0.00/0.00 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.00 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-4447245-1721349477.opb>
0.00/0.01 c original problem has 4235 variables (4235 bin, 0 int, 0 impl, 0 cont) and 4391 constraints
0.00/0.01 c problem read in 0.01
0.00/0.01 c No objective function, only one solution is needed.
0.00/0.03 c presolving:
0.00/0.03 c (round 1, fast) 174 del vars, 2 del conss, 0 add conss, 2 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 804 clqs
0.00/0.04 c (round 2, fast) 434 del vars, 190 del conss, 0 add conss, 60 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 791 clqs
0.00/0.04 c (round 3, fast) 551 del vars, 276 del conss, 0 add conss, 116 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 788 clqs
0.00/0.04 c (round 4, fast) 644 del vars, 346 del conss, 0 add conss, 154 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 799 clqs
0.00/0.04 c (round 5, fast) 701 del vars, 391 del conss, 0 add conss, 176 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 821 clqs
0.00/0.04 c (round 6, fast) 723 del vars, 410 del conss, 0 add conss, 183 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 839 clqs
0.00/0.04 c (round 7, fast) 727 del vars, 414 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 848 clqs
0.00/0.05 c (0.0s) running MILP presolver
0.10/0.12 c (0.1s) MILP presolver (9 rounds): 3 aggregations, 121 fixings, 0 bound changes
0.10/0.12 c (round 8, medium) 851 del vars, 414 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 740 clqs
0.10/0.12 c (round 9, fast) 851 del vars, 538 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 744 clqs
0.10/0.13 c (round 10, exhaustive) 851 del vars, 611 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 744 clqs
0.10/0.14 c (round 11, exhaustive) 851 del vars, 611 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 0 chg coeffs, 3780 upgd conss, 0 impls, 744 clqs
0.10/0.16 c (round 12, exhaustive) 889 del vars, 612 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 40 chg coeffs, 3780 upgd conss, 0 impls, 740 clqs
0.10/0.16 c (round 13, fast) 927 del vars, 649 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 40 chg coeffs, 3780 upgd conss, 0 impls, 741 clqs
0.59/0.61 c (round 14, exhaustive) 952 del vars, 650 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 40 chg coeffs, 3780 upgd conss, 0 impls, 24266 clqs
0.59/0.62 c (round 15, fast) 952 del vars, 675 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 89 chg coeffs, 3780 upgd conss, 0 impls, 24281 clqs
0.59/0.65 c (round 16, exhaustive) 980 del vars, 675 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 90 chg coeffs, 3780 upgd conss, 0 impls, 24610 clqs
0.59/0.65 c (round 17, fast) 984 del vars, 704 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 150 chg coeffs, 3780 upgd conss, 0 impls, 24618 clqs
0.59/0.68 c (round 18, exhaustive) 1009 del vars, 704 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 151 chg coeffs, 3780 upgd conss, 0 impls, 24521 clqs
0.59/0.68 c (round 19, fast) 1009 del vars, 729 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 176 chg coeffs, 3780 upgd conss, 0 impls, 24521 clqs
0.99/1.02 c (1.0s) probing: 1000/3617 (27.6%) - 82 fixings, 3 aggregations, 382570 implications, 0 bound changes
1.18/1.26 c (round 20, exhaustive) 1034 del vars, 729 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 176 chg coeffs, 3780 upgd conss, 0 impls, 24642 clqs
1.18/1.26 c (round 21, fast) 1034 del vars, 754 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 216 chg coeffs, 3780 upgd conss, 0 impls, 24651 clqs
1.18/1.29 c (round 22, exhaustive) 1060 del vars, 754 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 216 chg coeffs, 3780 upgd conss, 0 impls, 24640 clqs
1.18/1.29 c (round 23, fast) 1060 del vars, 780 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 274 chg coeffs, 3780 upgd conss, 0 impls, 24652 clqs
1.28/1.31 c (round 24, exhaustive) 1086 del vars, 780 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 277 chg coeffs, 3780 upgd conss, 0 impls, 21849 clqs
1.28/1.32 c (round 25, fast) 1086 del vars, 805 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 302 chg coeffs, 3780 upgd conss, 0 impls, 21850 clqs
1.68/1.70 c (1.7s) probing: 2000/3617 (55.3%) - 166 fixings, 3 aggregations, 698180 implications, 0 bound changes
1.78/1.81 c (round 26, exhaustive) 1111 del vars, 805 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 302 chg coeffs, 3780 upgd conss, 0 impls, 24532 clqs
1.78/1.81 c (round 27, fast) 1111 del vars, 830 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 350 chg coeffs, 3780 upgd conss, 0 impls, 24536 clqs
2.28/2.36 c (2.4s) probing: 3000/3617 (82.9%) - 184 fixings, 3 aggregations, 1026680 implications, 0 bound changes
2.38/2.46 c (2.5s) probing: 3174/3617 (87.8%) - 184 fixings, 3 aggregations, 1078082 implications, 0 bound changes
2.38/2.46 c (2.5s) probing aborted: 1000/1000 successive useless probings
2.38/2.48 c (round 28, exhaustive) 1123 del vars, 830 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 353 chg coeffs, 3780 upgd conss, 0 impls, 24626 clqs
2.38/2.48 c (round 29, fast) 1123 del vars, 841 del conss, 0 add conss, 184 chg bounds, 0 chg sides, 363 chg coeffs, 3780 upgd conss, 0 impls, 24626 clqs
2.48/2.57 c (2.6s) probing: 3274/3617 (90.5%) - 184 fixings, 3 aggregations, 1105875 implications, 0 bound changes
2.48/2.57 c (2.6s) probing aborted: 1000/1000 successive useless probings
2.48/2.57 c (2.6s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
2.48/2.59 c (2.6s) symmetry computation finished: 3 generators found (max: 1500, log10 of symmetry group size: 0.0) (symcode time: 0.01)
2.48/2.59 c dynamic symmetry handling statistics:
2.48/2.59 c orbitopal reduction: no components
2.48/2.59 c orbital reduction: no components
2.48/2.59 c lexicographic reduction: 3 permutations with support sizes 348, 134, 128
2.48/2.59 c handled 3 out of 3 symmetry components
2.48/2.59 c presolving (30 rounds: 30 fast, 13 medium, 12 exhaustive):
2.48/2.59 c 1123 deleted vars, 841 deleted constraints, 0 added constraints, 184 tightened bounds, 0 added holes, 0 changed sides, 363 changed coefficients
2.48/2.59 c 0 implications, 24744 cliques
2.48/2.59 c presolved problem has 3426 variables (3426 bin, 0 int, 0 impl, 0 cont) and 3550 constraints
2.48/2.59 c 718 constraints of type <setppc>
2.48/2.59 c 2832 constraints of type <logicor>
2.48/2.59 c transformed objective value is always integral (scale: 1)
2.48/2.59 c Presolving Time: 2.57
2.48/2.59 c - non default parameters ----------------------------------------------------------------------
2.48/2.59 c # SCIP version 10.0.0
2.48/2.59 c
2.48/2.59 c # maximal time in seconds to run
2.48/2.59 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
2.48/2.59 c limits/time = 3596.997055
2.48/2.59 c
2.48/2.59 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
2.48/2.59 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
2.48/2.59 c limits/memory = 27900
2.48/2.59 c
2.48/2.59 c # solving stops, if the given number of solutions were found; this limit is first checked in presolving (-1: no limit)
2.48/2.59 c # [type: int, advanced: FALSE, range: [-1,2147483647], default: -1]
2.48/2.59 c limits/solutions = 1
2.48/2.59 c
2.48/2.59 c # bitset describing used symmetry handling technique: (0: off; 1: constraint-based (orbitopes and/or symresacks); 2: orbital fixing; 3: orbitopes and orbital fixing; 4: Schreier Sims cuts; 5: Schreier Sims cuts and orbitopes; 6: Schreier Sims cuts and orbital fixing; 7: Schreier Sims cuts, orbitopes, and orbital fixing) See type_symmetry.h.
2.48/2.59 c # [type: int, advanced: FALSE, range: [0,7], default: 7]
2.48/2.59 c misc/usesymmetry = 3
2.48/2.59 c
2.48/2.59 c # belongs reading time to solving time?
2.48/2.59 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
2.48/2.59 c timing/reading = TRUE
2.48/2.59 c
2.48/2.59 c # Should we check whether the components of the symmetry group can be handled by double lex matrices?
2.48/2.59 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
2.48/2.59 c propagating/symmetry/detectdoublelex = FALSE
2.48/2.59 c
2.48/2.59 c # Should we try to detect symmetric subgroups of the symmetry group on binary variables?
2.48/2.59 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
2.48/2.59 c propagating/symmetry/detectsubgroups = FALSE
2.48/2.59 c
2.48/2.59 c # Type of symmetries that shall be computed?
2.48/2.59 c # [type: int, advanced: TRUE, range: [0,1], default: 0]
2.48/2.59 c propagating/symmetry/symtype = 1
2.48/2.59 c
2.48/2.59 c # Should components consisting of a single full reflection be handled?
2.48/2.59 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
2.48/2.59 c propagating/symmetry/usesimplesgncomp = FALSE
2.48/2.59 c
2.48/2.59 c -----------------------------------------------------------------------------------------------
2.48/2.59 c start solving
2.48/2.59 c
4.18/4.25 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
4.18/4.25 c 4.3s| 1 | 0 | 7681 | - | 56M | 0 |3426 |3729 |3550 | 0 | 0 | 184 | 0 | 0.000000e+00 | -- | Inf | unknown
15.44/15.50 c 15.5s| 1 | 0 | 47965 | - | 61M | 0 |3426 |3931 |3568 | 18 | 1 | 186 | 0 | 0.000000e+00 | -- | Inf | unknown
16.14/16.20 c 16.2s| 1 | 0 | 49752 | - | 63M | 0 |3426 |3934 |3577 | 27 | 2 | 189 | 0 | 0.000000e+00 | -- | Inf | unknown
17.14/17.23 c 17.2s| 1 | 0 | 52611 | - | 64M | 0 |3426 |3933 |3587 | 37 | 3 | 190 | 0 | 0.000000e+00 | -- | Inf | unknown
17.94/18.05 c 18.1s| 1 | 0 | 54585 | - | 65M | 0 |3426 |3934 |3595 | 45 | 4 | 191 | 0 | 0.000000e+00 | -- | Inf | unknown
19.13/19.25 c 19.3s| 1 | 0 | 57862 | - | 66M | 0 |3426 |3937 |3606 | 56 | 5 | 194 | 0 | 0.000000e+00 | -- | Inf | unknown
20.23/20.39 c 20.4s| 1 | 0 | 60690 | - | 67M | 0 |3426 |3940 |3617 | 67 | 6 | 197 | 0 | 0.000000e+00 | -- | Inf | unknown
21.32/21.45 c 21.5s| 1 | 0 | 63162 | - | 68M | 0 |3426 |3940 |3629 | 79 | 7 | 199 | 0 | 0.000000e+00 | -- | Inf | unknown
22.62/22.74 c 22.7s| 1 | 0 | 66428 | - | 69M | 0 |3426 |3941 |3637 | 87 | 8 | 200 | 0 | 0.000000e+00 | -- | Inf | unknown
23.71/23.82 c 23.8s| 1 | 0 | 69116 | - | 71M | 0 |3426 |3945 |3647 | 97 | 9 | 204 | 0 | 0.000000e+00 | -- | Inf | unknown
25.21/25.34 c 25.3s| 1 | 0 | 72962 | - | 71M | 0 |3426 |3944 |3664 | 114 | 10 | 206 | 0 | 0.000000e+00 | -- | Inf | unknown
26.61/26.75 c 26.7s| 1 | 0 | 77196 | - | 72M | 0 |3426 |3950 |3673 | 123 | 11 | 216 | 0 | 0.000000e+00 | -- | Inf | unknown
39.38/39.54 c 39.5s| 1 | 2 |106958 | - | 72M | 0 |3426 |3868 |3673 | 123 | 11 | 224 | 11 | 0.000000e+00 | -- | Inf | unknown
72.08/72.39 c 72.4s| 100 | 31 |217325 |1415.4 | 78M | 33 |3426 |3915 |3622 | 198 | 1 | 302 | 11 | 0.000000e+00 | -- | Inf | unknown
77.26/77.56 c 77.6s| 200 | 37 |244749 | 842.0 | 86M | 40 |3426 |3997 |3622 | 206 | 1 | 436 | 11 | 0.000000e+00 | -- | Inf | unknown
85.93/86.28 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
85.93/86.28 c 86.3s| 300 | 43 |287750 | 704.2 | 90M | 40 |3426 |3991 |3625 | 243 | 1 | 552 | 11 | 0.000000e+00 | -- | Inf | unknown
93.12/93.43 c 93.4s| 400 | 42 |320184 | 609.0 | 93M | 44 |3426 |4105 |3622 | 260 | 0 | 740 | 11 | 0.000000e+00 | -- | Inf | unknown
97.91/98.26 c 98.3s| 500 | 42 |346605 | 539.9 | 94M | 44 |3426 |4139 |3624 | 280 | 0 | 857 | 11 | 0.000000e+00 | -- | Inf | unknown
103.09/103.46 c 103s| 600 | 43 |373374 | 494.5 | 95M | 44 |3426 |4181 |3625 | 299 | 1 | 949 | 11 | 0.000000e+00 | -- | Inf | unknown
110.47/110.83 c 111s| 700 | 46 |408637 | 474.2 | 98M | 44 |3426 |4149 |3625 | 316 | 0 |1026 | 11 | 0.000000e+00 | -- | Inf | unknown
122.53/122.94 c 123s| 800 | 52 |462831 | 482.6 | 99M | 44 |3426 |4180 | 0 | 374 | 0 |1144 | 11 | 0.000000e+00 | -- | Inf | unknown
129.80/130.22 c 130s| 900 | 50 |499342 | 469.6 | 101M | 44 |3426 |4212 |3631 | 398 | 0 |1274 | 11 | 0.000000e+00 | -- | Inf | unknown
138.48/138.92 c 139s| 1000 | 50 |541849 | 465.1 | 102M | 44 |3426 |4259 |3631 | 418 | 0 |1373 | 11 | 0.000000e+00 | -- | Inf | unknown
145.77/146.25 c 146s| 1100 | 51 |578720 | 456.3 | 103M | 44 |3426 |4325 |3633 | 437 | 1 |1475 | 11 | 0.000000e+00 | -- | Inf | unknown
154.74/155.29 c 155s| 1200 | 54 |622483 | 454.8 | 106M | 44 |3426 |4380 | 0 | 482 | 0 |1562 | 11 | 0.000000e+00 | -- | Inf | unknown
160.92/161.48 c 161s| 1300 | 51 |652013 | 442.5 | 107M | 51 |3426 |4475 |3632 | 495 | 1 |1715 | 11 | 0.000000e+00 | -- | Inf | unknown
168.30/168.81 c 169s| 1400 | 51 |687736 | 436.4 | 109M | 56 |3426 |4432 |3633 | 543 | 1 |1867 | 11 | 0.000000e+00 | -- | Inf | unknown
177.98/178.53 c 179s| 1500 | 49 |734502 | 438.5 | 110M | 56 |3426 |4452 |3621 | 580 | 1 |2010 | 11 | 0.000000e+00 | -- | Inf | unknown
182.17/182.72 c 183s| 1600 | 53 |756437 | 424.8 | 112M | 56 |3426 |4497 |3623 | 588 | 1 |2113 | 11 | 0.000000e+00 | -- | Inf | unknown
188.56/189.19 c 189s| 1700 | 50 |788409 | 418.6 | 116M | 56 |3426 |4460 |3624 | 625 | 1 |2197 | 11 | 0.000000e+00 | -- | Inf | unknown
196.63/197.22 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
196.63/197.22 c 197s| 1800 | 61 |828408 | 417.6 | 118M | 56 |3426 |4406 |3627 | 651 | 1 |2284 | 11 | 0.000000e+00 | -- | Inf | unknown
202.72/203.35 c 203s| 1900 | 59 |858563 | 411.5 | 118M | 56 |3426 |4448 |3626 | 681 | 0 |2366 | 11 | 0.000000e+00 | -- | Inf | unknown
209.90/210.54 c 211s| 2000 | 54 |893726 | 408.5 | 121M | 56 |3426 |4500 |3629 | 720 | 0 |2483 | 11 | 0.000000e+00 | -- | Inf | unknown
216.79/217.49 c 217s| 2100 | 57 |926416 | 404.6 | 121M | 56 |3426 |4446 |3624 | 745 | 0 |2606 | 11 | 0.000000e+00 | -- | Inf | unknown
228.66/229.35 c 229s| 2200 | 72 |981024 | 411.0 | 122M | 56 |3426 |4415 |3623 | 760 | 1 |2710 | 11 | 0.000000e+00 | -- | Inf | unknown
231.95/232.60 c Restart triggered after 50 consecutive estimations that the remaining tree will be large
231.95/232.69 c (run 1, node 2255) performing user restart
231.95/232.69 c
231.95/232.69 c (restart) converted 50 cuts from the global cut pool into linear constraints
231.95/232.69 c
232.05/232.71 c presolving:
232.05/232.71 c (round 1, fast) 0 del vars, 26 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 24744 clqs
232.05/232.72 c (round 2, exhaustive) 0 del vars, 31 del conss, 0 add conss, 0 chg bounds, 5 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 24744 clqs
232.05/232.73 c (round 3, exhaustive) 0 del vars, 31 del conss, 0 add conss, 0 chg bounds, 5 chg sides, 0 chg coeffs, 245 upgd conss, 0 impls, 24744 clqs
232.05/232.73 c (round 4, medium) 0 del vars, 34 del conss, 4 add conss, 0 chg bounds, 19 chg sides, 19 chg coeffs, 245 upgd conss, 0 impls, 24744 clqs
232.05/232.74 c (round 5, exhaustive) 0 del vars, 40 del conss, 4 add conss, 0 chg bounds, 19 chg sides, 38 chg coeffs, 245 upgd conss, 0 impls, 24744 clqs
232.15/232.80 c (round 6, exhaustive) 0 del vars, 99 del conss, 4 add conss, 0 chg bounds, 19 chg sides, 1335 chg coeffs, 245 upgd conss, 0 impls, 24744 clqs
232.15/232.88 c presolving (7 rounds: 7 fast, 6 medium, 5 exhaustive):
232.15/232.88 c 0 deleted vars, 100 deleted constraints, 4 added constraints, 0 tightened bounds, 0 added holes, 19 changed sides, 1365 changed coefficients
232.15/232.88 c 0 implications, 24744 cliques
232.15/232.88 c presolved problem has 3426 variables (3426 bin, 0 int, 0 impl, 0 cont) and 4302 constraints
232.15/232.88 c 26 constraints of type <knapsack>
232.15/232.88 c 880 constraints of type <setppc>
232.15/232.88 c 19 constraints of type <linear>
232.15/232.88 c 3377 constraints of type <logicor>
232.15/232.88 c transformed objective value is always integral (scale: 1)
232.15/232.88 c Presolving Time: 2.74
232.15/232.88 c
234.05/234.72 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
234.05/234.72 c 235s| 1 | 0 | 1007k| - | 123M | 0 |3426 |4315 |3595 | 0 | 0 |2779 | 11 | 0.000000e+00 | -- | Inf | unknown
235.05/235.77 c 236s| 1 | 0 | 1010k| - | 125M | 0 |3426 |4321 |3610 | 15 | 1 |2785 | 11 | 0.000000e+00 | -- | Inf | unknown
236.24/236.95 c 237s| 1 | 0 | 1013k| - | 125M | 0 |3426 |4318 |3625 | 30 | 2 |2790 | 11 | 0.000000e+00 | -- | Inf | unknown
236.94/237.60 c 238s| 1 | 0 | 1014k| - | 125M | 0 |3426 |4314 |3634 | 39 | 3 |2795 | 11 | 0.000000e+00 | -- | Inf | unknown
237.64/238.34 c 238s| 1 | 0 | 1016k| - | 126M | 0 |3426 |4312 |3644 | 49 | 4 |2801 | 11 | 0.000000e+00 | -- | Inf | unknown
238.84/239.59 c 240s| 1 | 0 | 1019k| - | 126M | 0 |3426 |4306 |3662 | 67 | 5 |2804 | 11 | 0.000000e+00 | -- | Inf | unknown
239.73/240.40 c 240s| 1 | 0 | 1021k| - | 126M | 0 |3426 |4303 |3674 | 79 | 6 |2813 | 11 | 0.000000e+00 | -- | Inf | unknown
240.73/241.43 c 241s| 1 | 0 | 1024k| - | 127M | 0 |3426 |4294 |3684 | 89 | 7 |2814 | 11 | 0.000000e+00 | -- | Inf | unknown
242.03/242.71 c 243s| 1 | 0 | 1027k| - | 127M | 0 |3426 |4293 |3696 | 101 | 8 |2817 | 11 | 0.000000e+00 | -- | Inf | unknown
243.43/244.17 c 244s| 1 | 0 | 1031k| - | 128M | 0 |3426 |4277 |3706 | 111 | 9 |2822 | 11 | 0.000000e+00 | -- | Inf | unknown
245.12/245.83 c 246s| 1 | 0 | 1035k| - | 128M | 0 |3426 |4266 |3682 | 130 | 10 |2824 | 11 | 0.000000e+00 | -- | Inf | unknown
246.22/246.91 c 247s| 1 | 0 | 1039k| - | 128M | 0 |3426 |4256 |3696 | 144 | 11 |2825 | 11 | 0.000000e+00 | -- | Inf | unknown
257.40/258.19 c 258s| 1 | 2 | 1060k| - | 128M | 0 |3426 |4247 |3696 | 144 | 11 |2865 | 22 | 0.000000e+00 | -- | Inf | unknown
486.46/487.78 c 488s| 100 | 47 | 1827k| 726.3 | 133M | 20 |3426 |4393 |3618 | 195 | 0 |3382 | 22 | 0.000000e+00 | -- | Inf | unknown
500.63/501.97 c 502s| 200 | 51 | 1882k| 719.2 | 134M | 20 |3426 |4407 |3622 | 292 | 0 |3440 | 22 | 0.000000e+00 | -- | Inf | unknown
510.01/511.31 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
510.01/511.31 c 511s| 300 | 56 | 1931k| 710.1 | 134M | 20 |3426 |4412 |3622 | 332 | 1 |3520 | 22 | 0.000000e+00 | -- | Inf | unknown
516.19/517.54 c 518s| 400 | 54 | 1962k| 695.3 | 134M | 28 |3426 |4483 |3627 | 359 | 0 |3610 | 22 | 0.000000e+00 | -- | Inf | unknown
523.38/524.71 c 525s| 500 | 56 | 1998k| 683.0 | 134M | 38 |3426 |4527 |3628 | 371 | 1 |3711 | 22 | 0.000000e+00 | -- | Inf | unknown
529.46/530.86 c 531s| 600 | 57 | 2031k| 670.7 | 134M | 38 |3426 |4587 |3631 | 383 | 1 |3778 | 22 | 0.000000e+00 | -- | Inf | unknown
534.76/536.16 c 536s| 700 | 58 | 2060k| 657.6 | 134M | 39 |3426 |4626 |3626 | 392 | 0 |3840 | 22 | 0.000000e+00 | -- | Inf | unknown
541.53/542.99 c 543s| 800 | 62 | 2095k| 647.8 | 134M | 39 |3426 |4648 |3628 | 397 | 0 |3873 | 22 | 0.000000e+00 | -- | Inf | unknown
547.52/548.93 c 549s| 900 | 68 | 2125k| 636.8 | 135M | 39 |3426 |4707 |3626 | 418 | 0 |3945 | 22 | 0.000000e+00 | -- | Inf | unknown
553.41/554.86 c 555s| 1000 | 66 | 2157k| 626.7 | 135M | 40 |3426 |4766 |3630 | 449 | 1 |4013 | 22 | 0.000000e+00 | -- | Inf | unknown
560.19/561.66 c 562s| 1100 | 66 | 2194k| 619.2 | 135M | 40 |3426 |4802 |3627 | 449 | 1 |4060 | 22 | 0.000000e+00 | -- | Inf | unknown
566.18/567.66 c 568s| 1200 | 66 | 2226k| 610.5 | 135M | 40 |3426 |4824 |3626 | 466 | 0 |4114 | 22 | 0.000000e+00 | -- | Inf | unknown
574.06/575.58 c 576s| 1300 | 68 | 2268k| 605.2 | 135M | 40 |3426 |4896 |3630 | 482 | 0 |4222 | 22 | 0.000000e+00 | -- | Inf | unknown
580.84/582.37 c 582s| 1400 | 70 | 2305k| 598.8 | 136M | 40 |3426 |4913 |3630 | 499 | 0 |4265 | 22 | 0.000000e+00 | -- | Inf | unknown
587.33/588.89 c 589s| 1500 | 68 | 2341k| 592.3 | 136M | 40 |3426 |4931 |3630 | 516 | 0 |4319 | 22 | 0.000000e+00 | -- | Inf | unknown
592.71/594.28 c 594s| 1600 | 74 | 2371k| 584.8 | 136M | 40 |3426 |4969 |3628 | 533 | 1 |4374 | 22 | 0.000000e+00 | -- | Inf | unknown
598.40/599.93 c 600s| 1700 | 68 | 2403k| 578.1 | 137M | 40 |3426 |5017 |3630 | 547 | 1 |4441 | 22 | 0.000000e+00 | -- | Inf | unknown
606.38/607.99 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
606.38/607.99 c 608s| 1800 | 72 | 2445k| 574.3 | 137M | 40 |3426 |5041 |3635 | 581 | 1 |4490 | 22 | 0.000000e+00 | -- | Inf | unknown
612.96/614.51 c 615s| 1900 | 72 | 2481k| 569.1 | 137M | 40 |3426 |5056 |3626 | 597 | 1 |4534 | 22 | 0.000000e+00 | -- | Inf | unknown
620.05/621.66 c 622s| 2000 | 68 | 2520k| 564.8 | 137M | 40 |3426 |5097 |3633 | 626 | 1 |4595 | 22 | 0.000000e+00 | -- | Inf | unknown
625.63/627.24 c 627s| 2100 | 66 | 2550k| 558.7 | 138M | 40 |3426 |5095 |3633 | 642 | 1 |4613 | 22 | 0.000000e+00 | -- | Inf | unknown
631.92/633.52 c 634s| 2200 | 70 | 2584k| 553.9 | 138M | 40 |3426 |5097 |3632 | 685 | 1 |4657 | 22 | 0.000000e+00 | -- | Inf | unknown
637.71/639.32 c 639s| 2300 | 74 | 2617k| 548.9 | 138M | 40 |3426 |5134 |3635 | 718 | 1 |4712 | 22 | 0.000000e+00 | -- | Inf | unknown
644.39/646.07 c 646s| 2400 | 70 | 2653k| 544.9 | 138M | 40 |3426 |5163 |3631 | 743 | 0 |4765 | 22 | 0.000000e+00 | -- | Inf | unknown
651.07/652.79 c 653s| 2500 | 64 | 2690k| 541.2 | 138M | 40 |3426 |5196 |3639 | 781 | 1 |4815 | 22 | 0.000000e+00 | -- | Inf | unknown
658.56/660.23 c 660s| 2600 | 68 | 2729k| 538.1 | 138M | 40 |3426 |5197 |3636 | 804 | 0 |4857 | 22 | 0.000000e+00 | -- | Inf | unknown
665.14/666.80 c 667s| 2700 | 66 | 2764k| 534.4 | 138M | 40 |3426 |5254 |3634 | 837 | 1 |4922 | 22 | 0.000000e+00 | -- | Inf | unknown
671.13/672.89 c 673s| 2800 | 66 | 2797k| 530.3 | 138M | 40 |3426 |5283 |3639 | 861 | 1 |4960 | 22 | 0.000000e+00 | -- | Inf | unknown
679.71/681.46 c 681s| 2900 | 67 | 2841k| 528.5 | 138M | 40 |3426 |5330 |3636 | 918 | 1 |5014 | 22 | 0.000000e+00 | -- | Inf | unknown
688.48/690.29 c 690s| 3000 | 65 | 2887k| 527.1 | 138M | 40 |3426 |5367 |3640 | 945 | 0 |5062 | 22 | 0.000000e+00 | -- | Inf | unknown
699.06/700.85 c 701s| 3100 | 65 | 2939k| 527.0 | 139M | 43 |3426 |5416 |3651 | 984 | 0 |5120 | 22 | 0.000000e+00 | -- | Inf | unknown
707.74/709.58 c 710s| 3200 | 65 | 2984k| 525.6 | 139M | 43 |3426 |5451 |3630 |1011 | 0 |5232 | 22 | 0.000000e+00 | -- | Inf | unknown
717.12/718.90 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
717.12/718.90 c 719s| 3300 | 64 | 3031k| 524.6 | 139M | 43 |3426 |5473 |3635 |1050 | 0 |5299 | 22 | 0.000000e+00 | -- | Inf | unknown
726.49/728.32 c 728s| 3400 | 74 | 3078k| 523.6 | 140M | 43 |3426 |5498 |3626 |1093 | 1 |5422 | 22 | 0.000000e+00 | -- | Inf | unknown
731.78/733.68 c 734s| 3500 | 74 | 3107k| 519.6 | 140M | 43 |3426 |5483 |3625 |1133 | 0 |5515 | 22 | 0.000000e+00 | -- | Inf | unknown
737.97/739.81 c 740s| 3600 | 77 | 3139k| 516.2 | 140M | 43 |3426 |5534 |3631 |1190 | 1 |5604 | 22 | 0.000000e+00 | -- | Inf | unknown
744.26/746.19 c 746s| 3700 | 71 | 3173k| 513.2 | 140M | 43 |3426 |5505 |3629 |1212 | 1 |5681 | 22 | 0.000000e+00 | -- | Inf | unknown
751.24/753.19 c 753s| 3800 | 72 | 3209k| 510.7 | 140M | 43 |3426 |5571 |3636 |1247 | 0 |5775 | 22 | 0.000000e+00 | -- | Inf | unknown
760.31/762.27 c 762s| 3900 | 71 | 3254k| 509.8 | 140M | 43 |3426 |5648 |3629 |1269 | 0 |5855 | 22 | 0.000000e+00 | -- | Inf | unknown
768.20/770.19 c 770s| 4000 | 76 | 3295k| 508.1 | 140M | 43 |3426 |5697 |3638 |1318 | 1 |5949 | 22 | 0.000000e+00 | -- | Inf | unknown
774.87/776.89 c 777s| 4100 | 76 | 3331k| 505.8 | 140M | 43 |3426 |5761 |3632 |1343 | 0 |6027 | 22 | 0.000000e+00 | -- | Inf | unknown
782.75/784.71 c 785s| 4200 | 78 | 3369k| 503.9 | 141M | 43 |3426 |5819 |3641 |1403 | 1 |6116 | 22 | 0.000000e+00 | -- | Inf | unknown
791.23/793.29 c 793s| 4300 | 76 | 3412k| 502.7 | 141M | 43 |3426 |5868 |3648 |1442 | 1 |6196 | 22 | 0.000000e+00 | -- | Inf | unknown
799.42/801.43 c 801s| 4400 | 76 | 3453k| 501.3 | 141M | 43 |3426 |5926 |3640 |1494 | 1 |6282 | 22 | 0.000000e+00 | -- | Inf | unknown
807.40/809.47 c 809s| 4500 | 76 | 3493k| 499.8 | 141M | 43 |3426 |5931 |3634 |1570 | 1 |6338 | 22 | 0.000000e+00 | -- | Inf | unknown
816.98/819.06 c 819s| 4600 | 76 | 3540k| 499.5 | 141M | 43 |3426 |5983 |3637 |1637 | 0 |6423 | 22 | 0.000000e+00 | -- | Inf | unknown
827.25/829.31 c 829s| 4700 | 74 | 3591k| 499.5 | 141M | 43 |3426 |5999 |3640 |1704 | 1 |6473 | 22 | 0.000000e+00 | -- | Inf | unknown
836.53/838.60 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
836.53/838.60 c 839s| 4800 | 71 | 3639k| 499.3 | 141M | 43 |3426 |5955 |3629 |1756 | 1 |6547 | 22 | 0.000000e+00 | -- | Inf | unknown
844.81/846.93 c 847s| 4900 | 67 | 3682k| 498.4 | 141M | 43 |3426 |5811 |3645 |1789 | 0 |6607 | 22 | 0.000000e+00 | -- | Inf | unknown
854.18/856.30 c 856s| 5000 | 69 | 3729k| 497.9 | 141M | 43 |3426 |5688 |3636 |1839 | 0 |6669 | 22 | 0.000000e+00 | -- | Inf | unknown
862.76/864.97 c 865s| 5100 | 72 | 3773k| 497.1 | 141M | 43 |3426 |5725 |3639 |1890 | 0 |6730 | 22 | 0.000000e+00 | -- | Inf | unknown
872.84/875.05 c 875s| 5200 | 72 | 3822k| 497.0 | 141M | 43 |3426 |5765 |3630 |1936 | 1 |6784 | 22 | 0.000000e+00 | -- | Inf | unknown
882.22/884.42 c 884s| 5300 | 70 | 3867k| 496.4 | 142M | 43 |3426 |5807 |3635 |2032 | 1 |6837 | 22 | 0.000000e+00 | -- | Inf | unknown
890.80/893.10 c 893s| 5400 | 68 | 3911k| 495.7 | 142M | 43 |3426 |5857 |3642 |2086 | 0 |6893 | 22 | 0.000000e+00 | -- | Inf | unknown
902.27/904.54 c 905s| 5500 | 72 | 3967k| 496.5 | 142M | 43 |3426 |5900 |3636 |2147 | 1 |6951 | 22 | 0.000000e+00 | -- | Inf | unknown
913.14/915.43 c 915s| 5600 | 72 | 4018k| 496.7 | 143M | 43 |3426 |5946 |3649 |2204 | 1 |7001 | 22 | 0.000000e+00 | -- | Inf | unknown
924.32/926.66 c 927s| 5700 | 68 | 4071k| 497.1 | 144M | 43 |3426 |6002 |3649 |2297 | 0 |7069 | 22 | 0.000000e+00 | -- | Inf | unknown
934.49/936.86 c 937s| 5800 | 67 | 4121k| 497.2 | 145M | 43 |3426 |5797 |3648 |2369 | 0 |7127 | 22 | 0.000000e+00 | -- | Inf | unknown
943.68/946.06 c 946s| 5900 | 67 | 4169k| 497.0 | 145M | 43 |3426 |5735 |3637 |2422 | 1 |7166 | 22 | 0.000000e+00 | -- | Inf | unknown
953.55/955.96 c 956s| 6000 | 67 | 4219k| 497.0 | 145M | 43 |3426 |5703 |3635 |2487 | 0 |7220 | 22 | 0.000000e+00 | -- | Inf | unknown
962.13/964.54 c 965s| 6100 | 68 | 4263k| 496.3 | 145M | 43 |3426 |5416 |3633 |2524 | 1 |7285 | 22 | 0.000000e+00 | -- | Inf | unknown
973.10/975.51 c 976s| 6200 | 72 | 4319k| 497.0 | 145M | 43 |3426 |5402 |3646 |2593 | 1 |7326 | 22 | 0.000000e+00 | -- | Inf | unknown
982.18/984.67 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
982.18/984.67 c 985s| 6300 | 70 | 4363k| 496.4 | 145M | 43 |3426 |5402 |3638 |2624 | 1 |7378 | 22 | 0.000000e+00 | -- | Inf | unknown
990.36/992.82 c 993s| 6400 | 70 | 4405k| 495.5 | 145M | 43 |3426 |5443 |3638 |2661 | 1 |7445 | 22 | 0.000000e+00 | -- | Inf | unknown
1000.14/1002.63 c 1003s| 6500 | 70 | 4455k| 495.5 | 145M | 43 |3426 |5483 |3635 |2683 | 0 |7502 | 22 | 0.000000e+00 | -- | Inf | unknown
1008.72/1011.22 c 1011s| 6600 | 76 | 4498k| 494.8 | 145M | 43 |3426 |5529 |3642 |2692 | 2 |7557 | 22 | 0.000000e+00 | -- | Inf | unknown
1016.61/1019.14 c 1019s| 6700 | 71 | 4538k| 493.7 | 145M | 43 |3426 |5681 |3642 |2714 | 0 |7745 | 22 | 0.000000e+00 | -- | Inf | unknown
1025.38/1027.99 c 1028s| 6800 | 69 | 4581k| 493.0 | 146M | 43 |3426 |5685 |3635 |2773 | 1 |7800 | 22 | 0.000000e+00 | -- | Inf | unknown
1034.76/1037.31 c 1037s| 6900 | 67 | 4627k| 492.7 | 146M | 44 |3426 |5738 |3638 |2824 | 0 |7870 | 22 | 0.000000e+00 | -- | Inf | unknown
1046.03/1048.69 c 1049s| 7000 | 63 | 4684k| 493.5 | 146M | 44 |3426 |5674 |3633 |2870 | 0 |7936 | 22 | 0.000000e+00 | -- | Inf | unknown
1055.31/1057.98 c 1058s| 7100 | 65 | 4730k| 493.2 | 146M | 44 |3426 |5715 |3643 |2911 | 1 |7978 | 22 | 0.000000e+00 | -- | Inf | unknown
1065.88/1068.54 c 1069s| 7200 | 64 | 4784k| 493.6 | 146M | 44 |3426 |5738 |3646 |2952 | 1 |8023 | 22 | 0.000000e+00 | -- | Inf | unknown
1078.55/1081.26 c 1081s| 7300 | 66 | 4845k| 494.9 | 146M | 44 |3426 |5671 |3655 |3061 | 0 |8061 | 22 | 0.000000e+00 | -- | Inf | unknown
1090.03/1092.76 c 1093s| 7400 | 71 | 4901k| 495.5 | 146M | 44 |3426 |5592 |3640 |3101 | 0 |8106 | 22 | 0.000000e+00 | -- | Inf | unknown
1103.89/1106.62 c 1107s| 7500 | 67 | 4968k| 497.3 | 146M | 44 |3426 |5629 |3656 |3174 | 0 |8157 | 22 | 0.000000e+00 | -- | Inf | unknown
1115.77/1118.51 c 1119s| 7600 | 67 | 5025k| 498.0 | 146M | 44 |3426 |5677 |3652 |3212 | 1 |8208 | 22 | 0.000000e+00 | -- | Inf | unknown
1127.64/1130.42 c 1130s| 7700 | 63 | 5082k| 498.7 | 146M | 44 |3426 |5699 |3643 |3249 | 0 |8244 | 22 | 0.000000e+00 | -- | Inf | unknown
1142.50/1145.33 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1142.50/1145.33 c 1145s| 7800 | 63 | 5153k| 500.9 | 146M | 44 |3426 |5718 |3649 |3294 | 0 |8296 | 22 | 0.000000e+00 | -- | Inf | unknown
1153.38/1156.27 c 1156s| 7900 | 63 | 5207k| 501.3 | 146M | 44 |3426 |5750 |3636 |3358 | 1 |8356 | 22 | 0.000000e+00 | -- | Inf | unknown
1164.65/1167.56 c 1168s| 8000 | 61 | 5262k| 501.7 | 146M | 44 |3426 |5486 |3642 |3408 | 0 |8457 | 22 | 0.000000e+00 | -- | Inf | unknown
1176.72/1179.66 c 1180s| 8100 | 65 | 5320k| 502.5 | 146M | 44 |3426 |5503 |3652 |3473 | 0 |8504 | 22 | 0.000000e+00 | -- | Inf | unknown
1186.40/1189.36 c 1189s| 8200 | 61 | 5365k| 502.0 | 147M | 46 |3426 |5541 |3649 |3528 | 0 |8544 | 22 | 0.000000e+00 | -- | Inf | unknown
1198.08/1201.00 c 1201s| 8300 | 64 | 5420k| 502.5 | 147M | 46 |3426 |5586 |3643 |3561 | 0 |8595 | 22 | 0.000000e+00 | -- | Inf | unknown
1209.15/1212.15 c 1212s| 8400 | 62 | 5475k| 502.9 | 147M | 46 |3426 |5626 |3656 |3620 | 0 |8641 | 22 | 0.000000e+00 | -- | Inf | unknown
1221.51/1224.58 c 1225s| 8500 | 64 | 5535k| 503.8 | 147M | 46 |3426 |5688 |3643 |3648 | 1 |8710 | 22 | 0.000000e+00 | -- | Inf | unknown
1234.68/1237.80 c 1238s| 8600 | 62 | 5599k| 505.0 | 147M | 46 |3426 |5732 |3649 |3731 | 0 |8754 | 22 | 0.000000e+00 | -- | Inf | unknown
1247.25/1250.37 c 1250s| 8700 | 64 | 5660k| 506.0 | 147M | 46 |3426 |5789 |3660 |3795 | 1 |8825 | 22 | 0.000000e+00 | -- | Inf | unknown
1260.12/1263.28 c 1263s| 8800 | 60 | 5720k| 506.9 | 147M | 46 |3426 |5836 |3649 |3874 | 0 |8886 | 22 | 0.000000e+00 | -- | Inf | unknown
1274.89/1278.02 c 1278s| 8900 | 60 | 5790k| 508.6 | 147M | 46 |3426 |5886 |3661 |3951 | 0 |8942 | 22 | 0.000000e+00 | -- | Inf | unknown
1289.05/1292.20 c 1292s| 9000 | 62 | 5857k| 510.1 | 147M | 46 |3426 |5894 |3645 |4022 | 1 |8989 | 22 | 0.000000e+00 | -- | Inf | unknown
1300.62/1303.86 c 1304s| 9100 | 62 | 5911k| 510.3 | 147M | 46 |3426 |5928 |3664 |4079 | 1 |9036 | 22 | 0.000000e+00 | -- | Inf | unknown
1311.89/1315.14 c 1315s| 9200 | 61 | 5965k| 510.5 | 147M | 46 |3426 |5950 |3643 |4139 | 0 |9113 | 22 | 0.000000e+00 | -- | Inf | unknown
1322.86/1326.16 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1322.86/1326.16 c 1326s| 9300 | 59 | 6019k| 510.8 | 147M | 46 |3426 |6046 |3645 |4179 | 0 |9269 | 22 | 0.000000e+00 | -- | Inf | unknown
1335.91/1339.29 c 1339s| 9400 | 59 | 6081k| 511.7 | 147M | 46 |3426 |6076 |3651 |4213 | 0 |9338 | 22 | 0.000000e+00 | -- | Inf | unknown
1349.27/1352.61 c 1353s| 9500 | 61 | 6145k| 512.9 | 148M | 46 |3426 |6198 |3643 |4226 | 1 |9495 | 22 | 0.000000e+00 | -- | Inf | unknown
1364.43/1367.84 c 1368s| 9600 | 61 | 6217k| 514.6 | 148M | 46 |3426 |6235 |3662 |4290 | 0 |9572 | 22 | 0.000000e+00 | -- | Inf | unknown
1377.49/1380.98 c 1381s| 9700 | 60 | 6278k| 515.4 | 148M | 46 |3426 |6231 |3653 |4389 | 0 |9647 | 22 | 0.000000e+00 | -- | Inf | unknown
1387.96/1391.48 c 1391s| 9800 | 61 | 6328k| 515.3 | 148M | 46 |3426 |5922 |3646 |4467 | 1 |9734 | 22 | 0.000000e+00 | -- | Inf | unknown
1398.64/1402.16 c 1402s| 9900 | 62 | 6380k| 515.3 | 149M | 46 |3426 |5828 |3644 |4511 | 0 |9823 | 22 | 0.000000e+00 | -- | Inf | unknown
1409.00/1412.52 c 1413s| 10000 | 60 | 6429k| 515.1 | 149M | 46 |3426 |5765 | 0 |4579 | 0 |9914 | 22 | 0.000000e+00 | -- | Inf | unknown
1420.27/1423.84 c 1424s| 10100 | 59 | 6482k| 515.2 | 149M | 46 |3426 |5540 |3644 |4654 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1433.63/1437.24 c 1437s| 10200 | 59 | 6545k| 516.1 | 149M | 46 |3426 |5464 |3626 |4727 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1442.31/1445.90 c 1446s| 10300 | 59 | 6587k| 515.4 | 149M | 46 |3426 |5177 |3640 |4764 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1449.89/1453.53 c 1454s| 10400 | 62 | 6625k| 514.3 | 149M | 46 |3426 |5183 | 0 |4802 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1455.37/1459.07 c 1459s| 10500 | 62 | 6654k| 512.5 | 149M | 46 |3426 |5257 |3633 |4843 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1462.25/1465.98 c 1466s| 10600 | 60 | 6689k| 511.3 | 149M | 46 |3426 |5259 |3629 |4909 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1472.52/1476.20 c 1476s| 10700 | 60 | 6739k| 511.2 | 149M | 46 |3426 |5213 |3634 |4969 | 2 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1480.20/1483.99 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1480.20/1483.99 c 1484s| 10800 | 61 | 6779k| 510.3 | 149M | 46 |3426 |5284 |3629 |5005 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1487.58/1491.38 c 1491s| 10900 | 59 | 6816k| 509.2 | 149M | 46 |3426 |5282 |3629 |5049 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1495.15/1498.90 c 1499s| 11000 | 59 | 6853k| 508.2 | 149M | 46 |3426 |5306 |3639 |5082 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1504.03/1507.85 c 1508s| 11100 | 59 | 6898k| 507.7 | 150M | 46 |3426 |5348 |3631 |5133 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1512.90/1516.76 c 1517s| 11200 | 55 | 6941k| 507.2 | 150M | 46 |3426 |5400 |3642 |5167 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1520.68/1524.51 c 1525s| 11300 | 60 | 6979k| 506.3 | 150M | 46 |3426 |5452 |3632 |5225 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1526.96/1530.83 c 1531s| 11400 | 60 | 7011k| 504.9 | 150M | 46 |3426 |5555 |3626 |5255 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1532.95/1536.88 c 1537s| 11500 | 64 | 7042k| 503.5 | 150M | 46 |3426 |5602 |3627 |5296 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | unknown
1538.73/1542.69 c 1543s| 11600 | 60 | 7071k| 501.9 | 150M | 46 |3426 |5655 |3632 |5314 | 2 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1545.31/1549.20 c 1549s| 11700 | 62 | 7104k| 500.7 | 150M | 46 |3426 |5703 |3630 |5352 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1552.29/1556.20 c 1556s| 11800 | 60 | 7140k| 499.7 | 150M | 46 |3426 |5743 |3639 |5391 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1557.67/1561.69 c 1562s| 11900 | 61 | 7169k| 498.2 | 150M | 46 |3426 |5771 |3630 |5423 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1564.06/1568.03 c 1568s| 12000 | 59 | 7201k| 497.0 | 150M | 46 |3426 |5815 |3631 |5470 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1570.84/1574.82 c 1575s| 12100 | 58 | 7235k| 495.9 | 150M | 46 |3426 |5857 |3628 |5546 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1576.32/1580.38 c 1580s| 12200 | 56 | 7264k| 494.4 | 150M | 46 |3426 |5898 |3630 |5583 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1583.50/1587.56 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1583.50/1587.56 c 1588s| 12300 | 63 | 7299k| 493.5 | 150M | 46 |3426 |5870 |3629 |5641 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1588.28/1592.34 c 1592s| 12400 | 63 | 7326k| 491.9 | 151M | 46 |3426 |5903 |3624 |5665 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1593.47/1597.50 c 1598s| 12500 | 61 | 7353k| 490.5 | 151M | 46 |3426 |5921 | 0 |5697 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1599.85/1603.96 c 1604s| 12600 | 63 | 7387k| 489.5 | 151M | 46 |3426 |5939 |3626 |5725 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1606.23/1610.34 c 1610s| 12700 | 61 | 7419k| 488.3 | 152M | 46 |3426 |5899 |3627 |5739 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1614.21/1618.36 c 1618s| 12800 | 62 | 7459k| 487.7 | 152M | 46 |3426 |5926 | 0 |5791 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1621.39/1625.60 c 1626s| 12900 | 57 | 7493k| 486.7 | 152M | 46 |3426 |5956 |3620 |5855 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | unknown
1626.67/1630.89 c 1631s| 13000 | 57 | 7519k| 485.2 | 152M | 46 |3426 |5954 |3634 |5928 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1634.85/1639.01 c 1639s| 13100 | 59 | 7558k| 484.6 | 152M | 46 |3426 |5969 |3637 |5974 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1642.53/1646.75 c 1647s| 13200 | 58 | 7596k| 483.9 | 153M | 46 |3426 |5961 |3630 |5990 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1648.91/1653.17 c 1653s| 13300 | 60 | 7629k| 483.0 | 153M | 46 |3426 |5997 |3636 |6035 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1654.29/1658.56 c 1659s| 13400 | 59 | 7657k| 481.7 | 153M | 46 |3426 |6072 |3635 |6058 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1661.17/1665.49 c 1665s| 13500 | 57 | 7693k| 480.9 | 153M | 46 |3426 |6160 |3633 |6063 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1668.76/1673.05 c 1673s| 13600 | 58 | 7729k| 480.1 | 153M | 46 |3426 |6034 |3632 |6088 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1677.83/1682.10 c 1682s| 13700 | 62 | 7774k| 479.9 | 153M | 46 |3426 |5747 |3629 |6122 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1684.11/1688.48 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1684.11/1688.48 c 1688s| 13800 | 62 | 7807k| 479.0 | 153M | 46 |3426 |5784 |3629 |6128 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1690.39/1694.71 c 1695s| 13900 | 62 | 7839k| 478.0 | 153M | 46 |3426 |5835 |3629 |6152 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1696.08/1700.41 c 1700s| 14000 | 62 | 7869k| 476.9 | 153M | 46 |3426 |5851 |3632 |6172 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | unknown
1703.66/1708.05 c 1708s| 14100 | 59 | 7907k| 476.3 | 153M | 46 |3426 |5926 |3636 |6185 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1710.64/1715.09 c 1715s| 14200 | 61 | 7943k| 475.6 | 154M | 46 |3426 |5932 |3626 |6211 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1718.12/1722.59 c 1723s| 14300 | 59 | 7982k| 475.1 | 154M | 46 |3426 |5969 |3636 |6231 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1727.69/1732.19 c 1732s| 14400 | 60 | 8030k| 475.1 | 154M | 46 |3426 |6011 |3637 |6255 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1736.46/1740.94 c 1741s| 14500 | 60 | 8074k| 474.9 | 154M | 46 |3426 |6035 |3623 |6268 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1744.14/1748.66 c 1749s| 14600 | 64 | 8112k| 474.4 | 154M | 46 |3426 |6032 |3623 |6278 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1751.72/1756.24 c 1756s| 14700 | 58 | 8150k| 473.8 | 154M | 46 |3426 |6040 |3625 |6285 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1757.80/1762.35 c 1762s| 14800 | 60 | 8182k| 472.9 | 154M | 46 |3426 |6054 |3630 |6321 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1762.99/1767.53 c 1768s| 14900 | 62 | 8209k| 471.7 | 154M | 46 |3426 |6142 |3627 |6331 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | unknown
1764.18/1768.73 c *1769s| 14931 | 0 | 8216k| 471.3 | LP | 46 |3426 |6174 |3631 |6332 | 1 | 13k| 22 | 0.000000e+00 | 0.000000e+00 | 0.00%| 100.00%
1764.18/1768.73 c
1764.18/1768.73 c SCIP Status : problem is solved [optimal solution found]
1764.18/1768.73 c Solving Time (sec) : 1768.73
1764.18/1768.73 c Solving Nodes : 14931 (total of 17186 nodes in 2 runs)
1764.18/1768.73 c Primal Bound : +0.00000000000000e+00 (1 solutions)
1764.18/1768.73 c Dual Bound : +0.00000000000000e+00
1764.18/1768.73 c Gap : 0.00 %
1764.18/1768.74 s SATISFIABLE
1764.18/1768.74 v x4235 x4234 -x4233 -x4232 -x4231 -x4230 -x4229 -x4228 -x4227 -x4226 -x4225 -x4224 -x4223 -x4222 -x4221 -x4220 -x4219 -x4218 -x4217
1764.18/1768.74 v -x4216 -x4215 -x4214 -x4213 -x4212 -x4211 -x4210 -x4209 -x4208 -x4207 -x4206 -x4205 -x4204 -x4203 -x4202 -x4201 -x4200 -x4199
1764.18/1768.74 v -x4198 -x4197 -x4196 -x4195 -x4194 -x4193 -x4192 -x4191 -x4190 -x4189 -x4188 -x4187 -x4186 -x4185 -x4184 -x4183 -x4182 -x4181
1764.18/1768.74 v -x4180 -x4179 -x4178 -x4177 -x4176 -x4175 -x4174 -x4173 -x4172 -x4171 -x4170 -x4169 -x4168 -x4167 -x4166 -x4165 -x4164
1764.18/1768.74 v -x4163 -x4162 -x4161 -x4160 -x4159 -x4158 -x4157 -x4156 -x4155 -x4154 -x4153 -x4152 -x4151 -x4150 -x4149 -x4148 -x4147 -x4146
1764.18/1768.74 v x4145 -x4144 x4143 -x4142 x4141 -x4140 -x4139 -x4138 -x4137 -x4136 -x4135 -x4134 -x4133 -x4132 -x4131 -x4130 x4129 -x4128 -x4127
1764.18/1768.74 v -x4126 -x4125 -x4124 -x4123 -x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116 -x4115 -x4114 -x4113 -x4112 -x4111 -x4110 -x4109
1764.18/1768.74 v -x4108 -x4107 -x4106 -x4105 -x4104 -x4103 -x4102 -x4101 -x4100 -x4099 -x4098 -x4097 -x4096 -x4095 -x4094 -x4093 -x4092
1764.18/1768.74 v -x4091 -x4090 -x4089 -x4088 -x4087 -x4086 -x4085 -x4084 -x4083 -x4082 -x4081 -x4080 -x4079 -x4078 -x4077 -x4076 -x4075 -x4074
1764.18/1768.74 v -x4073 -x4072 -x4071 -x4070 x4069 -x4068 -x4067 -x4066 -x4065 -x4064 -x4063 -x4062 -x4061 -x4060 -x4059 -x4058 -x4057 -x4056
1764.18/1768.74 v -x4055 -x4054 -x4053 -x4052 -x4051 -x4050 -x4049 -x4048 -x4047 -x4046 -x4045 -x4044 -x4043 -x4042 -x4041 -x4040 -x4039 -x4038
1764.18/1768.74 v -x4037 -x4036 -x4035 -x4034 -x4033 -x4032 -x4031 -x4030 -x4029 -x4028 -x4027 -x4026 -x4025 -x4024 -x4023 -x4022 -x4021 -x4020
1764.18/1768.74 v -x4019 -x4018 -x4017 -x4016 -x4015 -x4014 -x4013 -x4012 -x4011 -x4010 -x4009 -x4008 -x4007 -x4006 -x4005 -x4004 -x4003 -x4002
1764.18/1768.74 v -x4001 -x4000 -x3999 -x3998 -x3997 -x3996 -x3995 -x3994 -x3993 -x3992 -x3991 -x3990 -x3989 -x3988 -x3987 -x3986 -x3985 -x3984
1764.18/1768.74 v -x3983 -x3982 -x3981 -x3980 -x3979 -x3978 -x3977 -x3976 -x3975 x3974 -x3973 -x3972 -x3971 -x3970 -x3969 -x3968 -x3967 -x3966
1764.18/1768.74 v -x3965 -x3964 -x3963 -x3962 -x3961 -x3960 -x3959 -x3958 -x3957 -x3956 -x3955 -x3954 -x3953 -x3952 -x3951 -x3950 -x3949 -x3948
1764.18/1768.74 v -x3947 -x3946 -x3945 -x3944 -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937 -x3936 -x3935 -x3934 -x3933 -x3932 -x3931
1764.18/1768.74 v -x3930 -x3929 -x3928 -x3927 -x3926 -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917 -x3916 -x3915 -x3914 -x3913
1764.18/1768.74 v -x3912 -x3911 -x3910 -x3909 -x3908 -x3907 -x3906 -x3905 -x3904 -x3903 -x3902 -x3901 -x3900 -x3899 -x3898 -x3897 -x3896 -x3895
1764.18/1768.74 v -x3894 -x3893 -x3892 -x3891 -x3890 -x3889 -x3888 -x3887 -x3886 -x3885 -x3884 -x3883 -x3882 -x3881 -x3880 -x3879 -x3878 -x3877
1764.18/1768.74 v -x3876 -x3875 -x3874 -x3873 -x3872 -x3871 -x3870 -x3869 -x3868 -x3867 -x3866 -x3865 -x3864 -x3863 -x3862 -x3861 -x3860 -x3859
1764.18/1768.74 v x3858 -x3857 -x3856 -x3855 -x3854 -x3853 -x3852 -x3851 -x3850 -x3849 -x3848 -x3847 -x3846 -x3845 -x3844 -x3843 -x3842 -x3841
1764.18/1768.74 v -x3840 -x3839 -x3838 -x3837 -x3836 -x3835 -x3834 -x3833 -x3832 x3831 -x3830 -x3829 -x3828 -x3827 -x3826 -x3825 -x3824 -x3823
1764.18/1768.74 v -x3822 -x3821 -x3820 -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813 -x3812 -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805
1764.18/1768.74 v -x3804 -x3803 -x3802 -x3801 -x3800 -x3799 -x3798 -x3797 -x3796 -x3795 -x3794 -x3793 -x3792 -x3791 -x3790 -x3789 -x3788 -x3787
1764.18/1768.74 v -x3786 -x3785 -x3784 -x3783 -x3782 -x3781 -x3780 -x3779 -x3778 -x3777 -x3776 -x3775 -x3774 -x3773 -x3772 -x3771 -x3770
1764.18/1768.74 v -x3769 -x3768 -x3767 -x3766 -x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758 x3757 -x3756 -x3755 -x3754 -x3753 -x3752
1764.18/1768.74 v -x3751 -x3750 -x3749 -x3748 -x3747 -x3746 -x3745 -x3744 -x3743 -x3742 -x3741 -x3740 -x3739 -x3738 -x3737 -x3736 -x3735 -x3734
1764.18/1768.74 v -x3733 -x3732 -x3731 -x3730 -x3729 -x3728 -x3727 -x3726 -x3725 -x3724 -x3723 -x3722 -x3721 -x3720 -x3719 -x3718 -x3717 -x3716
1764.18/1768.74 v -x3715 -x3714 -x3713 -x3712 -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703 -x3702 -x3701 -x3700 -x3699 -x3698
1764.18/1768.74 v -x3697 -x3696 -x3695 -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683 -x3682 -x3681 -x3680
1764.18/1768.74 v -x3679 -x3678 -x3677 -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 x3669 -x3668 -x3667 -x3666 -x3665 -x3664 -x3663 -x3662
1764.18/1768.74 v -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644
1764.18/1768.74 v -x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 -x3627 -x3626
1764.18/1768.74 v -x3625 -x3624 -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609
1764.18/1768.74 v -x3608 -x3607 -x3606 -x3605 -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 -x3596 -x3595 -x3594 x3593 -x3592 -x3591
1764.18/1768.74 v -x3590 -x3589 -x3588 -x3587 -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573
1764.18/1768.74 v -x3572 -x3571 -x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555
1764.18/1768.74 v -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537
1764.18/1768.74 v -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519
1764.18/1768.74 v -x3518 x3517 -x3516 -x3515 -x3514 -x3513 -x3512 -x3511 -x3510 -x3509 -x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501
1764.18/1768.74 v -x3500 -x3499 -x3498 -x3497 -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483
1764.18/1768.74 v -x3482 -x3481 -x3480 -x3479 -x3478 -x3477 -x3476 -x3475 -x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465
1764.18/1768.74 v -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448
1764.18/1768.74 v -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 x3441 -x3440 -x3439 -x3438 -x3437 -x3436 -x3435 -x3434 -x3433 -x3432 -x3431 -x3430
1764.18/1768.74 v -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 -x3418 -x3417 -x3416 -x3415 -x3414 -x3413 -x3412
1764.18/1768.74 v -x3411 -x3410 -x3409 -x3408 -x3407 -x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394
1764.18/1768.74 v -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377 -x3376
1764.18/1768.74 v -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 x3365 -x3364 -x3363 -x3362 -x3361 -x3360 -x3359 -x3358
1764.18/1768.74 v -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340
1764.18/1768.74 v -x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324 -x3323 -x3322
1764.18/1768.74 v -x3321 -x3320 -x3319 -x3318 -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304
1764.18/1768.74 v -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 x3289 -x3288 -x3287 -x3286
1764.18/1768.74 v -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273 -x3272 -x3271 -x3270 -x3269
1764.18/1768.74 v -x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251
1764.18/1768.74 v -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 -x3233
1764.18/1768.74 v -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215
1764.18/1768.74 v -x3214 x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206 -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197
1764.18/1768.74 v -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 -x3179
1764.18/1768.74 v -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170 -x3169 -x3168 -x3167 -x3166 -x3165 -x3164 -x3163 -x3162 -x3161
1764.18/1768.74 v -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152 -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 x3143
1764.18/1768.74 v -x3142 -x3141 -x3140 x3139 -x3138 x3137 -x3136 -x3135 -x3134 -x3133 -x3132 -x3131 -x3130 x3129 -x3128 -x3127 -x3126 -x3125
1764.18/1768.74 v -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107
1764.18/1768.74 v -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089
1764.18/1768.74 v -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071
1764.18/1768.74 v -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054
1764.18/1768.74 v -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043 -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036
1764.18/1768.74 v -x3035 -x3034 -x3033 x3032 -x3031 x3030 -x3029 x3028 -x3027 x3026 -x3025 x3024 -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017
1764.18/1768.74 v -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999
1764.18/1768.74 v -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989 -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981
1764.18/1768.74 v -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973 -x2972 -x2971 -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964
1764.18/1768.74 v -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 x2957 -x2956 -x2955 -x2954 -x2953 -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946
1764.18/1768.74 v -x2945 x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935 -x2934 -x2933 -x2932 -x2931 -x2930 -x2929 -x2928
1764.18/1768.74 v -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911 -x2910
1764.18/1768.74 v -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898 -x2897 -x2896 -x2895 -x2894 -x2893 -x2892
1764.18/1768.74 v -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874
1764.18/1768.74 v -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862 -x2861 -x2860 x2859 -x2858 -x2857 -x2856
1764.18/1768.74 v -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844 -x2843 -x2842 -x2841 -x2840 -x2839 -x2838
1764.18/1768.74 v -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827 -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820
1764.18/1768.74 v -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 x2812 -x2811 -x2810 -x2809 -x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802
1764.18/1768.74 v -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791 -x2790 -x2789 -x2788 -x2787 -x2786 -x2785 -x2784
1764.18/1768.74 v -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 -x2772 -x2771 -x2770 -x2769 -x2768 -x2767
1764.18/1768.74 v -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 -x2749
1764.18/1768.74 v -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 -x2739 -x2738 -x2737 -x2736 -x2735 -x2734 -x2733 -x2732 -x2731
1764.18/1768.74 v -x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 -x2717 -x2716 -x2715 -x2714 -x2713
1764.18/1768.74 v -x2712 x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695
1764.18/1768.74 v -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682 -x2681 -x2680 -x2679 -x2678 -x2677
1764.18/1768.74 v -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659
1764.18/1768.74 v -x2658 -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641
1764.18/1768.74 v -x2640 -x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623
1764.18/1768.74 v -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609 -x2608 -x2607 -x2606
1764.18/1768.74 v -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593 -x2592 -x2591 -x2590 -x2589 -x2588
1764.18/1768.74 v -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572 -x2571 -x2570
1764.18/1768.74 v -x2569 -x2568 -x2567 -x2566 -x2565 -x2564 x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555 -x2554 -x2553 -x2552
1764.18/1768.74 v -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537 -x2536 -x2535 -x2534
1764.18/1768.74 v -x2533 -x2532 -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518 -x2517 -x2516
1764.18/1768.74 v -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 -x2499 -x2498
1764.18/1768.74 v -x2497 -x2496 -x2495 -x2494 -x2493 x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 x2484 -x2483 -x2482 -x2481 -x2480
1764.18/1768.74 v -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 -x2468 -x2467 -x2466 -x2465 -x2464 -x2463 -x2462
1764.18/1768.74 v -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444
1764.18/1768.74 v -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428 -x2427
1764.18/1768.74 v -x2426 -x2425 -x2424 -x2423 -x2422 -x2421 -x2420 x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413 -x2412 -x2411 -x2410 -x2409
1764.18/1768.74 v -x2408 -x2407 x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395 -x2394 -x2393 -x2392 -x2391
1764.18/1768.74 v -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373
1764.18/1768.74 v -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357 -x2356 -x2355
1764.18/1768.74 v -x2354 -x2353 -x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 x2343 -x2342 -x2341 -x2340 -x2339 -x2338 -x2337
1764.18/1768.74 v -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 -x2321 -x2320 -x2319
1764.18/1768.74 v -x2318 -x2317 -x2316 -x2315 -x2314 -x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301
1764.18/1768.74 v -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283
1764.18/1768.74 v -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268 -x2267 -x2266 -x2265
1764.18/1768.74 v -x2264 -x2263 -x2262 -x2261 -x2260 x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248 -x2247
1764.18/1768.74 v -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230
1764.18/1768.74 v -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 -x2213 -x2212
1764.18/1768.74 v -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 x2195 -x2194
1764.18/1768.74 v -x2193 -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 x2180 -x2179 -x2178 -x2177 -x2176
1764.18/1768.74 v -x2175 -x2174 -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161 -x2160 -x2159 -x2158
1764.18/1768.74 v -x2157 -x2156 -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140
1764.18/1768.74 v -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122
1764.18/1768.74 v -x2121 -x2120 -x2119 -x2118 x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104
1764.18/1768.74 v -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089 -x2088 -x2087 -x2086
1764.18/1768.74 v -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 -x2071 -x2070 -x2069 -x2068
1764.18/1768.74 v -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051
1764.18/1768.74 v -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033
1764.18/1768.74 v -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 -x2018 -x2017 -x2016 -x2015
1764.18/1768.74 v -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997
1764.18/1768.74 v -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979
1764.18/1768.74 v -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 x1961
1764.18/1768.74 v -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943
1764.18/1768.74 v -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 -x1925
1764.18/1768.74 v -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907
1764.18/1768.74 v -x1906 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896 -x1895 -x1894 -x1893 -x1892 -x1891 -x1890
1764.18/1768.74 v -x1889 -x1888 -x1887 -x1886 -x1885 -x1884 x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872
1764.18/1768.74 v -x1871 -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 -x1857 -x1856 -x1855 -x1854
1764.18/1768.74 v -x1853 -x1852 -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 -x1836
1764.18/1768.74 v -x1835 -x1834 -x1833 -x1832 -x1831 -x1830 -x1829 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 -x1819 -x1818
1764.18/1768.74 v -x1817 -x1816 -x1815 -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 x1805 -x1804 -x1803 -x1802 -x1801 -x1800
1764.18/1768.74 v -x1799 -x1798 -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782
1764.18/1768.74 v -x1781 -x1780 -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 -x1764
1764.18/1768.74 v -x1763 -x1762 -x1761 -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746
1764.18/1768.74 v -x1745 -x1744 -x1743 -x1742 -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735 -x1734 -x1733 -x1732 -x1731 -x1730 -x1729
1764.18/1768.74 v -x1728 -x1727 -x1726 -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713 -x1712 -x1711
1764.18/1768.74 v -x1710 -x1709 -x1708 -x1707 -x1706 x1705 -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693
1764.18/1768.74 v -x1692 -x1691 -x1690 -x1689 -x1688 -x1687 -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679 -x1678 -x1677 -x1676 -x1675
1764.18/1768.74 v -x1674 -x1673 -x1672 -x1671 -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661 -x1660 -x1659 -x1658 -x1657
1764.18/1768.74 v -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 -x1648 -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639
1764.18/1768.74 v -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630 x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621
1764.18/1768.74 v -x1620 -x1619 -x1618 -x1617 -x1616 -x1615 -x1614 -x1613 -x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603
1764.18/1768.74 v -x1602 -x1601 -x1600 -x1599 -x1598 -x1597 -x1596 -x1595 -x1594 -x1593 -x1592 -x1591 -x1590 -x1589 -x1588 -x1587 -x1586 -x1585
1764.18/1768.74 v -x1584 -x1583 -x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 -x1569 -x1568
1764.18/1768.74 v -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 x1553 -x1552 -x1551 -x1550
1764.18/1768.74 v -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 -x1534 -x1533 -x1532
1764.18/1768.74 v -x1531 -x1530 -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 -x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514
1764.18/1768.74 v -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502 -x1501 -x1500 -x1499 -x1498 -x1497 -x1496
1764.18/1768.74 v -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 -x1481 -x1480 -x1479 -x1478
1764.18/1768.74 v x1477 -x1476 -x1475 -x1474 -x1473 -x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460
1764.18/1768.74 v -x1459 -x1458 -x1457 -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442
1764.18/1768.74 v -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424
1764.18/1768.74 v -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 -x1408 -x1407
1764.18/1768.74 v -x1406 -x1405 -x1404 x1403 -x1402 x1401 -x1400 -x1399 -x1398 -x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388
1764.18/1768.74 v -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371
1764.18/1768.74 v -x1370 -x1369 -x1368 -x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359 -x1358 -x1357 -x1356 -x1355 -x1354 -x1353
1764.18/1768.74 v -x1352 -x1351 -x1350 -x1349 -x1348 -x1347 -x1346 -x1345 -x1344 -x1343 -x1342 -x1341 -x1340 -x1339 -x1338 -x1337 -x1336 -x1335
1764.18/1768.74 v -x1334 -x1333 -x1332 -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325 -x1324 -x1323 -x1322 -x1321 -x1320 -x1319 x1318 -x1317
1764.18/1768.74 v x1316 -x1315 -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305 -x1304 -x1303 -x1302 -x1301 -x1300 -x1299
1764.18/1768.74 v x1298 -x1297 -x1296 -x1295 -x1294 -x1293 -x1292 -x1291 -x1290 -x1289 -x1288 -x1287 -x1286 -x1285 -x1284 -x1283 -x1282 -x1281
1764.18/1768.74 v -x1280 -x1279 -x1278 -x1277 -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268 -x1267 -x1266 -x1265 -x1264 -x1263
1764.18/1768.74 v -x1262 -x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252 -x1251 -x1250 -x1249 -x1248 -x1247 -x1246 -x1245
1764.18/1768.74 v -x1244 -x1243 -x1242 -x1241 -x1240 -x1239 -x1238 -x1237 -x1236 -x1235 -x1234 -x1233 -x1232 -x1231 -x1230 -x1229 -x1228 -x1227
1764.18/1768.74 v -x1226 -x1225 -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212 -x1211 -x1210 -x1209
1764.18/1768.74 v -x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 -x1199 -x1198 -x1197 x1196 -x1195 -x1194 -x1193 -x1192 -x1191
1764.18/1768.74 v -x1190 -x1189 -x1188 -x1187 -x1186 -x1185 -x1184 -x1183 -x1182 -x1181 -x1180 -x1179 -x1178 -x1177 -x1176 -x1175 -x1174
1764.18/1768.74 v -x1173 -x1172 -x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156
1764.18/1768.74 v -x1155 -x1154 -x1153 -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145 -x1144 -x1143 -x1142 -x1141 -x1140 -x1139 -x1138
1764.18/1768.74 v -x1137 -x1136 -x1135 -x1134 -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127 -x1126 -x1125 x1124 -x1123 -x1122 -x1121 -x1120
1764.18/1768.74 v -x1119 -x1118 -x1117 -x1116 -x1115 -x1114 -x1113 -x1112 -x1111 -x1110 -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102
1764.18/1768.74 v -x1101 -x1100 -x1099 -x1098 -x1097 -x1096 -x1095 -x1094 -x1093 -x1092 -x1091 -x1090 -x1089 -x1088 -x1087 -x1086 -x1085 -x1084
1764.18/1768.74 v -x1083 -x1082 -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066
1764.18/1768.74 v -x1065 -x1064 -x1063 -x1062 -x1061 -x1060 -x1059 -x1058 -x1057 -x1056 -x1055 -x1054 -x1053 -x1052 -x1051 -x1050 -x1049 -x1048
1764.18/1768.74 v -x1047 -x1046 -x1045 -x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031
1764.18/1768.74 v -x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 -x1021 -x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013
1764.18/1768.74 v -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 x1004 -x1003 -x1002 -x1001 -x1000 -x999 -x998 x997 -x996 -x995 -x994
1764.18/1768.74 v -x993 -x992 -x991 -x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 -x981 -x980 -x979 -x978 -x977 -x976 -x975 -x974 -x973
1764.18/1768.74 v -x972 -x971 -x970 -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 -x960 -x959 -x958 -x957 -x956 -x955 -x954 -x953 -x952
1764.18/1768.74 v -x951 -x950 -x949 -x948 -x947 -x946 -x945 -x944 -x943 -x942 -x941 -x940 -x939 -x938 -x937 -x936 -x935 -x934 -x933 -x932 -x931
1764.18/1768.74 v -x930 -x929 -x928 -x927 -x926 -x925 -x924 -x923 -x922 -x921 -x920 -x919 -x918 -x917 x916 -x915 -x914 -x913 -x912 -x911 -x910
1764.18/1768.74 v -x909 -x908 -x907 -x906 -x905 -x904 -x903 -x902 -x901 -x900 -x899 -x898 -x897 -x896 -x895 -x894 -x893 -x892 -x891 -x890 -x889
1764.18/1768.74 v -x888 -x887 -x886 -x885 -x884 -x883 -x882 -x881 -x880 -x879 -x878 -x877 -x876 -x875 -x874 -x873 -x872 -x871 -x870 -x869
1764.18/1768.74 v -x868 -x867 -x866 -x865 -x864 -x863 -x862 -x861 -x860 -x859 -x858 -x857 -x856 -x855 -x854 -x853 -x852 -x851 -x850 -x849 -x848
1764.18/1768.74 v -x847 -x846 -x845 -x844 -x843 -x842 -x841 -x840 -x839 -x838 x837 -x836 -x835 -x834 -x833 -x832 -x831 -x830 -x829 -x828 -x827
1764.18/1768.74 v -x826 -x825 -x824 -x823 -x822 -x821 -x820 -x819 -x818 -x817 -x816 x815 -x814 -x813 -x812 -x811 -x810 -x809 -x808 -x807 -x806
1764.18/1768.74 v -x805 -x804 -x803 -x802 -x801 -x800 -x799 -x798 -x797 -x796 -x795 -x794 -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786 -x785
1764.18/1768.74 v -x784 -x783 -x782 -x781 -x780 -x779 -x778 -x777 -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 -x768 -x767 -x766 -x765 x764
1764.18/1768.74 v -x763 -x762 -x761 -x760 -x759 -x758 -x757 -x756 -x755 -x754 -x753 -x752 -x751 -x750 -x749 -x748 -x747 -x746 -x745 -x744 -x743
1764.18/1768.74 v -x742 -x741 -x740 -x739 -x738 -x737 -x736 -x735 -x734 -x733 -x732 -x731 -x730 -x729 -x728 -x727 -x726 -x725 -x724 -x723 -x722
1764.18/1768.74 v -x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710 -x709 -x708 -x707 -x706 -x705 -x704 -x703 -x702 -x701
1764.18/1768.74 v -x700 -x699 -x698 -x697 -x696 -x695 -x694 -x693 -x692 -x691 -x690 -x689 x688 -x687 x686 -x685 x684 -x683 -x682 -x681 -x680
1764.18/1768.74 v -x679 -x678 -x677 -x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669 -x668 -x667 -x666 -x665 -x664 -x663 -x662 -x661 -x660 -x659
1764.18/1768.74 v -x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646 -x645 -x644 -x643 -x642 -x641 -x640 -x639 -x638
1764.18/1768.74 v -x637 -x636 -x635 -x634 -x633 -x632 -x631 -x630 -x629 -x628 -x627 -x626 -x625 -x624 -x623 -x622 -x621 -x620 -x619 -x618
1764.18/1768.74 v -x617 -x616 -x615 -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603 -x602 -x601 -x600 -x599 -x598 -x597
1764.18/1768.74 v -x596 -x595 -x594 -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 -x585 -x584 x583 -x582 -x581 -x580 -x579 -x578 -x577 -x576
1764.18/1768.74 v -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564 -x563 -x562 -x561 -x560 -x559 -x558 -x557 -x556 -x555
1764.18/1768.74 v -x554 -x553 -x552 -x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534
1764.18/1768.74 v -x533 -x532 -x531 -x530 -x529 -x528 -x527 -x526 -x525 -x524 -x523 -x522 -x521 -x520 -x519 -x518 -x517 -x516 -x515 -x514 -x513
1764.18/1768.74 v -x512 -x511 -x510 -x509 -x508 -x507 -x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492
1764.18/1768.74 v -x491 -x490 -x489 -x488 -x487 -x486 -x485 -x484 -x483 -x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472
1764.18/1768.74 v -x471 -x470 -x469 x468 -x467 -x466 -x465 -x464 -x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451
1764.18/1768.74 v -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430
1764.18/1768.74 v -x429 x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409
1764.18/1768.74 v -x408 -x407 -x406 -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388
1764.18/1768.74 v -x387 -x386 -x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367
1764.18/1768.74 v -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 -x350 -x349 -x348 -x347 -x346
1764.18/1768.74 v -x345 -x344 -x343 -x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325
1764.18/1768.74 v -x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317 -x316 -x315 -x314 x313 -x312 -x311 -x310 -x309 -x308 -x307 x306 -x305 -x304
1764.18/1768.74 v -x303 -x302 -x301 -x300 -x299 -x298 -x297 -x296 -x295 -x294 -x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283
1764.18/1768.74 v -x282 -x281 -x280 -x279 -x278 -x277 -x276 -x275 -x274 x273 -x272 -x271 -x270 -x269 -x268 -x267 -x266 -x265 -x264 -x263 -x262
1764.18/1768.74 v -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242
1764.18/1768.74 v -x241 -x240 -x239 -x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 -x230 -x229 x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221
1764.18/1768.74 v -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200
1764.18/1768.74 v -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179
1764.18/1768.74 v -x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158
1764.18/1768.74 v -x157 -x156 -x155 -x154 -x153 -x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145 -x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137
1764.18/1768.74 v -x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 -x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116
1764.18/1768.74 v -x115 -x114 -x113 -x112 -x111 -x110 -x109 -x108 -x107 -x106 -x105 -x104 -x103 -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95
1764.18/1768.74 v -x94 -x93 -x92 -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 x81 -x80 x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69
1764.18/1768.74 v -x68 -x67 -x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44
1764.18/1768.74 v -x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 -x28 -x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19
1764.18/1768.74 v -x18 -x17 -x16 -x15 -x14 -x13 -x12 -x11 -x10 -x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2 x1
1764.18/1768.74 c SCIP Status : problem is solved [optimal solution found]
1764.18/1768.74 c Total Time : 1768.73
1764.18/1768.74 c solving : 1768.73
1764.18/1768.74 c presolving : 2.74 (included in solving)
1764.18/1768.74 c reading : 0.01 (included in solving)
1764.18/1768.74 c copying : 1.12 (107 #copies) (minimal 0.01, maximal 0.02, average 0.01)
1764.18/1768.74 c Original Problem :
1764.18/1768.74 c Problem name : HOME/instance-4447245-1721349477.opb
1764.18/1768.74 c Variables : 4235 (4235 binary, 0 integer, 0 implicit integer, 0 continuous)
1764.18/1768.74 c Constraints : 4391 initial, 4391 maximal
1764.18/1768.74 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
1764.18/1768.74 c Presolved Problem :
1764.18/1768.74 c Problem name : t_HOME/instance-4447245-1721349477.opb
1764.18/1768.74 c Variables : 3426 (3426 binary, 0 integer, 0 implicit integer, 0 continuous)
1764.18/1768.74 c Constraints : 4302 initial, 6284 maximal
1764.18/1768.74 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
1764.18/1768.74 c Nonzeros : 52608 constraint, 53055 clique table
1764.18/1768.74 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
1764.18/1768.74 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c domcol : 0.05 0.00 10 0 0 0 0 0 0 0 0 6
1764.18/1768.74 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c dualsparsify : 0.01 0.00 1 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c gateextraction : 0.03 0.00 15 0 0 0 0 0 1 0 0 0
1764.18/1768.74 c implics : 0.00 0.00 19 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c milp : 0.08 0.00 1 121 3 0 0 0 0 0 0 0
1764.18/1768.74 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c sparsify : 0.07 0.00 3 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c trivial : 0.00 0.00 37 312 0 0 0 0 0 0 0 0
1764.18/1768.74 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c dualfix : 0.00 0.00 37 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c probing : 2.12 0.00 9 184 3 0 0 0 0 0 0 0
1764.18/1768.74 c pseudoobj : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c symmetry : 0.02 0.00 1 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c vbounds : 0.01 0.00 5 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c knapsack : 0.01 0.00 11 0 0 0 0 0 0 4 14 51
1764.18/1768.74 c setppc : 0.03 0.00 57 0 0 0 0 0 49 0 0 0
1764.18/1768.74 c linear : 0.03 0.00 24 184 1 0 184 0 616 0 5 0
1764.18/1768.74 c logicor : 0.27 0.01 54 41 0 0 0 0 275 0 0 1671
1764.18/1768.74 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c components : 0.01 0.00 2 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c root node : - - - 0 - - 0 - - - - -
1764.18/1768.74 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
1764.18/1768.74 c benderslp : 0 0 0 0 8779 0 0 649 0 0 0 0 0 0 0
1764.18/1768.74 c integral : 0 0 0 0 8779 0 0 649 0 0 0 0 0 0 17556
1764.18/1768.74 c knapsack : 26+ 27 11 115114 0 0 0 0 268764 2 20459 0 0 0 0
1764.18/1768.74 c setppc : 880+ 1041 22 175921 1 0 0 642 4269871 308 503504 3 0 0 0
1764.18/1768.74 c linear : 19+ 34 11 128019 0 0 0 3 31514 107 15722 12 11 0 0
1764.18/1768.74 c logicor : 3377+ 5253 22 135081 1 0 0 0 8269039 1096 634483 55 29 0 0
1764.18/1768.74 c benders : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1764.18/1768.74 c fixedvar : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1764.18/1768.74 c countsols : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1764.18/1768.74 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
1764.18/1768.74 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c integral : 6.85 0.00 0.00 0.00 6.85 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c knapsack : 0.40 0.00 0.03 0.31 0.00 0.00 0.00 0.00 0.06 0.00
1764.18/1768.74 c setppc : 2.17 0.00 0.00 1.15 0.00 0.00 0.00 0.01 1.00 0.00
1764.18/1768.74 c linear : 0.26 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.11 0.00
1764.18/1768.74 c logicor : 5.44 0.01 0.01 2.62 0.00 0.00 0.00 0.00 2.79 0.01
1764.18/1768.74 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c components : 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c Propagators : #Propagate #ResProp Cutoffs DomReds
1764.18/1768.74 c dualfix : 2 0 0 0
1764.18/1768.74 c genvbounds : 0 0 0 0
1764.18/1768.74 c nlobbt : 0 0 0 0
1764.18/1768.74 c obbt : 0 0 0 0
1764.18/1768.74 c probing : 0 0 0 0
1764.18/1768.74 c pseudoobj : 0 0 0 0
1764.18/1768.74 c redcost : 0 0 0 0
1764.18/1768.74 c rootredcost : 0 0 0 0
1764.18/1768.74 c symmetry : 7705 0 1 79
1764.18/1768.74 c vbounds : 98493 0 0 0
1764.18/1768.74 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
1764.18/1768.74 c dualfix : 0.00 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c genvbounds : 0.01 0.00 0.00 0.01 0.00 0.00
1764.18/1768.74 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
1764.18/1768.74 c probing : 2.12 0.00 2.12 0.00 0.00 0.00
1764.18/1768.74 c pseudoobj : 0.02 0.00 0.00 0.02 0.00 0.00
1764.18/1768.74 c redcost : 0.01 0.00 0.00 0.01 0.00 0.00
1764.18/1768.74 c rootredcost : 0.01 0.00 0.00 0.01 0.00 0.00
1764.18/1768.74 c symmetry : 0.10 0.00 0.02 0.08 0.00 0.00
1764.18/1768.74 c vbounds : 2.05 0.00 0.01 2.04 0.00 0.00
1764.18/1768.74 c Symmetry :
1764.18/1768.74 c orbitopal red. : 0 reductions applied, 0 cutoffs
1764.18/1768.74 c orbital reduction: 0 reductions applied, 0 cutoffs
1764.18/1768.74 c lexicographic red: 79 reductions applied, 1 cutoffs
1764.18/1768.74 c shadow tree time : 0.03 s
1764.18/1768.74 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
1764.18/1768.74 c propagation : 0.53 1411 1275 - 9605 146.1 206 49.2 - - -
1764.18/1768.74 c infeasible LP : 22.00 7509 6074 - 123647 652.6 54 16.4 146 322.9 0
1764.18/1768.74 c bound exceed. LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
1764.18/1768.74 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
1764.18/1768.74 c pseudo solution : 0.00 1 1 - 1 0.0 0 0.0 - - -
1764.18/1768.74 c applied globally : 0.87 - - 0 13625 134.5 - - 139 - -
1764.18/1768.74 c applied locally : - - - 0 60 696.7 - - 7 - -
1764.18/1768.74 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
1764.18/1768.74 c cut pool : 0.29 - 1948 42 - - 3052 45767 - - - - - (maximal pool size: 684)
1764.18/1768.74 c aggregation : 0.13 0.00 181 22 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c > cmir : - - - - - - - 0 0 0 0 0 -
1764.18/1768.74 c > flowcover : - - - - - - - 0 0 0 0 0 -
1764.18/1768.74 c > knapsackcover : - - - - - - - 0 0 0 0 0 -
1764.18/1768.74 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c clique : 0.39 0.00 22 22 0 0 169 1382 0 268 268 0 0
1764.18/1768.74 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c gomory : 7.34 0.00 179 20 0 0 2693 39345 402 3559 3541 18 0
1764.18/1768.74 c > gomorymi : - - - - - - - 17433 201 1826 1814 12 -
1764.18/1768.74 c > strongcg : - - - - - - - 21912 201 1733 1727 6 -
1764.18/1768.74 c impliedbounds : 0.16 0.00 181 22 0 0 399 3586 0 2051 2051 0 0
1764.18/1768.74 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c mcf : 0.00 0.00 2 2 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c multilinear : 0.00 0.00 69 22 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c rapidlearning : 11.16 0.00 100 2 0 8535 0 0 0 0 0 0 300
1764.18/1768.74 c rlt : 0.00 0.00 130 20 0 0 0 0 0 0 0 0 0
1764.18/1768.74 c zerohalf : 3.30 0.00 181 22 0 0 516 1454 323 1195 908 287 0
1764.18/1768.74 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
1764.18/1768.74 c hybrid : 0.05 0.00 1577 22 7117 0 39411 267 0 468
1764.18/1768.74 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c Pricers : ExecTime SetupTime Calls Vars
1764.18/1768.74 c problem variables: 0.00 - 0 0
1764.18/1768.74 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
1764.18/1768.74 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c inference : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c random : 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c relpscost : 6.84 0.00 8778 0 0 0 0 0 0 17556
1764.18/1768.74 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
1764.18/1768.74 c Primal Heuristics : ExecTime SetupTime Calls Found Best
1764.18/1768.74 c LP solutions : 0.00 - - 1 1
1764.18/1768.74 c relax solutions : 0.00 - - 0 0
1764.18/1768.74 c pseudo solutions : 0.00 - - 0 0
1764.18/1768.74 c strong branching : 0.00 - - 0 0
1764.18/1768.74 c actconsdiving : 0.00 0.00 0 0 0
1764.18/1768.74 c adaptivediving : 12.76 0.00 16 0 0
1764.18/1768.74 c alns : 0.30 0.00 5 0 0
1764.18/1768.74 c bound : 0.00 0.00 0 0 0
1764.18/1768.74 c clique : 0.01 0.00 1 0 0
1764.18/1768.74 c coefdiving : 0.00 0.00 0 0 0
1764.18/1768.74 c completesol : 0.00 0.00 0 0 0
1764.18/1768.74 c conflictdiving : 22.53 0.00 11 0 0
1764.18/1768.74 c crossover : 0.00 0.00 0 0 0
1764.18/1768.74 c dins : 0.00 0.00 0 0 0
1764.18/1768.74 c distributiondivin: 16.80 0.00 10 0 0
1764.18/1768.74 c dps : 0.00 0.00 0 0 0
1764.18/1768.74 c dualval : 0.00 0.00 0 0 0
1764.18/1768.74 c farkasdiving : 0.00 0.00 0 0 0
1764.18/1768.74 c feasjump : 0.05 0.00 2 0 0
1764.18/1768.74 c feaspump : 12.30 0.00 5 0 0
1764.18/1768.74 c fixandinfer : 0.00 0.00 0 0 0
1764.18/1768.74 c fracdiving : 16.79 0.00 10 0 0
1764.18/1768.74 c gins : 0.00 0.00 0 0 0
1764.18/1768.74 c guideddiving : 0.00 0.00 0 0 0
1764.18/1768.74 c indcoefdiving : 0.00 0.00 0 0 0
1764.18/1768.74 c indicator : 0.00 0.00 0 0 0
1764.18/1768.74 c indicatordiving : 0.00 0.00 0 0 0
1764.18/1768.74 c indoneopt : 0.00 0.00 0 0 0
1764.18/1768.74 c indrounding : 0.00 0.00 0 0 0
1764.18/1768.74 c indtwoopt : 0.00 0.00 0 0 0
1764.18/1768.74 c intdiving : 0.00 0.00 0 0 0
1764.18/1768.74 c intshifting : 0.00 0.00 0 0 0
1764.18/1768.74 c linesearchdiving : 28.45 0.00 10 0 0
1764.18/1768.74 c localbranching : 0.00 0.00 0 0 0
1764.18/1768.74 c locks : 0.00 0.00 1 0 0
1764.18/1768.74 c lpface : 0.06 0.00 0 0 0
1764.18/1768.74 c mpec : 0.00 0.00 0 0 0
1764.18/1768.74 c multistart : 0.00 0.00 0 0 0
1764.18/1768.74 c mutation : 0.00 0.00 0 0 0
1764.18/1768.74 c nlpdiving : 0.00 0.00 0 0 0
1764.18/1768.74 c objpscostdiving : 85.96 0.00 4 0 0
1764.18/1768.74 c octane : 0.00 0.00 0 0 0
1764.18/1768.74 c ofins : 0.00 0.00 0 0 0
1764.18/1768.74 c oneopt : 0.01 0.00 0 0 0
1764.18/1768.74 c padm : 0.00 0.00 0 0 0
1764.18/1768.74 c proximity : 0.00 0.00 0 0 0
1764.18/1768.74 c pscostdiving : 25.65 0.00 11 0 0
1764.18/1768.74 c randrounding : 0.18 0.00 657 0 0
1764.18/1768.74 c rens : 0.10 0.00 2 0 0
1764.18/1768.74 c reoptsols : 0.00 0.00 0 0 0
1764.18/1768.74 c repair : 0.00 0.00 0 0 0
1764.18/1768.74 c rins : 0.00 0.00 0 0 0
1764.18/1768.74 c rootsoldiving : 14.59 0.00 6 0 0
1764.18/1768.74 c rounding : 0.15 0.00 1393 0 0
1764.18/1768.74 c scheduler : 0.00 0.00 0 0 0
1764.18/1768.74 c shiftandpropagate: 0.06 0.00 2 0 0
1764.18/1768.74 c shifting : 0.41 0.00 616 0 0
1764.18/1768.74 c simplerounding : 0.00 0.00 0 0 0
1764.18/1768.74 c smallcard : 0.00 0.00 0 0 0
1764.18/1768.74 c subnlp : 0.01 0.00 0 0 0
1764.18/1768.74 c trivial : 0.00 0.00 4 0 0
1764.18/1768.74 c trivialnegation : 0.00 0.00 0 0 0
1764.18/1768.74 c trustregion : 0.00 0.00 0 0 0
1764.18/1768.74 c trysol : 0.00 0.00 0 0 0
1764.18/1768.74 c twoopt : 0.00 0.00 0 0 0
1764.18/1768.74 c undercover : 0.00 0.00 0 0 0
1764.18/1768.74 c vbounds : 0.02 0.00 2 0 0
1764.18/1768.74 c veclendiving : 13.82 0.00 10 0 0
1764.18/1768.74 c zeroobj : 0.00 0.00 0 0 0
1764.18/1768.74 c zirounding : 0.04 0.00 1000 0 0
1764.18/1768.74 c other solutions : - - - 0 -
1764.18/1768.74 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
1764.18/1768.74 c rens : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1764.18/1768.74 c rins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1764.18/1768.74 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1764.18/1768.74 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1764.18/1768.74 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1764.18/1768.74 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1764.18/1768.74 c dins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1764.18/1768.74 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
1764.18/1768.74 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
1764.18/1768.74 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
1764.18/1768.74 c primal LP : 1.97 925 0 0.00 0.00 1.97 925
1764.18/1768.74 c dual LP : 1442.27 17891 7369745 413.29 5109.82 0.07 59
1764.18/1768.74 c lex dual LP : 0.00 0 0 0.00 -
1764.18/1768.74 c barrier LP : 0.00 0 0 0.00 - 0.00 0
1764.18/1768.74 c resolve instable : 0.12 3 168 56.00 1388.46
1764.18/1768.74 c diving/probing LP: 247.10 1281 846796 661.04 3426.99
1764.18/1768.74 c strong branching : 5.09 22 15699 713.59 3082.27 - - 25
1764.18/1768.74 c (at root node) : - 22 15699 713.59 -
1764.18/1768.74 c conflict analysis: 0.00 0 0 0.00 -
1764.18/1768.74 c B&B Tree :
1764.18/1768.74 c number of runs : 2
1764.18/1768.74 c nodes : 14931 (7597 internal, 7334 leaves)
1764.18/1768.74 c feasible leaves : 1
1764.18/1768.74 c infeas. leaves : 7333
1764.18/1768.74 c objective leaves : 0
1764.18/1768.74 c nodes (total) : 17186 (8778 internal, 8408 leaves)
1764.18/1768.74 c nodes left : 0
1764.18/1768.74 c max depth : 46
1764.18/1768.74 c max depth (total): 56
1764.18/1768.74 c backtracks : 2227 (14.9%)
1764.18/1768.74 c early backtracks : 0 (0.0%)
1764.18/1768.74 c nodes exc. ref. : 0 (0.0%)
1764.18/1768.74 c delayed cutoffs : 200
1764.18/1768.74 c repropagations : 16848 (121986 domain reductions, 144 cutoffs)
1764.18/1768.74 c avg switch length: 3.91
1764.18/1768.74 c switching time : 4.72
1764.18/1768.74 c Root Node :
1764.18/1768.74 c First LP value : +0.00000000000000e+00
1764.18/1768.74 c First LP Iters : 7681 (4945.21 Iter/sec)
1764.18/1768.74 c First LP Time : 1.55
1764.18/1768.74 c Final Dual Bound : +0.00000000000000e+00
1764.18/1768.74 c Final Root Iters : 117621
1764.18/1768.74 c Root LP Estimate : +3.40096238444306e-02
1764.18/1768.74 c Solution :
1764.18/1768.74 c Solutions found : 1 (1 improvements)
1764.18/1768.74 c First Solution : +0.00000000000000e+00 (in run 2, after 14931 nodes, 1768.73 seconds, depth 40, found by <relaxation>)
1764.18/1768.74 c Gap First Sol. : 0.00 %
1764.18/1768.74 c Gap Last Sol. : 0.00 %
1764.18/1768.74 c Primal Bound : +0.00000000000000e+00 (in run 2, after 14931 nodes, 1768.73 seconds, depth -1, found by <relaxation>)
1764.18/1768.74 c Dual Bound : +0.00000000000000e+00
1764.18/1768.74 c Gap : 0.00 %
1764.18/1768.74 c Integrals : Total Avg%
1764.18/1768.74 c primal-dual : 176872.88 100.00
1764.18/1768.74 c primal-ref : - - (not evaluated)
1764.18/1768.74 c dual-ref : - - (not evaluated)
1764.18/1768.77 c Time complete: 1764.26.