, 1020 add conss, 559 chg bounds, 60 chg sides, 274 chg coeffs, 6156 upgd conss, 0 impls, 6056 clqs
0.58/0.68 c (round 42, exhaustive) 4100 del vars, 12235 del conss, 1020 add conss, 559 chg bounds, 60 chg sides, 277 chg coeffs, 6157 upgd conss, 0 impls, 36773 clqs
0.58/0.68 c (round 43, fast) 4109 del vars, 12314 del conss, 1020 add conss, 559 chg bounds, 60 chg sides, 288 chg coeffs, 6157 upgd conss, 0 impls, 36271 clqs
0.58/0.69 c (round 44, exhaustive) 4109 del vars, 12395 del conss, 1101 add conss, 559 chg bounds, 60 chg sides, 317 chg coeffs, 6157 upgd conss, 0 impls, 36271 clqs
0.98/1.10 c (round 45, exhaustive) 4136 del vars, 12395 del conss, 1101 add conss, 559 chg bounds, 60 chg sides, 317 chg coeffs, 6157 upgd conss, 0 impls, 37550 clqs
0.98/1.10 c (round 46, fast) 4153 del vars, 12497 del conss, 1101 add conss, 559 chg bounds, 60 chg sides, 337 chg coeffs, 6157 upgd conss, 0 impls, 36983 clqs
1.08/1.11 c (round 47, exhaustive) 4153 del vars, 12510 del conss, 1114 add conss, 559 chg bounds, 60 chg sides, 346 chg coeffs, 6157 upgd conss, 0 impls, 36983 clqs
1.08/1.15 c (1.1s) probing: 1000/2102 (47.6%) - 46 fixings, 7 aggregations, 263259 implications, 0 bound changes
1.88/1.98 c (2.0s) probing: 2000/2102 (95.1%) - 52 fixings, 11 aggregations, 473110 implications, 0 bound changes
1.98/2.02 c (2.0s) probing cycle finished: starting next cycle
2.77/2.82 c (round 48, exhaustive) 4167 del vars, 12510 del conss, 1114 add conss, 559 chg bounds, 60 chg sides, 347 chg coeffs, 6157 upgd conss, 0 impls, 38113 clqs
2.77/2.82 c (round 49, fast) 4167 del vars, 12544 del conss, 1114 add conss, 559 chg bounds, 60 chg sides, 353 chg coeffs, 6157 upgd conss, 0 impls, 38113 clqs
2.77/2.84 c (round 50, exhaustive) 4167 del vars, 12552 del conss, 1122 add conss, 559 chg bounds, 60 chg sides, 378 chg coeffs, 6157 upgd conss, 0 impls, 38113 clqs
2.77/2.88 c (2.9s) probing: 1000/2012 (49.7%) - 53 fixings, 13 aggregations, 688062 implications, 0 bound changes
3.47/3.52 c (3.5s) probing: 1791/2012 (89.0%) - 53 fixings, 13 aggregations, 850187 implications, 0 bound changes
3.47/3.52 c (3.5s) probing aborted: 1000/1000 successive useless probings
3.47/3.52 c (3.5s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
3.47/3.54 c (3.5s) no symmetry present (symcode time: 0.00)
3.47/3.54 c presolving (51 rounds: 51 fast, 17 medium, 12 exhaustive):
3.47/3.54 c 4167 deleted vars, 12552 deleted constraints, 1122 added constraints, 559 tightened bounds, 0 added holes, 61 changed sides, 386 changed coefficients
3.47/3.54 c 0 implications, 38774 cliques
3.47/3.54 c presolved problem has 2010 variables (2010 bin, 0 int, 0 impl, 0 cont) and 3422 constraints
3.47/3.54 c 278 constraints of type <knapsack>
3.47/3.54 c 2449 constraints of type <setppc>
3.47/3.54 c 695 constraints of type <and>
3.47/3.54 c transformed objective value is always integral (scale: 1)
3.47/3.54 c Presolving Time: 3.48
3.47/3.54 c - non default parameters ----------------------------------------------------------------------
3.47/3.54 c # SCIP version 10.0.0
3.47/3.54 c
3.47/3.54 c # maximal time in seconds to run
3.47/3.54 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
3.47/3.54 c limits/time = 3596.997017
3.47/3.54 c
3.47/3.54 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
3.47/3.54 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
3.47/3.54 c limits/memory = 27900
3.47/3.54 c
3.47/3.54 c # solving stops, if the given number of solutions were found; this limit is first checked in presolving (-1: no limit)
3.47/3.54 c # [type: int, advanced: FALSE, range: [-1,2147483647], default: -1]
3.47/3.54 c limits/solutions = 1
3.47/3.54 c
3.47/3.54 c # bitset describing used symmetry handling technique: (0: off; 1: constraint-based (orbitopes and/or symresacks); 2: orbital fixing; 3: orbitopes and orbital fixing; 4: Schreier Sims cuts; 5: Schreier Sims cuts and orbitopes; 6: Schreier Sims cuts and orbital fixing; 7: Schreier Sims cuts, orbitopes, and orbital fixing) See type_symmetry.h.
3.47/3.54 c # [type: int, advanced: FALSE, range: [0,7], default: 7]
3.47/3.54 c misc/usesymmetry = 3
3.47/3.54 c
3.47/3.54 c # belongs reading time to solving time?
3.47/3.54 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
3.47/3.54 c timing/reading = TRUE
3.47/3.54 c
3.47/3.54 c # Should we check whether the components of the symmetry group can be handled by double lex matrices?
3.47/3.54 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
3.47/3.54 c propagating/symmetry/detectdoublelex = FALSE
3.47/3.54 c
3.47/3.54 c # Should we try to detect symmetric subgroups of the symmetry group on binary variables?
3.47/3.54 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
3.47/3.54 c propagating/symmetry/detectsubgroups = FALSE
3.47/3.54 c
3.47/3.54 c # Type of symmetries that shall be computed?
3.47/3.54 c # [type: int, advanced: TRUE, range: [0,1], default: 0]
3.47/3.54 c propagating/symmetry/symtype = 1
3.47/3.54 c
3.47/3.54 c # Should components consisting of a single full reflection be handled?
3.47/3.54 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
3.47/3.54 c propagating/symmetry/usesimplesgncomp = FALSE
3.47/3.54 c
3.47/3.54 c -----------------------------------------------------------------------------------------------
3.47/3.54 c start solving
3.47/3.54 c
3.87/3.91 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
3.87/3.91 c 3.9s| 1 | 0 | 2812 | - | 54M | 0 |2010 |3456 |4117 | 0 | 0 | 33 | 0 | 0.000000e+00 | -- | Inf | unknown
6.76/6.85 c 6.8s| 1 | 0 | 15386 | - | 57M | 0 |2010 |3670 |4174 | 57 | 1 | 47 | 0 | 0.000000e+00 | -- | Inf | unknown
7.36/7.46 c 7.5s| 1 | 0 | 16434 | - | 59M | 0 |2010 |3671 |4211 | 94 | 2 | 48 | 0 | 0.000000e+00 | -- | Inf | unknown
7.96/8.04 c 8.0s| 1 | 0 | 17101 | - | 60M | 0 |2010 |3672 |4241 | 124 | 3 | 49 | 0 | 0.000000e+00 | -- | Inf | unknown
8.56/8.61 c 8.6s| 1 | 0 | 17604 | - | 61M | 0 |2010 |3673 |4259 | 142 | 4 | 50 | 0 | 0.000000e+00 | -- | Inf | unknown
9.06/9.16 c 9.1s| 1 | 0 | 17938 | - | 62M | 0 |2010 |3674 |4278 | 161 | 5 | 51 | 0 | 0.000000e+00 | -- | Inf | unknown
9.65/9.72 c 9.7s| 1 | 0 | 18218 | - | 63M | 0 |2010 |3675 |4289 | 172 | 6 | 52 | 0 | 0.000000e+00 | -- | Inf | unknown
10.15/10.29 c 10.3s| 1 | 0 | 18445 | - | 64M | 0 |2010 |3676 |4301 | 184 | 7 | 53 | 0 | 0.000000e+00 | -- | Inf | unknown
10.75/10.89 c 10.9s| 1 | 0 | 18846 | - | 65M | 0 |2010 |3678 |4306 | 189 | 8 | 55 | 0 | 0.000000e+00 | -- | Inf | unknown
11.35/11.47 c 11.5s| 1 | 0 | 19207 | - | 65M | 0 |2010 |3679 |4316 | 199 | 9 | 56 | 0 | 0.000000e+00 | -- | Inf | unknown
11.95/12.06 c 12.1s| 1 | 0 | 19494 | - | 66M | 0 |2010 |3680 |4324 | 207 | 10 | 57 | 0 | 0.000000e+00 | -- | Inf | unknown
12.14/12.20 c 12.2s| 1 | 0 | 19756 | - | 66M | 0 |2010 |3681 |4339 | 222 | 11 | 58 | 0 | 0.000000e+00 | -- | Inf | unknown
16.43/16.50 c 16.5s| 1 | 2 | 24463 | - | 66M | 0 |2010 |3689 |4339 | 222 | 11 | 66 | 11 | 0.000000e+00 | -- | Inf | unknown
100.50/100.88 c 101s| 100 | 34 |361765 |3454.6 | 79M | 20 |2010 |4010 |4659 |2991 | 0 | 387 | 11 | 0.000000e+00 | -- | Inf | 24.32%
124.74/125.18 c 125s| 200 | 38 |483408 |2329.9 | 84M | 20 |2010 |4236 |4730 |3939 | 2 | 614 | 11 | 0.000000e+00 | -- | Inf | 24.85%
155.75/156.22 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
155.75/156.22 c 156s| 300 | 41 |648221 |2101.9 | 97M | 20 |2010 |4433 |4741 |5569 | 1 | 812 | 11 | 0.000000e+00 | -- | Inf | 25.51%
180.49/181.10 c 181s| 400 | 44 |787555 |1924.3 | 107M | 20 |2010 |4616 |4731 |7057 | 2 | 997 | 11 | 0.000000e+00 | -- | Inf | 25.90%
206.52/207.19 c 207s| 500 | 38 |933557 |1831.3 | 118M | 20 |2010 |4780 | 0 |8382 | 0 |1163 | 11 | 0.000000e+00 | -- | Inf | 26.50%
227.96/228.69 c 229s| 600 | 36 | 1058k|1733.5 | 119M | 20 |2010 |5034 | 0 |9112 | 0 |1426 | 11 | 0.000000e+00 | -- | Inf | 26.59%
252.00/252.72 c 253s| 700 | 39 | 1194k|1680.5 | 122M | 20 |2010 |5257 |4752 | 10k| 2 |1662 | 11 | 0.000000e+00 | -- | Inf | 26.66%
256.08/256.89 c * 257s| 717 | 0 | 1218k|1674.3 | LP | 20 |2010 |5280 |4820 | 10k| 0 |1686 | 11 | 0.000000e+00 | 0.000000e+00 | 0.00%| 100.00%
256.08/256.90 c
256.08/256.90 c SCIP Status : problem is solved [optimal solution found]
256.08/256.90 c Solving Time (sec) : 256.89
256.08/256.90 c Solving Nodes : 717
256.08/256.90 c Primal Bound : +0.00000000000000e+00 (1 solutions)
256.08/256.90 c Dual Bound : +0.00000000000000e+00
256.08/256.90 c Gap : 0.00 %
256.18/256.90 s SATISFIABLE
256.18/256.90 v x4774 -x4773 -x4772 -x4771 -x4770 -x4769 -x4768 -x4767 -x4766 -x4765 -x4764 -x4763 -x4762 -x4761 -x4760 -x4759 -x4758 -x4757 -x4756
256.18/256.90 v -x4755 -x4754 -x4753 -x4752 -x4751 -x4750 -x4749 -x4748 -x4747 -x4746 -x4745 -x4744 -x4743 -x4742 -x4741 -x4740 -x4739 -x4738
256.18/256.90 v -x4737 -x4736 -x4735 -x4734 -x4733 -x4732 -x4731 -x4730 -x4729 -x4728 -x4727 -x4726 -x4725 -x4724 -x4723 -x4722 -x4721
256.18/256.90 v -x4720 -x4719 -x4718 -x4717 -x4716 -x4715 -x4714 -x4713 -x4712 -x4711 -x4710 -x4709 -x4708 -x4707 -x4706 -x4705 -x4704 -x4703
256.18/256.90 v -x4702 -x4701 -x4700 -x4699 -x4698 -x4697 x4696 x4695 x4694 -x4693 -x4692 -x4691 -x4690 -x4689 -x4688 -x4687 -x4686 -x4685 -x4684
256.18/256.90 v -x4683 -x4682 -x4681 -x4680 -x4679 -x4678 -x4677 -x4676 -x4675 -x4674 -x4673 -x4672 -x4671 -x4670 -x4669 -x4668 -x4667
256.18/256.90 v -x4666 -x4665 -x4664 -x4663 -x4662 -x4661 -x4660 -x4659 -x4658 -x4657 -x4656 -x4655 -x4654 -x4653 -x4652 -x4651 -x4650 -x4649
256.18/256.90 v -x4648 -x4647 -x4646 -x4645 -x4644 -x4643 -x4642 -x4641 -x4640 -x4639 -x4638 -x4637 -x4636 -x4635 -x4634 -x4633 -x4632 -x4631
256.18/256.90 v -x4630 -x4629 -x4628 -x4627 -x4626 -x4625 -x4624 -x4623 -x4622 -x4621 -x4620 -x4619 -x4618 -x4617 -x4616 -x4615 -x4614 -x4613
256.18/256.90 v -x4612 -x4611 -x4610 -x4609 -x4608 -x4607 -x4606 x4605 x4604 x4603 -x4602 -x4601 -x4600 -x4599 -x4598 -x4597 -x4596 -x4595
256.18/256.90 v -x4594 -x4593 -x4592 -x4591 -x4590 -x4589 -x4588 -x4587 -x4586 -x4585 -x4584 -x4583 -x4582 -x4581 -x4580 -x4579 -x4578 -x4577
256.18/256.90 v -x4576 -x4575 -x4574 -x4573 -x4572 -x4571 -x4570 -x4569 -x4568 -x4567 -x4566 -x4565 -x4564 -x4563 -x4562 -x4561 -x4560 -x4559
256.18/256.90 v -x4558 -x4557 -x4556 -x4555 -x4554 -x4553 -x4552 -x4551 -x4550 -x4549 -x4548 -x4547 -x4546 -x4545 -x4544 -x4543 -x4542 -x4541
256.18/256.90 v -x4540 x4539 x4538 x4537 x4536 x4535 -x4534 -x4533 -x4532 -x4531 -x4530 -x4529 -x4528 -x4527 -x4526 -x4525 -x4524 -x4523
256.18/256.90 v -x4522 -x4521 -x4520 -x4519 -x4518 -x4517 -x4516 -x4515 -x4514 -x4513 -x4512 -x4511 -x4510 -x4509 -x4508 -x4507 -x4506 -x4505
256.18/256.90 v -x4504 -x4503 -x4502 -x4501 -x4500 -x4499 -x4498 -x4497 -x4496 -x4495 -x4494 -x4493 -x4492 -x4491 -x4490 -x4489 -x4488 -x4487
256.18/256.90 v -x4486 -x4485 -x4484 -x4483 -x4482 -x4481 -x4480 -x4479 -x4478 -x4477 -x4476 -x4475 -x4474 -x4473 -x4472 -x4471 -x4470 -x4469
256.18/256.90 v -x4468 -x4467 -x4466 -x4465 -x4464 -x4463 -x4462 -x4461 -x4460 -x4459 -x4458 -x4457 -x4456 -x4455 -x4454 -x4453 -x4452 x4451
256.18/256.90 v -x4450 -x4449 -x4448 -x4447 -x4446 -x4445 -x4444 -x4443 -x4442 -x4441 -x4440 -x4439 -x4438 -x4437 -x4436 -x4435 -x4434 -x4433
256.18/256.90 v -x4432 -x4431 -x4430 -x4429 -x4428 -x4427 -x4426 -x4425 -x4424 -x4423 -x4422 -x4421 -x4420 -x4419 -x4418 -x4417 -x4416 -x4415
256.18/256.90 v -x4414 -x4413 -x4412 -x4411 -x4410 -x4409 -x4408 -x4407 -x4406 -x4405 -x4404 -x4403 -x4402 -x4401 -x4400 -x4399 -x4398 -x4397
256.18/256.90 v -x4396 -x4395 -x4394 -x4393 -x4392 -x4391 -x4390 -x4389 -x4388 -x4387 -x4386 -x4385 -x4384 -x4383 -x4382 -x4381 -x4380
256.18/256.90 v -x4379 -x4378 -x4377 -x4376 -x4375 -x4374 -x4373 -x4372 -x4371 -x4370 -x4369 -x4368 x4367 -x4366 -x4365 -x4364 -x4363 -x4362
256.18/256.90 v -x4361 -x4360 -x4359 -x4358 -x4357 -x4356 -x4355 -x4354 -x4353 -x4352 -x4351 -x4350 -x4349 -x4348 -x4347 -x4346 -x4345 -x4344
256.18/256.90 v -x4343 -x4342 -x4341 -x4340 -x4339 -x4338 -x4337 -x4336 -x4335 -x4334 -x4333 -x4332 -x4331 -x4330 -x4329 -x4328 -x4327 -x4326
256.18/256.90 v -x4325 -x4324 -x4323 -x4322 -x4321 -x4320 -x4319 -x4318 -x4317 -x4316 -x4315 -x4314 -x4313 -x4312 -x4311 -x4310 -x4309 x4308
256.18/256.90 v x4307 x4306 x4305 x4304 x4303 x4302 x4301 -x4300 -x4299 -x4298 -x4297 -x4296 -x4295 -x4294 -x4293 -x4292 -x4291 -x4290 -x4289
256.18/256.90 v -x4288 -x4287 -x4286 -x4285 -x4284 -x4283 -x4282 -x4281 -x4280 -x4279 -x4278 -x4277 -x4276 -x4275 -x4274 -x4273 -x4272 -x4271
256.18/256.90 v -x4270 -x4269 -x4268 -x4267 -x4266 -x4265 -x4264 -x4263 -x4262 -x4261 -x4260 -x4259 -x4258 -x4257 -x4256 -x4255 -x4254 -x4253
256.18/256.90 v -x4252 -x4251 -x4250 -x4249 -x4248 -x4247 -x4246 -x4245 -x4244 -x4243 -x4242 -x4241 -x4240 -x4239 -x4238 -x4237 -x4236 -x4235
256.18/256.90 v -x4234 -x4233 -x4232 -x4231 -x4230 -x4229 -x4228 -x4227 -x4226 -x4225 -x4224 -x4223 -x4222 -x4221 -x4220 -x4219 -x4218
256.18/256.90 v x4217 x4216 x4215 x4214 x4213 -x4212 -x4211 -x4210 -x4209 -x4208 -x4207 -x4206 -x4205 -x4204 -x4203 -x4202 -x4201 -x4200 -x4199
256.18/256.90 v -x4198 -x4197 -x4196 -x4195 -x4194 -x4193 -x4192 -x4191 -x4190 -x4189 -x4188 -x4187 -x4186 -x4185 -x4184 -x4183 -x4182 -x4181
256.18/256.90 v -x4180 -x4179 -x4178 -x4177 -x4176 -x4175 -x4174 -x4173 -x4172 -x4171 -x4170 -x4169 -x4168 -x4167 -x4166 -x4165 -x4164 -x4163
256.18/256.90 v -x4162 -x4161 -x4160 -x4159 -x4158 -x4157 -x4156 -x4155 -x4154 -x4153 -x4152 -x4151 -x4150 -x4149 -x4148 -x4147 x4146 x4145
256.18/256.90 v x4144 -x4143 -x4142 -x4141 -x4140 -x4139 -x4138 -x4137 -x4136 -x4135 -x4134 -x4133 -x4132 -x4131 -x4130 -x4129 -x4128 -x4127
256.18/256.90 v -x4126 -x4125 -x4124 -x4123 -x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116 -x4115 -x4114 -x4113 -x4112 -x4111 -x4110 -x4109
256.18/256.90 v -x4108 -x4107 -x4106 -x4105 -x4104 -x4103 -x4102 -x4101 -x4100 -x4099 -x4098 -x4097 -x4096 -x4095 -x4094 -x4093 -x4092 -x4091
256.18/256.90 v -x4090 -x4089 -x4088 -x4087 -x4086 -x4085 -x4084 -x4083 -x4082 -x4081 -x4080 -x4079 -x4078 -x4077 -x4076 -x4075 -x4074
256.18/256.90 v -x4073 -x4072 -x4071 -x4070 -x4069 -x4068 -x4067 -x4066 -x4065 -x4064 -x4063 -x4062 -x4061 -x4060 -x4059 x4058 x4057 x4056 x4055
256.18/256.90 v x4054 x4053 x4052 -x4051 -x4050 -x4049 -x4048 -x4047 -x4046 -x4045 -x4044 -x4043 -x4042 -x4041 -x4040 -x4039 -x4038 -x4037
256.18/256.90 v -x4036 -x4035 -x4034 -x4033 -x4032 -x4031 -x4030 -x4029 -x4028 -x4027 -x4026 -x4025 -x4024 -x4023 -x4022 -x4021 -x4020 -x4019
256.18/256.90 v -x4018 -x4017 -x4016 -x4015 -x4014 -x4013 -x4012 -x4011 -x4010 -x4009 -x4008 -x4007 -x4006 -x4005 -x4004 -x4003 -x4002 -x4001
256.18/256.90 v -x4000 -x3999 -x3998 -x3997 -x3996 -x3995 -x3994 -x3993 -x3992 -x3991 -x3990 -x3989 -x3988 -x3987 -x3986 -x3985 -x3984 -x3983
256.18/256.90 v -x3982 -x3981 -x3980 -x3979 -x3978 -x3977 -x3976 -x3975 -x3974 -x3973 -x3972 -x3971 -x3970 -x3969 -x3968 -x3967 -x3966 -x3965
256.18/256.90 v -x3964 -x3963 -x3962 -x3961 x3960 x3959 x3958 x3957 x3956 -x3955 -x3954 -x3953 -x3952 -x3951 -x3950 -x3949 -x3948 -x3947
256.18/256.90 v -x3946 -x3945 -x3944 -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937 -x3936 -x3935 -x3934 -x3933 -x3932 -x3931 -x3930 -x3929
256.18/256.90 v -x3928 -x3927 -x3926 -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917 -x3916 -x3915 -x3914 -x3913 -x3912 -x3911
256.18/256.90 v -x3910 -x3909 -x3908 -x3907 -x3906 -x3905 x3904 x3903 x3902 x3901 x3900 x3899 x3898 -x3897 -x3896 -x3895 -x3894 -x3893 -x3892
256.18/256.90 v -x3891 -x3890 -x3889 -x3888 -x3887 -x3886 -x3885 -x3884 -x3883 -x3882 -x3881 -x3880 -x3879 -x3878 -x3877 -x3876 -x3875 -x3874
256.18/256.90 v -x3873 -x3872 -x3871 -x3870 -x3869 -x3868 -x3867 -x3866 -x3865 -x3864 -x3863 -x3862 -x3861 -x3860 -x3859 -x3858 -x3857
256.18/256.90 v -x3856 -x3855 -x3854 -x3853 -x3852 -x3851 -x3850 -x3849 -x3848 -x3847 -x3846 -x3845 -x3844 -x3843 -x3842 -x3841 -x3840 -x3839
256.18/256.90 v -x3838 -x3837 -x3836 -x3835 x3834 x3833 x3832 x3831 x3830 x3829 -x3828 -x3827 -x3826 -x3825 -x3824 -x3823 -x3822 -x3821 -x3820
256.18/256.90 v -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813 -x3812 -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805 -x3804 -x3803 -x3802
256.18/256.90 v -x3801 -x3800 -x3799 -x3798 -x3797 -x3796 -x3795 -x3794 -x3793 -x3792 -x3791 -x3790 -x3789 -x3788 -x3787 -x3786 -x3785 -x3784
256.18/256.90 v -x3783 -x3782 -x3781 -x3780 -x3779 -x3778 -x3777 -x3776 -x3775 -x3774 -x3773 -x3772 -x3771 -x3770 -x3769 -x3768 -x3767 -x3766
256.18/256.90 v -x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758 -x3757 -x3756 -x3755 -x3754 -x3753 -x3752 -x3751 -x3750 -x3749
256.18/256.90 v -x3748 -x3747 -x3746 -x3745 -x3744 -x3743 -x3742 -x3741 -x3740 -x3739 -x3738 -x3737 -x3736 -x3735 -x3734 -x3733 -x3732 -x3731
256.18/256.90 v -x3730 -x3729 -x3728 -x3727 -x3726 x3725 x3724 x3723 x3722 x3721 x3720 x3719 x3718 x3717 x3716 -x3715 -x3714 -x3713 -x3712 -x3711
256.18/256.90 v -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703 -x3702 -x3701 -x3700 -x3699 -x3698 -x3697 -x3696 -x3695 -x3694
256.18/256.90 v -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677 -x3676
256.18/256.90 v -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667 x3666 x3665 x3664 x3663 x3662 -x3661 -x3660 -x3659 -x3658 -x3657
256.18/256.90 v -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641 -x3640 -x3639
256.18/256.90 v -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622 -x3621
256.18/256.90 v -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605 -x3604
256.18/256.90 v -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 x3597 x3596 x3595 x3594 x3593 x3592 x3591 x3590 -x3589 -x3588 -x3587 -x3586 -x3585
256.18/256.90 v -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569 -x3568 -x3567
256.18/256.90 v -x3566 -x3565 -x3564 -x3563 -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549
256.18/256.90 v -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531
256.18/256.90 v -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3513
256.18/256.90 v -x3512 -x3511 -x3510 -x3509 -x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497 -x3496 -x3495
256.18/256.90 v -x3494 x3493 x3492 x3491 x3490 x3489 x3488 x3487 x3486 x3485 -x3484 -x3483 -x3482 -x3481 -x3480 -x3479 -x3478 -x3477 -x3476
256.18/256.90 v -x3475 -x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458
256.18/256.90 v -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441 -x3440
256.18/256.90 v -x3439 -x3438 -x3437 -x3436 x3435 x3434 x3433 x3432 x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423 -x3422
256.18/256.90 v -x3421 -x3420 -x3419 -x3418 -x3417 -x3416 -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407 -x3406 -x3405 -x3404
256.18/256.90 v -x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387 -x3386
256.18/256.90 v -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368
256.18/256.90 v -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 -x3361 -x3360 -x3359 x3358 x3357 x3356 x3355 x3354 x3353 -x3352 -x3351 -x3350
256.18/256.90 v -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332
256.18/256.90 v -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 -x3317 -x3316 -x3315 -x3314
256.18/256.90 v -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297 -x3296
256.18/256.90 v -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278
256.18/256.90 v -x3277 -x3276 -x3275 -x3274 x3273 x3272 x3271 x3270 x3269 x3268 x3267 -x3266 -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259
256.18/256.90 v -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244 -x3243 -x3242 -x3241
256.18/256.90 v -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224
256.18/256.90 v -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206
256.18/256.90 v -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 x3189 x3188
256.18/256.90 v x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170
256.18/256.90 v -x3169 -x3168 -x3167 -x3166 -x3165 -x3164 -x3163 -x3162 -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152
256.18/256.90 v -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136 -x3135 -x3134
256.18/256.90 v -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 x3122 x3121 x3120 x3119 x3118 x3117 x3116 x3115
256.18/256.90 v x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098 -x3097
256.18/256.90 v -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079
256.18/256.90 v -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 -x3061
256.18/256.90 v -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043
256.18/256.90 v -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027 -x3026 -x3025
256.18/256.90 v -x3024 -x3023 x3022 x3021 x3020 x3019 x3018 x3017 x3016 x3015 x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007 -x3006
256.18/256.90 v -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989 -x2988
256.18/256.90 v -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973 -x2972 -x2971
256.18/256.90 v -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 -x2953
256.18/256.90 v -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 x2945 x2944 x2943 x2942 x2941 x2940 x2939 x2938 x2937 -x2936 -x2935 -x2934
256.18/256.90 v -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916
256.18/256.90 v -x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898
256.18/256.90 v -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880
256.18/256.90 v -x2879 -x2878 x2877 x2876 x2875 x2874 x2873 x2872 x2871 x2870 x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862 -x2861
256.18/256.90 v -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844 -x2843
256.18/256.90 v -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827 -x2826 -x2825
256.18/256.90 v -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 x2813 x2812 x2811 x2810 x2809 x2808 x2807 x2806
256.18/256.90 v x2805 x2804 -x2803 -x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791 -x2790 -x2789 -x2788
256.18/256.90 v -x2787 -x2786 -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 -x2772 -x2771 -x2770
256.18/256.90 v -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752
256.18/256.90 v -x2751 -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 -x2739 -x2738 -x2737 -x2736 -x2735 -x2734
256.18/256.90 v -x2733 -x2732 -x2731 -x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 -x2717
256.18/256.90 v -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 x2705 x2704 x2703 x2702 x2701 x2700 x2699 -x2698
256.18/256.90 v -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682 -x2681 -x2680
256.18/256.90 v -x2679 -x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662
256.18/256.90 v -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647 -x2646 -x2645 -x2644
256.18/256.90 v -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 x2628 x2627 x2626
256.18/256.90 v x2625 x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609 -x2608
256.18/256.90 v -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593 -x2592 -x2591 -x2590
256.18/256.90 v -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572
256.18/256.90 v -x2571 -x2570 -x2569 -x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555 -x2554
256.18/256.90 v -x2553 -x2552 x2551 x2550 x2549 x2548 x2547 x2546 x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537 -x2536 -x2535
256.18/256.90 v -x2534 -x2533 -x2532 -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518 -x2517
256.18/256.90 v -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500
256.18/256.90 v -x2499 -x2498 -x2497 -x2496 -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 -x2483 -x2482
256.18/256.90 v -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 -x2468 x2467 -x2466 -x2465 -x2464
256.18/256.90 v -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446
256.18/256.90 v -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428
256.18/256.90 v -x2427 -x2426 -x2425 -x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413 -x2412 -x2411 -x2410
256.18/256.90 v -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395 -x2394 -x2393 -x2392
256.18/256.90 v -x2391 x2390 x2389 x2388 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373
256.18/256.90 v -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357 -x2356 -x2355
256.18/256.90 v -x2354 -x2353 -x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341 -x2340 -x2339 -x2338 -x2337
256.18/256.90 v -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 -x2321 -x2320 -x2319
256.18/256.90 v -x2318 -x2317 -x2316 -x2315 -x2314 -x2313 -x2312 -x2311 x2310 x2309 x2308 x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301
256.18/256.90 v -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283
256.18/256.90 v -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268 -x2267 -x2266 -x2265
256.18/256.90 v -x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248 -x2247
256.18/256.90 v -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 x2233 x2232 x2231 x2230 x2229
256.18/256.90 v x2228 x2227 x2226 x2225 x2224 x2223 x2222 x2221 x2220 x2219 x2218 x2217 x2216 -x2215 -x2214 -x2213 -x2212 -x2211 -x2210 -x2209
256.18/256.90 v -x2208 -x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 -x2195 -x2194 -x2193 -x2192 -x2191
256.18/256.90 v -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178 -x2177 -x2176 -x2175 -x2174 -x2173
256.18/256.90 v -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161 -x2160 -x2159 -x2158 -x2157 x2156 x2155
256.18/256.90 v x2154 x2153 x2152 x2151 x2150 x2149 x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139 -x2138 -x2137 -x2136
256.18/256.90 v -x2135 -x2134 -x2133 -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122 -x2121 -x2120 -x2119
256.18/256.90 v -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104 -x2103 -x2102 -x2101
256.18/256.90 v -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089 -x2088 -x2087 -x2086 -x2085 -x2084 -x2083
256.18/256.90 v -x2082 -x2081 -x2080 x2079 x2078 x2077 x2076 x2075 x2074 x2073 x2072 x2071 x2070 x2069 x2068 x2067 x2066 x2065 x2064 -x2063
256.18/256.90 v -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 -x2046 -x2045
256.18/256.90 v -x2044 -x2043 -x2042 -x2041 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032 -x2031 -x2030 -x2029 -x2028 -x2027
256.18/256.90 v -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 -x2018 -x2017 -x2016 -x2015 -x2014 -x2013 -x2012 -x2011 -x2010 -x2009
256.18/256.90 v -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 x2002 x2001 x2000 x1999 x1998 x1997 x1996 x1995 x1994 x1993 x1992 x1991 x1990 x1989
256.18/256.90 v x1988 x1987 x1986 x1985 x1984 x1983 x1982 x1981 x1980 -x1979 -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970
256.18/256.90 v -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952
256.18/256.90 v -x1951 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934
256.18/256.90 v -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 x1925 x1924 x1923 x1922 x1921 x1920 x1919 x1918 x1917 x1916 x1915
256.18/256.90 v x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 -x1906 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897
256.18/256.90 v -x1896 -x1895 -x1894 -x1893 -x1892 -x1891 -x1890 -x1889 -x1888 -x1887 -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879
256.18/256.90 v -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861
256.18/256.90 v -x1860 -x1859 -x1858 -x1857 -x1856 -x1855 -x1854 -x1853 -x1852 -x1851 -x1850 -x1849 x1848 x1847 x1846 x1845 x1844 x1843
256.18/256.90 v x1842 x1841 x1840 x1839 x1838 x1837 x1836 x1835 x1834 x1833 x1832 x1831 x1830 x1829 x1828 x1827 x1826 -x1825 -x1824 -x1823 -x1822
256.18/256.90 v -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x1815 -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804
256.18/256.90 v -x1803 -x1802 -x1801 -x1800 -x1799 -x1798 -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787
256.18/256.90 v -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780 -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 x1771 x1770 x1769 x1768
256.18/256.90 v x1767 x1766 x1765 x1764 x1763 x1762 x1761 x1760 x1759 x1758 x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749
256.18/256.90 v -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742 -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735 -x1734 -x1733 -x1732 -x1731
256.18/256.90 v -x1730 -x1729 -x1728 -x1727 -x1726 -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713
256.18/256.90 v -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705 -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695
256.18/256.90 v x1694 x1693 x1692 x1691 x1690 x1689 x1688 x1687 x1686 x1685 x1684 x1683 x1682 x1681 x1680 x1679 x1678 x1677 x1676 x1675 x1674
256.18/256.90 v x1673 x1672 x1671 x1670 x1669 x1668 x1667 x1666 x1665 -x1664 -x1663 -x1662 -x1661 -x1660 -x1659 -x1658 -x1657 -x1656 -x1655
256.18/256.90 v -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 -x1648 -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637
256.18/256.90 v -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619
256.18/256.90 v -x1618 x1617 x1616 x1615 x1614 x1613 x1612 x1611 x1610 x1609 x1608 x1607 x1606 x1605 x1604 x1603 x1602 x1601 x1600 x1599
256.18/256.90 v x1598 x1597 x1596 x1595 x1594 x1593 x1592 x1591 x1590 x1589 x1588 x1587 x1586 x1585 x1584 x1583 x1582 x1581 x1580 x1579 x1578
256.18/256.90 v x1577 x1576 x1575 x1574 x1573 x1572 x1571 x1570 x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 -x1559
256.18/256.90 v -x1558 -x1557 -x1556 -x1555 -x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541
256.18/256.90 v x1540 x1539 x1538 x1537 x1536 x1535 x1534 x1533 x1532 x1531 x1530 x1529 x1528 x1527 x1526 x1525 x1524 x1523 x1522 x1521 x1520
256.18/256.90 v x1519 x1518 x1517 x1516 x1515 x1514 x1513 x1512 x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502 -x1501
256.18/256.90 v -x1500 -x1499 -x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485 -x1484 -x1483
256.18/256.90 v -x1482 -x1481 -x1480 -x1479 -x1478 -x1477 -x1476 -x1475 -x1474 -x1473 -x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465
256.18/256.90 v -x1464 x1463 x1462 x1461 x1460 x1459 x1458 x1457 x1456 x1455 x1454 x1453 x1452 x1451 x1450 x1449 x1448 x1447 x1446 x1445
256.18/256.90 v x1444 x1443 x1442 -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426
256.18/256.90 v -x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409
256.18/256.90 v -x1408 -x1407 -x1406 -x1405 -x1404 -x1403 -x1402 -x1401 -x1400 -x1399 -x1398 -x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391
256.18/256.90 v -x1390 -x1389 -x1388 -x1387 x1386 x1385 x1384 x1383 x1382 x1381 x1380 x1379 x1378 x1377 x1376 x1375 x1374 x1373 x1372 x1371
256.18/256.90 v x1370 x1369 x1368 x1367 x1366 x1365 x1364 x1363 x1362 x1361 x1360 x1359 x1358 x1357 x1356 x1355 x1354 x1353 x1352 x1351 x1350
256.18/256.90 v x1349 x1348 x1347 x1346 x1345 x1344 x1343 x1342 x1341 x1340 x1339 x1338 x1337 x1336 x1335 x1334 x1333 x1332 x1331 x1330 x1329
256.18/256.90 v -x1328 -x1327 -x1326 -x1325 -x1324 -x1323 -x1322 -x1321 -x1320 -x1319 -x1318 -x1317 -x1316 -x1315 -x1314 -x1313 -x1312 -x1311
256.18/256.90 v -x1310 x1309 x1308 x1307 x1306 x1305 x1304 x1303 x1302 x1301 x1300 x1299 x1298 x1297 x1296 x1295 x1294 x1293 x1292 x1291 x1290
256.18/256.90 v x1289 x1288 x1287 x1286 x1285 x1284 x1283 x1282 x1281 x1280 x1279 x1278 x1277 x1276 x1275 -x1274 -x1273 -x1272 -x1271 -x1270
256.18/256.90 v -x1269 -x1268 -x1267 -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252
256.18/256.90 v -x1251 -x1250 -x1249 -x1248 -x1247 -x1246 -x1245 -x1244 -x1243 -x1242 -x1241 -x1240 -x1239 -x1238 -x1237 -x1236 -x1235
256.18/256.90 v -x1234 -x1233 x1232 x1231 x1230 x1229 x1228 x1227 x1226 x1225 x1224 x1223 x1222 x1221 x1220 x1219 x1218 x1217 x1216 x1215 x1214
256.18/256.90 v x1213 x1212 x1211 x1210 x1209 x1208 x1207 x1206 x1205 x1204 x1203 -x1202 -x1201 -x1200 -x1199 -x1198 -x1197 -x1196 -x1195
256.18/256.90 v -x1194 -x1193 -x1192 -x1191 -x1190 -x1189 -x1188 -x1187 -x1186 -x1185 -x1184 -x1183 -x1182 -x1181 -x1180 -x1179 -x1178 -x1177
256.18/256.90 v -x1176 -x1175 -x1174 -x1173 -x1172 -x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159
256.18/256.90 v -x1158 -x1157 -x1156 x1155 x1154 x1153 x1152 x1151 x1150 x1149 x1148 x1147 x1146 x1145 x1144 x1143 x1142 x1141 x1140 x1139
256.18/256.90 v x1138 x1137 x1136 x1135 x1134 x1133 x1132 x1131 x1130 x1129 x1128 x1127 x1126 x1125 x1124 x1123 x1122 x1121 x1120 x1119 x1118
256.18/256.90 v x1117 x1116 x1115 x1114 x1113 x1112 x1111 x1110 x1109 x1108 x1107 x1106 x1105 x1104 x1103 x1102 x1101 x1100 x1099 x1098 -x1097
256.18/256.90 v -x1096 -x1095 -x1094 -x1093 -x1092 -x1091 -x1090 -x1089 -x1088 -x1087 -x1086 -x1085 -x1084 -x1083 -x1082 -x1081 -x1080 -x1079
256.18/256.90 v x1078 x1077 x1076 x1075 x1074 x1073 x1072 x1071 x1070 x1069 x1068 x1067 x1066 x1065 x1064 x1063 x1062 x1061 x1060 x1059 x1058
256.18/256.90 v x1057 x1056 x1055 x1054 x1053 x1052 x1051 x1050 x1049 x1048 x1047 x1046 x1045 x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038
256.18/256.90 v -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031 -x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 -x1021
256.18/256.90 v -x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 -x1003
256.18/256.90 v -x1002 x1001 x1000 x999 x998 x997 x996 x995 x994 x993 x992 x991 x990 x989 x988 x987 x986 x985 x984 x983 x982 x981 x980 x979
256.18/256.90 v x978 x977 x976 x975 x974 x973 x972 x971 x970 x969 x968 x967 x966 -x965 -x964 -x963 -x962 -x961 -x960 -x959 -x958 -x957 -x956
256.18/256.90 v -x955 -x954 -x953 -x952 -x951 -x950 -x949 -x948 -x947 -x946 -x945 -x944 -x943 -x942 -x941 -x940 -x939 -x938 -x937 -x936 -x935
256.18/256.90 v -x934 -x933 -x932 -x931 -x930 -x929 -x928 -x927 -x926 -x925 x924 x923 x922 x921 x920 x919 x918 x917 x916 x915 x914 x913 x912
256.18/256.90 v x911 x910 x909 x908 x907 x906 x905 x904 x903 x902 x901 x900 x899 x898 x897 x896 x895 x894 x893 x892 x891 x890 x889 x888 x887
256.18/256.90 v x886 x885 x884 x883 x882 x881 x880 -x879 -x878 -x877 -x876 -x875 -x874 -x873 -x872 -x871 -x870 -x869 -x868 -x867 -x866 -x865
256.18/256.90 v -x864 -x863 -x862 -x861 -x860 -x859 -x858 -x857 -x856 -x855 -x854 -x853 -x852 -x851 -x850 -x849 -x848 x847 x846 x845 x844 x843
256.18/256.90 v x842 x841 x840 x839 x838 x837 x836 x835 x834 x833 x832 x831 x830 x829 x828 x827 x826 x825 x824 x823 x822 x821 x820 x819 x818
256.18/256.90 v x817 x816 x815 x814 x813 x812 x811 x810 x809 x808 x807 x806 x805 x804 x803 x802 x801 x800 -x799 -x798 -x797 -x796 -x795 -x794
256.18/256.90 v -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786 -x785 -x784 -x783 -x782 -x781 -x780 -x779 -x778 -x777 -x776 -x775 -x774 -x773
256.18/256.90 v -x772 -x771 x770 x769 x768 x767 x766 x765 x764 x763 x762 x761 x760 x759 x758 x757 x756 x755 x754 x753 x752 x751 x750 x749
256.18/256.90 v x748 x747 x746 x745 x744 x743 x742 x741 x740 x739 x738 x737 x736 x735 x734 x733 x732 x731 x730 x729 x728 x727 -x726 -x725 -x724
256.18/256.90 v -x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710 -x709 -x708 -x707 -x706 -x705 -x704
256.18/256.90 v -x703 -x702 -x701 -x700 -x699 -x698 -x697 -x696 -x695 -x694 x693 x692 x691 x690 x689 x688 x687 x686 x685 x684 x683 x682 x681
256.18/256.90 v x680 x679 x678 x677 x676 x675 x674 x673 x672 x671 x670 x669 x668 x667 x666 x665 x664 x663 x662 x661 x660 x659 x658 x657 x656
256.18/256.90 v x655 x654 x653 x652 x651 x650 x649 x648 x647 x646 x645 x644 x643 x642 x641 x640 x639 x638 x637 x636 x635 x634 x633 x632 x631
256.18/256.90 v x630 x629 x628 x627 -x626 -x625 -x624 -x623 -x622 -x621 -x620 -x619 -x618 -x617 x616 x615 x614 x613 x612 x611 x610 x609 x608
256.18/256.90 v x607 x606 x605 x604 x603 x602 x601 x600 x599 x598 x597 x596 x595 x594 x593 x592 x591 x590 x589 x588 x587 x586 x585 x584 x583
256.18/256.90 v x582 x581 x580 x579 x578 x577 x576 x575 x574 x573 x572 x571 x570 x569 x568 x567 x566 x565 x564 x563 x562 x561 x560 x559 x558
256.18/256.90 v x557 x556 x555 x554 x553 x552 x551 x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540 x539 x538 x537 x536 x535
256.18/256.90 v x534 x533 x532 x531 x530 x529 x528 x527 x526 x525 x524 x523 x522 x521 x520 x519 x518 x517 x516 x515 x514 x513 x512 x511 x510
256.18/256.90 v x509 x508 x507 x506 x505 x504 x503 x502 x501 x500 x499 x498 x497 x496 x495 x494 x493 x492 x491 x490 x489 x488 x487 x486 x485
256.18/256.90 v x484 x483 x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 -x466 -x465 -x464 -x463
256.18/256.90 v x462 x461 x460 x459 x458 x457 x456 x455 x454 x453 x452 x451 x450 x449 x448 x447 x446 x445 x444 x443 x442 x441 x440 x439 x438
256.18/256.90 v x437 x436 x435 x434 x433 x432 x431 x430 x429 x428 x427 x426 x425 x424 x423 x422 x421 x420 x419 x418 x417 -x416 -x415 -x414
256.18/256.90 v -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393
256.18/256.90 v -x392 -x391 -x390 -x389 -x388 -x387 -x386 x385 x384 x383 x382 x381 x380 x379 x378 x377 x376 x375 x374 x373 x372 x371 x370
256.18/256.90 v x369 x368 x367 x366 x365 x364 x363 x362 x361 x360 x359 x358 x357 x356 x355 x354 x353 x352 x351 x350 x349 x348 x347 x346 x345
256.18/256.90 v x344 x343 x342 x341 x340 x339 x338 x337 x336 x335 x334 x333 x332 x331 x330 x329 x328 x327 x326 x325 x324 x323 x322 x321 x320
256.18/256.90 v x319 x318 x317 x316 x315 x314 x313 x312 -x311 -x310 -x309 x308 x307 x306 x305 x304 x303 x302 x301 x300 x299 x298 x297 x296 x295
256.18/256.90 v x294 x293 x292 x291 x290 x289 x288 x287 x286 x285 x284 x283 x282 x281 x280 x279 x278 x277 x276 x275 x274 x273 x272 x271 x270
256.18/256.90 v x269 x268 x267 x266 x265 x264 x263 x262 x261 x260 x259 x258 x257 x256 x255 x254 x253 x252 x251 x250 x249 x248 x247 x246 x245
256.18/256.90 v x244 x243 x242 x241 x240 x239 x238 x237 -x236 -x235 -x234 -x233 -x232 x231 x230 x229 x228 x227 x226 x225 x224 x223 x222 x221
256.18/256.90 v x220 x219 x218 x217 x216 x215 x214 x213 x212 x211 x210 x209 x208 x207 x206 x205 x204 x203 x202 x201 x200 x199 x198 x197 x196
256.18/256.90 v x195 x194 x193 x192 x191 x190 x189 x188 x187 x186 x185 x184 x183 x182 x181 x180 x179 x178 x177 x176 x175 x174 x173 x172 x171
256.18/256.90 v x170 x169 x168 x167 x166 x165 x164 x163 x162 x161 x160 x159 x158 -x157 -x156 -x155 x154 x153 x152 x151 x150 x149 x148 x147
256.18/256.90 v x146 x145 x144 x143 x142 x141 x140 x139 x138 x137 x136 x135 x134 x133 x132 x131 x130 x129 x128 x127 x126 x125 x124 x123 x122
256.18/256.90 v x121 x120 x119 x118 x117 x116 x115 x114 x113 x112 x111 x110 x109 x108 x107 x106 x105 x104 x103 x102 x101 x100 x99 x98 x97 x96
256.18/256.90 v x95 x94 x93 x92 x91 x90 x89 x88 x87 x86 x85 x84 x83 x82 x81 x80 -x79 -x78 x77 x76 x75 x74 x73 x72 x71 x70 x69 x68 x67 x66 x65
256.18/256.90 v x64 x63 x62 x61 x60 x59 x58 x57 x56 x55 x54 x53 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 x42 x41 x40 x39 x38 x37 x36 x35 x34
256.18/256.90 v x33 x32 x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1
256.18/256.90 v x2387
256.18/256.90 c SCIP Status : problem is solved [optimal solution found]
256.18/256.90 c Total Time : 256.89
256.18/256.90 c solving : 256.89
256.18/256.90 c presolving : 3.48 (included in solving)
256.18/256.90 c reading : 0.03 (included in solving)
256.18/256.90 c copying : 0.56 (53 #copies) (minimal 0.01, maximal 0.01, average 0.01)
256.18/256.90 c Original Problem :
256.18/256.90 c Problem name : HOME/instance-4502128-1751168388.opb
256.18/256.90 c Variables : 4774 (4774 binary, 0 integer, 0 implicit integer, 0 continuous)
256.18/256.90 c Constraints : 14869 initial, 14869 maximal
256.18/256.90 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
256.18/256.90 c Presolved Problem :
256.18/256.90 c Problem name : t_HOME/instance-4502128-1751168388.opb
256.18/256.90 c Variables : 2010 (2010 binary, 0 integer, 0 implicit integer, 0 continuous)
256.18/256.90 c Constraints : 3422 initial, 5280 maximal
256.18/256.90 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
256.18/256.90 c Nonzeros : 12293 constraint, 80568 clique table
256.18/256.90 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
256.18/256.90 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c domcol : 0.00 0.00 4 0 0 0 0 0 0 0 0 0
256.18/256.90 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c dualsparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
256.18/256.90 c gateextraction : 0.01 0.00 1 0 0 0 0 0 3123 991 0 0
256.18/256.90 c implics : 0.00 0.00 17 0 0 0 0 0 0 0 0 0
256.18/256.90 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c milp : 0.03 0.00 1 20 0 0 0 0 0 0 0 0
256.18/256.90 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c sparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
256.18/256.90 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c trivial : 0.00 0.00 51 1403 0 0 0 0 0 0 0 0
256.18/256.90 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c dualfix : 0.00 0.00 51 2 0 0 0 0 0 0 0 0
256.18/256.90 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c probing : 3.25 0.00 4 53 13 0 0 0 0 0 0 0
256.18/256.90 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c symmetry : 0.01 0.00 1 0 0 0 0 0 0 0 0 0
256.18/256.90 c vbounds : 0.00 0.00 2 8 0 0 0 0 0 0 0 0
256.18/256.90 c knapsack : 0.04 0.00 69 0 0 0 0 0 2 24 39 323
256.18/256.90 c setppc : 0.05 0.00 68 23 34 0 0 0 571 5 3 3
256.18/256.90 c and : 0.02 0.00 50 0 24 0 0 0 139 102 0 37
256.18/256.90 c linear : 0.05 0.00 17 559 625 0 559 0 8717 0 19 23
256.18/256.90 c logicor : 0.00 0.00 4 0 0 0 0 0 0 0 0 0
256.18/256.90 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c components : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
256.18/256.90 c root node : - - - 0 - - 0 - - - - -
256.18/256.90 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
256.18/256.90 c benderslp : 0 0 0 0 454 0 0 49 0 0 0 0 0 0 0
256.18/256.90 c integral : 0 0 0 0 454 0 0 49 0 0 0 0 0 0 908
256.18/256.90 c knapsack : 278+ 292 11 74861 0 0 0 43 9088 100 27670 330 67 0 0
256.18/256.90 c setppc : 2449+ 2501 11 74761 0 0 0 2 36739 187 45126 0 0 0 0
256.18/256.90 c and : 695 695 957 74574 0 0 0 1 11374 87 33430 9591 8096 0 0
256.18/256.90 c linear : 0+ 241 11 15010 0 0 0 3 330 8 922 1 0 0 0
256.18/256.90 c logicor : 0+ 1564 11 4891 0 0 0 0 1576 23 1220 1 0 0 0
256.18/256.90 c benders : 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
256.18/256.90 c fixedvar : 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
256.18/256.90 c countsols : 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
256.18/256.90 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
256.18/256.90 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c integral : 2.50 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c knapsack : 0.33 0.00 0.01 0.31 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c setppc : 1.03 0.00 0.00 1.01 0.00 0.00 0.00 0.00 0.01 0.00
256.18/256.90 c and : 0.74 0.00 0.07 0.66 0.00 0.00 0.00 0.00 0.01 0.00
256.18/256.90 c linear : 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c logicor : 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c components : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c Propagators : #Propagate #ResProp Cutoffs DomReds
256.18/256.90 c dualfix : 1 0 0 0
256.18/256.90 c genvbounds : 0 0 0 0
256.18/256.90 c nlobbt : 0 0 0 0
256.18/256.90 c obbt : 0 0 0 0
256.18/256.90 c probing : 0 0 0 0
256.18/256.90 c pseudoobj : 0 0 0 0
256.18/256.90 c redcost : 0 0 0 0
256.18/256.90 c rootredcost : 0 0 0 0
256.18/256.90 c symmetry : 0 0 0 0
256.18/256.90 c vbounds : 15054 0 0 0
256.18/256.90 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
256.18/256.90 c dualfix : 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c genvbounds : 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c probing : 3.25 0.00 3.25 0.00 0.00 0.00
256.18/256.90 c pseudoobj : 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c redcost : 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c rootredcost : 0.00 0.00 0.00 0.00 0.00 0.00
256.18/256.90 c symmetry : 0.02 0.00 0.01 0.00 0.00 0.00
256.18/256.90 c vbounds : 0.21 0.00 0.00 0.21 0.00 0.00
256.18/256.90 c Symmetry :
256.18/256.90 c orbitopal red. : 0 reductions applied, 0 cutoffs
256.18/256.90 c orbital reduction: 0 reductions applied, 0 cutoffs
256.18/256.90 c lexicographic red: 0 reductions applied, 0 cutoffs
256.18/256.90 c shadow tree time : 0.00 s
256.18/256.90 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
256.18/256.90 c propagation : 0.03 391 374 - 2408 21.8 59 9.5 - - -
256.18/256.90 c infeasible LP : 0.08 103 101 - 861 58.4 6 8.0 74 76.3 0
256.18/256.90 c bound exceed. LP : 0.00 1 0 - 0 0.0 0 0.0 0 0.0 0
256.18/256.90 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
256.18/256.90 c pseudo solution : 0.00 0 0 - 0 0.0 0 0.0 - - -
256.18/256.90 c applied globally : 0.05 - - 0 1612 20.5 - - 74 - -
256.18/256.90 c applied locally : - - - 0 0 0.0 - - 0 - -
256.18/256.90 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
256.18/256.90 c cut pool : 0.06 - 152 21 - - 2295 7016 - - - - - (maximal pool size: 2220)
256.18/256.90 c aggregation : 0.09 0.00 56 11 0 0 146 1193 0 354 354 0 0
256.18/256.90 c > cmir : - - - - - - - 882 0 231 231 0 -
256.18/256.90 c > flowcover : - - - - - - - 30 0 6 6 0 -
256.18/256.90 c > knapsackcover : - - - - - - - 281 0 117 117 0 -
256.18/256.90 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c clique : 0.44 0.00 11 11 0 0 90 294 0 115 115 0 0
256.18/256.90 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c gomory : 11.92 0.00 55 10 0 0 819 2408 0 434 434 0 0
256.18/256.90 c > gomorymi : - - - - - - - 703 0 62 62 0 -
256.18/256.90 c > strongcg : - - - - - - - 1705 0 372 372 0 -
256.18/256.90 c impliedbounds : 0.09 0.00 56 11 0 0 1089 2228 0 841 841 0 0
256.18/256.90 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c mcf : 0.01 0.00 1 1 0 0 0 0 0 0 0 0 0
256.18/256.90 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c multilinear : 0.00 0.00 105 11 0 0 0 0 0 0 0 0 0
256.18/256.90 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
256.18/256.90 c rapidlearning : 6.15 0.00 51 1 0 14242 0 0 0 0 0 0 309
256.18/256.90 c rlt : 0.43 0.00 34 10 0 0 105 19 88 13 7 6 0
256.18/256.90 c zerohalf : 0.76 0.00 56 11 0 0 193 874 59 379 346 33 0
256.18/256.90 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
256.18/256.90 c hybrid : 0.02 0.00 846 11 10302 0 5163 222 0 608
256.18/256.90 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c Pricers : ExecTime SetupTime Calls Vars
256.18/256.90 c problem variables: 0.00 - 0 0
256.18/256.90 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
256.18/256.90 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c inference : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c random : 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c relpscost : 2.50 0.00 454 0 0 0 0 0 0 908
256.18/256.90 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
256.18/256.90 c Primal Heuristics : ExecTime SetupTime Calls Found Best
256.18/256.90 c LP solutions : 0.00 - - 0 0
256.18/256.90 c relax solutions : 0.00 - - 0 0
256.18/256.90 c pseudo solutions : 0.00 - - 0 0
256.18/256.90 c strong branching : 0.00 - - 0 0
256.18/256.90 c actconsdiving : 0.00 0.00 0 0 0
256.18/256.90 c adaptivediving : 5.88 0.00 5 0 0
256.18/256.90 c alns : 0.04 0.00 4 0 0
256.18/256.90 c bound : 0.00 0.00 0 0 0
256.18/256.90 c clique : 0.01 0.00 1 0 0
256.18/256.90 c coefdiving : 0.00 0.00 0 0 0
256.18/256.90 c completesol : 0.00 0.00 0 0 0
256.18/256.90 c conflictdiving : 3.86 0.00 5 0 0
256.18/256.90 c crossover : 0.00 0.00 0 0 0
256.18/256.90 c dins : 0.00 0.00 0 0 0
256.18/256.90 c distributiondivin: 4.24 0.00 3 0 0
256.18/256.90 c dps : 0.00 0.00 0 0 0
256.18/256.90 c dualval : 0.00 0.00 0 0 0
256.18/256.90 c farkasdiving : 0.00 0.00 0 0 0
256.18/256.90 c feasjump : 0.02 0.00 1 0 0
256.18/256.90 c feaspump : 2.70 0.00 3 0 0
256.18/256.90 c fixandinfer : 0.00 0.00 0 0 0
256.18/256.90 c fracdiving : 2.95 0.00 4 0 0
256.18/256.90 c gins : 0.00 0.00 0 0 0
256.18/256.90 c guideddiving : 0.00 0.00 0 0 0
256.18/256.90 c indcoefdiving : 0.00 0.00 0 0 0
256.18/256.90 c indicator : 0.00 0.00 0 0 0
256.18/256.90 c indicatordiving : 0.00 0.00 0 0 0
256.18/256.90 c indoneopt : 0.00 0.00 0 0 0
256.18/256.90 c indrounding : 0.00 0.00 0 0 0
256.18/256.90 c indtwoopt : 0.00 0.00 0 0 0
256.18/256.90 c intdiving : 0.00 0.00 0 0 0
256.18/256.90 c intshifting : 0.00 0.00 0 0 0
256.18/256.90 c linesearchdiving : 5.09 0.00 5 0 0
256.18/256.90 c localbranching : 0.00 0.00 0 0 0
256.18/256.90 c locks : 0.00 0.00 1 0 0
256.18/256.90 c lpface : 0.00 0.00 0 0 0
256.18/256.90 c mpec : 0.00 0.00 0 0 0
256.18/256.90 c multistart : 0.00 0.00 0 0 0
256.18/256.90 c mutation : 0.00 0.00 0 0 0
256.18/256.90 c nlpdiving : 0.00 0.00 0 0 0
256.18/256.90 c objpscostdiving : 14.30 0.00 2 0 0
256.18/256.90 c octane : 0.00 0.00 0 0 0
256.18/256.90 c ofins : 0.00 0.00 0 0 0
256.18/256.90 c oneopt : 0.00 0.00 0 0 0
256.18/256.90 c padm : 0.00 0.00 0 0 0
256.18/256.90 c proximity : 0.00 0.00 0 0 0
256.18/256.90 c pscostdiving : 2.91 0.00 4 0 0
256.18/256.90 c randrounding : 0.04 0.00 51 0 0
256.18/256.90 c rens : 0.00 0.00 0 0 0
256.18/256.90 c reoptsols : 0.00 0.00 0 0 0
256.18/256.90 c repair : 0.00 0.00 0 0 0
256.18/256.90 c rins : 0.00 0.00 0 0 0
256.18/256.90 c rootsoldiving : 2.03 0.00 2 0 0
256.18/256.90 c rounding : 0.13 0.00 452 0 0
256.18/256.90 c scheduler : 0.00 0.00 0 0 0
256.18/256.90 c shiftandpropagate: 0.01 0.00 1 0 0
256.18/256.90 c shifting : 0.12 0.00 106 0 0
256.18/256.90 c simplerounding : 0.00 0.00 0 0 0
256.18/256.90 c smallcard : 0.00 0.00 0 0 0
256.18/256.90 c subnlp : 0.00 0.00 0 0 0
256.18/256.90 c trivial : 0.00 0.00 2 0 0
256.18/256.90 c trivialnegation : 0.00 0.00 0 0 0
256.18/256.90 c trustregion : 0.00 0.00 0 0 0
256.18/256.90 c trysol : 0.00 0.00 0 0 0
256.18/256.90 c twoopt : 0.00 0.00 0 0 0
256.18/256.90 c undercover : 0.37 0.00 1 0 0
256.18/256.90 c vbounds : 0.02 0.00 1 0 0
256.18/256.90 c veclendiving : 2.93 0.00 4 0 0
256.18/256.90 c zeroobj : 0.00 0.00 0 0 0
256.18/256.90 c zirounding : 0.05 0.00 454 0 0
256.18/256.90 c other solutions : - - - 0 -
256.18/256.90 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
256.18/256.90 c rens : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
256.18/256.90 c rins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
256.18/256.90 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
256.18/256.90 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
256.18/256.90 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
256.18/256.90 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
256.18/256.90 c dins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
256.18/256.90 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
256.18/256.90 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
256.18/256.90 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
256.18/256.90 c primal LP : 0.02 25 0 0.00 0.00 0.02 25
256.18/256.90 c dual LP : 181.23 1438 1045371 727.47 5768.07 0.00 1
256.18/256.90 c lex dual LP : 0.00 0 0 0.00 -
256.18/256.90 c barrier LP : 0.00 0 0 0.00 - 0.00 0
256.18/256.90 c resolve instable : 0.00 0 0 0.00 -
256.18/256.90 c diving/probing LP: 46.91 412 173150 420.27 3691.43
256.18/256.90 c strong branching : 2.18 11 11000 1000.00 5034.64 - - 22
256.18/256.90 c (at root node) : - 11 11000 1000.00 -
256.18/256.90 c conflict analysis: 0.00 1 0 0.00 -
256.18/256.90 c B&B Tree :
256.18/256.90 c number of runs : 1
256.18/256.90 c nodes : 717 (454 internal, 263 leaves)
256.18/256.90 c feasible leaves : 0
256.18/256.90 c infeas. leaves : 262
256.18/256.90 c objective leaves : 1
256.18/256.90 c nodes (total) : 717 (454 internal, 263 leaves)
256.18/256.90 c nodes left : 0
256.18/256.90 c max depth : 20
256.18/256.90 c max depth (total): 20
256.18/256.90 c backtracks : 242 (33.8%)
256.18/256.90 c early backtracks : 0 (0.0%)
256.18/256.90 c nodes exc. ref. : 0 (0.0%)
256.18/256.90 c delayed cutoffs : 150
256.18/256.90 c repropagations : 483 (36505 domain reductions, 117 cutoffs)
256.18/256.90 c avg switch length: 3.62
256.18/256.90 c switching time : 0.26
256.18/256.90 c Root Node :
256.18/256.90 c First LP value : +0.00000000000000e+00
256.18/256.90 c First LP Iters : 2812 (9282.03 Iter/sec)
256.18/256.90 c First LP Time : 0.30
256.18/256.90 c Final Dual Bound : +0.00000000000000e+00
256.18/256.90 c Final Root Iters : 19756
256.18/256.90 c Root LP Estimate : +7.04067583167894e-02
256.18/256.90 c Solution :
256.18/256.90 c Solutions found : 1 (1 improvements)
256.18/256.90 c First Solution : +0.00000000000000e+00 (in run 1, after 717 nodes, 256.88 seconds, depth 20, found by <relaxation>)
256.18/256.90 c Gap First Sol. : 0.00 %
256.18/256.90 c Gap Last Sol. : 0.00 %
256.18/256.90 c Primal Bound : +0.00000000000000e+00 (in run 1, after 717 nodes, 256.88 seconds, depth 20, found by <relaxation>)
256.18/256.90 c Dual Bound : +0.00000000000000e+00
256.18/256.90 c Gap : 0.00 %
256.18/256.90 c Integrals : Total Avg%
256.18/256.90 c primal-dual : 25688.14 100.00
256.18/256.90 c primal-ref : - - (not evaluated)
256.18/256.90 c dual-ref : - - (not evaluated)
256.18/256.96 c Time complete: 256.257.