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Abstract—PRINTEMPS is a metaheuristic solver originally de-
veloped for general integer linear programming (ILP) problems.
For the Pseudo-Boolean (PB) Competition 2025. It has been
extended to handle PB problems, including those with nonlinear
terms and soft constraints.

I. INTRODUCTION

PRINTEMPS (PoRtable INTEger Mathematical Program-
ming Solver) is a metaheuristic solver developed by the first
author for general integer linear programming (ILP) problems
[1]. It has been extended to handle pseudo-Boolean (PB)
problems for the Pseudo-Boolean Competition 2025 [2]. This
document provides the supported problems, computational
overview of PRINTEMPS, and the extension for PB problems.

II. SUPPORTED PROBLEMS

Since PRINTEMPS is based on heuristics, it can prove
neither the optimality of a solution nor the infeasibility of an
instance. Therefore, we submitted to the following categories:
DEC-LIN (decision problem with linear constraints, no UN-
SAT certificate), DEC-NLC (decision problem with nonlinear
constraints, no UNSAT certificate), OPT-LIN (optimization
problem with linear constraints, no OPT/UNSAT certificate),
OPT-NLC (optimization problem with nonlinear constraints,
no OPT/UNSAT certificate), PARTIAL-LIN (optimization
problem with both soft and hard linear constraints), and SOFT-
LIN (optimization problem with only soft linear constraints).
In all cases, each coefficient value must fit within the range
of a 31-bit signed integer.

III. COMPUTATIONAL OVERVIEW OF PRINTEMPS

An ILP problem can be formulated as follows:

(ILP) : minimize
x∈ZN , l≤x≤u

c⊤x

subject to A⊤
1 x = b1, A⊤

2 x ≤ b2,

where N is the number of variables, c ∈ RN is the cost vector,
and l,u ∈ ZN (l ≤ u) are the lower and upper bounds of x,
respectively. The matrices A1,A2 and the vectors b1, b2 have
appropriate dimensions consistent with x.

PRINTEMPS searches for solutions to an instance of (ILP)
using Weighted Tabu Search that minimizes an objective func-
tion penalized by constraint violations [3]. It also incorporates
performance-enhancing techniques tailored for (ILP). They
include instance size reduction, dependent variable extraction,
neighborhood filtering, and incremental penalty evaluation [4].

IV. EXTENSION FOR PB PROBLEMS

Among the problem types listed in Sec. II, DEC-LIN and
OPT-LIN are subsets of (ILP) and therefore can be addressed
without any special treatment.

In contrast, DEC-NLC and OPT-NLC involve products of
binary variables. To handle this nonlinearity, PRINTEMPS ap-
plies a linearization technique [5] . For a product of K binary
variables

∏K
n=1 xn, a new binary variable y :=

∏K
n=1 xn is

introduced along with the following two linear constraints1:

Ky ≤
K∑

n=1

xn, y ≥
K∑

n=1

xn − (K − 1).

The other problem types, PARTIAL-LIN and SOFT-LIN,
involve soft constraints. A soft equality constraint a⊤x = b
with an associated cost w is replaced with

M−y− ≤ a⊤x− b ≤ M+y+

together with the penalty w(y−+y+) in the objective function,
where y−, y+ are new binary variables2, M−=min

x
{a⊤x−b}

and M+=max
x

{a⊤x−b} are sufficiently large constants such
that the constraints are always satisfied if either y−=1 or y+=
1. The same approach applies to soft inequality constraints.

V. CONCLUSION

The metaheuristic ILP solver PRINTEMPS has been ex-
tended to handle PB problems, including those with nonlinear
terms and soft constraints.
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1Although it is possible to use K simpler constraints in the form of y ≤ xi

instead of the Ky ≤
∑K

n=1 xn, we have chosen the latter single constraint
for implementation simplicity and for reducing the number of constraints.

2Introducing two auxiliary variables rather than one is not common. How-
ever, we believe that this approach is preferable for the weighting algorithm,
since the tendency of violation can differ between the upper and lower sides.


