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Introduction

toulbar2 is an open-source C++ solver for cost function networks (CFN). It is available at https://github.com/

toulbar2/toulbar2, with an MIT license and a documentation describing its interfaces with C++ and Python.
The constraints and objective function are factored into local functions on discrete variables. Each function returns

a cost for any assignment of its variables. Constraints are represented as functions with costs in {0,⊤} where ⊤ is an
upper bound cost associated with forbidden assignments. toulbar2 looks for a non-forbidden assignment of all variables
that minimizes the sum of all functions. In general, this problem is NP-hard [9]. Using on-the-fly translation, toulbar2
can also directly solve optimization problems on other graphical models, such as Maximum Probability Explanation
on Bayesian networks, and Maximum A Posteriori on Markov random fields [14, 8]. It can also read partial weighted
MaxSAT problems (wcnf format), (quadratic) pseudo-Boolean optimization problems (opb,wbo), integer (quadratic)
linear programs (cplex/lp), and constrained satisfaction and optimization problems (CSP/COP in XCSP3 format).

toulbar2 provides and uses by default an anytime hybrid best-first branch-and-bound algorithm (HBFS) [1] that
tries to quickly provide good solutions together with an upper bound on the gap between the cost of each solution and
the (unknown) optimal cost. Thus, even when it is unable to prove optimality, it will bound the quality of the provided
solution. It can also apply a variable neighborhood search algorithm that exploits the problem decomposition [21].
Both algorithms are complete (if enough CPU-time is given) and can be run in parallel using OpenMPI [3, 21]. The
variable ordering heuristic is dom/wdeg [5] combined with last conflict [16]. The value ordering heuristic exploits the
last solution found if any [12] or else EDAC existential value [11]. EDAC is also used as soft local consistency during
search, providing lower bounds and pruning forbidden values [7]. By default, a weaker relaxed version is used for
pseudo-Boolean linear constraints [18]. Stronger soft local consistencies (VAC [7], including VAC on pseudo-Boolean
linear constraints [19], and VPWC [17]) can be applied in preprocessing or during search. Variable elimination is
performed during search and is restricted to variables with at most two neighbors [15]. More preprocessing techniques,
such as cost function decomposition [13] and relaxation-aware probing heuristic (RASPS [23]) are or can be done
before search, and pruning by dominance is also applied during search [10].

https://github.com/toulbar2/toulbar2
https://github.com/toulbar2/toulbar2


Beyond the service of providing optimal solutions, toulbar2 can also find a sequence of diverse solutions [22] or
exhaustively enumerate solutions below a cost threshold and perform a guaranteed approximate weighted counting
of solutions. For stochastic graphical models, this means that toulbar2 will compute the partition function (or the
normalizing constant). These problems being #P-complete, toulbar2 runtimes can quickly increase on such problems.
An extension of toulbar2 for bi-criteria optimization problems provides anytime Pareto fronts [6].

toulbar2 was originally developed by the Toulouse (INRAE, MIAT) and Barcelona (UPC, IIIA-CSIC) teams, hence
the name of the solver. Additional contributions by:

• Caen University, France (GREYC) and University of Oran, Algeria for (parallel) variable neighborhood search
methods [21] ;

• The Chinese University of Hong Kong and Caen University, France (GREYC) for global cost functions [2] ;

• Marseille University, France (LSIS) for tree decomposition heuristics ;

• Ecole des Ponts ParisTech, France (CERMICS/LIGM) for INCOP local search solver [20] ;

• Université de Toulouse (IRIT) and Université du Littoral Côte d’Opale, France for iterated local search with
partition crossover [4] ;

• Artois University, France (CRIL) for the XCSP3 format reader of CSP and COP instances.

XCSP’2025 Competition Configuration Settings

For the XCSP’2025 competition, we used the following settings for toulbar2:

• For COP sequential and mini COP tracks, HBFS [1] was used with no dichotomic branching, VAC and RASPS in
preprocessing, and sorting periodically (at every number of open nodes being a power of 2) its best-first priority
queue with dom/wdeg heuristic values to break ties ; command line:
DIR/toulbar2 -timer=TIMELIMIT -d: -A -vaclin -rasps -raspsini -sopen=1 -v=-1 BENCHNAME

• For COP parallel track, parallel HBFS [3] was used with the available number of cores and MPI compilation
settings, and default settings for the rest (except no dichotomic branching) ; command line:
mpirun -n NBCORE DIR/toulbar2mpi -timer=TIMELIMIT -d: -v=-1 BENCHNAME

A more efficient encoding of constraints in extensions with star values (used to compress the list of allowed tuples)
has been implemented. It relies on a dual encoding with an additional variable, the domain of which contains the
compressed list of allowed tuples (one value per compressed tuple). Binary constraints ensure compatibility between
this extra variable and the variables within the scope of the original constraint.

Pseudo-Boolean Competition 2025 Configuration Settings

For the 2025 pseudo-Boolean competition, we used the following settings for toulbar2:

• For OPT-LIN, PARTIAL-LIN, and SOFT-LIN tracks, HBFS [1] was used with default settings, original integer
costs (precision=0), and a hidden variable encoding to recover non-Boolean domains ; command line:
DIR/toulbar2 -timer=TIMELIMIT -precision=0 -n: -hve=512 -f=3 -v=-1 BENCHNAME

https://www.cril.univ-artois.fr/XCSP25
https://www.cril.univ-artois.fr/PB25


We applied a hidden variable encoding [17] for tight pseudo-Boolean constraints. A constraint is said tight if its number
of allowed tuples is less than or equal to its arity plus one. At-Most-One and Exactly-One constraints are tight. An
extra preprocessing rule is applied to replace Boolean variables with their corresponding hidden variable in non-tight
constraints. The whole process allows to recover original domains (here, up to size 512) for non-Boolean instances
that have been translated into pseudo-Boolean format. See the results for PARTIAL-LIN/wcsp benchmarks.
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