0.00/0.01 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.01 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.01 c
0.00/0.01 c user parameter file <scip.set> not found - using default parameters
0.00/0.01 c reading problem <HOME/instance-4500556-1751419667.opb>
0.00/0.06 c original problem has 5855 variables (5855 bin, 0 int, 0 impl, 0 cont) and 26197 constraints
0.00/0.06 c problem read in 0.05
0.09/0.10 c presolving:
0.09/0.13 c (round 1, fast) 1054 del vars, 1779 del conss, 0 add conss, 17 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 8608 clqs
0.09/0.15 c (round 2, fast) 2302 del vars, 3547 del conss, 0 add conss, 121 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 5363 clqs
0.09/0.18 c (round 3, fast) 4107 del vars, 14657 del conss, 0 add conss, 442 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4544 clqs
0.09/0.18 c (round 4, fast) 4352 del vars, 15714 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4237 clqs
0.09/0.18 c (round 5, fast) 4412 del vars, 15918 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4194 clqs
0.09/0.18 c (round 6, fast) 4428 del vars, 15976 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4178 clqs
0.09/0.18 c (round 7, fast) 4431 del vars, 16004 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4176 clqs
0.09/0.19 c (round 8, fast) 4443 del vars, 16174 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4126 clqs
0.09/0.19 c (round 9, fast) 4449 del vars, 16227 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4106 clqs
0.09/0.19 c (round 10, fast) 4455 del vars, 16286 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4090 clqs
0.09/0.19 c (round 11, fast) 4460 del vars, 16314 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4081 clqs
0.09/0.19 c (round 12, fast) 4463 del vars, 16342 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4074 clqs
0.09/0.19 c (round 13, fast) 4465 del vars, 16366 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4066 clqs
0.09/0.19 c (round 14, fast) 4467 del vars, 16370 del conss, 0 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 4065 clqs
0.09/0.20 c (0.2s) running MILP presolver
0.19/0.24 c (0.2s) MILP presolver (8 rounds): 690 aggregations, 705 fixings, 0 bound changes
0.19/0.24 c (round 15, medium) 5862 del vars, 26197 del conss, 2246 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 1148 clqs
0.19/0.24 c (round 16, fast) 5897 del vars, 26232 del conss, 2246 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 1116 clqs
0.19/0.25 c (round 17, fast) 5900 del vars, 26235 del conss, 2246 add conss, 457 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 1113 clqs
0.19/0.27 c (round 18, exhaustive) 5900 del vars, 26284 del conss, 2246 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 1113 clqs
0.19/0.27 c (round 19, fast) 5902 del vars, 26286 del conss, 2246 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 1111 clqs
0.19/0.28 c (round 20, exhaustive) 5902 del vars, 26286 del conss, 2246 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 1111 clqs
0.19/0.28 c (round 21, medium) 5907 del vars, 26305 del conss, 2258 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 1109 clqs
0.19/0.28 c (round 22, fast) 5907 del vars, 26313 del conss, 2258 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 1110 clqs
0.19/0.28 c (round 23, medium) 5909 del vars, 26318 del conss, 2258 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 1108 clqs
0.19/0.28 c (round 24, exhaustive) 5909 del vars, 27179 del conss, 2478 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 1108 clqs
0.19/0.28 c (round 25, fast) 6153 del vars, 27368 del conss, 2478 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 902 clqs
0.19/0.28 c (round 26, fast) 6203 del vars, 27445 del conss, 2478 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 831 clqs
0.19/0.28 c (round 27, fast) 6220 del vars, 27458 del conss, 2478 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 815 clqs
0.19/0.28 c (round 28, fast) 6221 del vars, 27460 del conss, 2478 add conss, 457 chg bounds, 10 chg sides, 0 chg coeffs, 2146 upgd conss, 0 impls, 815 clqs
0.19/0.29 c (round 29, medium) 6309 del vars, 27491 del conss, 2478 add conss, 457 chg bounds, 89 chg sides, 79 chg coeffs, 2146 upgd conss, 0 impls, 564 clqs
0.19/0.29 c (round 30, fast) 6309 del vars, 27497 del conss, 2478 add conss, 457 chg bounds, 89 chg sides, 79 chg coeffs, 2146 upgd conss, 0 impls, 564 clqs
0.19/0.29 c (round 31, exhaustive) 6309 del vars, 27500 del conss, 2479 add conss, 457 chg bounds, 89 chg sides, 79 chg coeffs, 2146 upgd conss, 0 impls, 564 clqs
0.19/0.29 c (round 32, exhaustive) 6309 del vars, 27521 del conss, 2479 add conss, 457 chg bounds, 89 chg sides, 79 chg coeffs, 2146 upgd conss, 0 impls, 564 clqs
0.19/0.29 c (round 33, fast) 6315 del vars, 27523 del conss, 2479 add conss, 457 chg bounds, 89 chg sides, 79 chg coeffs, 2146 upgd conss, 0 impls, 553 clqs
0.19/0.29 c (round 34, fast) 6315 del vars, 27526 del conss, 2479 add conss, 457 chg bounds, 89 chg sides, 79 chg coeffs, 2146 upgd conss, 0 impls, 553 clqs
0.19/0.29 c (round 35, medium) 6317 del vars, 27526 del conss, 2479 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 547 clqs
0.19/0.29 c (round 36, exhaustive) 6317 del vars, 27528 del conss, 2479 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 547 clqs
0.19/0.29 c (round 37, exhaustive) 6319 del vars, 27559 del conss, 2510 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 543 clqs
0.19/0.29 c (round 38, fast) 6340 del vars, 27614 del conss, 2510 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 533 clqs
0.19/0.29 c (round 39, fast) 6352 del vars, 27658 del conss, 2510 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 521 clqs
0.19/0.29 c (round 40, fast) 6365 del vars, 27720 del conss, 2510 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 498 clqs
0.19/0.29 c (round 41, fast) 6371 del vars, 27732 del conss, 2510 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 496 clqs
0.19/0.29 c (round 42, fast) 6372 del vars, 27733 del conss, 2510 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 495 clqs
0.19/0.29 c (round 43, exhaustive) 6372 del vars, 27754 del conss, 2510 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 495 clqs
0.19/0.30 c (round 44, exhaustive) 6372 del vars, 27756 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 495 clqs
0.19/0.30 c (round 45, fast) 6374 del vars, 27769 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 492 clqs
0.19/0.30 c (round 46, fast) 6376 del vars, 27778 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 488 clqs
0.19/0.30 c (round 47, fast) 6379 del vars, 27807 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 473 clqs
0.19/0.30 c (round 48, fast) 6392 del vars, 27848 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 463 clqs
0.19/0.30 c (round 49, fast) 6399 del vars, 27871 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 459 clqs
0.19/0.30 c (round 50, fast) 6411 del vars, 27880 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 452 clqs
0.19/0.30 c (round 51, fast) 6413 del vars, 27881 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2146 upgd conss, 0 impls, 451 clqs
0.19/0.30 c (round 52, exhaustive) 6413 del vars, 27881 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 81 chg coeffs, 2157 upgd conss, 0 impls, 451 clqs
0.19/0.30 c (round 53, exhaustive) 6413 del vars, 27904 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 128 chg coeffs, 2157 upgd conss, 0 impls, 451 clqs
0.19/0.30 c (round 54, fast) 6430 del vars, 27933 del conss, 2512 add conss, 457 chg bounds, 91 chg sides, 128 chg coeffs, 2157 upgd conss, 0 impls, 445 clqs
0.19/0.30 c (round 55, exhaustive) 6430 del vars, 27949 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 128 chg coeffs, 2157 upgd conss, 0 impls, 445 clqs
0.19/0.30 c (round 56, fast) 6432 del vars, 27951 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 128 chg coeffs, 2157 upgd conss, 0 impls, 441 clqs
0.19/0.30 c (round 57, medium) 6433 del vars, 27952 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 128 chg coeffs, 2157 upgd conss, 0 impls, 439 clqs
0.19/0.30 c (round 58, fast) 6433 del vars, 27953 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 128 chg coeffs, 2157 upgd conss, 0 impls, 439 clqs
0.19/0.30 c (round 59, exhaustive) 6433 del vars, 27954 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 130 chg coeffs, 2157 upgd conss, 0 impls, 439 clqs
0.19/0.30 c (round 60, exhaustive) 6433 del vars, 27955 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 130 chg coeffs, 2157 upgd conss, 0 impls, 439 clqs
0.19/0.30 c (round 61, exhaustive) 6433 del vars, 27955 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 300 chg coeffs, 2157 upgd conss, 0 impls, 439 clqs
0.19/0.30 c (round 62, fast) 6448 del vars, 27972 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 300 chg coeffs, 2157 upgd conss, 0 impls, 538 clqs
0.19/0.30 c (round 63, fast) 6448 del vars, 27992 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 300 chg coeffs, 2157 upgd conss, 0 impls, 538 clqs
0.29/0.31 c (round 64, exhaustive) 6473 del vars, 27992 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 302 chg coeffs, 2157 upgd conss, 0 impls, 549 clqs
0.29/0.31 c (round 65, fast) 6475 del vars, 28025 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 302 chg coeffs, 2157 upgd conss, 0 impls, 544 clqs
0.29/0.31 c (round 66, fast) 6476 del vars, 28026 del conss, 2514 add conss, 457 chg bounds, 91 chg sides, 302 chg coeffs, 2157 upgd conss, 0 impls, 544 clqs
0.29/0.31 c (round 67, exhaustive) 6476 del vars, 28050 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 302 chg coeffs, 2157 upgd conss, 0 impls, 544 clqs
0.29/0.31 c (round 68, fast) 6477 del vars, 28051 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 302 chg coeffs, 2157 upgd conss, 0 impls, 542 clqs
0.29/0.31 c (round 69, fast) 6478 del vars, 28052 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 302 chg coeffs, 2157 upgd conss, 0 impls, 541 clqs
0.29/0.31 c (round 70, exhaustive) 6478 del vars, 28052 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 315 chg coeffs, 2157 upgd conss, 0 impls, 541 clqs
0.29/0.31 c (round 71, exhaustive) 6503 del vars, 28052 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 315 chg coeffs, 2157 upgd conss, 0 impls, 524 clqs
0.29/0.31 c (round 72, fast) 6503 del vars, 28081 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 315 chg coeffs, 2157 upgd conss, 0 impls, 524 clqs
0.29/0.32 c (round 73, exhaustive) 6503 del vars, 28106 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 315 chg coeffs, 2157 upgd conss, 0 impls, 524 clqs
0.29/0.32 c (round 74, exhaustive) 6503 del vars, 28106 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 318 chg coeffs, 2157 upgd conss, 0 impls, 524 clqs
0.29/0.32 c (round 75, medium) 6504 del vars, 28107 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 318 chg coeffs, 2157 upgd conss, 0 impls, 522 clqs
0.29/0.33 c (0.3s) probing cycle finished: starting next cycle
0.29/0.33 c (round 76, exhaustive) 6521 del vars, 28107 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 318 chg coeffs, 2157 upgd conss, 0 impls, 631 clqs
0.29/0.33 c (round 77, fast) 6521 del vars, 28109 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 318 chg coeffs, 2157 upgd conss, 0 impls, 631 clqs
0.29/0.33 c (round 78, exhaustive) 6521 del vars, 28125 del conss, 2515 add conss, 457 chg bounds, 91 chg sides, 318 chg coeffs, 2157 upgd conss, 0 impls, 631 clqs
0.29/0.34 c (0.3s) probing: 113/363 (31.1%) - 3 fixings, 64 aggregations, 252 implications, 0 bound changes
0.29/0.34 c (0.3s) probing aborted: 50/50 successive totally useless probings
0.29/0.34 c (0.3s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
0.29/0.34 c (0.3s) symmetry computation finished: 64 generators found (max: 1500, log10 of symmetry group size: 10.0) (symcode time: 0.00)
0.29/0.34 c dynamic symmetry handling statistics:
0.29/0.34 c orbitopal reduction: no components
0.29/0.34 c orbital reduction: 2 components of sizes 12, 5
0.29/0.34 c lexicographic reduction: 20 permutations with support sizes 6, 2, 6, 6, 6, 6, 6, 2, 6, 6, 6, 6, 2, 2, 2, 2, 2, 4, 6, 6
0.29/0.34 c handled 36 out of 36 symmetry components
0.29/0.34 c (round 79, exhaustive) 6531 del vars, 28127 del conss, 2554 add conss, 457 chg bounds, 91 chg sides, 319 chg coeffs, 2157 upgd conss, 0 impls, 641 clqs
0.29/0.34 c (round 80, fast) 6537 del vars, 28152 del conss, 2554 add conss, 457 chg bounds, 91 chg sides, 319 chg coeffs, 2157 upgd conss, 0 impls, 634 clqs
0.29/0.34 c (round 81, medium) 6537 del vars, 28156 del conss, 2554 add conss, 457 chg bounds, 91 chg sides, 319 chg coeffs, 2157 upgd conss, 0 impls, 634 clqs
0.29/0.34 c (round 82, fast) 6540 del vars, 28157 del conss, 2554 add conss, 457 chg bounds, 91 chg sides, 319 chg coeffs, 2157 upgd conss, 0 impls, 633 clqs
0.29/0.34 c (round 83, exhaustive) 6540 del vars, 28157 del conss, 2554 add conss, 457 chg bounds, 91 chg sides, 319 chg coeffs, 2186 upgd conss, 0 impls, 633 clqs
0.29/0.34 c (round 84, medium) 6544 del vars, 28165 del conss, 2558 add conss, 457 chg bounds, 91 chg sides, 319 chg coeffs, 2186 upgd conss, 0 impls, 620 clqs
0.29/0.34 c (round 85, fast) 6548 del vars, 28181 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 319 chg coeffs, 2186 upgd conss, 0 impls, 616 clqs
0.29/0.34 c (round 86, fast) 6549 del vars, 28181 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 319 chg coeffs, 2186 upgd conss, 0 impls, 616 clqs
0.29/0.34 c (round 87, exhaustive) 6549 del vars, 28183 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 321 chg coeffs, 2186 upgd conss, 0 impls, 616 clqs
0.29/0.34 c (round 88, exhaustive) 6549 del vars, 28185 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 321 chg coeffs, 2186 upgd conss, 0 impls, 616 clqs
0.29/0.34 c (round 89, exhaustive) 6550 del vars, 28185 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 613 clqs
0.29/0.34 c (round 90, fast) 6557 del vars, 28199 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 598 clqs
0.29/0.34 c (round 91, fast) 6561 del vars, 28210 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 588 clqs
0.29/0.34 c (round 92, fast) 6566 del vars, 28215 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 582 clqs
0.29/0.34 c (round 93, fast) 6568 del vars, 28217 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 579 clqs
0.29/0.34 c (round 94, fast) 6569 del vars, 28217 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 579 clqs
0.29/0.35 c (0.3s) probing: 179/363 (49.3%) - 16 fixings, 75 aggregations, 255 implications, 0 bound changes
0.29/0.35 c (0.3s) probing aborted: 50/50 successive totally useless probings
0.29/0.35 c (round 95, exhaustive) 6593 del vars, 28217 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 522 clqs
0.29/0.35 c (round 96, fast) 6593 del vars, 28299 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 522 clqs
0.29/0.35 c (round 97, fast) 6602 del vars, 28306 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 517 clqs
0.29/0.35 c (round 98, fast) 6610 del vars, 28310 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 508 clqs
0.29/0.35 c (round 99, fast) 6610 del vars, 28311 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 378 chg coeffs, 2186 upgd conss, 0 impls, 508 clqs
0.29/0.35 c (round 100, exhaustive) 6610 del vars, 28313 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 380 chg coeffs, 2186 upgd conss, 0 impls, 508 clqs
0.29/0.35 c (round 101, fast) 6612 del vars, 28313 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 380 chg coeffs, 2186 upgd conss, 0 impls, 508 clqs
0.29/0.35 c (round 102, exhaustive) 6612 del vars, 28315 del conss, 2562 add conss, 461 chg bounds, 91 chg sides, 380 chg coeffs, 2186 upgd conss, 0 impls, 508 clqs
0.29/0.35 c (0.3s) probing: 185/363 (51.0%) - 16 fixings, 75 aggregations, 255 implications, 0 bound changes
0.29/0.35 c (0.3s) probing aborted: 50/50 successive totally useless probings
0.29/0.38 c presolving (103 rounds: 103 fast, 41 medium, 32 exhaustive):
0.29/0.38 c 6879 deleted vars, 28752 deleted constraints, 2562 added constraints, 461 tightened bounds, 0 added holes, 91 changed sides, 380 changed coefficients
0.29/0.38 c 0 implications, 4 cliques
0.29/0.38 c presolved problem has 6 variables (6 bin, 0 int, 0 impl, 0 cont) and 7 constraints
0.29/0.38 c 1 constraints of type <setppc>
0.29/0.38 c 4 constraints of type <orbitope>
0.29/0.38 c 2 constraints of type <logicor>
0.29/0.38 c transformed objective value is always integral (scale: 1)
0.29/0.38 c Presolving Time: 0.28
0.29/0.38 c - non default parameters ----------------------------------------------------------------------
0.29/0.38 c # SCIP version 10.0.0
0.29/0.38 c
0.29/0.38 c # maximal time in seconds to run
0.29/0.38 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
0.29/0.38 c limits/time = 3596.997012
0.29/0.38 c
0.29/0.38 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.29/0.38 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
0.29/0.38 c limits/memory = 27900
0.29/0.38 c
0.29/0.38 c # belongs reading time to solving time?
0.29/0.38 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
0.29/0.38 c timing/reading = TRUE
0.29/0.38 c
0.29/0.38 c -----------------------------------------------------------------------------------------------
0.29/0.38 c start solving
0.29/0.38 c
0.29/0.38 o 394243446
0.29/0.38 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
0.29/0.38 c t 0.4s| 1 | 0 | 0 | - | trivial| 0 | 6 | 7 | 0 | 0 | 0 | 0 | 0 | 3.942434e+08 | 3.942434e+08 | 0.00%| unknown
0.29/0.38 c
0.29/0.38 c SCIP Status : problem is solved [optimal solution found]
0.29/0.38 c Solving Time (sec) : 0.37
0.29/0.38 c Solving Nodes : 1
0.29/0.38 c Primal Bound : +3.94243446000000e+08 (1 solutions)
0.29/0.38 c Dual Bound : +3.94243446000000e+08
0.29/0.38 c Gap : 0.00 %
0.29/0.38 s OPTIMUM FOUND
0.29/0.38 v -x3157 -x3156 x3155 -x3154 -x3153 -x3152 -x3151 -x3150 -x3149 x3148 -x3147 -x3146 -x3145 x3144 -x3143 -x3142 -x3141 -x3140 x3139
0.29/0.38 v x3138 x3137 -x3136 x3135 -x3134 -x3133 -x3132 -x3131 -x3130 x3129 x3128 -x3127 -x3126 -x3125 x3124 -x3123 -x3122 -x3121 -x3120
0.29/0.38 v -x3119 -x3118 -x3117 x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 x3104 -x3103 -x3102
0.29/0.38 v x3101 -x3100 -x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 x3090 -x3089 -x3088 -x3087 -x3086 x3085 x3084
0.29/0.38 v -x3083 -x3082 -x3081 x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066
0.29/0.38 v -x3065 -x3064 -x3063 x3062 x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 x3051 -x3050 -x3049 -x3048 -x3047
0.29/0.38 v -x3046 -x3045 x3044 -x3043 -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029
0.29/0.38 v -x3028 -x3027 -x3026 x3025 -x3024 -x3023 -x3022 x3021 -x3020 -x3019 x3018 -x3017 -x3016 x3015 -x3014 x3013 -x3012 -x3011
0.29/0.38 v x3010 -x3009 -x3008 x3007 -x3006 -x3005 -x3004 -x3003 x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992
0.29/0.38 v x2991 x2990 -x2989 x2988 -x2987 x2986 -x2985 -x2984 x2983 x2982 -x2981 -x2980 -x2979 -x2978 x2977 -x2976 -x2975 -x2974
0.29/0.38 v -x2973 -x2972 x2971 -x2970 -x2969 x2968 -x2967 x2966 -x2965 x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955
0.29/0.38 v -x2954 -x2953 x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 x2940 -x2939 x2938 -x2937
0.29/0.38 v -x2936 -x2935 -x2934 -x2933 -x2932 -x2931 -x2930 x2929 x2928 -x2927 -x2926 -x2925 x2924 -x2923 x2922 -x2921 -x2920 -x2919 -x2918
0.29/0.38 v -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907 x2906 -x2905 -x2904 -x2903 -x2902 x2901 x2900
0.29/0.38 v -x2899 -x2898 -x2897 -x2896 -x2895 -x2894 x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 x2883 x2882
0.29/0.38 v -x2881 x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 x2871 x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864
0.29/0.38 v -x2863 -x2862 -x2861 -x2860 -x2859 -x2858 x2857 -x2856 -x2855 -x2854 x2853 x2852 -x2851 -x2850 -x2849 x2848 x2847 -x2846 -x2845
0.29/0.38 v -x2844 -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 x2837 -x2836 -x2835 -x2834 x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827
0.29/0.38 v -x2826 x2825 -x2824 x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810 x2809
0.29/0.38 v -x2808 x2807 -x2806 -x2805 -x2804 -x2803 x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 x2794 -x2793 -x2792 -x2791 -x2790
0.29/0.38 v -x2789 x2788 -x2787 x2786 -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 -x2772
0.29/0.38 v -x2771 -x2770 -x2769 -x2768 x2767 x2766 -x2765 x2764 -x2763 x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 x2754
0.29/0.38 v x2753 -x2752 -x2751 -x2750 -x2749 -x2748 x2747 x2746 -x2745 x2744 -x2743 x2742 x2741 -x2740 -x2739 -x2738 -x2737 -x2736 -x2735
0.29/0.38 v x2734 -x2733 -x2732 -x2731 -x2730 -x2729 x2728 -x2727 -x2726 -x2725 -x2724 -x2723 x2722 -x2721 x2720 -x2719 -x2718 -x2717 x2716
0.29/0.38 v x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 x2708 x2707 x2706 -x2705 -x2704 -x2703 x2702 -x2701 x2700 -x2699 -x2698
0.29/0.38 v -x2697 -x2696 -x2695 -x2694 x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 x2682 x2681 -x2680 x2679
0.29/0.38 v -x2678 -x2677 -x2676 x2675 -x2674 x2673 -x2672 x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661
0.29/0.38 v x2660 -x2659 x2658 -x2657 -x2656 x2655 -x2654 -x2653 x2652 -x2651 -x2650 -x2649 x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642
0.29/0.38 v -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 x2628 -x2627 -x2626 -x2625 -x2624
0.29/0.38 v -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609 -x2608 -x2607 -x2606
0.29/0.38 v x2605 x2604 -x2603 -x2602 x2601 -x2600 x2599 -x2598 -x2597 -x2596 x2595 -x2594 x2593 -x2592 -x2591 -x2590 -x2589 -x2588
0.29/0.38 v -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 x2574 -x2573 x2572 -x2571 -x2570 -x2569
0.29/0.38 v x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 x2558 x2557 x2556 x2555 x2554 x2553 -x2552 -x2551
0.29/0.38 v -x2550 x2549 x2548 -x2547 -x2546 -x2545 -x2544 -x2543 x2542 -x2541 x2540 -x2539 -x2538 x2537 x2536 x2535 -x2534 x2533 -x2532
0.29/0.38 v -x2531 x2530 -x2529 x2528 -x2527 -x2526 x2525 x2524 x2523 x2522 -x2521 x2520 -x2519 x2518 -x2517 -x2516 -x2515 x2514 -x2513 -x2512
0.29/0.38 v -x2511 x2510 -x2509 -x2508 -x2507 x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 -x2499 x2498 x2497 -x2496 -x2495 -x2494
0.29/0.38 v x2493 -x2492 -x2491 -x2490 x2489 -x2488 x2487 -x2486 -x2485 x2484 -x2483 x2482 -x2481 -x2480 -x2479 x2478 -x2477 -x2476 -x2475
0.29/0.38 v -x2474 -x2473 x2472 -x2471 -x2470 -x2469 x2468 -x2467 -x2466 -x2465 -x2464 x2463 x2462 -x2461 -x2460 -x2459 x2458 -x2457
0.29/0.38 v -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 x2449 -x2448 -x2447 x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 x2439 -x2438
0.29/0.38 v x2437 -x2436 -x2435 x2434 -x2433 x2432 -x2431 -x2430 -x2429 x2428 -x2427 -x2426 x2425 -x2424 -x2423 -x2422 -x2421 -x2420
0.29/0.38 v x2419 -x2418 -x2417 -x2416 x2415 x2414 x2413 x2412 -x2411 -x2410 -x2409 -x2408 -x2407 x2406 -x2405 x2404 x2403 -x2402 -x2401
0.29/0.38 v -x2400 -x2399 -x2398 -x2397 x2396 x2395 -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 x2388 x2387 -x2386 -x2385 -x2384 -x2383 -x2382
0.29/0.38 v -x2381 x2380 x2379 -x2378 x2377 -x2376 -x2375 x2374 x2373 x2372 -x2371 -x2370 -x2369 x2368 x2367 -x2366 -x2365 -x2364 x2363
0.29/0.38 v -x2362 -x2361 -x2360 x2359 x2358 -x2357 x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350 x2349 -x2348 -x2347 x2346 -x2345
0.29/0.38 v -x2344 x2343 -x2342 -x2341 x2340 -x2339 -x2338 x2337 -x2336 -x2335 -x2334 x2333 -x2332 -x2331 -x2330 -x2329 x2328 -x2327 x2326
0.29/0.38 v -x2325 -x2324 -x2323 x2322 -x2321 x2320 -x2319 -x2318 -x2317 -x2316 -x2315 -x2314 x2313 -x2312 -x2311 x2310 -x2309 -x2308
0.29/0.38 v -x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290
0.29/0.38 v -x2289 -x2288 -x2287 -x2286 x2285 -x2284 -x2283 -x2282 x2281 -x2280 x2279 x2278 -x2277 -x2276 -x2275 x2274 -x2273 -x2272 -x2271
0.29/0.38 v x2270 -x2269 -x2268 -x2267 -x2266 x2265 x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253
0.29/0.38 v -x2252 -x2251 -x2250 -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 x2238 -x2237 x2236 -x2235
0.29/0.38 v -x2234 -x2233 -x2232 -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 x2225 x2224 x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216
0.29/0.38 v -x2215 -x2214 -x2213 x2212 x2211 -x2210 -x2209 -x2208 x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198
0.29/0.38 v -x2197 x2196 x2195 -x2194 -x2193 -x2192 x2191 -x2190 -x2189 -x2188 -x2187 -x2186 x2185 -x2184 -x2183 -x2182 x2181 -x2180
0.29/0.38 v -x2179 -x2178 -x2177 -x2176 -x2175 x2174 -x2173 -x2172 -x2171 -x2170 -x2169 x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161
0.29/0.38 v -x2160 -x2159 -x2158 x2157 x2156 -x2155 -x2154 -x2153 -x2152 -x2151 x2150 x2149 x2148 -x2147 x2146 -x2145 x2144 -x2143
0.29/0.38 v -x2142 -x2141 x2140 -x2139 -x2138 x2137 -x2136 -x2135 -x2134 -x2133 -x2132 x2131 -x2130 x2129 -x2128 -x2127 -x2126 -x2125 -x2124
0.29/0.38 v -x2123 x2122 -x2121 x2120 -x2119 -x2118 -x2117 -x2116 -x2115 x2114 -x2113 -x2112 -x2111 -x2110 x2109 -x2108 -x2107 -x2106
0.29/0.38 v x2105 -x2104 -x2103 x2102 x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 x2089 x2088 -x2087
0.29/0.38 v -x2086 x2085 -x2084 -x2083 x2082 -x2081 -x2080 x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 x2071 -x2070 x2069
0.29/0.38 v x2068 -x2067 x2066 -x2065 -x2064 -x2063 -x2062 x2061 -x2060 -x2059 x2058 x2057 -x2056 -x2055 x2054 -x2053 -x2052 -x2051 -x2050
0.29/0.38 v -x2049 -x2048 -x2047 -x2046 -x2045 x2044 -x2043 -x2042 -x2041 x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032
0.29/0.38 v -x2031 -x2030 -x2029 x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 x2018 -x2017 -x2016 -x2015 -x2014
0.29/0.38 v -x2013 x2012 x2011 -x2010 -x2009 -x2008 x2007 x2006 x2005 -x2004 x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996 x1995
0.29/0.38 v -x1994 x1993 -x1992 -x1991 -x1990 x1989 x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 x1981 -x1980 -x1979 -x1978 -x1977 -x1976
0.29/0.38 v -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966 x1965 x1964 x1963 x1962 x1961 -x1960 -x1959 -x1958
0.29/0.38 v -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 -x1940
0.29/0.38 v -x1939 x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 x1927 -x1926 -x1925 -x1924 x1923 x1922 -x1921
0.29/0.38 v -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 x1913 -x1912 -x1911 -x1910 x1909 x1908 -x1907 -x1906 -x1905 -x1904 -x1903
0.29/0.38 v -x1902 -x1901 -x1900 -x1899 x1898 -x1897 -x1896 -x1895 -x1894 -x1893 x1892 -x1891 -x1890 -x1889 x1888 x1887 x1886 -x1885
0.29/0.38 v x1884 -x1883 -x1882 x1881 -x1880 -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 x1871 -x1870 -x1869 x1868 -x1867 -x1866
0.29/0.38 v x1865 -x1864 -x1863 x1862 -x1861 -x1860 -x1859 x1858 x1857 -x1856 x1855 -x1854 -x1853 -x1852 -x1851 x1850 -x1849 -x1848 x1847
0.29/0.38 v -x1846 -x1845 x1844 -x1843 x1842 -x1841 -x1840 -x1839 -x1838 -x1837 x1836 -x1835 -x1834 -x1833 x1832 x1831 -x1830 x1829
0.29/0.38 v -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 x1819 x1818 -x1817 x1816 -x1815 x1814 x1813 -x1812 -x1811 -x1810
0.29/0.38 v -x1809 x1808 -x1807 -x1806 -x1805 -x1804 x1803 -x1802 -x1801 -x1800 -x1799 -x1798 x1797 -x1796 x1795 -x1794 x1793 -x1792 -x1791
0.29/0.38 v -x1790 -x1789 x1788 -x1787 -x1786 x1785 -x1784 x1783 -x1782 x1781 x1780 -x1779 -x1778 x1777 -x1776 x1775 -x1774 x1773 -x1772
0.29/0.38 v x1771 -x1770 x1769 -x1768 x1767 -x1766 -x1765 x1764 x1763 -x1762 x1761 -x1760 -x1759 -x1758 -x1757 -x1756 x1755 -x1754
0.29/0.38 v -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 x1744 x1743 -x1742 x1741 x1740 -x1739 x1738 -x1737 -x1736 -x1735
0.29/0.38 v -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 -x1728 -x1727 -x1726 -x1725 x1724 x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717
0.29/0.38 v x1716 x1715 -x1714 x1713 -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 x1705 -x1704 x1703 x1702 x1701 -x1700 -x1699 -x1698
0.29/0.38 v x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 x1688 -x1687 -x1686 -x1685 x1684 -x1683 -x1682 x1681 -x1680
0.29/0.38 v x1679 -x1678 x1677 x1676 -x1675 -x1674 x1673 -x1672 x1671 x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661
0.29/0.38 v -x1660 -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 x1648 -x1647 -x1646 -x1645 -x1644 -x1643
0.29/0.38 v -x1642 -x1641 -x1640 -x1639 x1638 -x1637 x1636 x1635 x1634 -x1633 -x1632 -x1631 x1630 -x1629 -x1628 x1627 -x1626 -x1625 -x1624
0.29/0.38 v -x1623 -x1622 -x1621 -x1620 x1619 -x1618 x1617 -x1616 -x1615 -x1614 -x1613 x1612 -x1611 x1610 -x1609 x1608 x1607 -x1606 -x1605
0.29/0.38 v x1604 -x1603 x1602 -x1601 x1600 x1599 x1598 -x1597 -x1596 x1595 -x1594 -x1593 -x1592 -x1591 -x1590 -x1589 x1588 -x1587
0.29/0.39 v -x1586 x1585 x1584 -x1583 x1582 -x1581 x1580 x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573 x1572 x1571 -x1570 -x1569 -x1568
0.29/0.39 v -x1567 -x1566 x1565 -x1564 x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 -x1553 -x1552 -x1551 x1550 -x1549
0.29/0.39 v -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 -x1534 -x1533 -x1532
0.29/0.39 v -x1531 -x1530 -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 -x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514
0.29/0.39 v -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502 -x1501 -x1500 -x1499 -x1498 -x1497 -x1496
0.29/0.39 v -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 -x1481 x1480 -x1479 -x1478
0.29/0.39 v -x1477 -x1476 -x1475 -x1474 -x1473 -x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460
0.29/0.39 v -x1459 -x1458 -x1457 -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 x1447 -x1446 -x1445 -x1444 -x1443 -x1442
0.29/0.39 v -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424
0.29/0.39 v -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 x1413 -x1412 -x1411 x1410 -x1409 x1408 x1407 -x1406
0.29/0.39 v -x1405 x1404 -x1403 -x1402 -x1401 -x1400 -x1399 -x1398 x1397 -x1396 -x1395 x1394 -x1393 -x1392 x1391 x1390 -x1389 x1388 -x1387
0.29/0.39 v -x1386 x1385 -x1384 -x1383 -x1382 x1381 -x1380 x1379 -x1378 -x1377 x1376 -x1375 -x1374 x1373 -x1372 x1371 -x1370 -x1369 -x1368
0.29/0.39 v x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 x1359 x1358 -x1357 -x1356 x1355 x1354 -x1353 -x1352 -x1351 -x1350
0.29/0.39 v -x1349 -x1348 -x1347 -x1346 -x1345 -x1344 -x1343 -x1342 -x1341 -x1340 -x1339 -x1338 -x1337 x1336 -x1335 -x1334 -x1333 -x1332
0.29/0.39 v -x1331 -x1330 x1329 -x1328 x1327 -x1326 x1325 -x1324 -x1323 -x1322 x1321 -x1320 -x1319 -x1318 -x1317 -x1316 -x1315 -x1314 -x1313
0.29/0.39 v -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305 -x1304 -x1303 x1302 -x1301 -x1300 -x1299 -x1298 x1297 -x1296 -x1295
0.29/0.39 v -x1294 -x1293 -x1292 -x1291 -x1290 -x1289 -x1288 x1287 -x1286 -x1285 -x1284 -x1283 -x1282 -x1281 -x1280 -x1279 -x1278 -x1277
0.29/0.39 v -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 x1270 -x1269 -x1268 -x1267 x1266 x1265 -x1264 -x1263 -x1262 x1261 -x1260 -x1259
0.29/0.39 v -x1258 -x1257 x1256 x1255 -x1254 x1253 -x1252 -x1251 -x1250 -x1249 x1248 x1247 -x1246 -x1245 x1244 -x1243 -x1242 -x1241 -x1240
0.29/0.39 v x1239 x1238 -x1237 -x1236 x1235 -x1234 x1233 -x1232 x1231 -x1230 x1229 -x1228 x1227 -x1226 -x1225 x1224 -x1223 x1222 -x1221
0.29/0.39 v -x1220 x1219 -x1218 -x1217 x1216 x1215 x1214 x1213 -x1212 x1211 -x1210 x1209 -x1208 x1207 -x1206 x1205 -x1204 -x1203 -x1202
0.29/0.39 v -x1201 -x1200 -x1199 -x1198 -x1197 -x1196 -x1195 -x1194 -x1193 -x1192 -x1191 -x1190 -x1189 -x1188 -x1187 -x1186 -x1185 -x1184
0.29/0.39 v x1183 -x1182 -x1181 x1180 -x1179 x1178 -x1177 x1176 -x1175 -x1174 x1173 -x1172 -x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165
0.29/0.39 v -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 x1158 -x1157 x1156 -x1155 -x1154 -x1153 x1152 -x1151 -x1150 -x1149 -x1148 -x1147
0.29/0.39 v -x1146 -x1145 -x1144 -x1143 -x1142 x1141 -x1140 -x1139 -x1138 -x1137 -x1136 -x1135 -x1134 -x1133 -x1132 -x1131 -x1130 -x1129
0.29/0.39 v -x1128 -x1127 -x1126 x1125 -x1124 -x1123 -x1122 -x1121 -x1120 -x1119 -x1118 x1117 x1116 -x1115 x1114 -x1113 -x1112 x1111 -x1110
0.29/0.39 v -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102 x1101 -x1100 x1099 -x1098 -x1097 -x1096 -x1095 -x1094 -x1093 -x1092
0.29/0.39 v x1091 x1090 -x1089 -x1088 -x1087 x1086 -x1085 -x1084 -x1083 -x1082 -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074
0.29/0.39 v -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 x1067 x1066 x1065 x1064 x1063 -x1062 -x1061 -x1060 -x1059 -x1058 -x1057 -x1056 x1055
0.29/0.39 v -x1054 -x1053 -x1052 x1051 -x1050 -x1049 -x1048 -x1047 -x1046 -x1045 -x1044 x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037
0.29/0.39 v x1036 -x1035 -x1034 -x1033 -x1032 -x1031 x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 x1022 -x1021 -x1020 -x1019
0.29/0.39 v -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 -x1003 -x1002 -x1001
0.29/0.39 v -x1000 -x999 -x998 -x997 -x996 -x995 -x994 -x993 -x992 -x991 -x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 -x981 -x980
0.29/0.39 v -x979 -x978 -x977 -x976 -x975 -x974 -x973 -x972 -x971 -x970 -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 x960 -x959
0.29/0.39 v -x958 -x957 -x956 x955 -x954 -x953 -x952 x951 -x950 -x949 -x948 -x947 -x946 -x945 x944 -x943 -x942 -x941 -x940 -x939 -x938
0.29/0.39 v -x937 -x936 -x935 -x934 -x933 -x932 -x931 -x930 -x929 -x928 -x927 -x926 -x925 x924 -x923 -x922 -x921 -x920 -x919 -x918 x917
0.29/0.39 v -x916 -x915 -x914 -x913 -x912 -x911 -x910 -x909 -x908 -x907 -x906 -x905 -x904 -x903 -x902 x901 -x900 -x899 x898 -x897 x896
0.29/0.39 v -x895 x894 x893 -x892 x891 -x890 -x889 x888 -x887 -x886 -x885 -x884 x883 -x882 -x881 -x880 x879 -x878 -x877 -x876 -x875 -x874
0.29/0.39 v -x873 -x872 -x871 -x870 -x869 -x868 -x867 x866 -x865 x864 -x863 -x862 -x861 -x860 -x859 -x858 x857 -x856 -x855 -x854 x853 -x852
0.29/0.39 v -x851 x850 -x849 x848 -x847 -x846 -x845 x844 -x843 -x842 -x841 -x840 -x839 x838 -x837 -x836 x835 x834 -x833 x832 x831 -x830
0.29/0.39 v x829 -x828 -x827 -x826 -x825 -x824 x823 -x822 -x821 -x820 -x819 -x818 -x817 -x816 x815 -x814 -x813 -x812 -x811 -x810 x809
0.29/0.39 v x808 -x807 x806 -x805 -x804 -x803 -x802 -x801 -x800 -x799 x798 -x797 -x796 x795 x794 -x793 -x792 x791 x790 -x789 -x788 -x787
0.29/0.39 v x786 x785 -x784 -x783 -x782 x781 x780 -x779 -x778 -x777 -x776 -x775 -x774 x773 -x772 x771 -x770 -x769 x768 -x767 -x766 x765 -x764
0.29/0.39 v -x763 -x762 -x761 x760 -x759 -x758 x757 -x756 -x755 x754 -x753 x752 -x751 -x750 -x749 x748 -x747 x746 -x745 -x744 x743 x742
0.29/0.39 v -x741 -x740 x739 x738 -x737 x736 -x735 -x734 x733 -x732 x731 -x730 -x729 -x728 x727 -x726 -x725 -x724 -x723 -x722 -x721 -x720
0.29/0.39 v -x719 x718 -x717 x716 -x715 -x714 -x713 -x712 -x711 -x710 -x709 x708 -x707 -x706 x705 x704 -x703 -x702 -x701 -x700 x699
0.29/0.39 v -x698 -x697 x696 -x695 -x694 x693 -x692 x691 -x690 -x689 x688 x687 -x686 -x685 -x684 -x683 -x682 -x681 -x680 -x679 -x678 -x677
0.29/0.39 v -x676 -x675 -x674 -x673 -x672 x671 -x670 -x669 -x668 -x667 -x666 -x665 -x664 -x663 x662 -x661 x660 -x659 x658 -x657 -x656 -x655
0.29/0.39 v -x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 x646 -x645 -x644 -x643 -x642 x641 -x640 -x639 -x638 -x637 -x636 -x635 -x634
0.29/0.39 v -x633 -x632 x631 -x630 -x629 -x628 x627 -x626 x625 x624 -x623 -x622 -x621 x620 x619 -x618 -x617 x616 -x615 x614 -x613 -x612
0.29/0.39 v -x611 -x610 -x609 -x608 x607 -x606 x605 -x604 -x603 x602 -x601 x600 -x599 x598 x597 -x596 x595 -x594 -x593 -x592 -x591 -x590
0.29/0.39 v -x589 x588 -x587 -x586 -x585 x584 -x583 -x582 -x581 x580 -x579 -x578 -x577 x576 -x575 -x574 -x573 -x572 -x571 -x570 x569 -x568
0.29/0.39 v x567 -x566 -x565 -x564 -x563 -x562 -x561 x560 -x559 -x558 -x557 -x556 -x555 -x554 -x553 -x552 -x551 x550 -x549 -x548 -x547
0.29/0.39 v x546 x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 x537 -x536 -x535 -x534 -x533 -x532 -x531 x530 -x529 -x528 -x527 -x526
0.29/0.39 v -x525 -x524 -x523 -x522 -x521 x520 x519 -x518 -x517 -x516 -x515 -x514 -x513 x512 -x511 -x510 -x509 x508 x507 -x506 -x505 -x504
0.29/0.39 v -x503 x502 -x501 x500 x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 -x486 -x485 x484 -x483 -x482
0.29/0.39 v -x481 x480 -x479 -x478 x477 -x476 x475 -x474 -x473 -x472 -x471 x470 -x469 -x468 x467 -x466 -x465 -x464 -x463 x462 -x461
0.29/0.39 v x460 -x459 x458 -x457 -x456 x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442 x441 -x440 -x439
0.29/0.39 v -x438 -x437 -x436 x435 -x434 -x433 -x432 x431 x430 -x429 -x428 x427 -x426 x425 -x424 -x423 x422 -x421 x420 -x419 -x418 -x417
0.29/0.39 v -x416 -x415 x414 -x413 -x412 -x411 -x410 -x409 x408 -x407 -x406 -x405 -x404 x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396
0.29/0.39 v -x395 x394 -x393 -x392 -x391 -x390 -x389 -x388 x387 x386 x385 x384 x383 x382 -x381 -x380 -x379 x378 -x377 -x376 -x375 -x374
0.29/0.39 v -x373 -x372 -x371 -x370 -x369 -x368 -x367 x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353
0.29/0.39 v x352 x351 x350 -x349 -x348 x347 -x346 x345 -x344 x343 -x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331
0.29/0.39 v -x330 -x329 x328 -x327 x326 x325 x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317 x316 -x315 -x314 -x313 x312 -x311 x310 -x309
0.29/0.39 v -x308 x307 x306 -x305 -x304 x303 x302 -x301 -x300 -x299 x298 x297 -x296 -x295 x294 x293 -x292 x291 -x290 -x289 -x288 -x287 -x286
0.29/0.39 v -x285 -x284 -x283 x282 x281 -x280 -x279 -x278 -x277 x276 -x275 x274 x273 -x272 x271 x270 -x269 x268 -x267 -x266 x265 -x264
0.29/0.39 v x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 -x250 x249 -x248 x247 -x246 -x245 -x244 -x243
0.29/0.39 v x242 x241 -x240 -x239 x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 x230 -x229 -x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221
0.29/0.39 v -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200
0.29/0.39 v -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180
0.29/0.39 v -x179 -x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 -x166 -x165 -x164 x163 -x162 x161 -x160 -x159 -x158
0.29/0.39 v -x157 x156 -x155 -x154 x153 x152 -x151 -x150 -x149 -x148 -x147 x146 -x145 -x144 -x143 -x142 x141 -x140 -x139 x138 -x137
0.29/0.39 v x136 x135 -x134 -x133 x132 x131 -x130 -x129 -x128 -x127 -x126 -x125 x124 -x123 x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115
0.29/0.39 v -x114 x113 -x112 -x111 -x110 -x109 x108 -x107 -x106 -x105 x104 -x103 -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 -x93 -x92
0.29/0.39 v x91 -x90 x89 -x88 -x87 -x86 x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67
0.29/0.39 v -x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53 x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43 -x42 x41
0.29/0.39 v -x40 x39 -x38 -x37 x36 x35 -x34 x33 -x32 x31 x30 -x29 x28 -x27 x26 -x25 x24 -x23 -x22 x21 x20 -x19 -x18 x17 -x16 x15 -x14
0.29/0.39 v -x13 x12 x11 -x10 -x9 x8 -x7 -x6 x5 x4 -x3 -x2 -x1 -x5855 -x5854 -x5853 -x5852 -x5851 -x5850 -x5849 -x5848 -x5847 -x5846 -x5845
0.29/0.39 v -x5844 -x5843 -x5842 -x5841 -x5840 -x5839 -x5838 -x5837 -x5836 -x5835 -x5834 -x5833 -x5832 -x5831 -x5830 -x5829 -x5828 -x5827
0.29/0.39 v -x5826 -x5825 -x5824 -x5823 -x5822 -x5821 -x5820 -x5819 -x5818 -x5817 -x5816 -x5815 -x5814 -x5813 -x5812 -x5811 x5810 x5809
0.29/0.39 v -x5808 x5807 -x5806 -x5805 -x5804 -x5803 -x5802 -x5801 -x5800 -x5799 -x5798 -x5797 -x5796 -x5795 -x5794 -x5793 -x5792 -x5791
0.29/0.39 v -x5790 -x5789 -x5788 -x5787 -x5786 -x5785 -x5784 -x5783 -x5782 -x5781 -x5780 -x5779 -x5778 -x5777 x5776 -x5775 -x5774 -x5773
0.29/0.39 v -x5772 -x5771 -x5770 -x5769 -x5768 -x5767 -x5766 -x5765 -x5764 -x5763 -x5762 -x5761 -x5760 -x5759 -x5758 -x5757 -x5756 -x5755
0.29/0.39 v -x5754 -x5753 -x5752 -x5751 -x5750 -x5749 -x5748 x5747 -x5746 -x5745 -x5744 -x5743 -x5742 -x5741 -x5740 -x5739 -x5738 -x5737
0.29/0.39 v -x5736 -x5735 -x5734 -x5733 -x5732 -x5731 -x5730 -x5729 -x5728 -x5727 -x5726 -x5725 -x5724 -x5723 -x5722 -x5721 -x5720 -x5719
0.29/0.39 v -x5718 -x5717 -x5716 -x5715 -x5714 -x5713 -x5712 -x5711 -x5710 -x5709 -x5708 -x5707 -x5706 -x5705 -x5704 -x5703 -x5702 -x5701
0.29/0.39 v -x5700 -x5699 -x5698 -x5697 -x5696 -x5695 -x5694 -x5693 -x5692 -x5691 -x5690 -x5689 -x5688 -x5687 -x5686 -x5685 -x5684
0.29/0.39 v -x5683 -x5682 -x5681 -x5680 x5679 -x5678 -x5677 -x5676 x5675 x5674 -x5673 -x5672 -x5671 -x5670 -x5669 x5668 -x5667 -x5666 -x5665
0.29/0.39 v -x5664 -x5663 -x5662 -x5661 -x5660 -x5659 -x5658 -x5657 -x5656 -x5655 -x5654 -x5653 -x5652 x5651 -x5650 -x5649 -x5648 -x5647
0.29/0.39 v -x5646 -x5645 -x5644 -x5643 -x5642 -x5641 -x5640 -x5639 -x5638 -x5637 -x5636 -x5635 -x5634 -x5633 -x5632 -x5631 -x5630 -x5629
0.29/0.39 v -x5628 -x5627 -x5626 -x5625 -x5624 -x5623 -x5622 -x5621 -x5620 -x5619 -x5618 -x5617 -x5616 -x5615 -x5614 -x5613 -x5612 -x5611
0.29/0.39 v -x5610 -x5609 -x5608 -x5607 -x5606 -x5605 -x5604 -x5603 x5602 x5601 -x5600 -x5599 -x5598 -x5597 -x5596 -x5595 -x5594 -x5593
0.29/0.39 v -x5592 -x5591 -x5590 -x5589 -x5588 -x5587 -x5586 -x5585 -x5584 -x5583 -x5582 -x5581 -x5580 -x5579 -x5578 -x5577 -x5576 -x5575
0.29/0.39 v -x5574 -x5573 -x5572 -x5571 -x5570 x5569 -x5568 -x5567 -x5566 -x5565 -x5564 -x5563 -x5562 -x5561 -x5560 -x5559 -x5558 -x5557
0.29/0.39 v -x5556 -x5555 -x5554 -x5553 -x5552 -x5551 -x5550 -x5549 -x5548 -x5547 -x5546 -x5545 -x5544 -x5543 -x5542 -x5541 -x5540
0.29/0.39 v -x5539 -x5538 -x5537 -x5536 -x5535 -x5534 -x5533 -x5532 -x5531 -x5530 -x5529 -x5528 -x5527 -x5526 -x5525 -x5524 -x5523 -x5522
0.29/0.39 v -x5521 -x5520 -x5519 x5518 -x5517 -x5516 -x5515 -x5514 -x5513 -x5512 -x5511 -x5510 -x5509 -x5508 -x5507 -x5506 -x5505 -x5504
0.29/0.39 v -x5503 -x5502 x5501 -x5500 -x5499 -x5498 -x5497 -x5496 -x5495 -x5494 -x5493 -x5492 -x5491 -x5490 -x5489 -x5488 -x5487 -x5486
0.29/0.39 v -x5485 -x5484 -x5483 -x5482 -x5481 -x5480 -x5479 -x5478 -x5477 -x5476 -x5475 -x5474 -x5473 -x5472 -x5471 -x5470 -x5469 -x5468
0.29/0.39 v -x5467 -x5466 -x5465 -x5464 -x5463 -x5462 -x5461 -x5460 -x5459 -x5458 x5457 -x5456 -x5455 -x5454 -x5453 -x5452 -x5451 -x5450
0.29/0.39 v -x5449 -x5448 -x5447 -x5446 -x5445 -x5444 -x5443 -x5442 -x5441 -x5440 -x5439 -x5438 -x5437 -x5436 -x5435 -x5434 -x5433 -x5432
0.29/0.39 v -x5431 -x5430 -x5429 -x5428 -x5427 -x5426 -x5425 -x5424 -x5423 -x5422 -x5421 -x5420 -x5419 -x5418 -x5417 -x5416 -x5415 x5414
0.29/0.39 v -x5413 -x5412 -x5411 -x5410 -x5409 -x5408 -x5407 -x5406 -x5405 -x5404 -x5403 -x5402 -x5401 -x5400 -x5399 -x5398 x5397 -x5396
0.29/0.39 v -x5395 -x5394 -x5393 -x5392 -x5391 -x5390 -x5389 -x5388 -x5387 -x5386 -x5385 -x5384 -x5383 -x5382 -x5381 -x5380 -x5379 -x5378
0.29/0.39 v -x5377 x5376 -x5375 -x5374 -x5373 -x5372 -x5371 -x5370 -x5369 x5368 -x5367 -x5366 -x5365 -x5364 -x5363 -x5362 -x5361 -x5360
0.29/0.39 v -x5359 -x5358 -x5357 -x5356 -x5355 -x5354 -x5353 -x5352 -x5351 -x5350 -x5349 -x5348 -x5347 x5346 -x5345 -x5344 -x5343 -x5342
0.29/0.39 v -x5341 -x5340 -x5339 -x5338 -x5337 -x5336 -x5335 -x5334 -x5333 -x5332 -x5331 x5330 -x5329 -x5328 -x5327 -x5326 -x5325 -x5324
0.29/0.39 v -x5323 -x5322 -x5321 -x5320 -x5319 -x5318 -x5317 -x5316 -x5315 -x5314 -x5313 -x5312 -x5311 -x5310 -x5309 -x5308 -x5307 -x5306
0.29/0.39 v -x5305 -x5304 -x5303 -x5302 -x5301 -x5300 -x5299 -x5298 -x5297 -x5296 -x5295 -x5294 -x5293 -x5292 -x5291 -x5290 -x5289 -x5288
0.29/0.39 v -x5287 -x5286 -x5285 -x5284 -x5283 -x5282 -x5281 -x5280 x5279 -x5278 -x5277 -x5276 -x5275 -x5274 -x5273 -x5272 -x5271 -x5270
0.29/0.39 v -x5269 -x5268 -x5267 -x5266 -x5265 -x5264 -x5263 -x5262 -x5261 -x5260 -x5259 -x5258 -x5257 -x5256 -x5255 -x5254 -x5253 -x5252
0.29/0.39 v -x5251 -x5250 -x5249 -x5248 -x5247 -x5246 -x5245 -x5244 x5243 -x5242 -x5241 -x5240 -x5239 -x5238 -x5237 -x5236 -x5235 -x5234
0.29/0.39 v -x5233 -x5232 -x5231 -x5230 -x5229 -x5228 -x5227 -x5226 -x5225 -x5224 -x5223 -x5222 -x5221 -x5220 -x5219 -x5218 -x5217
0.29/0.39 v -x5216 -x5215 -x5214 -x5213 -x5212 x5211 -x5210 -x5209 -x5208 -x5207 -x5206 -x5205 -x5204 -x5203 -x5202 -x5201 -x5200 x5199 -x5198
0.29/0.39 v -x5197 -x5196 x5195 -x5194 -x5193 -x5192 -x5191 -x5190 -x5189 -x5188 -x5187 -x5186 x5185 -x5184 -x5183 -x5182 -x5181 -x5180
0.29/0.39 v -x5179 -x5178 -x5177 -x5176 -x5175 -x5174 -x5173 -x5172 -x5171 -x5170 -x5169 -x5168 -x5167 -x5166 -x5165 -x5164 -x5163 -x5162
0.29/0.39 v -x5161 -x5160 -x5159 -x5158 -x5157 -x5156 -x5155 -x5154 -x5153 -x5152 -x5151 -x5150 -x5149 -x5148 -x5147 -x5146 -x5145
0.29/0.39 v -x5144 -x5143 -x5142 -x5141 -x5140 -x5139 -x5138 -x5137 -x5136 -x5135 -x5134 -x5133 -x5132 -x5131 -x5130 -x5129 -x5128 -x5127
0.29/0.39 v -x5126 -x5125 -x5124 -x5123 -x5122 -x5121 -x5120 x5119 -x5118 -x5117 -x5116 -x5115 -x5114 -x5113 -x5112 -x5111 x5110 -x5109
0.29/0.39 v -x5108 -x5107 -x5106 -x5105 -x5104 -x5103 -x5102 -x5101 -x5100 -x5099 -x5098 -x5097 -x5096 -x5095 -x5094 -x5093 -x5092 -x5091
0.29/0.39 v -x5090 -x5089 -x5088 -x5087 -x5086 -x5085 -x5084 -x5083 -x5082 -x5081 -x5080 -x5079 -x5078 -x5077 -x5076 -x5075 -x5074 -x5073
0.29/0.39 v -x5072 -x5071 -x5070 -x5069 -x5068 -x5067 -x5066 -x5065 -x5064 -x5063 -x5062 -x5061 -x5060 -x5059 -x5058 -x5057 -x5056 -x5055
0.29/0.39 v -x5054 -x5053 -x5052 -x5051 -x5050 -x5049 -x5048 -x5047 -x5046 -x5045 -x5044 -x5043 -x5042 -x5041 -x5040 -x5039 -x5038 -x5037
0.29/0.39 v -x5036 -x5035 -x5034 -x5033 -x5032 -x5031 -x5030 -x5029 -x5028 -x5027 -x5026 -x5025 -x5024 -x5023 -x5022 -x5021 -x5020 -x5019
0.29/0.39 v -x5018 -x5017 -x5016 -x5015 x5014 -x5013 -x5012 -x5011 -x5010 -x5009 x5008 x5007 x5006 x5005 -x5004 x5003 -x5002 -x5001
0.29/0.39 v x5000 -x4999 -x4998 -x4997 -x4996 -x4995 -x4994 -x4993 -x4992 -x4991 -x4990 -x4989 -x4988 -x4987 -x4986 -x4985 x4984 -x4983 -x4982
0.29/0.39 v -x4981 -x4980 x4979 -x4978 -x4977 -x4976 -x4975 -x4974 -x4973 -x4972 x4971 -x4970 -x4969 x4968 x4967 -x4966 x4965 -x4964
0.29/0.39 v -x4963 -x4962 -x4961 -x4960 -x4959 -x4958 -x4957 -x4956 -x4955 x4954 -x4953 -x4952 -x4951 -x4950 x4949 x4948 -x4947 -x4946
0.29/0.39 v -x4945 x4944 x4943 -x4942 -x4941 -x4940 -x4939 -x4938 -x4937 -x4936 -x4935 -x4934 -x4933 x4932 -x4931 -x4930 -x4929 x4928 x4927
0.29/0.39 v x4926 -x4925 -x4924 -x4923 -x4922 -x4921 -x4920 -x4919 x4918 -x4917 x4916 -x4915 -x4914 x4913 -x4912 -x4911 -x4910 -x4909
0.29/0.39 v x4908 x4907 -x4906 -x4905 x4904 x4903 -x4902 -x4901 -x4900 -x4899 x4898 -x4897 -x4896 -x4895 -x4894 -x4893 x4892 x4891 x4890
0.29/0.39 v -x4889 -x4888 x4887 x4886 x4885 -x4884 -x4883 x4882 -x4881 x4880 -x4879 -x4878 -x4877 -x4876 -x4875 -x4874 -x4873 x4872 x4871
0.29/0.39 v x4870 x4869 -x4868 -x4867 x4866 x4865 x4864 -x4863 x4862 -x4861 -x4860 -x4859 -x4858 -x4857 -x4856 -x4855 -x4854 -x4853 -x4852
0.29/0.39 v -x4851 -x4850 -x4849 -x4848 -x4847 -x4846 -x4845 x4844 x4843 x4842 -x4841 x4840 -x4839 -x4838 -x4837 -x4836 -x4835 x4834 x4833
0.29/0.39 v x4832 -x4831 -x4830 -x4829 -x4828 -x4827 -x4826 -x4825 -x4824 -x4823 -x4822 -x4821 x4820 x4819 x4818 x4817 x4816 -x4815
0.29/0.39 v -x4814 x4813 -x4812 -x4811 -x4810 -x4809 -x4808 -x4807 -x4806 -x4805 -x4804 x4803 -x4802 -x4801 -x4800 -x4799 -x4798 -x4797 -x4796
0.29/0.39 v -x4795 x4794 -x4793 -x4792 -x4791 -x4790 x4789 x4788 x4787 -x4786 -x4785 -x4784 -x4783 -x4782 -x4781 -x4780 -x4779 -x4778
0.29/0.39 v -x4777 -x4776 x4775 -x4774 -x4773 -x4772 -x4771 -x4770 -x4769 -x4768 -x4767 -x4766 -x4765 x4764 -x4763 -x4762 -x4761 -x4760
0.29/0.39 v x4759 -x4758 -x4757 -x4756 -x4755 x4754 -x4753 -x4752 -x4751 -x4750 x4749 -x4748 -x4747 -x4746 -x4745 -x4744 -x4743 -x4742
0.29/0.39 v -x4741 -x4740 x4739 -x4738 -x4737 -x4736 -x4735 -x4734 -x4733 -x4732 -x4731 -x4730 -x4729 -x4728 -x4727 -x4726 -x4725 -x4724
0.29/0.39 v x4723 -x4722 -x4721 -x4720 -x4719 x4718 -x4717 -x4716 -x4715 -x4714 -x4713 -x4712 -x4711 -x4710 x4709 -x4708 -x4707 -x4706 -x4705
0.29/0.39 v -x4704 -x4703 -x4702 -x4701 x4700 -x4699 x4698 x4697 -x4696 x4695 -x4694 x4693 -x4692 -x4691 -x4690 -x4689 -x4688 -x4687
0.29/0.39 v -x4686 -x4685 -x4684 -x4683 -x4682 -x4681 -x4680 -x4679 -x4678 -x4677 -x4676 -x4675 -x4674 -x4673 -x4672 -x4671 -x4670 -x4669
0.29/0.39 v -x4668 -x4667 -x4666 -x4665 -x4664 -x4663 -x4662 -x4661 -x4660 -x4659 x4658 -x4657 x4656 -x4655 -x4654 -x4653 -x4652 -x4651
0.29/0.39 v -x4650 -x4649 -x4648 -x4647 -x4646 -x4645 -x4644 -x4643 -x4642 -x4641 -x4640 -x4639 -x4638 x4637 x4636 -x4635 -x4634 -x4633
0.29/0.39 v -x4632 -x4631 -x4630 -x4629 x4628 -x4627 -x4626 -x4625 -x4624 x4623 -x4622 -x4621 -x4620 -x4619 -x4618 -x4617 -x4616 x4615 -x4614
0.29/0.39 v -x4613 -x4612 -x4611 -x4610 -x4609 -x4608 -x4607 -x4606 -x4605 x4604 -x4603 -x4602 -x4601 -x4600 -x4599 -x4598 -x4597 -x4596
0.29/0.39 v x4595 -x4594 -x4593 -x4592 -x4591 -x4590 -x4589 -x4588 -x4587 -x4586 -x4585 -x4584 -x4583 -x4582 -x4581 -x4580 -x4579 -x4578
0.29/0.39 v -x4577 x4576 x4575 x4574 -x4573 -x4572 -x4571 -x4570 -x4569 x4568 -x4567 -x4566 x4565 -x4564 -x4563 -x4562 x4561 -x4560
0.29/0.39 v -x4559 x4558 -x4557 -x4556 x4555 -x4554 -x4553 -x4552 -x4551 -x4550 -x4549 -x4548 -x4547 -x4546 -x4545 -x4544 -x4543 -x4542 -x4541
0.29/0.39 v -x4540 -x4539 -x4538 -x4537 -x4536 -x4535 -x4534 -x4533 -x4532 x4531 -x4530 -x4529 -x4528 -x4527 -x4526 -x4525 -x4524 -x4523
0.29/0.39 v -x4522 -x4521 -x4520 -x4519 -x4518 -x4517 -x4516 x4515 -x4514 -x4513 -x4512 -x4511 x4510 x4509 -x4508 -x4507 -x4506 x4505
0.29/0.39 v -x4504 x4503 -x4502 -x4501 -x4500 x4499 x4498 x4497 x4496 -x4495 -x4494 -x4493 x4492 -x4491 -x4490 -x4489 -x4488 -x4487 -x4486
0.29/0.39 v -x4485 -x4484 x4483 x4482 -x4481 -x4480 -x4479 x4478 -x4477 -x4476 -x4475 -x4474 -x4473 -x4472 -x4471 -x4470 x4469 -x4468
0.29/0.39 v -x4467 -x4466 -x4465 x4464 -x4463 -x4462 -x4461 x4460 x4459 -x4458 -x4457 -x4456 -x4455 x4454 -x4453 -x4452 -x4451 -x4450 -x4449
0.29/0.39 v -x4448 -x4447 -x4446 -x4445 -x4444 -x4443 x4442 x4441 -x4440 -x4439 -x4438 -x4437 -x4436 -x4435 -x4434 -x4433 -x4432 -x4431
0.29/0.39 v -x4430 -x4429 -x4428 -x4427 -x4426 -x4425 -x4424 -x4423 -x4422 -x4421 -x4420 -x4419 x4418 -x4417 -x4416 -x4415 x4414 x4413
0.29/0.39 v -x4412 -x4411 -x4410 -x4409 x4408 -x4407 x4406 x4405 -x4404 -x4403 -x4402 -x4401 -x4400 -x4399 -x4398 -x4397 -x4396 -x4395
0.29/0.39 v x4394 -x4393 -x4392 -x4391 -x4390 -x4389 -x4388 x4387 -x4386 -x4385 -x4384 -x4383 -x4382 -x4381 -x4380 -x4379 -x4378 -x4377
0.29/0.39 v -x4376 -x4375 -x4374 -x4373 -x4372 -x4371 -x4370 -x4369 x4368 -x4367 -x4366 -x4365 -x4364 -x4363 -x4362 -x4361 -x4360 -x4359
0.29/0.39 v -x4358 -x4357 -x4356 -x4355 -x4354 -x4353 -x4352 -x4351 x4350 -x4349 -x4348 -x4347 -x4346 x4345 -x4344 x4343 -x4342 -x4341 -x4340
0.29/0.39 v -x4339 -x4338 -x4337 -x4336 -x4335 -x4334 -x4333 -x4332 -x4331 -x4330 -x4329 -x4328 -x4327 -x4326 -x4325 -x4324 -x4323 -x4322
0.29/0.39 v -x4321 -x4320 -x4319 -x4318 -x4317 -x4316 -x4315 -x4314 -x4313 -x4312 -x4311 -x4310 -x4309 -x4308 -x4307 -x4306 -x4305
0.29/0.39 v -x4304 -x4303 -x4302 -x4301 -x4300 -x4299 -x4298 x4297 -x4296 x4295 -x4294 -x4293 -x4292 -x4291 -x4290 -x4289 -x4288 -x4287 -x4286
0.29/0.39 v -x4285 -x4284 -x4283 -x4282 -x4281 -x4280 -x4279 -x4278 x4277 -x4276 -x4275 -x4274 -x4273 -x4272 -x4271 -x4270 -x4269 -x4268
0.29/0.39 v -x4267 -x4266 -x4265 -x4264 -x4263 -x4262 -x4261 -x4260 -x4259 -x4258 -x4257 -x4256 -x4255 -x4254 -x4253 -x4252 -x4251
0.29/0.39 v -x4250 -x4249 -x4248 -x4247 -x4246 -x4245 -x4244 -x4243 -x4242 -x4241 x4240 -x4239 -x4238 -x4237 -x4236 -x4235 -x4234 -x4233
0.29/0.39 v -x4232 -x4231 -x4230 -x4229 -x4228 -x4227 x4226 x4225 -x4224 -x4223 x4222 -x4221 -x4220 -x4219 -x4218 -x4217 -x4216 -x4215 -x4214
0.29/0.39 v -x4213 -x4212 -x4211 -x4210 x4209 x4208 x4207 -x4206 -x4205 -x4204 -x4203 -x4202 -x4201 x4200 -x4199 -x4198 -x4197 x4196
0.29/0.39 v x4195 -x4194 -x4193 -x4192 -x4191 -x4190 -x4189 x4188 -x4187 -x4186 -x4185 -x4184 -x4183 -x4182 -x4181 -x4180 -x4179 x4178 x4177
0.29/0.39 v x4176 x4175 -x4174 -x4173 -x4172 -x4171 -x4170 -x4169 -x4168 -x4167 -x4166 -x4165 x4164 x4163 -x4162 -x4161 -x4160 x4159
0.29/0.39 v -x4158 -x4157 -x4156 -x4155 -x4154 -x4153 -x4152 -x4151 -x4150 -x4149 -x4148 -x4147 -x4146 -x4145 -x4144 -x4143 -x4142 -x4141
0.29/0.39 v -x4140 -x4139 -x4138 -x4137 x4136 -x4135 x4134 -x4133 -x4132 -x4131 -x4130 -x4129 -x4128 -x4127 -x4126 -x4125 -x4124 -x4123
0.29/0.39 v -x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116 -x4115 -x4114 x4113 x4112 x4111 -x4110 -x4109 -x4108 -x4107 -x4106 -x4105 -x4104
0.29/0.39 v -x4103 -x4102 -x4101 -x4100 -x4099 -x4098 -x4097 -x4096 -x4095 x4094 -x4093 -x4092 -x4091 -x4090 -x4089 -x4088 -x4087 -x4086
0.29/0.39 v -x4085 -x4084 -x4083 -x4082 -x4081 -x4080 -x4079 -x4078 -x4077 x4076 -x4075 -x4074 x4073 -x4072 -x4071 -x4070 -x4069 -x4068
0.29/0.39 v -x4067 -x4066 -x4065 x4064 x4063 -x4062 x4061 -x4060 -x4059 -x4058 -x4057 -x4056 -x4055 x4054 x4053 x4052 -x4051 x4050 -x4049
0.29/0.39 v x4048 -x4047 x4046 -x4045 x4044 -x4043 -x4042 -x4041 -x4040 -x4039 -x4038 -x4037 -x4036 -x4035 -x4034 -x4033 -x4032 -x4031
0.29/0.39 v -x4030 -x4029 x4028 -x4027 x4026 -x4025 x4024 x4023 x4022 -x4021 x4020 -x4019 -x4018 -x4017 -x4016 -x4015 -x4014 -x4013 -x4012
0.29/0.39 v -x4011 -x4010 -x4009 -x4008 -x4007 -x4006 -x4005 -x4004 -x4003 -x4002 -x4001 -x4000 -x3999 -x3998 -x3997 -x3996 -x3995
0.29/0.39 v -x3994 -x3993 -x3992 x3991 -x3990 -x3989 -x3988 -x3987 -x3986 -x3985 -x3984 -x3983 -x3982 -x3981 -x3980 x3979 -x3978 -x3977 -x3976
0.29/0.39 v -x3975 -x3974 -x3973 -x3972 -x3971 -x3970 -x3969 -x3968 -x3967 x3966 -x3965 -x3964 -x3963 -x3962 -x3961 -x3960 -x3959 -x3958
0.29/0.39 v x3957 -x3956 -x3955 x3954 -x3953 -x3952 -x3951 -x3950 -x3949 -x3948 -x3947 -x3946 x3945 x3944 -x3943 -x3942 -x3941 -x3940
0.29/0.39 v -x3939 -x3938 -x3937 -x3936 -x3935 x3934 -x3933 -x3932 -x3931 -x3930 -x3929 -x3928 -x3927 -x3926 -x3925 -x3924 -x3923 -x3922
0.29/0.39 v -x3921 -x3920 -x3919 -x3918 -x3917 -x3916 -x3915 -x3914 -x3913 x3912 x3911 -x3910 -x3909 -x3908 -x3907 x3906 -x3905 -x3904
0.29/0.39 v -x3903 -x3902 -x3901 -x3900 -x3899 x3898 -x3897 -x3896 -x3895 x3894 -x3893 -x3892 x3891 -x3890 -x3889 -x3888 -x3887 -x3886 -x3885
0.29/0.39 v -x3884 -x3883 -x3882 -x3881 -x3880 -x3879 -x3878 -x3877 -x3876 -x3875 -x3874 -x3873 -x3872 -x3871 -x3870 -x3869 -x3868
0.29/0.39 v -x3867 -x3866 -x3865 -x3864 -x3863 -x3862 -x3861 -x3860 -x3859 -x3858 -x3857 -x3856 -x3855 -x3854 -x3853 -x3852 -x3851 -x3850
0.29/0.39 v -x3849 -x3848 x3847 -x3846 -x3845 -x3844 -x3843 -x3842 -x3841 -x3840 -x3839 -x3838 -x3837 -x3836 -x3835 -x3834 -x3833 -x3832
0.29/0.39 v -x3831 -x3830 -x3829 -x3828 -x3827 x3826 x3825 -x3824 -x3823 x3822 x3821 x3820 -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813
0.29/0.39 v -x3812 -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805 x3804 -x3803 -x3802 x3801 -x3800 -x3799 -x3798 -x3797 -x3796 -x3795
0.29/0.39 v -x3794 -x3793 x3792 -x3791 x3790 -x3789 -x3788 -x3787 -x3786 x3785 -x3784 -x3783 x3782 x3781 -x3780 -x3779 -x3778 -x3777 -x3776
0.29/0.39 v x3775 -x3774 -x3773 -x3772 -x3771 -x3770 x3769 -x3768 x3767 -x3766 x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758
0.29/0.39 v -x3757 -x3756 -x3755 -x3754 -x3753 -x3752 -x3751 -x3750 -x3749 -x3748 -x3747 -x3746 x3745 -x3744 -x3743 -x3742 -x3741 -x3740
0.29/0.39 v -x3739 -x3738 x3737 -x3736 -x3735 x3734 x3733 x3732 x3731 x3730 x3729 -x3728 x3727 -x3726 x3725 -x3724 -x3723 -x3722 x3721
0.29/0.39 v -x3720 -x3719 -x3718 -x3717 -x3716 -x3715 -x3714 -x3713 -x3712 -x3711 x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703
0.29/0.39 v -x3702 -x3701 -x3700 -x3699 -x3698 -x3697 -x3696 -x3695 -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685
0.29/0.39 v -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677 -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667
0.29/0.39 v -x3666 -x3665 -x3664 -x3663 -x3662 -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649
0.29/0.39 v -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631
0.29/0.39 v -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613
0.29/0.39 v -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605 -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 -x3596
0.29/0.39 v -x3595 -x3594 -x3593 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587 -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578
0.29/0.39 v -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 -x3561 -x3560
0.29/0.39 v -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542
0.29/0.39 v -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524
0.29/0.39 v -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3513 -x3512 -x3511 -x3510 -x3509 -x3508 -x3507 -x3506
0.29/0.39 v -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497 -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 -x3489 -x3488
0.29/0.39 v -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 -x3480 -x3479 -x3478 -x3477 -x3476 -x3475 -x3474 -x3473 -x3472 -x3471
0.29/0.39 v -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453
0.29/0.39 v -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441 -x3440 -x3439 -x3438 -x3437 -x3436 -x3435
0.29/0.39 v -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 -x3418 -x3417
0.29/0.39 v -x3416 -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407 -x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3400 -x3399
0.29/0.39 v -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381
0.29/0.39 v -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363
0.29/0.39 v -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346
0.29/0.39 v -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328
0.29/0.39 v -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310
0.29/0.39 v -x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292
0.29/0.39 v -x3291 -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 -x3274
0.29/0.39 v -x3273 -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256
0.29/0.39 v -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238
0.29/0.39 v -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224 -x3223 -x3222 -x3221
0.29/0.39 v -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206 -x3205 -x3204 -x3203
0.29/0.39 v -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189 -x3188 -x3187 -x3186 -x3185
0.29/0.39 v -x3184 -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170 -x3169 -x3168 -x3167
0.29/0.39 v -x3166 -x3165 -x3164 -x3163 -x3162 -x3161 -x3160 -x3159 -x3158
0.29/0.39 c SCIP Status : problem is solved [optimal solution found]
0.29/0.39 c Total Time : 0.37
0.29/0.39 c solving : 0.37
0.29/0.39 c presolving : 0.28 (included in solving)
0.29/0.39 c reading : 0.05 (included in solving)
0.29/0.39 c copying : 0.00 (0 times copied the problem)
0.29/0.39 c Original Problem :
0.29/0.39 c Problem name : HOME/instance-4500556-1751419667.opb
0.29/0.39 c Variables : 5855 (5855 binary, 0 integer, 0 implicit integer, 0 continuous)
0.29/0.39 c Constraints : 26197 initial, 26197 maximal
0.29/0.39 c Objective : minimize, 2698 non-zeros (abs.min = 1, abs.max = 2.46585e+09)
0.29/0.39 c Presolved Problem :
0.29/0.39 c Problem name : t_HOME/instance-4500556-1751419667.opb
0.29/0.39 c Variables : 6 (6 binary, 0 integer, 0 implicit integer, 0 continuous)
0.29/0.39 c Constraints : 7 initial, 7 maximal
0.29/0.39 c Objective : minimize, 4 non-zeros (abs.min = 1.8252e+06, abs.max = 3.6504e+06)
0.29/0.39 c Nonzeros : 15 constraint, 9 clique table
0.29/0.39 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
0.29/0.39 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c domcol : 0.00 0.00 6 0 0 0 0 0 0 0 0 0
0.29/0.39 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c dualsparsify : 0.00 0.00 2 0 0 0 0 0 0 0 0 0
0.29/0.39 c gateextraction : 0.01 0.00 30 0 0 0 0 0 950 224 0 0
0.29/0.39 c implics : 0.00 0.00 41 0 0 0 0 0 0 0 0 0
0.29/0.39 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c milp : 0.05 0.00 1 705 690 0 0 0 9827 2246 0 0
0.29/0.39 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c sparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.29/0.39 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c trivial : 0.00 0.00 103 1030 0 0 0 0 0 0 0 0
0.29/0.39 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c dualfix : 0.00 0.00 103 1151 0 0 0 0 0 0 0 0
0.29/0.39 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c probing : 0.02 0.00 6 16 75 0 0 0 0 0 0 0
0.29/0.39 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c symmetry : 0.00 0.00 1 10 0 0 0 0 2 39 0 0
0.29/0.39 c vbounds : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
0.29/0.39 c knapsack : 0.00 0.00 2 0 0 0 0 0 8 12 0 0
0.29/0.39 c setppc : 0.02 0.00 142 356 129 0 0 0 515 4 81 81
0.29/0.39 c and : 0.00 0.00 97 0 2 0 0 0 33 33 0 0
0.29/0.39 c linear : 0.10 0.01 61 461 954 0 461 0 16467 0 10 0
0.29/0.39 c orbitope : 0.00 0.00 10 0 0 0 0 0 4 0 0 0
0.29/0.39 c logicor : 0.02 0.00 135 1 3 0 0 0 509 4 0 299
0.29/0.39 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c components : 0.03 0.00 1 267 0 0 0 0 437 0 0 0
0.29/0.39 c root node : - - - 0 - - 0 - - - - -
0.29/0.39 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
0.29/0.39 c benderslp : 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
0.29/0.39 c integral : 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
0.29/0.39 c setppc : 1 1 0 1253 0 0 0 3 0 0 0 0 0 0 0
0.29/0.39 c orbitope : 4 4 0 151 0 0 0 1 0 0 0 0 0 0 0
0.29/0.39 c logicor : 2 2 0 1013 0 0 0 1 0 0 0 0 0 0 0
0.29/0.39 c benders : 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0.29/0.39 c fixedvar : 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0.29/0.39 c countsols : 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0.29/0.39 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
0.29/0.39 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c integral : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c setppc : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c orbitope : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c logicor : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c components : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c Propagators : #Propagate #ResProp Cutoffs DomReds
0.29/0.39 c dualfix : 1 0 0 0
0.29/0.39 c genvbounds : 0 0 0 0
0.29/0.39 c nlobbt : 0 0 0 0
0.29/0.39 c obbt : 0 0 0 0
0.29/0.39 c probing : 0 0 0 0
0.29/0.39 c pseudoobj : 1 0 0 0
0.29/0.39 c redcost : 0 0 0 0
0.29/0.39 c rootredcost : 0 0 0 0
0.29/0.39 c symmetry : 0 0 0 0
0.29/0.39 c vbounds : 0 0 0 0
0.29/0.39 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
0.29/0.39 c dualfix : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c genvbounds : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c probing : 0.02 0.00 0.02 0.00 0.00 0.00
0.29/0.39 c pseudoobj : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c redcost : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c rootredcost : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c symmetry : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c vbounds : 0.00 0.00 0.00 0.00 0.00 0.00
0.29/0.39 c Symmetry :
0.29/0.39 c orbitopal red. : 0 reductions applied, 0 cutoffs
0.29/0.39 c orbital reduction: 0 reductions applied, 0 cutoffs
0.29/0.39 c lexicographic red: 0 reductions applied, 0 cutoffs
0.29/0.39 c shadow tree time : 0.00 s
0.29/0.39 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [--,--])
0.29/0.39 c propagation : 0.00 0 0 - 0 0.0 0 0.0 - - -
0.29/0.39 c infeasible LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
0.29/0.39 c bound exceed. LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
0.29/0.39 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
0.29/0.39 c pseudo solution : 0.00 0 0 - 0 0.0 0 0.0 - - -
0.29/0.39 c applied globally : 0.00 - - 0 0 0.0 - - 0 - -
0.29/0.39 c applied locally : - - - 0 0 0.0 - - 0 - -
0.29/0.39 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
0.29/0.39 c cut pool : 0.00 - 0 0 - - 0 0 - - - - - (maximal pool size: 0)
0.29/0.39 c aggregation : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c > cmir : - - - - - - - 0 0 0 0 0 -
0.29/0.39 c > flowcover : - - - - - - - 0 0 0 0 0 -
0.29/0.39 c > knapsackcover : - - - - - - - 0 0 0 0 0 -
0.29/0.39 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c clique : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c > gomorymi : - - - - - - - 0 0 0 0 0 -
0.29/0.39 c > strongcg : - - - - - - - 0 0 0 0 0 -
0.29/0.39 c impliedbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c mcf : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c multilinear : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c rapidlearning : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c rlt : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c zerohalf : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
0.29/0.39 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
0.29/0.39 c hybrid : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c Pricers : ExecTime SetupTime Calls Vars
0.29/0.39 c problem variables: 0.00 - 0 0
0.29/0.39 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
0.29/0.39 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c inference : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c random : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c relpscost : 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
0.29/0.39 c Primal Heuristics : ExecTime SetupTime Calls Found Best
0.29/0.39 c LP solutions : 0.00 - - 0 0
0.29/0.39 c relax solutions : 0.00 - - 0 0
0.29/0.39 c pseudo solutions : 0.00 - - 0 0
0.29/0.39 c strong branching : 0.00 - - 0 0
0.29/0.39 c actconsdiving : 0.00 0.00 0 0 0
0.29/0.39 c adaptivediving : 0.00 0.00 0 0 0
0.29/0.39 c alns : 0.00 0.00 0 0 0
0.29/0.39 c bound : 0.00 0.00 0 0 0
0.29/0.39 c clique : 0.00 0.00 0 0 0
0.29/0.39 c coefdiving : 0.00 0.00 0 0 0
0.29/0.39 c completesol : 0.00 0.00 0 0 0
0.29/0.39 c conflictdiving : 0.00 0.00 0 0 0
0.29/0.39 c crossover : 0.00 0.00 0 0 0
0.29/0.39 c dins : 0.00 0.00 0 0 0
0.29/0.39 c distributiondivin: 0.00 0.00 0 0 0
0.29/0.39 c dps : 0.00 0.00 0 0 0
0.29/0.39 c dualval : 0.00 0.00 0 0 0
0.29/0.39 c farkasdiving : 0.00 0.00 0 0 0
0.29/0.39 c feasjump : 0.00 0.00 0 0 0
0.29/0.39 c feaspump : 0.00 0.00 0 0 0
0.29/0.39 c fixandinfer : 0.00 0.00 0 0 0
0.29/0.39 c fracdiving : 0.00 0.00 0 0 0
0.29/0.39 c gins : 0.00 0.00 0 0 0
0.29/0.39 c guideddiving : 0.00 0.00 0 0 0
0.29/0.39 c indcoefdiving : 0.00 0.00 0 0 0
0.29/0.39 c indicator : 0.00 0.00 0 0 0
0.29/0.39 c indicatordiving : 0.00 0.00 0 0 0
0.29/0.39 c indoneopt : 0.00 0.00 0 0 0
0.29/0.39 c indrounding : 0.00 0.00 0 0 0
0.29/0.39 c indtwoopt : 0.00 0.00 0 0 0
0.29/0.39 c intdiving : 0.00 0.00 0 0 0
0.29/0.39 c intshifting : 0.00 0.00 0 0 0
0.29/0.39 c linesearchdiving : 0.00 0.00 0 0 0
0.29/0.39 c localbranching : 0.00 0.00 0 0 0
0.29/0.39 c locks : 0.00 0.00 0 0 0
0.29/0.39 c lpface : 0.00 0.00 0 0 0
0.29/0.39 c mpec : 0.00 0.00 0 0 0
0.29/0.39 c multistart : 0.00 0.00 0 0 0
0.29/0.39 c mutation : 0.00 0.00 0 0 0
0.29/0.39 c nlpdiving : 0.00 0.00 0 0 0
0.29/0.39 c objpscostdiving : 0.00 0.00 0 0 0
0.29/0.39 c octane : 0.00 0.00 0 0 0
0.29/0.39 c ofins : 0.00 0.00 0 0 0
0.29/0.39 c oneopt : 0.00 0.00 0 0 0
0.29/0.39 c padm : 0.00 0.00 0 0 0
0.29/0.39 c proximity : 0.00 0.00 0 0 0
0.29/0.39 c pscostdiving : 0.00 0.00 0 0 0
0.29/0.39 c randrounding : 0.00 0.00 0 0 0
0.29/0.39 c rens : 0.00 0.00 0 0 0
0.29/0.39 c reoptsols : 0.00 0.00 0 0 0
0.29/0.39 c repair : 0.00 0.00 0 0 0
0.29/0.39 c rins : 0.00 0.00 0 0 0
0.29/0.39 c rootsoldiving : 0.00 0.00 0 0 0
0.29/0.39 c rounding : 0.00 0.00 0 0 0
0.29/0.39 c scheduler : 0.00 0.00 0 0 0
0.29/0.39 c shiftandpropagate: 0.00 0.00 0 0 0
0.29/0.39 c shifting : 0.00 0.00 0 0 0
0.29/0.39 c simplerounding : 0.00 0.00 0 0 0
0.29/0.39 c smallcard : 0.00 0.00 0 0 0
0.29/0.39 c subnlp : 0.00 0.00 0 0 0
0.29/0.39 c trivial : 0.00 0.00 2 1 1
0.29/0.39 c trivialnegation : 0.00 0.00 0 0 0
0.29/0.39 c trustregion : 0.00 0.00 0 0 0
0.29/0.39 c trysol : 0.00 0.00 0 0 0
0.29/0.39 c twoopt : 0.00 0.00 0 0 0
0.29/0.39 c undercover : 0.00 0.00 0 0 0
0.29/0.39 c vbounds : 0.00 0.00 0 0 0
0.29/0.39 c veclendiving : 0.00 0.00 0 0 0
0.29/0.39 c zeroobj : 0.00 0.00 0 0 0
0.29/0.39 c zirounding : 0.00 0.00 0 0 0
0.29/0.39 c other solutions : - - - 0 -
0.29/0.39 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
0.29/0.39 c rens : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.29/0.39 c rins : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.29/0.39 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.29/0.39 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.29/0.39 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.29/0.39 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.29/0.39 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.29/0.39 c dins : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
0.29/0.39 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
0.29/0.39 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
0.29/0.39 c primal LP : 0.00 0 0 0.00 - 0.00 0
0.29/0.39 c dual LP : 0.00 0 0 0.00 - 0.00 0
0.29/0.39 c lex dual LP : 0.00 0 0 0.00 -
0.29/0.39 c barrier LP : 0.00 0 0 0.00 - 0.00 0
0.29/0.39 c resolve instable : 0.00 0 0 0.00 -
0.29/0.39 c diving/probing LP: 0.00 0 0 0.00 -
0.29/0.39 c strong branching : 0.00 0 0 0.00 - - - 0
0.29/0.39 c (at root node) : - 0 0 0.00 -
0.29/0.39 c conflict analysis: 0.00 0 0 0.00 -
0.29/0.39 c B&B Tree :
0.29/0.39 c number of runs : 1
0.29/0.39 c nodes : 1 (0 internal, 1 leaves)
0.29/0.39 c feasible leaves : 0
0.29/0.39 c infeas. leaves : 0
0.29/0.39 c objective leaves : 0
0.29/0.39 c nodes (total) : 1 (0 internal, 1 leaves)
0.29/0.39 c nodes left : 0
0.29/0.39 c max depth : 0
0.29/0.39 c max depth (total): 0
0.29/0.39 c backtracks : 0 (0.0%)
0.29/0.39 c early backtracks : 0 (0.0%)
0.29/0.39 c nodes exc. ref. : 0 (0.0%)
0.29/0.39 c delayed cutoffs : 0
0.29/0.39 c repropagations : 0 (0 domain reductions, 0 cutoffs)
0.29/0.39 c avg switch length: 2.00
0.29/0.39 c switching time : 0.00
0.29/0.39 c Root Node :
0.29/0.39 c First LP value : -
0.29/0.39 c First LP Iters : 0
0.29/0.39 c First LP Time : 0.00
0.29/0.39 c Final Dual Bound : +3.94243446000000e+08
0.29/0.39 c Final Root Iters : 0
0.29/0.39 c Root LP Estimate : -
0.29/0.39 c Solution :
0.29/0.39 c Solutions found : 1 (1 improvements)
0.29/0.39 c First Solution : +3.94243446000000e+08 (in run 1, after 1 nodes, 0.37 seconds, depth 0, found by <trivial>)
0.29/0.39 c Gap First Sol. : 0.00 %
0.29/0.39 c Gap Last Sol. : 0.00 %
0.29/0.39 c Primal Bound : +3.94243446000000e+08 (in run 1, after 1 nodes, 0.37 seconds, depth 0, found by <trivial>)
0.29/0.39 c Dual Bound : +3.94243446000000e+08
0.29/0.39 c Gap : 0.00 %
0.29/0.39 c Integrals : Total Avg%
0.29/0.39 c primal-dual : 36.74 100.00
0.29/0.39 c primal-ref : - - (not evaluated)
0.29/0.39 c dual-ref : - - (not evaluated)
0.29/0.41 c Time complete: 0.397935.