0.00/0.00 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.00 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-4443015-1721297468.opb>
0.00/0.03 c original problem has 8281 variables (8281 bin, 0 int, 0 impl, 0 cont) and 826 constraints
0.00/0.03 c problem read in 0.03
0.00/0.03 c No objective function, only one solution is needed.
0.00/0.05 c presolving:
0.00/0.09 c (0.1s) running MILP presolver
0.09/0.13 c (0.1s) MILP presolver (2 rounds): 0 aggregations, 0 fixings, 0 bound changes
0.09/0.13 c (round 1, medium) 0 del vars, 826 del conss, 462 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 364 clqs
0.09/0.17 c (round 2, exhaustive) 0 del vars, 826 del conss, 462 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 462 upgd conss, 0 impls, 364 clqs
0.30/0.40 c (0.4s) probing: 51/8281 (0.6%) - 0 fixings, 0 aggregations, 0 implications, 0 bound changes
0.30/0.40 c (0.4s) probing aborted: 50/50 successive totally useless probings
0.40/0.41 c (0.4s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
0.49/0.51 c (0.5s) symmetry computation finished: 31 generators found (max: 1500, log10 of symmetry group size: 20.0) (symcode time: 0.09)
0.49/0.52 c dynamic symmetry handling statistics:
0.49/0.52 c orbitopal reduction: no components
0.49/0.52 c orbital reduction: no components
0.49/0.52 c lexicographic reduction: no permutations
0.49/0.52 c handled 1 out of 1 symmetry components
0.49/0.53 c (round 3, exhaustive) 172 del vars, 826 del conss, 493 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 462 upgd conss, 0 impls, 364 clqs
0.49/0.53 c (round 4, medium) 186 del vars, 826 del conss, 493 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 462 upgd conss, 0 impls, 364 clqs
0.88/0.93 c (round 5, exhaustive) 215 del vars, 826 del conss, 493 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 462 upgd conss, 0 impls, 9043 clqs
0.88/0.96 c (round 6, exhaustive) 481 del vars, 826 del conss, 493 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 462 upgd conss, 0 impls, 7908 clqs
0.88/0.96 c (round 7, fast) 481 del vars, 832 del conss, 495 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 462 upgd conss, 0 impls, 7909 clqs
0.99/1.06 c (round 8, exhaustive) 687 del vars, 832 del conss, 495 add conss, 0 chg bounds, 0 chg sides, 6 chg coeffs, 462 upgd conss, 0 impls, 8485 clqs
0.99/1.06 c (round 9, fast) 841 del vars, 838 del conss, 497 add conss, 0 chg bounds, 0 chg sides, 6 chg coeffs, 462 upgd conss, 0 impls, 8487 clqs
0.99/1.07 c (round 10, medium) 870 del vars, 838 del conss, 497 add conss, 0 chg bounds, 0 chg sides, 6 chg coeffs, 462 upgd conss, 0 impls, 8213 clqs
1.09/1.13 c (round 11, exhaustive) 1045 del vars, 838 del conss, 497 add conss, 0 chg bounds, 0 chg sides, 12 chg coeffs, 462 upgd conss, 0 impls, 9322 clqs
1.09/1.14 c (round 12, fast) 1130 del vars, 844 del conss, 499 add conss, 0 chg bounds, 0 chg sides, 12 chg coeffs, 462 upgd conss, 0 impls, 9324 clqs
1.09/1.14 c (round 13, medium) 1138 del vars, 844 del conss, 499 add conss, 0 chg bounds, 0 chg sides, 12 chg coeffs, 462 upgd conss, 0 impls, 9361 clqs
1.18/1.23 c (round 14, exhaustive) 1164 del vars, 844 del conss, 499 add conss, 0 chg bounds, 0 chg sides, 12 chg coeffs, 462 upgd conss, 0 impls, 11370 clqs
1.28/1.32 c (round 15, exhaustive) 1302 del vars, 844 del conss, 499 add conss, 0 chg bounds, 0 chg sides, 17 chg coeffs, 462 upgd conss, 0 impls, 12611 clqs
1.28/1.32 c (round 16, fast) 1305 del vars, 851 del conss, 501 add conss, 0 chg bounds, 0 chg sides, 17 chg coeffs, 462 upgd conss, 0 impls, 12612 clqs
1.28/1.33 c (round 17, exhaustive) 1308 del vars, 854 del conss, 501 add conss, 0 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 11764 clqs
1.28/1.33 c (round 18, fast) 1400 del vars, 854 del conss, 501 add conss, 0 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 11764 clqs
1.28/1.34 c (round 19, exhaustive) 1489 del vars, 859 del conss, 501 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 12124 clqs
1.28/1.34 c (round 20, fast) 1643 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 12130 clqs
1.48/1.55 c (round 21, exhaustive) 1669 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 17893 clqs
1.68/1.74 c (round 22, exhaustive) 1695 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 20260 clqs
1.78/1.89 c (round 23, exhaustive) 1720 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 20805 clqs
1.88/1.94 c (1.9s) probing: 1000/8281 (12.1%) - 667 fixings, 0 aggregations, 30729 implications, 0 bound changes
2.18/2.28 c (round 24, exhaustive) 1745 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 25664 clqs
2.48/2.55 c (round 25, exhaustive) 1770 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 30972 clqs
2.58/2.60 c (round 26, exhaustive) 1795 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 28550 clqs
3.08/3.14 c (round 27, exhaustive) 1820 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 38459 clqs
3.27/3.36 c (3.4s) probing: 2000/8281 (24.2%) - 769 fixings, 0 aggregations, 60790 implications, 0 bound changes
3.58/3.65 c (round 28, exhaustive) 1853 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 50667 clqs
3.88/3.95 c (round 29, exhaustive) 1880 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 54569 clqs
4.48/4.58 c (round 30, exhaustive) 1905 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 63580 clqs
4.78/4.84 c (4.8s) probing: 3000/8281 (36.2%) - 851 fixings, 0 aggregations, 96688 implications, 0 bound changes
5.67/5.77 c (round 31, exhaustive) 1930 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 67520 clqs
5.98/6.03 c (round 32, exhaustive) 1955 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 63466 clqs
6.17/6.25 c (6.3s) probing: 4000/8281 (48.3%) - 895 fixings, 0 aggregations, 125543 implications, 0 bound changes
7.47/7.59 c (7.6s) probing: 5000/8281 (60.4%) - 903 fixings, 0 aggregations, 138273 implications, 0 bound changes
7.77/7.82 c (7.8s) probing: 5176/8281 (62.5%) - 903 fixings, 0 aggregations, 139995 implications, 0 bound changes
7.77/7.82 c (7.8s) probing aborted: 1000/1000 successive useless probings
7.77/7.83 c (round 33, exhaustive) 1966 del vars, 868 del conss, 507 add conss, 73 chg bounds, 0 chg sides, 22 chg coeffs, 462 upgd conss, 0 impls, 68530 clqs
7.87/7.99 c (8.0s) probing: 5276/8281 (63.7%) - 903 fixings, 0 aggregations, 141061 implications, 0 bound changes
7.87/7.99 c (8.0s) probing aborted: 1000/1000 successive useless probings
7.97/8.00 c presolving (34 rounds: 34 fast, 28 medium, 24 exhaustive):
7.97/8.00 c 1966 deleted vars, 868 deleted constraints, 507 added constraints, 73 tightened bounds, 0 added holes, 0 changed sides, 22 changed coefficients
7.97/8.00 c 0 implications, 68926 cliques
7.97/8.00 c presolved problem has 6637 variables (6637 bin, 0 int, 0 impl, 0 cont) and 465 constraints
7.97/8.00 c 84 constraints of type <knapsack>
7.97/8.00 c 350 constraints of type <setppc>
7.97/8.00 c 31 constraints of type <orbitope>
7.97/8.00 c transformed objective value is always integral (scale: 1)
7.97/8.00 c Presolving Time: 7.95
7.97/8.00 c - non default parameters ----------------------------------------------------------------------
7.97/8.00 c # SCIP version 10.0.0
7.97/8.00 c
7.97/8.00 c # maximal time in seconds to run
7.97/8.00 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
7.97/8.00 c limits/time = 3596.997022
7.97/8.00 c
7.97/8.00 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
7.97/8.00 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
7.97/8.00 c limits/memory = 27900
7.97/8.00 c
7.97/8.00 c # solving stops, if the given number of solutions were found; this limit is first checked in presolving (-1: no limit)
7.97/8.00 c # [type: int, advanced: FALSE, range: [-1,2147483647], default: -1]
7.97/8.00 c limits/solutions = 1
7.97/8.00 c
7.97/8.00 c # bitset describing used symmetry handling technique: (0: off; 1: constraint-based (orbitopes and/or symresacks); 2: orbital fixing; 3: orbitopes and orbital fixing; 4: Schreier Sims cuts; 5: Schreier Sims cuts and orbitopes; 6: Schreier Sims cuts and orbital fixing; 7: Schreier Sims cuts, orbitopes, and orbital fixing) See type_symmetry.h.
7.97/8.00 c # [type: int, advanced: FALSE, range: [0,7], default: 7]
7.97/8.00 c misc/usesymmetry = 3
7.97/8.00 c
7.97/8.00 c # belongs reading time to solving time?
7.97/8.00 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
7.97/8.00 c timing/reading = TRUE
7.97/8.00 c
7.97/8.00 c # Should we check whether the components of the symmetry group can be handled by double lex matrices?
7.97/8.00 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
7.97/8.00 c propagating/symmetry/detectdoublelex = FALSE
7.97/8.00 c
7.97/8.00 c # Should we try to detect symmetric subgroups of the symmetry group on binary variables?
7.97/8.00 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
7.97/8.00 c propagating/symmetry/detectsubgroups = FALSE
7.97/8.00 c
7.97/8.00 c # Type of symmetries that shall be computed?
7.97/8.00 c # [type: int, advanced: TRUE, range: [0,1], default: 0]
7.97/8.00 c propagating/symmetry/symtype = 1
7.97/8.00 c
7.97/8.00 c # Should components consisting of a single full reflection be handled?
7.97/8.00 c # [type: bool, advanced: TRUE, range: {TRUE,FALSE}, default: TRUE]
7.97/8.00 c propagating/symmetry/usesimplesgncomp = FALSE
7.97/8.00 c
7.97/8.00 c -----------------------------------------------------------------------------------------------
7.97/8.00 c start solving
7.97/8.00 c
18.95/19.06 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
18.95/19.06 c 19.1s| 1 | 0 | 48282 | - | 157M | 0 |6637 | 553 | 434 | 0 | 0 | 88 | 0 | 0.000000e+00 | -- | Inf | unknown
25.23/25.33 c 25.3s| 1 | 0 | 82619 | - | 161M | 0 |6637 | 554 | 437 | 3 | 1 | 89 | 0 | 0.000000e+00 | -- | Inf | unknown
25.33/25.45 c 25.4s| 1 | 0 | 82741 | - | 161M | 0 |6637 | 554 | 440 | 6 | 2 | 89 | 0 | 0.000000e+00 | -- | Inf | unknown
25.52/25.60 c 25.6s| 1 | 0 | 82904 | - | 162M | 0 |6637 | 554 | 442 | 8 | 3 | 91 | 0 | 0.000000e+00 | -- | Inf | unknown
25.62/25.70 c 25.7s| 1 | 0 | 82941 | - | 162M | 0 |6637 | 556 | 444 | 10 | 4 | 93 | 0 | 0.000000e+00 | -- | Inf | unknown
25.72/25.83 c 25.8s| 1 | 0 | 82998 | - | 162M | 0 |6637 | 560 | 450 | 16 | 5 | 97 | 0 | 0.000000e+00 | -- | Inf | unknown
25.82/25.95 c 25.9s| 1 | 0 | 83037 | - | 162M | 0 |6637 | 561 | 458 | 24 | 6 | 98 | 0 | 0.000000e+00 | -- | Inf | unknown
26.03/26.11 c 26.1s| 1 | 0 | 83189 | - | 163M | 0 |6637 | 561 | 463 | 29 | 7 | 99 | 0 | 0.000000e+00 | -- | Inf | unknown
26.12/26.23 c 26.2s| 1 | 0 | 83231 | - | 163M | 0 |6637 | 563 | 470 | 36 | 8 | 101 | 0 | 0.000000e+00 | -- | Inf | unknown
26.22/26.36 c 26.4s| 1 | 0 | 83299 | - | 163M | 0 |6637 | 567 | 478 | 44 | 9 | 105 | 0 | 0.000000e+00 | -- | Inf | unknown
26.42/26.51 c 26.5s| 1 | 0 | 83418 | - | 163M | 0 |6637 | 567 | 486 | 52 | 10 | 106 | 0 | 0.000000e+00 | -- | Inf | unknown
26.52/26.65 c 26.6s| 1 | 0 | 83500 | - | 164M | 0 |6637 | 567 | 495 | 61 | 11 | 106 | 0 | 0.000000e+00 | -- | Inf | unknown
47.17/47.36 c 47.4s| 1 | 0 |169371 | - | 164M | 0 |6637 | 594 | 495 | 61 | 11 | 133 | 8 | 0.000000e+00 | -- | Inf | unknown
47.27/47.46 c 47.5s| 1 | 0 |169454 | - | 164M | 0 |6637 | 595 | 505 | 71 | 12 | 134 | 8 | 0.000000e+00 | -- | Inf | unknown
47.37/47.55 c 47.5s| 1 | 0 |169542 | - | 164M | 0 |6637 | 595 | 507 | 73 | 13 | 135 | 8 | 0.000000e+00 | -- | Inf | unknown
47.77/47.91 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
47.77/47.91 c 47.9s| 1 | 0 |169569 | - | 164M | 0 |6637 | 601 | 507 | 73 | 13 | 142 | 10 | 0.000000e+00 | -- | Inf | unknown
47.88/48.02 c 48.0s| 1 | 0 |169622 | - | 164M | 0 |6637 | 611 | 512 | 78 | 14 | 152 | 10 | 0.000000e+00 | -- | Inf | unknown
47.88/48.10 c 48.1s| 1 | 0 |169644 | - | 164M | 0 |6637 | 613 | 503 | 80 | 15 | 154 | 10 | 0.000000e+00 | -- | Inf | unknown
49.67/49.84 c 49.8s| 1 | 2 |169673 | - | 164M | 0 |6637 | 615 | 503 | 80 | 15 | 159 | 22 | 0.000000e+00 | -- | Inf | unknown
75.20/75.41 c 75.4s| 100 | 28 |181455 |1082.4 | 167M | 48 |6637 | 677 | 465 | 125 | 1 | 223 | 22 | 0.000000e+00 | -- | Inf | unknown
121.10/121.48 c 121s| 200 | 97 |372690 |1499.5 | 170M | 48 |6637 | 733 | 465 | 187 | 1 | 286 | 22 | 0.000000e+00 | -- | Inf | 3.89%
147.14/147.51 c 148s| 300 | 137 |473284 |1334.4 | 171M | 48 |6637 | 805 | 465 | 273 | 1 | 363 | 22 | 0.000000e+00 | -- | Inf | 4.19%
166.00/166.46 c 166s| 400 | 168 |539199 |1165.2 | 173M | 48 |6637 | 894 | 468 | 422 | 1 | 456 | 22 | 0.000000e+00 | -- | Inf | 5.58%
206.52/207.03 c 207s| 500 | 220 |697952 |1249.8 | 174M | 48 |6637 | 945 | 467 | 638 | 1 | 509 | 22 | 0.000000e+00 | -- | Inf | 6.98%
232.64/233.25 c 233s| 600 | 301 |786236 |1188.5 | 176M | 48 |6637 | 979 | 457 | 805 | 1 | 546 | 22 | 0.000000e+00 | -- | Inf | 8.42%
250.91/251.58 c 252s| 700 | 367 |850317 |1110.2 | 177M | 48 |6637 |1057 | 457 | 880 | 1 | 625 | 22 | 0.000000e+00 | -- | Inf | 9.39%
261.39/262.07 c 262s| 800 | 429 |889965 |1020.9 | 179M | 63 |6637 |1104 | 472 | 952 | 0 | 675 | 22 | 0.000000e+00 | -- | Inf | 9.61%
265.18/265.84 c 266s| 900 | 428 |911966 | 931.8 | 187M | 72 |6637 |1139 | 472 | 952 | 0 | 710 | 22 | 0.000000e+00 | -- | Inf | 9.66%
268.27/268.97 c 269s| 1000 | 428 |929601 | 856.2 | 192M | 76 |6637 |1183 | 472 | 952 | 0 | 754 | 22 | 0.000000e+00 | -- | Inf | 9.66%
271.56/272.30 c 272s| 1100 | 428 |948288 | 795.3 | 197M | 80 |6637 |1202 | 472 | 952 | 0 | 784 | 22 | 0.000000e+00 | -- | Inf | 9.66%
274.95/275.66 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
274.95/275.66 c 276s| 1200 | 427 |967600 | 745.0 | 200M | 80 |6637 |1234 | 472 | 952 | 0 | 818 | 22 | 0.000000e+00 | -- | Inf | 9.66%
277.35/278.09 c 278s| 1300 | 433 |981043 | 698.0 | 201M | 80 |6637 |1249 | 472 | 952 | 0 | 833 | 22 | 0.000000e+00 | -- | Inf | 9.66%
280.54/281.24 c 281s| 1400 | 437 |998761 | 660.8 | 204M | 80 |6637 |1279 | 472 | 952 | 0 | 873 | 22 | 0.000000e+00 | -- | Inf | 9.66%
283.13/283.86 c 284s| 1500 | 431 | 1013k| 626.3 | 208M | 80 |6637 |1302 | 472 | 952 | 0 | 902 | 22 | 0.000000e+00 | -- | Inf | 9.66%
286.12/286.86 c 287s| 1600 | 435 | 1029k| 597.6 | 212M | 80 |6637 |1312 | 472 | 952 | 1 | 960 | 22 | 0.000000e+00 | -- | Inf | 9.66%
289.11/289.81 c 290s| 1700 | 433 | 1046k| 572.1 | 214M | 80 |6637 |1315 | 0 | 952 | 0 | 989 | 22 | 0.000000e+00 | -- | Inf | 9.66%
292.32/293.07 c 293s| 1800 | 437 | 1064k| 550.6 | 216M | 80 |6637 |1318 | 472 | 952 | 1 |1013 | 22 | 0.000000e+00 | -- | Inf | 9.66%
295.70/296.46 c 296s| 1900 | 435 | 1084k| 531.7 | 217M | 80 |6637 |1332 | 472 | 952 | 1 |1029 | 22 | 0.000000e+00 | -- | Inf | 9.66%
299.30/300.04 c 300s| 2000 | 435 | 1104k| 515.4 | 219M | 80 |6637 |1347 | 472 | 952 | 1 |1062 | 22 | 0.000000e+00 | -- | Inf | 9.66%
302.88/303.60 c 304s| 2100 | 431 | 1125k| 500.7 | 221M | 80 |6637 |1371 | 472 | 952 | 0 |1097 | 22 | 0.000000e+00 | -- | Inf | 9.66%
305.47/306.25 c 306s| 2200 | 435 | 1140k| 484.8 | 221M | 80 |6637 |1392 | 472 | 952 | 0 |1121 | 22 | 0.000000e+00 | -- | Inf | 9.66%
308.37/309.12 c 309s| 2300 | 437 | 1156k| 470.8 | 222M | 80 |6637 |1429 | 472 | 952 | 1 |1161 | 22 | 0.000000e+00 | -- | Inf | 9.66%
311.37/312.19 c 312s| 2400 | 435 | 1173k| 458.4 | 224M | 80 |6637 |1475 | 472 | 952 | 0 |1221 | 22 | 0.000000e+00 | -- | Inf | 9.66%
314.36/315.18 c 315s| 2500 | 437 | 1190k| 446.7 | 225M | 80 |6637 |1481 | 472 | 952 | 0 |1254 | 22 | 0.000000e+00 | -- | Inf | 9.66%
317.55/318.38 c 318s| 2600 | 437 | 1208k| 436.5 | 226M | 80 |6637 |1471 | 472 | 952 | 0 |1264 | 22 | 0.000000e+00 | -- | Inf | 9.66%
320.74/321.52 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
320.74/321.52 c 322s| 2700 | 433 | 1226k| 426.9 | 227M | 80 |6637 |1498 | 472 | 952 | 1 |1304 | 22 | 0.000000e+00 | -- | Inf | 9.66%
323.93/324.74 c 325s| 2800 | 435 | 1244k| 418.1 | 228M | 80 |6637 |1524 | 472 | 952 | 0 |1339 | 22 | 0.000000e+00 | -- | Inf | 9.66%
327.23/328.06 c 328s| 2900 | 435 | 1263k| 410.3 | 229M | 80 |6637 |1556 | 472 | 952 | 1 |1377 | 22 | 0.000000e+00 | -- | Inf | 9.66%
330.72/331.57 c 332s| 3000 | 431 | 1284k| 403.4 | 229M | 80 |6637 |1570 | 472 | 952 | 0 |1401 | 22 | 0.000000e+00 | -- | Inf | 9.66%
334.01/334.88 c 335s| 3100 | 433 | 1302k| 396.5 | 231M | 80 |6637 |1555 | 472 | 952 | 0 |1425 | 22 | 0.000000e+00 | -- | Inf | 9.66%
336.40/337.24 c 337s| 3200 | 437 | 1315k| 388.0 | 231M | 80 |6637 |1560 | 472 | 952 | 1 |1470 | 22 | 0.000000e+00 | -- | Inf | 9.66%
338.70/339.53 c 340s| 3300 | 435 | 1327k| 380.0 | 231M | 80 |6637 |1548 | 472 | 952 | 1 |1480 | 22 | 0.000000e+00 | -- | Inf | 9.66%
341.39/342.25 c 342s| 3400 | 433 | 1343k| 373.3 | 231M | 80 |6637 |1560 | 472 | 952 | 1 |1507 | 22 | 0.000000e+00 | -- | Inf | 9.66%
344.19/345.06 c 345s| 3500 | 435 | 1358k| 367.1 | 232M | 80 |6637 |1559 | 472 | 952 | 1 |1529 | 22 | 0.000000e+00 | -- | Inf | 9.66%
347.28/348.16 c 348s| 3600 | 431 | 1376k| 361.8 | 232M | 80 |6637 |1575 | 472 | 952 | 0 |1560 | 22 | 0.000000e+00 | -- | Inf | 9.66%
350.27/351.14 c 351s| 3700 | 431 | 1393k| 356.6 | 233M | 80 |6637 |1576 | 472 | 952 | 0 |1574 | 22 | 0.000000e+00 | -- | Inf | 9.66%
352.56/353.49 c 353s| 3800 | 433 | 1405k| 350.4 | 233M | 80 |6637 |1622 | 472 | 952 | 0 |1623 | 22 | 0.000000e+00 | -- | Inf | 9.66%
355.45/356.33 c 356s| 3900 | 429 | 1421k| 345.4 | 234M | 80 |6637 |1687 | 472 | 952 | 0 |1689 | 22 | 0.000000e+00 | -- | Inf | 9.66%
357.95/358.87 c 359s| 4000 | 437 | 1434k| 340.2 | 234M | 80 |6637 |1675 | 472 | 952 | 0 |1735 | 22 | 0.000000e+00 | -- | Inf | 9.66%
383.59/384.53 c 385s| 4100 | 437 | 1448k| 335.3 | 237M | 80 |6637 |1741 | 472 | 952 | 0 |1805 | 22 | 0.000000e+00 | -- | Inf | 9.66%
386.38/387.31 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
386.38/387.31 c 387s| 4200 | 433 | 1463k| 330.9 | 238M | 80 |6637 |1777 | 472 | 952 | 0 |1849 | 22 | 0.000000e+00 | -- | Inf | 9.66%
389.57/390.55 c 391s| 4300 | 435 | 1481k| 327.4 | 239M | 80 |6637 |1759 | 472 | 952 | 0 |1899 | 22 | 0.000000e+00 | -- | Inf | 9.66%
392.27/393.23 c 393s| 4400 | 439 | 1496k| 323.3 | 240M | 80 |6637 |1774 | 472 | 952 | 0 |1950 | 22 | 0.000000e+00 | -- | Inf | 9.66%
394.87/395.84 c 396s| 4500 | 439 | 1510k| 319.3 | 240M | 80 |6637 |1757 | 472 | 952 | 0 |1964 | 22 | 0.000000e+00 | -- | Inf | 9.66%
398.07/399.10 c 399s| 4600 | 441 | 1529k| 316.5 | 240M | 80 |6637 |1766 | 472 | 952 | 0 |1980 | 22 | 0.000000e+00 | -- | Inf | 9.66%
401.45/402.45 c 402s| 4700 | 437 | 1549k| 313.9 | 240M | 80 |6637 |1777 | 472 | 952 | 1 |1994 | 22 | 0.000000e+00 | -- | Inf | 9.66%
404.35/405.33 c 405s| 4800 | 435 | 1565k| 310.7 | 240M | 80 |6637 |1788 | 472 | 952 | 1 |2018 | 22 | 0.000000e+00 | -- | Inf | 9.66%
406.74/407.73 c 408s| 4900 | 441 | 1578k| 307.0 | 240M | 80 |6637 |1760 | 472 | 952 | 0 |2031 | 22 | 0.000000e+00 | -- | Inf | 9.66%
409.63/410.69 c 411s| 5000 | 437 | 1595k| 304.2 | 240M | 80 |6637 |1779 | 472 | 952 | 0 |2059 | 22 | 0.000000e+00 | -- | Inf | 9.66%
412.53/413.53 c 414s| 5100 | 441 | 1611k| 301.4 | 240M | 80 |6637 |1771 | 472 | 952 | 1 |2072 | 22 | 0.000000e+00 | -- | Inf | 9.66%
415.42/416.46 c 416s| 5200 | 435 | 1627k| 298.8 | 241M | 80 |6637 |1806 | 472 | 952 | 0 |2112 | 22 | 0.000000e+00 | -- | Inf | 9.66%
418.01/419.04 c 419s| 5300 | 441 | 1642k| 295.9 | 241M | 80 |6637 |1800 | 472 | 952 | 1 |2122 | 22 | 0.000000e+00 | -- | Inf | 9.66%
420.50/421.50 c 421s| 5400 | 437 | 1656k| 293.1 | 241M | 80 |6637 |1812 | 472 | 952 | 1 |2134 | 22 | 0.000000e+00 | -- | Inf | 9.66%
423.00/424.00 c 424s| 5500 | 439 | 1670k| 290.3 | 241M | 80 |6637 |1844 | 472 | 952 | 1 |2168 | 22 | 0.000000e+00 | -- | Inf | 9.66%
425.79/426.80 c 427s| 5600 | 437 | 1686k| 287.9 | 241M | 80 |6637 |1790 | 472 | 952 | 0 |2194 | 22 | 0.000000e+00 | -- | Inf | 9.66%
428.28/429.38 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
428.28/429.38 c 429s| 5700 | 439 | 1700k| 285.4 | 241M | 80 |6637 |1797 | 472 | 952 | 1 |2212 | 22 | 0.000000e+00 | -- | Inf | 9.66%
430.87/431.92 c 432s| 5800 | 440 | 1714k| 282.9 | 242M | 80 |6637 |1819 | 472 | 952 | 0 |2245 | 22 | 0.000000e+00 | -- | Inf | 9.66%
433.57/434.67 c 435s| 5900 | 442 | 1730k| 280.7 | 242M | 80 |6637 |1818 | 472 | 952 | 1 |2263 | 22 | 0.000000e+00 | -- | Inf | 9.66%
436.66/437.74 c 438s| 6000 | 438 | 1747k| 279.0 | 243M | 80 |6637 |1842 | 472 | 952 | 1 |2297 | 22 | 0.000000e+00 | -- | Inf | 9.66%
439.15/440.21 c 440s| 6100 | 437 | 1760k| 276.6 | 243M | 80 |6637 |1835 | 472 | 952 | 0 |2399 | 22 | 0.000000e+00 | -- | Inf | 9.66%
442.34/443.46 c 443s| 6200 | 438 | 1779k| 275.1 | 244M | 80 |6637 |1820 | 472 | 952 | 1 |2457 | 22 | 0.000000e+00 | -- | Inf | 9.66%
444.94/446.09 c 446s| 6300 | 440 | 1794k| 273.0 | 244M | 80 |6637 |1885 | 472 | 952 | 1 |2557 | 22 | 0.000000e+00 | -- | Inf | 9.66%
448.03/449.18 c 449s| 6400 | 439 | 1811k| 271.5 | 245M | 80 |6637 |1854 | 472 | 952 | 0 |2613 | 22 | 0.000000e+00 | -- | Inf | 9.66%
451.62/452.78 c 453s| 6500 | 433 | 1832k| 270.5 | 245M | 80 |6637 |1816 | 472 | 952 | 1 |2648 | 22 | 0.000000e+00 | -- | Inf | 9.66%
454.31/455.49 c 455s| 6600 | 437 | 1847k| 268.6 | 245M | 80 |6637 |1803 | 472 | 952 | 0 |2689 | 22 | 0.000000e+00 | -- | Inf | 9.66%
457.71/458.87 c 459s| 6700 | 436 | 1866k| 267.6 | 246M | 80 |6637 |1791 | 472 | 952 | 1 |2695 | 22 | 0.000000e+00 | -- | Inf | 9.66%
460.30/461.43 c 461s| 6800 | 438 | 1881k| 265.7 | 246M | 80 |6637 |1801 | 472 | 952 | 1 |2717 | 22 | 0.000000e+00 | -- | Inf | 9.66%
462.69/463.84 c 464s| 6900 | 442 | 1894k| 263.8 | 246M | 80 |6637 |1821 | 472 | 952 | 0 |2756 | 22 | 0.000000e+00 | -- | Inf | 9.66%
465.69/466.81 c 467s| 7000 | 440 | 1911k| 262.4 | 246M | 80 |6637 |1825 | 472 | 952 | 1 |2769 | 22 | 0.000000e+00 | -- | Inf | 9.66%
468.18/469.33 c 469s| 7100 | 434 | 1924k| 260.6 | 246M | 80 |6637 |1838 | 472 | 952 | 0 |2801 | 22 | 0.000000e+00 | -- | Inf | 9.66%
470.77/471.98 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
470.77/471.98 c 472s| 7200 | 434 | 1939k| 259.1 | 247M | 80 |6637 |1869 | 472 | 952 | 0 |2840 | 22 | 0.000000e+00 | -- | Inf | 9.66%
473.77/474.95 c 475s| 7300 | 440 | 1956k| 257.8 | 247M | 80 |6637 |1852 | 472 | 952 | 1 |2863 | 22 | 0.000000e+00 | -- | Inf | 9.66%
476.86/478.09 c 478s| 7400 | 434 | 1974k| 256.8 | 247M | 80 |6637 |1845 | 472 | 952 | 1 |2882 | 22 | 0.000000e+00 | -- | Inf | 9.66%
479.96/481.16 c 481s| 7500 | 432 | 1991k| 255.6 | 248M | 80 |6637 |1852 | 472 | 952 | 0 |2957 | 22 | 0.000000e+00 | -- | Inf | 9.66%
483.34/484.50 c 484s| 7600 | 430 | 2010k| 254.7 | 248M | 80 |6637 |1842 | 472 | 952 | 1 |2996 | 22 | 0.000000e+00 | -- | Inf | 9.66%
486.53/487.74 c 488s| 7700 | 436 | 2028k| 253.8 | 248M | 80 |6637 |1750 | 472 | 952 | 1 |3007 | 22 | 0.000000e+00 | -- | Inf | 9.66%
489.63/490.80 c 491s| 7800 | 438 | 2046k| 252.9 | 248M | 80 |6637 |1740 | 472 | 952 | 0 |3007 | 22 | 0.000000e+00 | -- | Inf | 9.66%
492.02/493.28 c 493s| 7900 | 438 | 2060k| 251.4 | 248M | 80 |6637 |1773 | 472 | 952 | 1 |3056 | 22 | 0.000000e+00 | -- | Inf | 9.66%
494.42/495.60 c 496s| 8000 | 438 | 2072k| 249.8 | 249M | 80 |6637 |1819 | 472 | 952 | 1 |3133 | 22 | 0.000000e+00 | -- | Inf | 9.66%
497.41/498.65 c 499s| 8100 | 438 | 2089k| 248.9 | 249M | 80 |6637 |1811 | 472 | 952 | 1 |3170 | 22 | 0.000000e+00 | -- | Inf | 9.66%
499.81/501.01 c 501s| 8200 | 436 | 2102k| 247.4 | 250M | 80 |6637 |1831 | 472 | 952 | 0 |3211 | 22 | 0.000000e+00 | -- | Inf | 9.66%
501.90/503.18 c 503s| 8300 | 436 | 2113k| 245.7 | 251M | 80 |6637 |1838 | 472 | 952 | 1 |3246 | 22 | 0.000000e+00 | -- | Inf | 9.66%
504.39/505.63 c 506s| 8400 | 436 | 2126k| 244.4 | 251M | 80 |6637 |1821 | 472 | 952 | 0 |3250 | 22 | 0.000000e+00 | -- | Inf | 9.66%
507.19/508.46 c 508s| 8500 | 434 | 2142k| 243.3 | 251M | 80 |6637 |1817 | 472 | 952 | 0 |3258 | 22 | 0.000000e+00 | -- | Inf | 9.66%
509.48/510.70 c 511s| 8600 | 438 | 2154k| 241.9 | 251M | 80 |6637 |1825 | 472 | 952 | 0 |3271 | 22 | 0.000000e+00 | -- | Inf | 9.66%
512.47/513.78 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
512.47/513.78 c 514s| 8700 | 432 | 2171k| 241.1 | 251M | 80 |6637 |1808 | 472 | 952 | 1 |3278 | 22 | 0.000000e+00 | -- | Inf | 9.66%
514.77/516.04 c 516s| 8800 | 434 | 2183k| 239.7 | 252M | 80 |6637 |1789 | 472 | 952 | 0 |3304 | 22 | 0.000000e+00 | -- | Inf | 9.66%
516.46/517.72 c 518s| 8900 | 436 | 2191k| 238.0 | 252M | 80 |6637 |1859 | 472 | 952 | 0 |3390 | 22 | 0.000000e+00 | -- | Inf | 9.66%
518.96/520.26 c 520s| 9000 | 436 | 2206k| 236.9 | 252M | 80 |6637 |1846 | 472 | 952 | 1 |3420 | 22 | 0.000000e+00 | -- | Inf | 9.66%
521.45/522.76 c 523s| 9100 | 438 | 2220k| 235.8 | 252M | 80 |6637 |1808 | 472 | 952 | 1 |3440 | 22 | 0.000000e+00 | -- | Inf | 9.66%
523.85/525.16 c 525s| 9200 | 438 | 2233k| 234.7 | 252M | 80 |6637 |1804 | 472 | 952 | 0 |3463 | 22 | 0.000000e+00 | -- | Inf | 9.66%
526.54/527.89 c 528s| 9300 | 438 | 2248k| 233.8 | 252M | 80 |6637 |1788 | 472 | 952 | 0 |3473 | 22 | 0.000000e+00 | -- | Inf | 9.66%
529.84/531.18 c 531s| 9400 | 442 | 2267k| 233.4 | 252M | 80 |6637 |1770 | 472 | 952 | 1 |3489 | 22 | 0.000000e+00 | -- | Inf | 9.66%
531.93/533.26 c 533s| 9500 | 434 | 2278k| 232.0 | 253M | 80 |6637 |1798 | 472 | 952 | 1 |3534 | 22 | 0.000000e+00 | -- | Inf | 9.66%
534.52/535.87 c 536s| 9600 | 437 | 2292k| 231.1 | 253M | 80 |6637 |1791 | 472 | 952 | 0 |3551 | 22 | 0.000000e+00 | -- | Inf | 9.66%
537.72/539.06 c 539s| 9700 | 435 | 2311k| 230.6 | 253M | 80 |6637 |1792 | 472 | 952 | 1 |3574 | 22 | 0.000000e+00 | -- | Inf | 9.66%
539.91/541.23 c 541s| 9800 | 441 | 2322k| 229.4 | 255M | 80 |6637 |1807 | 472 | 952 | 1 |3600 | 22 | 0.000000e+00 | -- | Inf | 9.66%
541.81/543.18 c 543s| 9900 | 437 | 2332k| 228.1 | 255M | 80 |6637 |1826 | 472 | 952 | 0 |3642 | 22 | 0.000000e+00 | -- | Inf | 9.66%
544.30/545.66 c 546s| 10000 | 437 | 2345k| 227.2 | 255M | 80 |6637 |1813 | 472 | 952 | 1 |3647 | 22 | 0.000000e+00 | -- | Inf | 9.66%
547.29/548.65 c 549s| 10100 | 437 | 2362k| 226.6 | 255M | 80 |6637 |1799 | 472 | 952 | 1 |3651 | 22 | 0.000000e+00 | -- | Inf | 9.66%
549.98/551.33 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
549.98/551.33 c 551s| 10200 | 439 | 2377k| 225.9 | 256M | 80 |6637 |1799 | 472 | 952 | 0 |3676 | 22 | 0.000000e+00 | -- | Inf | 9.66%
560.76/562.14 c 562s| 10300 | 437 | 2395k| 225.4 | 256M | 80 |6637 |1802 | 472 | 952 | 0 |3711 | 22 | 0.000000e+00 | -- | Inf | 9.66%
563.35/564.75 c 565s| 10400 | 435 | 2409k| 224.6 | 256M | 80 |6637 |1832 | 472 | 952 | 0 |3767 | 22 | 0.000000e+00 | -- | Inf | 9.66%
566.35/567.75 c 568s| 10500 | 435 | 2426k| 224.1 | 256M | 80 |6637 |1850 | 472 | 952 | 0 |3790 | 22 | 0.000000e+00 | -- | Inf | 9.66%
569.24/570.62 c 571s| 10600 | 435 | 2442k| 223.5 | 256M | 80 |6637 |1835 | 472 | 952 | 1 |3808 | 22 | 0.000000e+00 | -- | Inf | 9.66%
571.74/573.16 c 573s| 10700 | 437 | 2457k| 222.7 | 256M | 80 |6637 |1830 | 472 | 952 | 1 |3842 | 22 | 0.000000e+00 | -- | Inf | 9.66%
574.03/575.49 c 575s| 10800 | 439 | 2469k| 221.8 | 256M | 80 |6637 |1814 | 472 | 952 | 1 |3872 | 22 | 0.000000e+00 | -- | Inf | 9.66%
576.32/577.79 c 578s| 10900 | 441 | 2482k| 220.9 | 256M | 80 |6637 |1820 | 472 | 952 | 1 |3888 | 22 | 0.000000e+00 | -- | Inf | 9.66%
579.02/580.40 c 580s| 11000 | 439 | 2496k| 220.2 | 257M | 80 |6637 |1822 | 472 | 952 | 0 |3907 | 22 | 0.000000e+00 | -- | Inf | 9.66%
582.11/583.56 c 584s| 11100 | 437 | 2515k| 219.9 | 257M | 80 |6637 |1815 | 472 | 952 | 1 |3918 | 22 | 0.000000e+00 | -- | Inf | 9.66%
585.20/586.69 c 587s| 11200 | 435 | 2533k| 219.5 | 257M | 80 |6637 |1785 | 0 | 952 | 0 |3931 | 22 | 0.000000e+00 | -- | Inf | 9.66%
588.49/589.98 c 590s| 11300 | 437 | 2551k| 219.3 | 257M | 80 |6637 |1715 | 472 | 952 | 0 |3958 | 22 | 0.000000e+00 | -- | Inf | 9.66%
591.89/593.38 c 593s| 11400 | 441 | 2571k| 219.0 | 257M | 80 |6637 |1645 | 472 | 952 | 0 |3994 | 22 | 0.000000e+00 | -- | Inf | 9.66%
594.98/596.49 c 596s| 11500 | 441 | 2588k| 218.7 | 258M | 80 |6637 |1624 | 472 | 952 | 0 |4027 | 22 | 0.000000e+00 | -- | Inf | 9.66%
598.37/599.86 c 600s| 11600 | 439 | 2608k| 218.5 | 258M | 80 |6637 |1572 | 472 | 952 | 0 |4051 | 22 | 0.000000e+00 | -- | Inf | 9.66%
601.16/602.63 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
601.16/602.63 c 603s| 11700 | 439 | 2623k| 217.9 | 258M | 80 |6637 |1563 | 472 | 952 | 0 |4075 | 22 | 0.000000e+00 | -- | Inf | 9.66%
603.96/605.44 c 605s| 11800 | 441 | 2638k| 217.4 | 259M | 80 |6637 |1579 | 0 | 952 | 0 |4142 | 22 | 0.000000e+00 | -- | Inf | 9.66%
606.45/607.94 c 608s| 11900 | 439 | 2652k| 216.7 | 259M | 80 |6637 |1589 | 472 | 952 | 0 |4176 | 22 | 0.000000e+00 | -- | Inf | 9.66%
609.25/610.77 c 611s| 12000 | 443 | 2668k| 216.2 | 259M | 80 |6637 |1579 | 472 | 952 | 0 |4190 | 22 | 0.000000e+00 | -- | Inf | 9.66%
611.94/613.46 c 613s| 12100 | 439 | 2682k| 215.6 | 259M | 80 |6637 |1586 | 472 | 952 | 0 |4206 | 22 | 0.000000e+00 | -- | Inf | 9.66%
615.33/616.87 c 617s| 12200 | 439 | 2702k| 215.5 | 260M | 80 |6637 |1568 | 472 | 952 | 0 |4222 | 22 | 0.000000e+00 | -- | Inf | 9.66%
618.13/619.67 c 620s| 12300 | 437 | 2718k| 215.0 | 260M | 80 |6637 |1569 | 472 | 952 | 0 |4234 | 22 | 0.000000e+00 | -- | Inf | 9.66%
620.82/622.33 c 622s| 12400 | 445 | 2732k| 214.4 | 260M | 80 |6637 |1556 | 472 | 952 | 1 |4277 | 22 | 0.000000e+00 | -- | Inf | 9.66%
623.52/625.08 c 625s| 12500 | 443 | 2747k| 213.9 | 260M | 80 |6637 |1589 | 472 | 952 | 1 |4325 | 22 | 0.000000e+00 | -- | Inf | 9.66%
627.30/628.82 c 629s| 12600 | 441 | 2769k| 213.9 | 261M | 80 |6637 |1577 | 472 | 952 | 0 |4342 | 22 | 0.000000e+00 | -- | Inf | 9.66%
630.30/631.81 c 632s| 12700 | 443 | 2786k| 213.6 | 261M | 80 |6637 |1589 | 472 | 952 | 1 |4364 | 22 | 0.000000e+00 | -- | Inf | 9.66%
634.29/635.86 c 636s| 12800 | 439 | 2810k| 213.8 | 261M | 80 |6637 |1594 | 472 | 952 | 0 |4373 | 22 | 0.000000e+00 | -- | Inf | 9.66%
637.49/639.00 c 639s| 12900 | 439 | 2829k| 213.6 | 261M | 80 |6637 |1592 | 472 | 952 | 1 |4384 | 22 | 0.000000e+00 | -- | Inf | 9.66%
640.87/642.42 c 642s| 13000 | 443 | 2848k| 213.4 | 263M | 80 |6637 |1588 | 472 | 952 | 1 |4407 | 22 | 0.000000e+00 | -- | Inf | 9.66%
643.67/645.25 c 645s| 13100 | 441 | 2864k| 213.0 | 265M | 80 |6637 |1603 | 472 | 952 | 1 |4447 | 22 | 0.000000e+00 | -- | Inf | 9.66%
646.56/648.19 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
646.56/648.19 c 648s| 13200 | 439 | 2880k| 212.6 | 265M | 80 |6637 |1611 | 472 | 952 | 1 |4462 | 22 | 0.000000e+00 | -- | Inf | 9.66%
650.25/651.88 c 652s| 13300 | 437 | 2902k| 212.6 | 265M | 80 |6637 |1609 | 472 | 952 | 0 |4507 | 22 | 0.000000e+00 | -- | Inf | 9.66%
654.04/655.65 c 656s| 13400 | 441 | 2923k| 212.6 | 266M | 80 |6637 |1528 | 472 | 952 | 1 |4549 | 22 | 0.000000e+00 | -- | Inf | 9.66%
657.73/659.35 c 659s| 13500 | 441 | 2944k| 212.7 | 266M | 80 |6637 |1507 | 472 | 952 | 0 |4574 | 22 | 0.000000e+00 | -- | Inf | 9.66%
661.43/663.08 c 663s| 13600 | 441 | 2966k| 212.7 | 266M | 80 |6637 |1481 | 472 | 952 | 0 |4647 | 22 | 0.000000e+00 | -- | Inf | 9.66%
664.82/666.42 c 666s| 13700 | 443 | 2985k| 212.5 | 267M | 80 |6637 |1498 | 472 | 952 | 1 |4706 | 22 | 0.000000e+00 | -- | Inf | 9.66%
667.61/669.24 c 669s| 13800 | 443 | 3001k| 212.1 | 267M | 80 |6637 |1509 | 472 | 952 | 0 |4737 | 22 | 0.000000e+00 | -- | Inf | 9.66%
670.80/672.41 c 672s| 13900 | 439 | 3019k| 211.9 | 267M | 80 |6637 |1500 | 472 | 952 | 0 |4748 | 22 | 0.000000e+00 | -- | Inf | 9.66%
673.60/675.29 c 675s| 14000 | 445 | 3035k| 211.6 | 267M | 80 |6637 |1478 | 472 | 952 | 1 |4771 | 22 | 0.000000e+00 | -- | Inf | 9.66%
676.49/678.19 c 678s| 14100 | 445 | 3052k| 211.2 | 267M | 80 |6637 |1487 | 472 | 952 | 1 |4792 | 22 | 0.000000e+00 | -- | Inf | 9.66%
680.18/681.86 c 682s| 14200 | 441 | 3073k| 211.2 | 268M | 80 |6637 |1537 | 472 | 952 | 0 |4869 | 22 | 0.000000e+00 | -- | Inf | 9.66%
682.67/684.39 c 684s| 14300 | 447 | 3086k| 210.7 | 268M | 80 |6637 |1541 | 472 | 952 | 1 |4889 | 22 | 0.000000e+00 | -- | Inf | 9.66%
685.17/686.84 c 687s| 14400 | 443 | 3100k| 210.1 | 268M | 80 |6637 |1524 | 472 | 952 | 1 |4899 | 22 | 0.000000e+00 | -- | Inf | 9.66%
687.76/689.49 c 689s| 14500 | 441 | 3114k| 209.7 | 268M | 80 |6637 |1549 | 472 | 952 | 0 |4928 | 22 | 0.000000e+00 | -- | Inf | 9.66%
690.46/692.14 c 692s| 14600 | 443 | 3129k| 209.3 | 268M | 80 |6637 |1587 | 472 | 952 | 0 |4981 | 22 | 0.000000e+00 | -- | Inf | 9.66%
693.25/694.98 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
693.25/694.98 c 695s| 14700 | 445 | 3145k| 208.9 | 269M | 80 |6637 |1585 | 472 | 952 | 1 |5006 | 22 | 0.000000e+00 | -- | Inf | 9.66%
696.64/698.31 c 698s| 14800 | 443 | 3164k| 208.8 | 269M | 80 |6637 |1593 | 472 | 952 | 1 |5023 | 22 | 0.000000e+00 | -- | Inf | 9.66%
699.24/700.98 c 701s| 14900 | 440 | 3179k| 208.4 | 269M | 80 |6637 |1609 | 0 | 952 | 0 |5105 | 22 | 0.000000e+00 | -- | Inf | 9.66%
702.63/704.36 c 704s| 15000 | 440 | 3198k| 208.3 | 269M | 80 |6637 |1618 | 472 | 952 | 1 |5138 | 22 | 0.000000e+00 | -- | Inf | 9.66%
705.12/706.80 c 707s| 15100 | 440 | 3211k| 207.8 | 270M | 80 |6637 |1618 | 472 | 952 | 1 |5191 | 22 | 0.000000e+00 | -- | Inf | 9.66%
708.42/710.11 c 710s| 15200 | 438 | 3230k| 207.7 | 270M | 80 |6637 |1609 | 472 | 952 | 0 |5231 | 22 | 0.000000e+00 | -- | Inf | 9.66%
711.31/713.03 c 713s| 15300 | 436 | 3247k| 207.4 | 270M | 80 |6637 |1628 | 472 | 952 | 0 |5291 | 22 | 0.000000e+00 | -- | Inf | 9.66%
715.20/716.90 c 717s| 15400 | 438 | 3270k| 207.6 | 270M | 80 |6637 |1636 | 472 | 952 | 1 |5352 | 22 | 0.000000e+00 | -- | Inf | 9.66%
717.49/719.26 c 719s| 15500 | 454 | 3282k| 207.0 | 270M | 80 |6637 |1658 | 472 | 952 | 0 |5406 | 22 | 0.000000e+00 | -- | Inf | 9.66%
719.39/721.11 c 721s| 15600 | 450 | 3291k| 206.2 | 270M | 80 |6637 |1710 | 472 | 952 | 0 |5507 | 22 | 0.000000e+00 | -- | Inf | 9.66%
721.68/723.44 c 723s| 15700 | 450 | 3304k| 205.7 | 271M | 80 |6637 |1757 | 472 | 952 | 1 |5571 | 22 | 0.000000e+00 | -- | Inf | 9.66%
723.88/725.69 c 726s| 15800 | 448 | 3315k| 205.2 | 272M | 80 |6637 |1856 | 472 | 952 | 1 |5719 | 22 | 0.000000e+00 | -- | Inf | 9.66%
725.87/727.64 c 728s| 15900 | 451 | 3325k| 204.5 | 272M | 80 |6637 |1896 | 0 | 952 | 0 |5777 | 22 | 0.000000e+00 | -- | Inf | 9.66%
728.47/730.27 c 730s| 16000 | 452 | 3340k| 204.1 | 272M | 80 |6637 |1921 | 472 | 952 | 0 |5831 | 22 | 0.000000e+00 | -- | Inf | 9.66%
730.76/732.53 c 733s| 16100 | 454 | 3352k| 203.6 | 272M | 80 |6637 |1942 | 472 | 952 | 0 |5873 | 22 | 0.000000e+00 | -- | Inf | 9.66%
733.26/735.09 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
733.26/735.09 c 735s| 16200 | 446 | 3365k| 203.2 | 273M | 80 |6637 |1948 | 472 | 952 | 1 |5964 | 22 | 0.000000e+00 | -- | Inf | 9.66%
736.95/738.78 c 739s| 16300 | 446 | 3387k| 203.2 | 273M | 80 |6637 |1847 | 472 | 952 | 1 |6010 | 22 | 0.000000e+00 | -- | Inf | 9.66%
739.64/741.43 c 741s| 16400 | 448 | 3401k| 202.9 | 273M | 80 |6637 |1850 | 472 | 952 | 1 |6037 | 22 | 0.000000e+00 | -- | Inf | 9.66%
742.24/744.06 c 744s| 16500 | 448 | 3415k| 202.5 | 274M | 80 |6637 |1851 | 472 | 952 | 0 |6080 | 22 | 0.000000e+00 | -- | Inf | 9.66%
744.93/746.77 c 747s| 16600 | 450 | 3430k| 202.2 | 274M | 80 |6637 |1853 | 472 | 952 | 0 |6129 | 22 | 0.000000e+00 | -- | Inf | 9.66%
747.63/749.42 c 749s| 16700 | 451 | 3444k| 201.8 | 274M | 80 |6637 |1835 | 472 | 952 | 0 |6162 | 22 | 0.000000e+00 | -- | Inf | 9.66%
749.92/751.76 c 752s| 16800 | 455 | 3457k| 201.4 | 275M | 80 |6637 |1843 | 472 | 952 | 0 |6183 | 22 | 0.000000e+00 | -- | Inf | 9.66%
751.82/753.65 c 754s| 16900 | 451 | 3466k| 200.7 | 275M | 80 |6637 |1857 | 472 | 952 | 0 |6209 | 22 | 0.000000e+00 | -- | Inf | 9.66%
753.71/755.59 c 756s| 17000 | 455 | 3476k| 200.1 | 276M | 80 |6637 |1878 | 472 | 952 | 1 |6260 | 22 | 0.000000e+00 | -- | Inf | 9.66%
756.60/758.41 c 758s| 17100 | 455 | 3491k| 199.9 | 277M | 80 |6637 |1816 | 472 | 952 | 1 |6286 | 22 | 0.000000e+00 | -- | Inf | 9.66%
758.80/760.61 c 761s| 17200 | 457 | 3503k| 199.4 | 277M | 80 |6637 |1837 | 472 | 952 | 0 |6326 | 22 | 0.000000e+00 | -- | Inf | 9.66%
760.60/762.43 c 762s| 17300 | 457 | 3512k| 198.7 | 277M | 80 |6637 |1895 | 472 | 952 | 0 |6416 | 22 | 0.000000e+00 | -- | Inf | 9.66%
762.99/764.85 c 765s| 17400 | 455 | 3525k| 198.3 | 277M | 80 |6637 |1946 | 0 | 952 | 0 |6516 | 22 | 0.000000e+00 | -- | Inf | 9.66%
765.58/767.48 c 767s| 17500 | 457 | 3538k| 198.0 | 278M | 80 |6637 |1923 | 472 | 952 | 0 |6592 | 22 | 0.000000e+00 | -- | Inf | 9.66%
768.58/770.41 c 770s| 17600 | 455 | 3554k| 197.7 | 278M | 80 |6637 |1971 | 472 | 952 | 1 |6687 | 22 | 0.000000e+00 | -- | Inf | 9.66%
771.47/773.32 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
771.47/773.32 c 773s| 17700 | 455 | 3570k| 197.5 | 278M | 80 |6637 |1963 | 472 | 952 | 1 |6737 | 22 | 0.000000e+00 | -- | Inf | 9.66%
773.77/775.61 c 776s| 17800 | 457 | 3582k| 197.1 | 278M | 80 |6637 |1988 | 472 | 952 | 1 |6819 | 22 | 0.000000e+00 | -- | Inf | 9.66%
776.36/778.28 c 778s| 17900 | 453 | 3597k| 196.8 | 279M | 80 |6637 |1980 | 472 | 952 | 0 |6854 | 22 | 0.000000e+00 | -- | Inf | 9.66%
779.65/781.51 c 782s| 18000 | 455 | 3616k| 196.8 | 279M | 80 |6637 |1982 | 472 | 952 | 0 |6914 | 22 | 0.000000e+00 | -- | Inf | 9.66%
783.64/785.53 c 786s| 18100 | 453 | 3639k| 197.0 | 279M | 80 |6637 |1970 | 472 | 952 | 1 |6945 | 22 | 0.000000e+00 | -- | Inf | 9.66%
786.44/788.31 c 788s| 18200 | 453 | 3654k| 196.7 | 279M | 80 |6637 |1961 | 472 | 952 | 1 |6959 | 22 | 0.000000e+00 | -- | Inf | 9.66%
789.33/791.21 c 791s| 18300 | 453 | 3671k| 196.6 | 279M | 80 |6637 |1982 | 472 | 952 | 0 |7024 | 22 | 0.000000e+00 | -- | Inf | 9.66%
792.32/794.27 c 794s| 18400 | 449 | 3688k| 196.4 | 280M | 80 |6637 |1983 | 472 | 952 | 1 |7062 | 22 | 0.000000e+00 | -- | Inf | 9.66%
795.72/797.64 c 798s| 18500 | 457 | 3707k| 196.4 | 280M | 80 |6637 |1963 | 472 | 952 | 1 |7096 | 22 | 0.000000e+00 | -- | Inf | 9.66%
797.91/799.84 c 800s| 18600 | 447 | 3718k| 196.0 | 280M | 80 |6637 |1927 | 472 | 952 | 1 |7129 | 22 | 0.000000e+00 | -- | Inf | 9.66%
801.00/802.94 c 803s| 18700 | 447 | 3736k| 195.9 | 280M | 80 |6637 |1926 | 472 | 952 | 0 |7183 | 22 | 0.000000e+00 | -- | Inf | 9.66%
803.70/805.66 c 806s| 18800 | 449 | 3751k| 195.6 | 280M | 80 |6637 |1942 | 472 | 952 | 1 |7231 | 22 | 0.000000e+00 | -- | Inf | 9.66%
807.09/809.01 c 809s| 18900 | 451 | 3770k| 195.6 | 281M | 80 |6637 |1946 | 472 | 952 | 0 |7278 | 22 | 0.000000e+00 | -- | Inf | 9.66%
810.48/812.41 c 812s| 19000 | 450 | 3789k| 195.6 | 281M | 80 |6637 |1975 | 472 | 952 | 1 |7350 | 22 | 0.000000e+00 | -- | Inf | 9.66%
813.97/815.96 c 816s| 19100 | 446 | 3810k| 195.6 | 281M | 80 |6637 |1984 | 472 | 952 | 0 |7425 | 22 | 0.000000e+00 | -- | Inf | 9.66%
816.76/818.76 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
816.76/818.76 c 819s| 19200 | 444 | 3825k| 195.4 | 281M | 80 |6637 |1941 | 472 | 952 | 0 |7459 | 22 | 0.000000e+00 | -- | Inf | 9.66%
819.46/821.47 c 821s| 19300 | 446 | 3840k| 195.1 | 281M | 80 |6637 |1962 | 472 | 952 | 1 |7501 | 22 | 0.000000e+00 | -- | Inf | 9.66%
822.55/824.53 c 825s| 19400 | 444 | 3857k| 195.0 | 281M | 80 |6637 |1958 | 472 | 952 | 0 |7509 | 22 | 0.000000e+00 | -- | Inf | 9.66%
825.24/827.25 c 827s| 19500 | 446 | 3872k| 194.8 | 281M | 80 |6637 |1964 | 472 | 952 | 1 |7529 | 22 | 0.000000e+00 | -- | Inf | 9.66%
827.84/829.90 c 830s| 19600 | 450 | 3887k| 194.5 | 282M | 80 |6637 |1886 | 472 | 952 | 0 |7560 | 22 | 0.000000e+00 | -- | Inf | 9.66%
830.53/832.58 c 833s| 19700 | 450 | 3901k| 194.3 | 282M | 80 |6637 |1875 | 472 | 952 | 1 |7609 | 22 | 0.000000e+00 | -- | Inf | 9.66%
833.13/835.11 c 835s| 19800 | 450 | 3915k| 194.0 | 282M | 80 |6637 |1894 | 472 | 952 | 1 |7663 | 22 | 0.000000e+00 | -- | Inf | 9.66%
835.52/837.50 c 838s| 19900 | 446 | 3928k| 193.7 | 282M | 80 |6637 |1882 | 472 | 952 | 0 |7695 | 22 | 0.000000e+00 | -- | Inf | 9.66%
838.21/840.21 c 840s| 20000 | 450 | 3943k| 193.5 | 282M | 80 |6637 |1829 | 472 | 952 | 1 |7709 | 22 | 0.000000e+00 | -- | Inf | 9.66%
840.51/842.57 c 843s| 20100 | 452 | 3955k| 193.1 | 282M | 80 |6637 |1845 | 472 | 952 | 1 |7747 | 22 | 0.000000e+00 | -- | Inf | 9.66%
842.60/844.60 c 845s| 20200 | 448 | 3966k| 192.7 | 283M | 80 |6637 |1887 | 0 | 952 | 0 |7818 | 22 | 0.000000e+00 | -- | Inf | 9.66%
844.90/846.97 c 847s| 20300 | 454 | 3978k| 192.3 | 283M | 80 |6637 |1899 | 472 | 952 | 1 |7867 | 22 | 0.000000e+00 | -- | Inf | 9.66%
847.49/849.52 c 850s| 20400 | 450 | 3992k| 192.1 | 283M | 80 |6637 |1925 | 472 | 952 | 0 |7940 | 22 | 0.000000e+00 | -- | Inf | 9.66%
850.29/852.36 c 852s| 20500 | 448 | 4007k| 191.9 | 284M | 80 |6637 |1973 | 472 | 952 | 0 |8018 | 22 | 0.000000e+00 | -- | Inf | 9.66%
853.18/855.29 c 855s| 20600 | 448 | 4024k| 191.7 | 284M | 80 |6637 |1981 | 472 | 952 | 0 |8098 | 22 | 0.000000e+00 | -- | Inf | 9.66%
856.87/858.93 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
856.87/858.93 c 859s| 20700 | 452 | 4045k| 191.9 | 284M | 80 |6637 |1967 | 472 | 952 | 0 |8135 | 22 | 0.000000e+00 | -- | Inf | 9.66%
860.16/862.21 c 862s| 20800 | 456 | 4064k| 191.8 | 284M | 80 |6637 |1996 | 472 | 952 | 1 |8195 | 22 | 0.000000e+00 | -- | Inf | 9.66%
863.76/865.83 c 866s| 20900 | 450 | 4085k| 191.9 | 284M | 80 |6637 |2021 | 472 | 952 | 1 |8232 | 22 | 0.000000e+00 | -- | Inf | 9.66%
866.55/868.66 c 869s| 21000 | 454 | 4101k| 191.8 | 285M | 80 |6637 |2053 | 472 | 952 | 0 |8297 | 22 | 0.000000e+00 | -- | Inf | 9.66%
869.34/871.48 c 871s| 21100 | 453 | 4116k| 191.6 | 285M | 80 |6637 |2088 | 472 | 952 | 0 |8357 | 22 | 0.000000e+00 | -- | Inf | 9.66%
871.24/873.35 c 873s| 21200 | 455 | 4125k| 191.1 | 285M | 80 |6637 |2107 | 472 | 952 | 0 |8407 | 22 | 0.000000e+00 | -- | Inf | 9.66%
873.63/875.71 c 876s| 21300 | 455 | 4138k| 190.8 | 286M | 80 |6637 |2106 | 472 | 952 | 0 |8439 | 22 | 0.000000e+00 | -- | Inf | 9.66%
875.73/877.87 c 878s| 21400 | 452 | 4149k| 190.4 | 287M | 80 |6637 |2137 | 472 | 952 | 1 |8503 | 22 | 0.000000e+00 | -- | Inf | 9.66%
878.32/880.40 c 880s| 21500 | 454 | 4162k| 190.2 | 288M | 80 |6637 |2132 | 472 | 952 | 1 |8510 | 22 | 0.000000e+00 | -- | Inf | 9.66%
880.72/882.82 c 883s| 21600 | 456 | 4175k| 189.9 | 288M | 80 |6637 |2145 | 472 | 952 | 1 |8542 | 22 | 0.000000e+00 | -- | Inf | 9.66%
883.12/885.21 c 885s| 21700 | 454 | 4188k| 189.6 | 289M | 80 |6637 |2169 | 472 | 952 | 1 |8572 | 22 | 0.000000e+00 | -- | Inf | 9.66%
885.21/887.37 c 887s| 21800 | 454 | 4199k| 189.2 | 290M | 80 |6637 |2217 | 472 | 952 | 0 |8674 | 22 | 0.000000e+00 | -- | Inf | 9.66%
887.91/890.06 c 890s| 21900 | 452 | 4214k| 189.1 | 291M | 80 |6637 |2217 | 472 | 952 | 1 |8704 | 22 | 0.000000e+00 | -- | Inf | 9.66%
891.40/893.59 c 894s| 22000 | 454 | 4234k| 189.1 | 292M | 80 |6637 |2126 | 0 | 952 | 0 |8756 | 22 | 0.000000e+00 | -- | Inf | 9.66%
894.39/896.50 c 896s| 22100 | 452 | 4250k| 189.0 | 292M | 80 |6637 |2150 | 472 | 952 | 1 |8852 | 22 | 0.000000e+00 | -- | Inf | 9.66%
897.08/899.26 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
897.08/899.26 c 899s| 22200 | 452 | 4266k| 188.8 | 292M | 80 |6637 |2134 | 472 | 952 | 0 |8867 | 22 | 0.000000e+00 | -- | Inf | 9.66%
899.68/901.81 c 902s| 22300 | 456 | 4280k| 188.6 | 292M | 80 |6637 |2184 | 472 | 952 | 0 |8932 | 22 | 0.000000e+00 | -- | Inf | 9.66%
902.37/904.57 c 905s| 22400 | 456 | 4295k| 188.5 | 293M | 80 |6637 |2159 | 472 | 952 | 1 |8960 | 22 | 0.000000e+00 | -- | Inf | 9.66%
904.97/907.19 c 907s| 22500 | 455 | 4309k| 188.2 | 294M | 80 |6637 |2186 | 472 | 952 | 1 |9023 | 22 | 0.000000e+00 | -- | Inf | 9.66%
907.46/909.64 c 910s| 22600 | 453 | 4322k| 188.0 | 294M | 80 |6637 |2201 | 0 | 952 | 0 |9097 | 22 | 0.000000e+00 | -- | Inf | 9.66%
909.25/911.47 c 911s| 22700 | 455 | 4331k| 187.6 | 295M | 80 |6637 |2226 | 0 | 952 | 0 |9167 | 22 | 0.000000e+00 | -- | Inf | 9.66%
911.35/913.55 c 914s| 22800 | 457 | 4341k| 187.2 | 296M | 80 |6637 |2228 | 472 | 952 | 1 |9202 | 22 | 0.000000e+00 | -- | Inf | 9.66%
913.95/916.14 c 916s| 22900 | 451 | 4355k| 187.0 | 297M | 80 |6637 |2214 | 472 | 952 | 0 |9251 | 22 | 0.000000e+00 | -- | Inf | 9.66%
916.44/918.61 c 919s| 23000 | 455 | 4369k| 186.8 | 297M | 80 |6637 |2255 | 472 | 952 | 1 |9330 | 22 | 0.000000e+00 | -- | Inf | 9.66%
918.84/921.05 c 921s| 23100 | 453 | 4382k| 186.5 | 299M | 80 |6637 |2257 | 472 | 952 | 1 |9368 | 22 | 0.000000e+00 | -- | Inf | 9.66%
921.53/923.75 c 924s| 23200 | 453 | 4397k| 186.3 | 300M | 80 |6637 |2245 | 472 | 952 | 1 |9430 | 22 | 0.000000e+00 | -- | Inf | 9.66%
923.42/925.65 c 926s| 23300 | 455 | 4406k| 185.9 | 300M | 80 |6637 |2256 | 472 | 952 | 1 |9473 | 22 | 0.000000e+00 | -- | Inf | 9.66%
925.92/928.11 c 928s| 23400 | 453 | 4419k| 185.7 | 300M | 80 |6637 |2232 | 472 | 952 | 0 |9503 | 22 | 0.000000e+00 | -- | Inf | 9.66%
928.11/930.30 c 930s| 23500 | 453 | 4430k| 185.4 | 300M | 80 |6637 |2275 | 472 | 952 | 1 |9585 | 22 | 0.000000e+00 | -- | Inf | 9.66%
930.70/933.00 c 933s| 23600 | 451 | 4445k| 185.2 | 301M | 80 |6637 |2289 | 472 | 952 | 0 |9670 | 22 | 0.000000e+00 | -- | Inf | 9.66%
934.29/936.56 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
934.29/936.56 c 937s| 23700 | 451 | 4466k| 185.3 | 301M | 80 |6637 |2234 | 472 | 952 | 0 |9714 | 22 | 0.000000e+00 | -- | Inf | 9.66%
937.19/939.40 c 939s| 23800 | 453 | 4481k| 185.2 | 301M | 80 |6637 |2189 | 472 | 952 | 0 |9748 | 22 | 0.000000e+00 | -- | Inf | 9.66%
939.58/941.87 c 942s| 23900 | 455 | 4494k| 185.0 | 302M | 80 |6637 |2196 | 472 | 952 | 0 |9777 | 22 | 0.000000e+00 | -- | Inf | 9.66%
941.89/944.16 c 944s| 24000 | 455 | 4506k| 184.7 | 302M | 80 |6637 |2186 | 472 | 952 | 1 |9800 | 22 | 0.000000e+00 | -- | Inf | 9.66%
944.27/946.54 c 947s| 24100 | 453 | 4518k| 184.4 | 302M | 80 |6637 |2105 | 472 | 952 | 1 |9841 | 22 | 0.000000e+00 | -- | Inf | 9.66%
946.87/949.14 c 949s| 24200 | 451 | 4532k| 184.3 | 302M | 80 |6637 |2067 | 472 | 952 | 0 |9857 | 22 | 0.000000e+00 | -- | Inf | 9.66%
948.87/951.13 c 951s| 24300 | 457 | 4543k| 183.9 | 302M | 80 |6637 |2054 | 472 | 952 | 1 |9860 | 22 | 0.000000e+00 | -- | Inf | 9.66%
951.26/953.59 c 954s| 24400 | 453 | 4556k| 183.7 | 302M | 80 |6637 |2063 | 472 | 952 | 0 |9908 | 22 | 0.000000e+00 | -- | Inf | 9.66%
953.95/956.25 c 956s| 24500 | 451 | 4571k| 183.6 | 302M | 80 |6637 |2069 | 472 | 952 | 0 |9946 | 22 | 0.000000e+00 | -- | Inf | 9.66%
957.54/959.89 c 960s| 24600 | 451 | 4591k| 183.6 | 302M | 80 |6637 |2100 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
961.43/963.77 c 964s| 24700 | 447 | 4613k| 183.8 | 304M | 80 |6637 |2104 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
964.02/966.30 c 966s| 24800 | 449 | 4627k| 183.6 | 304M | 80 |6637 |2055 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
966.82/969.12 c 969s| 24900 | 447 | 4643k| 183.5 | 304M | 80 |6637 |2052 | 0 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
969.51/971.85 c 972s| 25000 | 453 | 4658k| 183.4 | 304M | 80 |6637 |2036 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
972.81/975.19 c 975s| 25100 | 447 | 4677k| 183.4 | 304M | 80 |6637 |2023 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
975.40/977.72 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
975.40/977.72 c 978s| 25200 | 453 | 4691k| 183.2 | 304M | 80 |6637 |2038 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
978.49/980.81 c 981s| 25300 | 449 | 4708k| 183.2 | 304M | 80 |6637 |2056 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
981.38/983.72 c 984s| 25400 | 451 | 4725k| 183.1 | 304M | 80 |6637 |2050 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
984.68/987.05 c 987s| 25500 | 451 | 4744k| 183.1 | 304M | 80 |6637 |2031 | 0 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
986.47/988.87 c 989s| 25600 | 455 | 4753k| 182.8 | 304M | 80 |6637 |2090 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
988.47/990.85 c 991s| 25700 | 453 | 4763k| 182.4 | 305M | 80 |6637 |2119 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
990.77/993.10 c 993s| 25800 | 453 | 4774k| 182.2 | 305M | 80 |6637 |2141 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
992.76/995.19 c 995s| 25900 | 455 | 4785k| 181.9 | 305M | 80 |6637 |2149 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
995.55/997.94 c 998s| 26000 | 455 | 4800k| 181.8 | 306M | 80 |6637 |2161 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
997.94/1000.31 c 1000s| 26100 | 453 | 4813k| 181.6 | 306M | 80 |6637 |2157 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1001.14/1003.50 c 1004s| 26200 | 451 | 4831k| 181.6 | 306M | 80 |6637 |2139 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1003.33/1005.70 c 1006s| 26300 | 449 | 4842k| 181.3 | 306M | 80 |6637 |2134 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1005.43/1007.84 c 1008s| 26400 | 449 | 4854k| 181.1 | 306M | 80 |6637 |2128 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1008.12/1010.59 c 1011s| 26500 | 451 | 4869k| 181.0 | 307M | 80 |6637 |2098 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1011.01/1013.45 c 1013s| 26600 | 449 | 4885k| 180.9 | 307M | 80 |6637 |2103 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1014.90/1017.38 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1014.90/1017.38 c 1017s| 26700 | 449 | 4908k| 181.1 | 307M | 80 |6637 |2113 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1017.30/1019.73 c 1020s| 26800 | 456 | 4921k| 180.9 | 307M | 80 |6637 |2101 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1020.29/1022.73 c 1023s| 26900 | 453 | 4937k| 180.8 | 308M | 80 |6637 |2087 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1023.48/1025.92 c 1026s| 27000 | 451 | 4956k| 180.8 | 308M | 80 |6637 |2093 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1026.18/1028.63 c 1029s| 27100 | 451 | 4971k| 180.7 | 308M | 80 |6637 |2076 | 472 | 952 | 0 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1029.67/1032.15 c 1032s| 27200 | 451 | 4991k| 180.8 | 308M | 80 |6637 |2081 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1031.46/1033.96 c 1034s| 27300 | 459 | 5000k| 180.5 | 308M | 80 |6637 |2060 | 472 | 952 | 1 | 10k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1033.86/1036.34 c 1036s| 27400 | 453 | 5013k| 180.3 | 308M | 80 |6637 |2100 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1035.85/1038.38 c 1038s| 27500 | 453 | 5023k| 180.0 | 308M | 80 |6637 |2118 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1038.35/1040.89 c 1041s| 27600 | 449 | 5037k| 179.8 | 308M | 80 |6637 |2111 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1041.14/1043.65 c 1044s| 27700 | 451 | 5052k| 179.7 | 308M | 80 |6637 |2094 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1044.54/1047.08 c 1047s| 27800 | 457 | 5071k| 179.8 | 308M | 80 |6637 |2117 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1047.93/1050.41 c 1050s| 27900 | 451 | 5090k| 179.8 | 308M | 80 |6637 |2119 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1050.92/1053.41 c 1053s| 28000 | 451 | 5107k| 179.8 | 308M | 80 |6637 |2139 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1053.41/1055.93 c 1056s| 28100 | 451 | 5121k| 179.6 | 308M | 80 |6637 |2155 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1056.21/1058.77 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1056.21/1058.77 c 1059s| 28200 | 449 | 5136k| 179.5 | 308M | 80 |6637 |2196 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1058.61/1061.18 c 1061s| 28300 | 451 | 5149k| 179.3 | 308M | 80 |6637 |2208 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1061.19/1063.70 c 1064s| 28400 | 451 | 5163k| 179.2 | 308M | 80 |6637 |2209 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1064.09/1066.64 c 1067s| 28500 | 451 | 5180k| 179.2 | 309M | 80 |6637 |2207 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1067.08/1069.68 c 1070s| 28600 | 451 | 5196k| 179.1 | 309M | 80 |6637 |2208 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1070.07/1072.60 c 1073s| 28700 | 449 | 5213k| 179.1 | 309M | 80 |6637 |2241 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1073.07/1075.68 c 1076s| 28800 | 449 | 5230k| 179.0 | 309M | 80 |6637 |2227 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1076.36/1078.90 c 1079s| 28900 | 449 | 5248k| 179.0 | 309M | 80 |6637 |2170 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1081.05/1083.60 c 1084s| 29000 | 449 | 5276k| 179.4 | 309M | 80 |6637 |2070 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1083.74/1086.36 c 1086s| 29100 | 449 | 5291k| 179.3 | 309M | 80 |6637 |2045 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1085.93/1088.50 c 1089s| 29200 | 449 | 5302k| 179.1 | 309M | 80 |6637 |2042 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1088.63/1091.23 c 1091s| 29300 | 447 | 5318k| 179.0 | 309M | 80 |6637 |2033 | 472 | 952 | 0 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1091.92/1094.57 c 1095s| 29400 | 451 | 5337k| 179.0 | 310M | 80 |6637 |2025 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1094.61/1097.24 c 1097s| 29500 | 447 | 5351k| 178.9 | 310M | 80 |6637 |2058 | 472 | 952 | 1 | 11k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1097.31/1099.93 c 1100s| 29600 | 448 | 5366k| 178.8 | 311M | 80 |6637 |2104 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1099.60/1102.22 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1099.60/1102.22 c 1102s| 29700 | 448 | 5378k| 178.6 | 311M | 80 |6637 |2112 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1101.80/1104.47 c 1104s| 29800 | 453 | 5389k| 178.4 | 312M | 80 |6637 |2104 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1103.41/1106.07 c 1106s| 29900 | 455 | 5397k| 178.0 | 312M | 80 |6637 |2116 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1105.29/1107.99 c 1108s| 30000 | 455 | 5406k| 177.7 | 312M | 80 |6637 |2141 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1107.79/1110.47 c 1110s| 30100 | 449 | 5419k| 177.6 | 312M | 80 |6637 |2175 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1110.28/1112.98 c 1113s| 30200 | 449 | 5433k| 177.5 | 312M | 80 |6637 |2186 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1111.98/1114.65 c 1115s| 30300 | 449 | 5441k| 177.1 | 312M | 80 |6637 |2217 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1114.48/1117.11 c 1117s| 30400 | 453 | 5454k| 177.0 | 312M | 80 |6637 |2230 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1116.96/1119.66 c 1120s| 30500 | 447 | 5468k| 176.8 | 313M | 80 |6637 |2229 | 0 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1119.46/1122.18 c 1122s| 30600 | 447 | 5481k| 176.7 | 313M | 80 |6637 |2219 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1122.25/1124.94 c 1125s| 30700 | 445 | 5497k| 176.7 | 313M | 80 |6637 |2223 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1124.85/1127.56 c 1128s| 30800 | 447 | 5512k| 176.6 | 313M | 80 |6637 |2251 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1127.34/1130.04 c 1130s| 30900 | 445 | 5525k| 176.4 | 313M | 80 |6637 |2245 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1129.83/1132.55 c 1133s| 31000 | 451 | 5538k| 176.3 | 313M | 80 |6637 |2204 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1132.33/1135.00 c 1135s| 31100 | 449 | 5551k| 176.1 | 313M | 80 |6637 |2206 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1135.12/1137.83 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1135.12/1137.83 c 1138s| 31200 | 451 | 5567k| 176.1 | 313M | 80 |6637 |2192 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1138.51/1141.29 c 1141s| 31300 | 445 | 5586k| 176.1 | 314M | 80 |6637 |2158 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1141.51/1144.29 c 1144s| 31400 | 450 | 5603k| 176.1 | 314M | 80 |6637 |2189 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1144.60/1147.35 c 1147s| 31500 | 444 | 5620k| 176.1 | 314M | 80 |6637 |2160 | 472 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1148.49/1151.23 c 1151s| 31600 | 446 | 5643k| 176.2 | 314M | 80 |6637 |2159 | 0 | 952 | 0 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1152.18/1154.99 c 1155s| 31700 | 445 | 5664k| 176.4 | 314M | 80 |6637 |2086 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1156.28/1159.05 c 1159s| 31800 | 445 | 5688k| 176.5 | 314M | 80 |6637 |2108 | 472 | 952 | 1 | 12k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1163.55/1166.35 c 1166s| 31900 | 447 | 5699k| 176.3 | 314M | 80 |6637 |2101 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1166.15/1168.95 c 1169s| 32000 | 451 | 5713k| 176.2 | 314M | 80 |6637 |2093 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1169.05/1171.85 c 1172s| 32100 | 447 | 5729k| 176.2 | 314M | 80 |6637 |2100 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1171.44/1174.20 c 1174s| 32200 | 453 | 5742k| 176.0 | 314M | 80 |6637 |2132 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1173.44/1176.29 c 1176s| 32300 | 451 | 5753k| 175.8 | 315M | 80 |6637 |2191 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1176.13/1178.95 c 1179s| 32400 | 451 | 5768k| 175.7 | 315M | 80 |6637 |2173 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1178.52/1181.36 c 1181s| 32500 | 447 | 5781k| 175.6 | 315M | 80 |6637 |2169 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1181.02/1183.90 c 1184s| 32600 | 447 | 5794k| 175.5 | 315M | 80 |6637 |2176 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1184.22/1187.04 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1184.22/1187.04 c 1187s| 32700 | 445 | 5812k| 175.5 | 315M | 80 |6637 |2165 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1186.11/1188.92 c 1189s| 32800 | 451 | 5821k| 175.2 | 315M | 80 |6637 |2167 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1188.40/1191.29 c 1191s| 32900 | 455 | 5834k| 175.1 | 315M | 80 |6637 |2170 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1190.20/1193.09 c 1193s| 33000 | 457 | 5843k| 174.8 | 315M | 80 |6637 |2181 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1192.30/1195.11 c 1195s| 33100 | 457 | 5853k| 174.6 | 316M | 80 |6637 |2160 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1194.39/1197.27 c 1197s| 33200 | 453 | 5864k| 174.4 | 316M | 80 |6637 |2201 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1196.88/1199.70 c 1200s| 33300 | 457 | 5877k| 174.3 | 317M | 80 |6637 |2205 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1198.98/1201.86 c 1202s| 33400 | 453 | 5888k| 174.1 | 317M | 80 |6637 |2229 | 0 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1201.07/1203.92 c 1204s| 33500 | 449 | 5899k| 173.9 | 317M | 80 |6637 |2206 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1203.76/1206.62 c 1207s| 33600 | 453 | 5914k| 173.8 | 317M | 80 |6637 |2203 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1206.66/1209.58 c 1210s| 33700 | 453 | 5930k| 173.8 | 317M | 80 |6637 |2192 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1209.65/1212.57 c 1213s| 33800 | 451 | 5947k| 173.8 | 317M | 80 |6637 |2167 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1211.75/1214.67 c 1215s| 33900 | 449 | 5958k| 173.6 | 317M | 80 |6637 |2130 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1214.34/1217.27 c 1217s| 34000 | 451 | 5972k| 173.5 | 317M | 80 |6637 |2140 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1217.73/1220.60 c 1221s| 34100 | 451 | 5991k| 173.5 | 317M | 80 |6637 |2115 | 472 | 952 | 1 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1220.53/1223.43 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1220.53/1223.43 c 1223s| 34200 | 449 | 6007k| 173.5 | 318M | 80 |6637 |2129 | 472 | 952 | 0 | 13k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1225.22/1228.14 c 1228s| 34300 | 445 | 6034k| 173.8 | 318M | 80 |6637 |2132 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1228.61/1231.50 c 1231s| 34400 | 446 | 6053k| 173.8 | 318M | 80 |6637 |2107 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1230.70/1233.69 c 1234s| 34500 | 448 | 6064k| 173.6 | 318M | 80 |6637 |2097 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1232.50/1235.40 c 1235s| 34600 | 452 | 6073k| 173.4 | 318M | 80 |6637 |2139 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1234.20/1237.10 c 1237s| 34700 | 450 | 6081k| 173.1 | 318M | 80 |6637 |2151 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1236.09/1239.09 c 1239s| 34800 | 448 | 6091k| 172.9 | 318M | 80 |6637 |2156 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1238.19/1241.12 c 1241s| 34900 | 448 | 6102k| 172.7 | 318M | 80 |6637 |2151 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1240.38/1243.33 c 1243s| 35000 | 446 | 6113k| 172.6 | 318M | 80 |6637 |2156 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1242.47/1245.42 c 1245s| 35100 | 452 | 6124k| 172.4 | 318M | 80 |6637 |2144 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1244.57/1247.55 c 1248s| 35200 | 450 | 6135k| 172.2 | 318M | 80 |6637 |2151 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1246.46/1249.44 c 1249s| 35300 | 452 | 6144k| 172.0 | 318M | 80 |6637 |2175 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1248.46/1251.42 c 1251s| 35400 | 452 | 6154k| 171.8 | 318M | 80 |6637 |2198 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1250.66/1253.60 c 1254s| 35500 | 452 | 6166k| 171.6 | 318M | 80 |6637 |2220 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1252.55/1255.54 c 1256s| 35600 | 454 | 6176k| 171.4 | 318M | 80 |6637 |2252 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1254.65/1257.62 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1254.65/1257.62 c 1258s| 35700 | 452 | 6186k| 171.2 | 319M | 80 |6637 |2251 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1257.05/1260.07 c 1260s| 35800 | 454 | 6199k| 171.1 | 319M | 80 |6637 |2266 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1259.34/1262.33 c 1262s| 35900 | 450 | 6211k| 171.0 | 319M | 80 |6637 |2262 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1261.43/1264.45 c 1264s| 36000 | 450 | 6222k| 170.8 | 319M | 80 |6637 |2271 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1263.82/1266.88 c 1267s| 36100 | 450 | 6235k| 170.7 | 319M | 80 |6637 |2281 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1266.12/1269.15 c 1269s| 36200 | 450 | 6247k| 170.5 | 319M | 80 |6637 |2315 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1269.21/1272.27 c 1272s| 36300 | 448 | 6264k| 170.5 | 320M | 80 |6637 |2268 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1271.90/1274.99 c 1275s| 36400 | 448 | 6279k| 170.5 | 320M | 80 |6637 |2244 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1275.50/1278.55 c 1279s| 36500 | 448 | 6300k| 170.6 | 320M | 80 |6637 |2245 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1278.39/1281.41 c 1281s| 36600 | 446 | 6316k| 170.5 | 320M | 80 |6637 |2261 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1280.88/1283.98 c 1284s| 36700 | 448 | 6330k| 170.5 | 320M | 80 |6637 |2240 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1283.18/1286.20 c 1286s| 36800 | 448 | 6341k| 170.3 | 320M | 80 |6637 |2245 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1285.67/1288.71 c 1289s| 36900 | 446 | 6355k| 170.2 | 320M | 80 |6637 |2247 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1288.17/1291.25 c 1291s| 37000 | 444 | 6368k| 170.1 | 321M | 80 |6637 |2268 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1290.86/1293.93 c 1294s| 37100 | 444 | 6383k| 170.1 | 321M | 80 |6637 |2248 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1293.56/1296.60 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
1293.56/1296.60 c 1297s| 37200 | 443 | 6397k| 170.0 | 321M | 80 |6637 |2251 | 472 | 952 | 0 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1296.65/1299.75 c 1300s| 37300 | 453 | 6414k| 170.0 | 321M | 80 |6637 |2147 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1298.95/1302.00 c 1302s| 37400 | 461 | 6426k| 169.9 | 321M | 80 |6637 |2123 | 472 | 952 | 1 | 14k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1301.04/1304.12 c 1304s| 37500 | 461 | 6438k| 169.7 | 321M | 80 |6637 |2123 | 472 | 952 | 1 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1303.23/1306.31 c 1306s| 37600 | 457 | 6449k| 169.6 | 321M | 80 |6637 |2124 | 472 | 952 | 1 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1305.63/1308.74 c 1309s| 37700 | 461 | 6463k| 169.5 | 321M | 80 |6637 |2138 | 0 | 952 | 0 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1307.52/1310.69 c 1311s| 37800 | 463 | 6473k| 169.3 | 321M | 80 |6637 |2155 | 472 | 952 | 1 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1309.72/1312.87 c 1313s| 37900 | 463 | 6484k| 169.1 | 321M | 80 |6637 |2155 | 0 | 952 | 0 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1312.02/1315.14 c 1315s| 38000 | 461 | 6497k| 169.0 | 321M | 80 |6637 |2144 | 472 | 952 | 1 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1314.41/1317.54 c 1318s| 38100 | 461 | 6510k| 168.9 | 321M | 80 |6637 |2136 | 472 | 952 | 1 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1317.40/1320.50 c 1321s| 38200 | 459 | 6527k| 168.9 | 321M | 80 |6637 |2177 | 472 | 952 | 0 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1319.69/1322.80 c 1323s| 38300 | 457 | 6539k| 168.8 | 321M | 80 |6637 |2212 | 472 | 952 | 1 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1321.99/1325.15 c 1325s| 38400 | 461 | 6552k| 168.7 | 321M | 80 |6637 |2197 | 472 | 952 | 1 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1324.78/1327.98 c 1328s| 38500 | 459 | 6567k| 168.7 | 321M | 80 |6637 |2234 | 472 | 952 | 0 | 15k| 22 | 0.000000e+00 | -- | Inf | 9.66%
1325.38/1328.54 c *1329s| 38522 | 0 | 6571k| 168.7 | LP | 80 |6637 |2244 | 472 | 952 | 1 | 15k| 22 | 0.000000e+00 | 0.000000e+00 | 0.00%| 100.00%
1325.38/1328.55 c
1325.38/1328.55 c SCIP Status : problem is solved [optimal solution found]
1325.38/1328.55 c Solving Time (sec) : 1328.55
1325.38/1328.55 c Solving Nodes : 38522
1325.38/1328.55 c Primal Bound : +0.00000000000000e+00 (1 solutions)
1325.38/1328.55 c Dual Bound : +0.00000000000000e+00
1325.38/1328.55 c Gap : 0.00 %
1325.38/1328.56 s SATISFIABLE
1325.38/1328.56 v -x8281 -x8280 -x8279 -x8278 -x8277 -x8276 -x8275 -x8274 -x8273 -x8272 -x8271 -x8270 -x8269 -x8268 -x8267 -x8266 -x8265 -x8264 -x8263
1325.38/1328.56 v -x8262 -x8261 -x8260 -x8259 -x8258 -x8257 -x8256 -x8255 -x8254 -x8253 -x8252 -x8251 -x8250 -x8249 -x8248 -x8247 -x8246
1325.38/1328.56 v -x8245 -x8244 -x8243 -x8242 -x8241 -x8240 -x8239 -x8238 -x8237 -x8236 -x8235 -x8234 -x8233 -x8232 -x8231 x8230 -x8229 -x8228
1325.38/1328.56 v -x8227 -x8226 -x8225 -x8224 -x8223 -x8222 -x8221 -x8220 -x8219 -x8218 -x8217 -x8216 -x8215 -x8214 -x8213 -x8212 -x8211 -x8210
1325.38/1328.56 v -x8209 -x8208 -x8207 -x8206 -x8205 -x8204 -x8203 -x8202 -x8201 -x8200 -x8199 -x8198 -x8197 -x8196 -x8195 -x8194 -x8193 -x8192
1325.38/1328.56 v -x8191 -x8190 -x8189 -x8188 -x8187 -x8186 -x8185 -x8184 -x8183 -x8182 -x8181 -x8180 -x8179 -x8178 -x8177 -x8176 -x8175 -x8174
1325.38/1328.56 v -x8173 -x8172 -x8171 -x8170 -x8169 -x8168 -x8167 -x8166 -x8165 -x8164 -x8163 -x8162 -x8161 -x8160 -x8159 -x8158 -x8157 -x8156
1325.38/1328.56 v -x8155 -x8154 -x8153 -x8152 -x8151 -x8150 -x8149 -x8148 -x8147 -x8146 -x8145 -x8144 -x8143 -x8142 -x8141 -x8140 -x8139 -x8138
1325.38/1328.56 v -x8137 -x8136 -x8135 -x8134 -x8133 -x8132 -x8131 -x8130 -x8129 -x8128 -x8127 -x8126 -x8125 -x8124 -x8123 -x8122 -x8121 -x8120
1325.38/1328.56 v -x8119 -x8118 -x8117 -x8116 -x8115 -x8114 -x8113 -x8112 -x8111 -x8110 -x8109 -x8108 -x8107 -x8106 x8105 -x8104 -x8103 -x8102
1325.38/1328.56 v -x8101 -x8100 -x8099 -x8098 -x8097 -x8096 -x8095 -x8094 -x8093 -x8092 -x8091 -x8090 -x8089 -x8088 -x8087 -x8086 -x8085
1325.38/1328.56 v -x8084 -x8083 -x8082 -x8081 -x8080 -x8079 -x8078 -x8077 -x8076 -x8075 -x8074 -x8073 -x8072 -x8071 -x8070 x8069 -x8068 -x8067
1325.38/1328.56 v -x8066 -x8065 -x8064 -x8063 -x8062 -x8061 -x8060 -x8059 -x8058 -x8057 -x8056 -x8055 -x8054 -x8053 -x8052 -x8051 -x8050 -x8049
1325.38/1328.56 v -x8048 -x8047 -x8046 -x8045 -x8044 -x8043 -x8042 -x8041 -x8040 -x8039 -x8038 -x8037 -x8036 -x8035 -x8034 -x8033 -x8032 -x8031
1325.38/1328.56 v -x8030 -x8029 -x8028 -x8027 -x8026 -x8025 -x8024 -x8023 -x8022 -x8021 -x8020 -x8019 -x8018 -x8017 -x8016 -x8015 -x8014 -x8013
1325.38/1328.56 v -x8012 -x8011 -x8010 -x8009 -x8008 -x8007 -x8006 -x8005 -x8004 -x8003 -x8002 -x8001 -x8000 -x7999 -x7998 -x7997 -x7996 -x7995
1325.38/1328.56 v -x7994 -x7993 -x7992 -x7991 -x7990 -x7989 -x7988 -x7987 -x7986 -x7985 -x7984 -x7983 -x7982 -x7981 -x7980 -x7979 -x7978 -x7977
1325.38/1328.56 v -x7976 -x7975 -x7974 -x7973 -x7972 -x7971 -x7970 -x7969 -x7968 -x7967 -x7966 -x7965 -x7964 -x7963 -x7962 -x7961 -x7960 -x7959
1325.38/1328.56 v -x7958 -x7957 -x7956 -x7955 -x7954 -x7953 -x7952 -x7951 x7950 -x7949 -x7948 -x7947 -x7946 -x7945 -x7944 -x7943 -x7942 -x7941
1325.38/1328.56 v -x7940 -x7939 -x7938 -x7937 -x7936 -x7935 -x7934 -x7933 -x7932 -x7931 -x7930 -x7929 -x7928 -x7927 -x7926 -x7925 -x7924
1325.38/1328.56 v -x7923 -x7922 -x7921 -x7920 -x7919 -x7918 -x7917 -x7916 -x7915 -x7914 -x7913 -x7912 -x7911 -x7910 -x7909 -x7908 -x7907 -x7906
1325.38/1328.56 v -x7905 -x7904 -x7903 -x7902 -x7901 -x7900 -x7899 -x7898 -x7897 -x7896 -x7895 -x7894 -x7893 -x7892 -x7891 -x7890 -x7889 -x7888
1325.38/1328.56 v -x7887 -x7886 -x7885 -x7884 -x7883 -x7882 -x7881 -x7880 -x7879 -x7878 -x7877 -x7876 -x7875 -x7874 -x7873 -x7872 -x7871 -x7870
1325.38/1328.56 v -x7869 -x7868 -x7867 -x7866 -x7865 -x7864 -x7863 -x7862 -x7861 -x7860 -x7859 -x7858 -x7857 -x7856 -x7855 -x7854 -x7853 -x7852
1325.38/1328.56 v -x7851 -x7850 -x7849 -x7848 -x7847 x7846 -x7845 -x7844 -x7843 -x7842 -x7841 -x7840 -x7839 -x7838 -x7837 -x7836 -x7835 -x7834
1325.38/1328.56 v -x7833 -x7832 -x7831 -x7830 -x7829 -x7828 -x7827 -x7826 -x7825 -x7824 -x7823 -x7822 -x7821 -x7820 -x7819 -x7818 -x7817 -x7816
1325.38/1328.56 v -x7815 -x7814 -x7813 -x7812 -x7811 -x7810 -x7809 -x7808 -x7807 -x7806 -x7805 -x7804 -x7803 -x7802 -x7801 -x7800 -x7799 -x7798
1325.38/1328.56 v -x7797 -x7796 -x7795 -x7794 -x7793 -x7792 -x7791 -x7790 x7789 -x7788 -x7787 -x7786 -x7785 -x7784 -x7783 -x7782 -x7781 -x7780
1325.38/1328.56 v -x7779 -x7778 -x7777 -x7776 -x7775 -x7774 -x7773 -x7772 -x7771 -x7770 -x7769 -x7768 -x7767 -x7766 -x7765 -x7764 -x7763
1325.38/1328.56 v -x7762 -x7761 -x7760 -x7759 -x7758 -x7757 -x7756 -x7755 -x7754 -x7753 -x7752 -x7751 -x7750 -x7749 -x7748 -x7747 -x7746 -x7745
1325.38/1328.56 v -x7744 -x7743 -x7742 -x7741 -x7740 -x7739 -x7738 -x7737 -x7736 -x7735 -x7734 -x7733 -x7732 -x7731 -x7730 x7729 -x7728 -x7727
1325.38/1328.56 v -x7726 -x7725 -x7724 -x7723 -x7722 -x7721 -x7720 -x7719 -x7718 -x7717 -x7716 -x7715 -x7714 -x7713 -x7712 -x7711 -x7710 -x7709
1325.38/1328.56 v -x7708 -x7707 -x7706 -x7705 -x7704 -x7703 -x7702 -x7701 -x7700 -x7699 -x7698 -x7697 -x7696 -x7695 -x7694 -x7693 -x7692 -x7691
1325.38/1328.56 v -x7690 -x7689 -x7688 -x7687 -x7686 -x7685 -x7684 -x7683 -x7682 -x7681 -x7680 -x7679 -x7678 -x7677 -x7676 -x7675 -x7674 -x7673
1325.38/1328.56 v -x7672 -x7671 -x7670 -x7669 -x7668 -x7667 -x7666 -x7665 -x7664 -x7663 -x7662 -x7661 -x7660 -x7659 -x7658 -x7657 -x7656 -x7655
1325.38/1328.56 v -x7654 -x7653 -x7652 -x7651 -x7650 -x7649 -x7648 -x7647 -x7646 -x7645 -x7644 -x7643 -x7642 -x7641 -x7640 -x7639 -x7638 -x7637
1325.38/1328.56 v -x7636 -x7635 -x7634 -x7633 -x7632 -x7631 -x7630 -x7629 -x7628 -x7627 -x7626 -x7625 -x7624 -x7623 -x7622 -x7621 -x7620
1325.38/1328.56 v -x7619 -x7618 -x7617 -x7616 -x7615 -x7614 -x7613 -x7612 -x7611 -x7610 -x7609 -x7608 -x7607 -x7606 -x7605 -x7604 -x7603 -x7602
1325.38/1328.56 v x7601 -x7600 -x7599 -x7598 -x7597 -x7596 -x7595 -x7594 -x7593 -x7592 -x7591 -x7590 -x7589 -x7588 -x7587 -x7586 -x7585 -x7584
1325.38/1328.56 v -x7583 -x7582 -x7581 -x7580 -x7579 -x7578 -x7577 -x7576 -x7575 -x7574 -x7573 -x7572 -x7571 -x7570 -x7569 -x7568 -x7567 -x7566
1325.38/1328.56 v -x7565 -x7564 -x7563 -x7562 -x7561 -x7560 -x7559 -x7558 -x7557 -x7556 -x7555 -x7554 -x7553 -x7552 -x7551 -x7550 -x7549 -x7548
1325.38/1328.56 v -x7547 -x7546 -x7545 -x7544 -x7543 -x7542 -x7541 -x7540 -x7539 -x7538 -x7537 -x7536 -x7535 -x7534 -x7533 -x7532 -x7531 -x7530
1325.38/1328.56 v -x7529 -x7528 -x7527 -x7526 -x7525 -x7524 -x7523 -x7522 -x7521 -x7520 -x7519 -x7518 -x7517 -x7516 -x7515 -x7514 -x7513 -x7512
1325.38/1328.56 v -x7511 -x7510 -x7509 -x7508 -x7507 -x7506 x7505 -x7504 -x7503 -x7502 -x7501 -x7500 -x7499 -x7498 -x7497 -x7496 -x7495 -x7494
1325.38/1328.56 v -x7493 -x7492 -x7491 -x7490 -x7489 -x7488 -x7487 -x7486 -x7485 -x7484 -x7483 -x7482 -x7481 -x7480 -x7479 -x7478 -x7477 -x7476
1325.38/1328.56 v -x7475 -x7474 -x7473 -x7472 -x7471 -x7470 -x7469 -x7468 -x7467 -x7466 -x7465 -x7464 -x7463 -x7462 -x7461 -x7460 -x7459
1325.38/1328.56 v -x7458 -x7457 -x7456 -x7455 -x7454 -x7453 -x7452 -x7451 -x7450 -x7449 -x7448 -x7447 -x7446 -x7445 -x7444 -x7443 -x7442 -x7441
1325.38/1328.56 v -x7440 -x7439 -x7438 -x7437 -x7436 -x7435 -x7434 -x7433 -x7432 -x7431 -x7430 -x7429 -x7428 -x7427 -x7426 -x7425 -x7424 -x7423
1325.38/1328.56 v -x7422 -x7421 -x7420 -x7419 -x7418 -x7417 -x7416 -x7415 -x7414 -x7413 -x7412 -x7411 -x7410 -x7409 -x7408 -x7407 -x7406 -x7405
1325.38/1328.56 v -x7404 -x7403 -x7402 -x7401 -x7400 x7399 -x7398 -x7397 -x7396 -x7395 -x7394 -x7393 -x7392 -x7391 -x7390 -x7389 -x7388 -x7387
1325.38/1328.56 v -x7386 -x7385 -x7384 -x7383 -x7382 -x7381 -x7380 -x7379 -x7378 -x7377 -x7376 -x7375 -x7374 -x7373 -x7372 -x7371 x7370 -x7369
1325.38/1328.56 v -x7368 -x7367 -x7366 -x7365 -x7364 -x7363 -x7362 -x7361 -x7360 -x7359 -x7358 -x7357 -x7356 -x7355 -x7354 -x7353 -x7352 -x7351
1325.38/1328.56 v -x7350 -x7349 -x7348 -x7347 -x7346 -x7345 -x7344 -x7343 -x7342 -x7341 -x7340 -x7339 -x7338 -x7337 -x7336 -x7335 -x7334 -x7333
1325.38/1328.56 v -x7332 -x7331 -x7330 -x7329 -x7328 -x7327 -x7326 -x7325 -x7324 -x7323 -x7322 -x7321 -x7320 -x7319 -x7318 -x7317 -x7316 -x7315
1325.38/1328.56 v -x7314 -x7313 -x7312 -x7311 -x7310 -x7309 -x7308 -x7307 -x7306 -x7305 -x7304 -x7303 -x7302 -x7301 -x7300 -x7299 -x7298
1325.38/1328.56 v -x7297 -x7296 -x7295 -x7294 -x7293 -x7292 -x7291 -x7290 -x7289 -x7288 -x7287 -x7286 -x7285 -x7284 -x7283 -x7282 -x7281 -x7280
1325.38/1328.56 v -x7279 -x7278 -x7277 -x7276 -x7275 -x7274 -x7273 -x7272 -x7271 -x7270 -x7269 -x7268 -x7267 -x7266 -x7265 -x7264 -x7263 -x7262
1325.38/1328.56 v -x7261 -x7260 -x7259 -x7258 -x7257 -x7256 -x7255 -x7254 -x7253 -x7252 -x7251 -x7250 -x7249 -x7248 -x7247 -x7246 -x7245 -x7244
1325.38/1328.56 v -x7243 -x7242 -x7241 -x7240 -x7239 -x7238 -x7237 -x7236 -x7235 -x7234 -x7233 -x7232 -x7231 -x7230 -x7229 -x7228 -x7227 -x7226
1325.38/1328.56 v -x7225 -x7224 -x7223 -x7222 -x7221 -x7220 -x7219 -x7218 -x7217 -x7216 -x7215 -x7214 -x7213 -x7212 -x7211 -x7210 -x7209 x7208
1325.38/1328.56 v -x7207 -x7206 -x7205 -x7204 -x7203 -x7202 -x7201 -x7200 -x7199 -x7198 -x7197 -x7196 -x7195 -x7194 -x7193 -x7192 -x7191 -x7190
1325.38/1328.56 v -x7189 -x7188 -x7187 -x7186 -x7185 -x7184 -x7183 -x7182 -x7181 -x7180 -x7179 -x7178 -x7177 -x7176 -x7175 -x7174 -x7173 -x7172
1325.38/1328.56 v -x7171 -x7170 -x7169 -x7168 -x7167 -x7166 -x7165 -x7164 -x7163 -x7162 -x7161 -x7160 -x7159 -x7158 -x7157 -x7156 -x7155
1325.38/1328.56 v -x7154 -x7153 -x7152 -x7151 -x7150 -x7149 -x7148 -x7147 -x7146 -x7145 -x7144 -x7143 -x7142 -x7141 -x7140 -x7139 -x7138 -x7137
1325.38/1328.56 v -x7136 -x7135 -x7134 -x7133 -x7132 -x7131 -x7130 -x7129 -x7128 -x7127 -x7126 -x7125 -x7124 -x7123 -x7122 -x7121 -x7120 -x7119
1325.38/1328.56 v -x7118 -x7117 -x7116 -x7115 -x7114 -x7113 -x7112 -x7111 -x7110 -x7109 -x7108 -x7107 x7106 -x7105 -x7104 -x7103 -x7102 -x7101
1325.38/1328.56 v -x7100 -x7099 -x7098 -x7097 -x7096 -x7095 -x7094 -x7093 -x7092 x7091 -x7090 -x7089 -x7088 -x7087 -x7086 -x7085 -x7084 -x7083
1325.38/1328.56 v -x7082 -x7081 -x7080 -x7079 -x7078 -x7077 -x7076 -x7075 -x7074 -x7073 -x7072 -x7071 -x7070 -x7069 -x7068 -x7067 -x7066 -x7065
1325.38/1328.56 v -x7064 -x7063 -x7062 -x7061 -x7060 -x7059 -x7058 -x7057 -x7056 -x7055 -x7054 -x7053 -x7052 -x7051 -x7050 -x7049 -x7048 -x7047
1325.38/1328.56 v -x7046 -x7045 -x7044 -x7043 -x7042 -x7041 -x7040 -x7039 -x7038 -x7037 -x7036 -x7035 -x7034 -x7033 -x7032 -x7031 -x7030 -x7029
1325.38/1328.56 v -x7028 -x7027 -x7026 -x7025 -x7024 -x7023 -x7022 -x7021 -x7020 -x7019 -x7018 -x7017 -x7016 -x7015 -x7014 -x7013 -x7012 -x7011
1325.38/1328.56 v -x7010 -x7009 -x7008 -x7007 -x7006 -x7005 -x7004 -x7003 -x7002 -x7001 -x7000 -x6999 -x6998 -x6997 -x6996 -x6995 -x6994
1325.38/1328.56 v -x6993 -x6992 -x6991 -x6990 -x6989 -x6988 -x6987 -x6986 -x6985 -x6984 -x6983 -x6982 -x6981 -x6980 -x6979 -x6978 -x6977 -x6976
1325.38/1328.56 v -x6975 -x6974 -x6973 -x6972 -x6971 -x6970 -x6969 -x6968 -x6967 -x6966 -x6965 -x6964 -x6963 -x6962 -x6961 -x6960 -x6959 -x6958
1325.38/1328.56 v -x6957 -x6956 -x6955 -x6954 -x6953 -x6952 -x6951 -x6950 -x6949 -x6948 -x6947 -x6946 -x6945 -x6944 -x6943 -x6942 -x6941 -x6940
1325.38/1328.56 v -x6939 -x6938 -x6937 -x6936 -x6935 -x6934 -x6933 x6932 -x6931 -x6930 -x6929 -x6928 -x6927 -x6926 -x6925 -x6924 -x6923 -x6922
1325.38/1328.56 v -x6921 -x6920 -x6919 -x6918 -x6917 -x6916 -x6915 -x6914 -x6913 -x6912 -x6911 -x6910 -x6909 -x6908 -x6907 -x6906 -x6905 -x6904
1325.38/1328.56 v -x6903 -x6902 -x6901 -x6900 -x6899 -x6898 -x6897 -x6896 -x6895 -x6894 -x6893 -x6892 -x6891 -x6890 -x6889 -x6888 -x6887 -x6886
1325.38/1328.56 v -x6885 -x6884 -x6883 -x6882 -x6881 -x6880 -x6879 -x6878 -x6877 -x6876 -x6875 -x6874 -x6873 -x6872 -x6871 -x6870 -x6869 -x6868
1325.38/1328.56 v x6867 -x6866 -x6865 -x6864 -x6863 -x6862 -x6861 -x6860 -x6859 -x6858 -x6857 -x6856 -x6855 -x6854 -x6853 -x6852 -x6851 -x6850
1325.38/1328.56 v -x6849 -x6848 -x6847 -x6846 -x6845 -x6844 -x6843 -x6842 -x6841 -x6840 -x6839 -x6838 -x6837 -x6836 -x6835 -x6834 -x6833
1325.38/1328.56 v -x6832 -x6831 -x6830 -x6829 -x6828 -x6827 -x6826 -x6825 -x6824 -x6823 -x6822 -x6821 -x6820 -x6819 -x6818 -x6817 -x6816 -x6815
1325.38/1328.56 v -x6814 -x6813 -x6812 -x6811 -x6810 -x6809 -x6808 -x6807 -x6806 -x6805 -x6804 -x6803 -x6802 -x6801 -x6800 -x6799 -x6798 -x6797
1325.38/1328.56 v -x6796 -x6795 -x6794 -x6793 -x6792 -x6791 -x6790 -x6789 -x6788 -x6787 -x6786 -x6785 -x6784 -x6783 -x6782 -x6781 -x6780 -x6779
1325.38/1328.56 v -x6778 -x6777 -x6776 -x6775 -x6774 -x6773 -x6772 -x6771 -x6770 x6769 -x6768 -x6767 -x6766 -x6765 -x6764 -x6763 -x6762 -x6761
1325.38/1328.56 v -x6760 -x6759 -x6758 -x6757 -x6756 -x6755 -x6754 -x6753 -x6752 -x6751 -x6750 -x6749 -x6748 -x6747 -x6746 -x6745 -x6744 -x6743
1325.38/1328.56 v -x6742 -x6741 -x6740 -x6739 -x6738 -x6737 -x6736 -x6735 -x6734 -x6733 -x6732 -x6731 -x6730 -x6729 -x6728 -x6727 -x6726 -x6725
1325.38/1328.56 v -x6724 -x6723 -x6722 -x6721 -x6720 -x6719 -x6718 -x6717 -x6716 -x6715 -x6714 -x6713 -x6712 -x6711 -x6710 -x6709 -x6708 -x6707
1325.38/1328.56 v -x6706 -x6705 -x6704 -x6703 -x6702 -x6701 -x6700 -x6699 -x6698 -x6697 -x6696 -x6695 -x6694 -x6693 -x6692 -x6691 -x6690
1325.38/1328.56 v -x6689 -x6688 -x6687 -x6686 -x6685 -x6684 -x6683 -x6682 -x6681 -x6680 -x6679 -x6678 -x6677 -x6676 -x6675 -x6674 -x6673 -x6672
1325.38/1328.56 v -x6671 -x6670 -x6669 -x6668 -x6667 -x6666 -x6665 -x6664 -x6663 -x6662 -x6661 -x6660 -x6659 -x6658 -x6657 -x6656 -x6655 -x6654
1325.38/1328.56 v x6653 -x6652 -x6651 -x6650 -x6649 -x6648 -x6647 -x6646 -x6645 -x6644 -x6643 -x6642 -x6641 -x6640 -x6639 -x6638 -x6637 -x6636
1325.38/1328.56 v -x6635 -x6634 -x6633 -x6632 -x6631 -x6630 -x6629 -x6628 -x6627 -x6626 -x6625 -x6624 -x6623 -x6622 -x6621 -x6620 -x6619 -x6618
1325.38/1328.56 v -x6617 -x6616 -x6615 -x6614 -x6613 -x6612 -x6611 -x6610 -x6609 x6608 -x6607 -x6606 -x6605 -x6604 -x6603 -x6602 -x6601 -x6600
1325.38/1328.56 v -x6599 -x6598 -x6597 -x6596 -x6595 -x6594 -x6593 -x6592 -x6591 -x6590 -x6589 -x6588 -x6587 -x6586 -x6585 -x6584 -x6583 -x6582
1325.38/1328.56 v -x6581 -x6580 -x6579 -x6578 -x6577 -x6576 -x6575 -x6574 -x6573 -x6572 -x6571 -x6570 -x6569 -x6568 -x6567 -x6566 -x6565 -x6564
1325.38/1328.56 v -x6563 -x6562 -x6561 -x6560 -x6559 -x6558 -x6557 -x6556 -x6555 -x6554 -x6553 -x6552 -x6551 -x6550 -x6549 -x6548 -x6547 -x6546
1325.38/1328.56 v -x6545 -x6544 -x6543 -x6542 -x6541 -x6540 -x6539 -x6538 x6537 -x6536 -x6535 -x6534 -x6533 -x6532 -x6531 -x6530 -x6529 -x6528
1325.38/1328.56 v -x6527 -x6526 -x6525 -x6524 -x6523 -x6522 -x6521 -x6520 -x6519 -x6518 -x6517 -x6516 -x6515 -x6514 -x6513 -x6512 -x6511
1325.38/1328.56 v -x6510 -x6509 -x6508 -x6507 -x6506 -x6505 -x6504 -x6503 -x6502 -x6501 -x6500 -x6499 -x6498 -x6497 -x6496 -x6495 -x6494 -x6493
1325.38/1328.56 v -x6492 -x6491 -x6490 -x6489 -x6488 -x6487 -x6486 -x6485 -x6484 -x6483 -x6482 -x6481 -x6480 -x6479 -x6478 -x6477 -x6476 -x6475
1325.38/1328.56 v -x6474 -x6473 -x6472 -x6471 -x6470 -x6469 -x6468 -x6467 -x6466 -x6465 -x6464 -x6463 -x6462 -x6461 -x6460 -x6459 -x6458 -x6457
1325.38/1328.56 v -x6456 -x6455 -x6454 -x6453 -x6452 -x6451 -x6450 x6449 -x6448 -x6447 -x6446 -x6445 -x6444 -x6443 -x6442 -x6441 -x6440 -x6439
1325.38/1328.56 v -x6438 -x6437 -x6436 -x6435 -x6434 -x6433 -x6432 -x6431 -x6430 -x6429 -x6428 -x6427 -x6426 -x6425 -x6424 -x6423 -x6422 -x6421
1325.38/1328.56 v -x6420 -x6419 -x6418 -x6417 -x6416 -x6415 -x6414 -x6413 -x6412 -x6411 -x6410 -x6409 -x6408 -x6407 -x6406 -x6405 -x6404 -x6403
1325.38/1328.56 v -x6402 -x6401 -x6400 -x6399 -x6398 -x6397 -x6396 -x6395 -x6394 -x6393 -x6392 -x6391 -x6390 -x6389 -x6388 -x6387 -x6386 -x6385
1325.38/1328.56 v -x6384 -x6383 -x6382 -x6381 -x6380 -x6379 -x6378 -x6377 -x6376 -x6375 -x6374 -x6373 -x6372 -x6371 -x6370 -x6369 -x6368
1325.38/1328.56 v -x6367 -x6366 -x6365 -x6364 -x6363 -x6362 -x6361 -x6360 -x6359 -x6358 -x6357 -x6356 -x6355 -x6354 -x6353 -x6352 -x6351 -x6350
1325.38/1328.56 v -x6349 -x6348 -x6347 -x6346 -x6345 -x6344 -x6343 -x6342 -x6341 -x6340 -x6339 -x6338 -x6337 -x6336 -x6335 -x6334 -x6333 -x6332
1325.38/1328.56 v -x6331 -x6330 -x6329 -x6328 -x6327 -x6326 -x6325 -x6324 -x6323 -x6322 -x6321 -x6320 -x6319 -x6318 -x6317 -x6316 x6315 -x6314
1325.38/1328.56 v -x6313 -x6312 -x6311 -x6310 -x6309 -x6308 -x6307 -x6306 -x6305 -x6304 -x6303 -x6302 -x6301 -x6300 -x6299 -x6298 -x6297 -x6296
1325.38/1328.56 v -x6295 -x6294 -x6293 -x6292 -x6291 -x6290 -x6289 -x6288 -x6287 -x6286 -x6285 -x6284 -x6283 -x6282 -x6281 -x6280 -x6279 -x6278
1325.38/1328.56 v -x6277 -x6276 -x6275 -x6274 -x6273 -x6272 -x6271 -x6270 -x6269 -x6268 -x6267 -x6266 -x6265 -x6264 -x6263 -x6262 -x6261 -x6260
1325.38/1328.56 v -x6259 -x6258 -x6257 -x6256 -x6255 -x6254 -x6253 -x6252 -x6251 x6250 -x6249 -x6248 -x6247 -x6246 -x6245 -x6244 -x6243 -x6242
1325.38/1328.56 v -x6241 -x6240 -x6239 -x6238 -x6237 -x6236 -x6235 -x6234 -x6233 -x6232 -x6231 -x6230 -x6229 -x6228 -x6227 -x6226 -x6225 -x6224
1325.38/1328.56 v -x6223 -x6222 -x6221 -x6220 -x6219 -x6218 -x6217 -x6216 -x6215 -x6214 -x6213 -x6212 -x6211 -x6210 -x6209 -x6208 -x6207
1325.38/1328.56 v -x6206 -x6205 -x6204 -x6203 -x6202 -x6201 -x6200 -x6199 -x6198 -x6197 -x6196 -x6195 -x6194 -x6193 -x6192 -x6191 -x6190 -x6189
1325.38/1328.56 v -x6188 -x6187 -x6186 -x6185 -x6184 -x6183 -x6182 -x6181 -x6180 -x6179 -x6178 -x6177 -x6176 -x6175 -x6174 -x6173 -x6172 -x6171
1325.38/1328.56 v -x6170 -x6169 -x6168 -x6167 -x6166 -x6165 -x6164 x6163 -x6162 -x6161 -x6160 -x6159 -x6158 -x6157 -x6156 -x6155 -x6154 -x6153
1325.38/1328.56 v -x6152 -x6151 -x6150 -x6149 -x6148 -x6147 -x6146 -x6145 -x6144 -x6143 -x6142 -x6141 -x6140 -x6139 -x6138 -x6137 -x6136 -x6135
1325.38/1328.56 v -x6134 -x6133 -x6132 -x6131 -x6130 -x6129 -x6128 -x6127 -x6126 -x6125 -x6124 -x6123 -x6122 -x6121 -x6120 -x6119 -x6118 -x6117
1325.38/1328.56 v -x6116 -x6115 -x6114 -x6113 -x6112 -x6111 -x6110 -x6109 -x6108 -x6107 -x6106 -x6105 -x6104 -x6103 -x6102 -x6101 -x6100 -x6099
1325.38/1328.56 v -x6098 -x6097 -x6096 -x6095 -x6094 -x6093 -x6092 -x6091 -x6090 -x6089 -x6088 -x6087 -x6086 -x6085 -x6084 -x6083 -x6082 -x6081
1325.38/1328.56 v -x6080 -x6079 -x6078 -x6077 -x6076 -x6075 -x6074 -x6073 -x6072 -x6071 -x6070 -x6069 -x6068 -x6067 -x6066 -x6065 -x6064
1325.38/1328.56 v -x6063 -x6062 -x6061 -x6060 -x6059 -x6058 -x6057 -x6056 -x6055 -x6054 -x6053 -x6052 -x6051 -x6050 -x6049 -x6048 -x6047 -x6046
1325.38/1328.56 v -x6045 -x6044 -x6043 -x6042 -x6041 -x6040 -x6039 -x6038 -x6037 -x6036 -x6035 -x6034 -x6033 -x6032 -x6031 -x6030 -x6029 -x6028
1325.38/1328.56 v -x6027 -x6026 -x6025 -x6024 -x6023 -x6022 x6021 -x6020 -x6019 -x6018 -x6017 -x6016 -x6015 -x6014 -x6013 -x6012 -x6011 -x6010
1325.38/1328.56 v -x6009 -x6008 -x6007 -x6006 -x6005 -x6004 -x6003 -x6002 -x6001 -x6000 -x5999 -x5998 -x5997 -x5996 -x5995 -x5994 -x5993 -x5992
1325.38/1328.56 v -x5991 -x5990 -x5989 -x5988 -x5987 -x5986 -x5985 -x5984 -x5983 -x5982 -x5981 -x5980 -x5979 -x5978 -x5977 -x5976 -x5975 -x5974
1325.38/1328.56 v -x5973 -x5972 -x5971 -x5970 -x5969 -x5968 -x5967 -x5966 -x5965 -x5964 -x5963 -x5962 -x5961 -x5960 -x5959 -x5958 -x5957 -x5956
1325.38/1328.56 v -x5955 -x5954 -x5953 -x5952 -x5951 -x5950 -x5949 -x5948 -x5947 -x5946 -x5945 -x5944 -x5943 -x5942 -x5941 -x5940 -x5939 -x5938
1325.38/1328.56 v -x5937 -x5936 -x5935 -x5934 -x5933 -x5932 -x5931 -x5930 -x5929 -x5928 -x5927 x5926 -x5925 -x5924 -x5923 -x5922 -x5921 -x5920
1325.38/1328.56 v -x5919 -x5918 -x5917 -x5916 -x5915 -x5914 -x5913 -x5912 -x5911 -x5910 -x5909 -x5908 -x5907 -x5906 -x5905 -x5904 -x5903
1325.38/1328.56 v -x5902 -x5901 -x5900 -x5899 -x5898 -x5897 -x5896 -x5895 -x5894 -x5893 -x5892 -x5891 -x5890 -x5889 -x5888 -x5887 -x5886 -x5885
1325.38/1328.56 v -x5884 -x5883 -x5882 -x5881 -x5880 -x5879 -x5878 -x5877 x5876 -x5875 -x5874 -x5873 -x5872 -x5871 -x5870 -x5869 -x5868 -x5867
1325.38/1328.56 v -x5866 -x5865 -x5864 -x5863 -x5862 -x5861 -x5860 -x5859 -x5858 -x5857 -x5856 -x5855 -x5854 -x5853 -x5852 -x5851 -x5850 -x5849
1325.38/1328.56 v -x5848 -x5847 -x5846 -x5845 -x5844 -x5843 -x5842 -x5841 -x5840 -x5839 -x5838 -x5837 -x5836 -x5835 -x5834 -x5833 -x5832 -x5831
1325.38/1328.56 v -x5830 -x5829 -x5828 -x5827 -x5826 -x5825 -x5824 -x5823 -x5822 -x5821 -x5820 -x5819 -x5818 -x5817 -x5816 -x5815 -x5814 -x5813
1325.38/1328.56 v -x5812 -x5811 -x5810 -x5809 -x5808 -x5807 -x5806 -x5805 x5804 -x5803 -x5802 -x5801 -x5800 -x5799 -x5798 -x5797 -x5796 -x5795
1325.38/1328.56 v -x5794 -x5793 -x5792 -x5791 -x5790 -x5789 -x5788 -x5787 -x5786 -x5785 -x5784 -x5783 -x5782 -x5781 -x5780 -x5779 -x5778 -x5777
1325.38/1328.56 v -x5776 -x5775 -x5774 -x5773 -x5772 -x5771 -x5770 -x5769 -x5768 -x5767 -x5766 -x5765 -x5764 -x5763 -x5762 -x5761 -x5760 -x5759
1325.38/1328.56 v -x5758 -x5757 -x5756 -x5755 -x5754 -x5753 -x5752 -x5751 -x5750 -x5749 -x5748 -x5747 -x5746 -x5745 -x5744 -x5743 -x5742
1325.38/1328.56 v -x5741 -x5740 -x5739 -x5738 -x5737 -x5736 -x5735 -x5734 -x5733 -x5732 -x5731 -x5730 -x5729 -x5728 -x5727 -x5726 -x5725 -x5724
1325.38/1328.56 v -x5723 -x5722 -x5721 -x5720 -x5719 -x5718 -x5717 -x5716 -x5715 -x5714 -x5713 -x5712 -x5711 -x5710 -x5709 -x5708 -x5707 -x5706
1325.38/1328.56 v -x5705 -x5704 -x5703 -x5702 -x5701 x5700 -x5699 -x5698 -x5697 -x5696 -x5695 -x5694 -x5693 -x5692 -x5691 -x5690 -x5689 -x5688
1325.38/1328.56 v -x5687 -x5686 -x5685 -x5684 -x5683 -x5682 -x5681 -x5680 -x5679 -x5678 -x5677 -x5676 -x5675 -x5674 -x5673 -x5672 -x5671 -x5670
1325.38/1328.56 v -x5669 -x5668 -x5667 -x5666 -x5665 -x5664 -x5663 -x5662 -x5661 -x5660 -x5659 -x5658 -x5657 -x5656 -x5655 -x5654 -x5653 -x5652
1325.38/1328.56 v -x5651 -x5650 -x5649 -x5648 -x5647 -x5646 -x5645 -x5644 -x5643 -x5642 -x5641 -x5640 -x5639 -x5638 -x5637 -x5636 -x5635 -x5634
1325.38/1328.56 v -x5633 -x5632 -x5631 -x5630 -x5629 -x5628 -x5627 -x5626 x5625 -x5624 -x5623 -x5622 -x5621 -x5620 -x5619 -x5618 -x5617 -x5616
1325.38/1328.56 v -x5615 -x5614 -x5613 -x5612 -x5611 -x5610 -x5609 -x5608 -x5607 -x5606 -x5605 -x5604 -x5603 -x5602 -x5601 -x5600 -x5599 -x5598
1325.38/1328.56 v -x5597 -x5596 -x5595 -x5594 -x5593 -x5592 -x5591 -x5590 -x5589 -x5588 -x5587 -x5586 -x5585 -x5584 -x5583 -x5582 -x5581
1325.38/1328.56 v -x5580 -x5579 -x5578 -x5577 -x5576 -x5575 -x5574 -x5573 -x5572 -x5571 -x5570 -x5569 -x5568 -x5567 -x5566 -x5565 -x5564 -x5563
1325.38/1328.56 v -x5562 -x5561 -x5560 -x5559 -x5558 -x5557 -x5556 -x5555 -x5554 -x5553 -x5552 -x5551 -x5550 -x5549 -x5548 -x5547 -x5546 -x5545
1325.38/1328.56 v -x5544 -x5543 -x5542 -x5541 -x5540 -x5539 -x5538 -x5537 -x5536 -x5535 -x5534 -x5533 -x5532 -x5531 -x5530 -x5529 -x5528 -x5527
1325.38/1328.56 v -x5526 -x5525 -x5524 -x5523 -x5522 -x5521 -x5520 -x5519 -x5518 -x5517 -x5516 -x5515 -x5514 -x5513 -x5512 -x5511 -x5510 -x5509
1325.38/1328.56 v -x5508 -x5507 -x5506 -x5505 -x5504 -x5503 -x5502 -x5501 -x5500 -x5499 -x5498 -x5497 -x5496 -x5495 -x5494 -x5493 -x5492 -x5491
1325.38/1328.56 v -x5490 -x5489 -x5488 -x5487 -x5486 -x5485 -x5484 -x5483 -x5482 -x5481 -x5480 -x5479 -x5478 -x5477 -x5476 -x5475 -x5474 x5473
1325.38/1328.56 v -x5472 -x5471 -x5470 -x5469 -x5468 -x5467 -x5466 -x5465 -x5464 -x5463 -x5462 -x5461 -x5460 -x5459 -x5458 -x5457 -x5456 -x5455
1325.38/1328.56 v -x5454 -x5453 -x5452 -x5451 -x5450 -x5449 -x5448 -x5447 -x5446 -x5445 -x5444 -x5443 -x5442 -x5441 -x5440 -x5439 -x5438
1325.38/1328.56 v -x5437 -x5436 -x5435 -x5434 -x5433 -x5432 -x5431 -x5430 -x5429 -x5428 -x5427 -x5426 -x5425 -x5424 -x5423 -x5422 -x5421 -x5420
1325.38/1328.56 v -x5419 -x5418 -x5417 -x5416 -x5415 x5414 -x5413 -x5412 -x5411 -x5410 -x5409 -x5408 -x5407 -x5406 -x5405 -x5404 -x5403 -x5402
1325.38/1328.56 v -x5401 -x5400 -x5399 -x5398 -x5397 -x5396 -x5395 -x5394 -x5393 -x5392 -x5391 -x5390 -x5389 -x5388 -x5387 -x5386 -x5385 -x5384
1325.38/1328.56 v -x5383 -x5382 -x5381 -x5380 -x5379 -x5378 -x5377 -x5376 -x5375 -x5374 -x5373 -x5372 -x5371 -x5370 -x5369 -x5368 -x5367 -x5366
1325.38/1328.56 v -x5365 -x5364 -x5363 -x5362 -x5361 -x5360 -x5359 -x5358 -x5357 -x5356 -x5355 -x5354 -x5353 -x5352 -x5351 -x5350 -x5349 -x5348
1325.38/1328.56 v -x5347 -x5346 -x5345 -x5344 -x5343 -x5342 -x5341 -x5340 -x5339 -x5338 -x5337 -x5336 -x5335 -x5334 -x5333 -x5332 -x5331 -x5330
1325.38/1328.56 v -x5329 -x5328 -x5327 -x5326 -x5325 -x5324 -x5323 -x5322 -x5321 -x5320 -x5319 -x5318 -x5317 -x5316 -x5315 -x5314 -x5313 -x5312
1325.38/1328.56 v -x5311 -x5310 -x5309 -x5308 -x5307 -x5306 x5305 -x5304 -x5303 -x5302 -x5301 -x5300 -x5299 -x5298 -x5297 -x5296 -x5295 -x5294
1325.38/1328.56 v -x5293 -x5292 -x5291 -x5290 -x5289 -x5288 -x5287 -x5286 -x5285 -x5284 -x5283 -x5282 -x5281 -x5280 -x5279 -x5278 -x5277
1325.38/1328.56 v -x5276 -x5275 -x5274 -x5273 -x5272 -x5271 -x5270 -x5269 -x5268 -x5267 -x5266 -x5265 -x5264 -x5263 -x5262 -x5261 -x5260 -x5259
1325.38/1328.56 v -x5258 -x5257 -x5256 -x5255 -x5254 -x5253 -x5252 -x5251 -x5250 -x5249 -x5248 -x5247 -x5246 -x5245 -x5244 -x5243 -x5242 -x5241
1325.38/1328.56 v -x5240 -x5239 -x5238 -x5237 -x5236 -x5235 -x5234 -x5233 -x5232 -x5231 -x5230 -x5229 -x5228 -x5227 -x5226 -x5225 -x5224 -x5223
1325.38/1328.56 v -x5222 -x5221 -x5220 -x5219 -x5218 -x5217 -x5216 -x5215 -x5214 -x5213 -x5212 -x5211 -x5210 -x5209 x5208 -x5207 -x5206 -x5205
1325.38/1328.56 v -x5204 -x5203 -x5202 -x5201 -x5200 -x5199 -x5198 -x5197 -x5196 -x5195 -x5194 -x5193 -x5192 -x5191 -x5190 -x5189 -x5188 -x5187
1325.38/1328.56 v -x5186 -x5185 -x5184 -x5183 -x5182 -x5181 -x5180 -x5179 -x5178 -x5177 -x5176 -x5175 -x5174 -x5173 -x5172 -x5171 -x5170 -x5169
1325.38/1328.56 v -x5168 -x5167 -x5166 -x5165 -x5164 x5163 -x5162 -x5161 -x5160 -x5159 -x5158 -x5157 -x5156 -x5155 -x5154 -x5153 -x5152 -x5151
1325.38/1328.56 v -x5150 -x5149 -x5148 -x5147 -x5146 -x5145 -x5144 -x5143 -x5142 -x5141 -x5140 -x5139 -x5138 -x5137 -x5136 -x5135 -x5134 -x5133
1325.38/1328.56 v -x5132 -x5131 -x5130 -x5129 -x5128 -x5127 -x5126 -x5125 -x5124 -x5123 -x5122 -x5121 -x5120 -x5119 -x5118 -x5117 -x5116
1325.38/1328.56 v -x5115 -x5114 -x5113 -x5112 -x5111 -x5110 -x5109 -x5108 -x5107 -x5106 -x5105 -x5104 -x5103 -x5102 -x5101 -x5100 -x5099 -x5098
1325.38/1328.56 v -x5097 -x5096 -x5095 -x5094 -x5093 -x5092 -x5091 -x5090 -x5089 x5088 -x5087 -x5086 -x5085 -x5084 -x5083 -x5082 -x5081 -x5080
1325.38/1328.56 v -x5079 -x5078 -x5077 -x5076 -x5075 -x5074 -x5073 -x5072 -x5071 -x5070 -x5069 -x5068 -x5067 -x5066 -x5065 -x5064 -x5063 -x5062
1325.38/1328.56 v -x5061 -x5060 -x5059 -x5058 -x5057 -x5056 -x5055 -x5054 -x5053 -x5052 -x5051 -x5050 -x5049 -x5048 -x5047 -x5046 -x5045 -x5044
1325.38/1328.56 v -x5043 -x5042 -x5041 -x5040 -x5039 -x5038 -x5037 -x5036 -x5035 -x5034 -x5033 -x5032 -x5031 -x5030 -x5029 -x5028 -x5027 -x5026
1325.38/1328.56 v -x5025 -x5024 -x5023 -x5022 -x5021 -x5020 -x5019 -x5018 -x5017 -x5016 -x5015 -x5014 -x5013 -x5012 -x5011 -x5010 -x5009 -x5008
1325.38/1328.56 v -x5007 -x5006 -x5005 -x5004 -x5003 -x5002 -x5001 -x5000 -x4999 -x4998 -x4997 -x4996 -x4995 -x4994 -x4993 -x4992 -x4991 -x4990
1325.38/1328.56 v -x4989 -x4988 -x4987 -x4986 -x4985 -x4984 -x4983 -x4982 -x4981 -x4980 -x4979 -x4978 -x4977 -x4976 -x4975 -x4974 -x4973
1325.38/1328.56 v -x4972 -x4971 -x4970 -x4969 -x4968 -x4967 -x4966 -x4965 -x4964 -x4963 -x4962 -x4961 -x4960 -x4959 -x4958 -x4957 -x4956 -x4955
1325.38/1328.56 v -x4954 -x4953 -x4952 -x4951 -x4950 -x4949 -x4948 -x4947 -x4946 -x4945 -x4944 -x4943 -x4942 -x4941 -x4940 -x4939 -x4938 -x4937
1325.38/1328.56 v -x4936 -x4935 -x4934 -x4933 -x4932 -x4931 -x4930 -x4929 x4928 -x4927 -x4926 -x4925 -x4924 -x4923 -x4922 -x4921 -x4920 -x4919
1325.38/1328.56 v -x4918 -x4917 -x4916 -x4915 -x4914 -x4913 -x4912 -x4911 -x4910 -x4909 -x4908 -x4907 -x4906 -x4905 -x4904 -x4903 -x4902 -x4901
1325.38/1328.56 v -x4900 -x4899 -x4898 -x4897 -x4896 -x4895 -x4894 -x4893 -x4892 -x4891 -x4890 -x4889 -x4888 -x4887 -x4886 -x4885 -x4884 -x4883
1325.38/1328.56 v -x4882 -x4881 -x4880 -x4879 -x4878 -x4877 -x4876 -x4875 -x4874 -x4873 -x4872 -x4871 -x4870 -x4869 -x4868 -x4867 -x4866 -x4865
1325.38/1328.56 v -x4864 -x4863 -x4862 -x4861 -x4860 -x4859 -x4858 -x4857 -x4856 -x4855 -x4854 -x4853 -x4852 -x4851 -x4850 -x4849 -x4848 -x4847
1325.38/1328.56 v -x4846 -x4845 -x4844 -x4843 -x4842 -x4841 -x4840 -x4839 -x4838 -x4837 -x4836 -x4835 -x4834 -x4833 -x4832 -x4831 -x4830
1325.38/1328.56 v -x4829 -x4828 -x4827 x4826 -x4825 -x4824 -x4823 -x4822 -x4821 -x4820 -x4819 -x4818 -x4817 -x4816 -x4815 -x4814 -x4813 -x4812
1325.38/1328.56 v -x4811 -x4810 -x4809 -x4808 -x4807 -x4806 -x4805 -x4804 -x4803 -x4802 -x4801 -x4800 -x4799 -x4798 -x4797 -x4796 -x4795 -x4794
1325.38/1328.56 v -x4793 -x4792 -x4791 -x4790 -x4789 -x4788 -x4787 -x4786 -x4785 -x4784 -x4783 x4782 -x4781 -x4780 -x4779 -x4778 -x4777 -x4776
1325.38/1328.56 v -x4775 -x4774 -x4773 -x4772 -x4771 -x4770 -x4769 -x4768 -x4767 -x4766 -x4765 -x4764 -x4763 -x4762 -x4761 -x4760 -x4759 -x4758
1325.38/1328.56 v -x4757 -x4756 -x4755 -x4754 -x4753 -x4752 -x4751 -x4750 -x4749 -x4748 -x4747 -x4746 -x4745 -x4744 -x4743 -x4742 -x4741 -x4740
1325.38/1328.56 v -x4739 -x4738 -x4737 -x4736 -x4735 -x4734 -x4733 -x4732 -x4731 -x4730 -x4729 x4728 -x4727 -x4726 -x4725 -x4724 -x4723 -x4722
1325.38/1328.56 v -x4721 -x4720 -x4719 -x4718 -x4717 -x4716 -x4715 -x4714 -x4713 -x4712 -x4711 -x4710 -x4709 -x4708 -x4707 -x4706 -x4705 -x4704
1325.38/1328.56 v -x4703 -x4702 -x4701 -x4700 -x4699 -x4698 -x4697 -x4696 -x4695 -x4694 -x4693 -x4692 -x4691 -x4690 -x4689 -x4688 -x4687 -x4686
1325.38/1328.56 v -x4685 -x4684 -x4683 -x4682 -x4681 -x4680 -x4679 -x4678 -x4677 -x4676 -x4675 -x4674 -x4673 -x4672 -x4671 -x4670 -x4669 -x4668
1325.38/1328.56 v -x4667 -x4666 -x4665 -x4664 -x4663 -x4662 -x4661 -x4660 -x4659 -x4658 -x4657 -x4656 -x4655 -x4654 -x4653 -x4652 -x4651
1325.38/1328.56 v -x4650 -x4649 -x4648 -x4647 -x4646 -x4645 -x4644 -x4643 -x4642 -x4641 -x4640 -x4639 -x4638 -x4637 -x4636 -x4635 -x4634 -x4633
1325.38/1328.56 v -x4632 -x4631 -x4630 -x4629 -x4628 -x4627 -x4626 -x4625 -x4624 -x4623 -x4622 -x4621 x4620 -x4619 -x4618 -x4617 -x4616 -x4615
1325.38/1328.56 v -x4614 -x4613 -x4612 -x4611 -x4610 -x4609 -x4608 -x4607 -x4606 -x4605 -x4604 -x4603 -x4602 -x4601 -x4600 -x4599 -x4598 -x4597
1325.38/1328.56 v -x4596 -x4595 -x4594 -x4593 -x4592 -x4591 -x4590 -x4589 -x4588 -x4587 -x4586 -x4585 -x4584 -x4583 -x4582 -x4581 -x4580 -x4579
1325.38/1328.56 v -x4578 -x4577 -x4576 -x4575 -x4574 -x4573 -x4572 -x4571 -x4570 -x4569 -x4568 -x4567 -x4566 -x4565 -x4564 -x4563 -x4562 -x4561
1325.38/1328.56 v -x4560 -x4559 -x4558 -x4557 -x4556 -x4555 -x4554 -x4553 -x4552 -x4551 -x4550 -x4549 -x4548 -x4547 -x4546 -x4545 -x4544 -x4543
1325.38/1328.56 v -x4542 -x4541 -x4540 -x4539 -x4538 -x4537 -x4536 -x4535 -x4534 -x4533 -x4532 -x4531 -x4530 -x4529 -x4528 -x4527 -x4526 -x4525
1325.38/1328.56 v -x4524 -x4523 -x4522 -x4521 -x4520 -x4519 -x4518 -x4517 x4516 -x4515 -x4514 -x4513 -x4512 -x4511 -x4510 -x4509 -x4508 -x4507
1325.38/1328.56 v -x4506 -x4505 -x4504 -x4503 -x4502 -x4501 -x4500 -x4499 -x4498 -x4497 -x4496 -x4495 -x4494 -x4493 -x4492 -x4491 -x4490
1325.38/1328.56 v -x4489 -x4488 -x4487 -x4486 -x4485 -x4484 -x4483 -x4482 -x4481 -x4480 -x4479 -x4478 -x4477 -x4476 -x4475 -x4474 -x4473 -x4472
1325.38/1328.56 v -x4471 -x4470 -x4469 -x4468 -x4467 -x4466 -x4465 -x4464 -x4463 -x4462 -x4461 -x4460 -x4459 -x4458 -x4457 -x4456 -x4455 -x4454
1325.38/1328.56 v -x4453 -x4452 -x4451 -x4450 -x4449 -x4448 -x4447 -x4446 -x4445 -x4444 -x4443 -x4442 -x4441 -x4440 -x4439 -x4438 -x4437 -x4436
1325.38/1328.56 v -x4435 -x4434 -x4433 -x4432 -x4431 -x4430 -x4429 -x4428 -x4427 -x4426 -x4425 -x4424 -x4423 -x4422 -x4421 -x4420 -x4419 -x4418
1325.38/1328.56 v -x4417 -x4416 -x4415 -x4414 -x4413 -x4412 -x4411 -x4410 -x4409 -x4408 -x4407 -x4406 -x4405 -x4404 -x4403 -x4402 -x4401 -x4400
1325.38/1328.56 v -x4399 -x4398 -x4397 -x4396 -x4395 -x4394 -x4393 -x4392 -x4391 -x4390 -x4389 -x4388 -x4387 -x4386 x4385 -x4384 -x4383 -x4382
1325.38/1328.56 v -x4381 -x4380 -x4379 -x4378 -x4377 -x4376 -x4375 -x4374 -x4373 -x4372 -x4371 -x4370 -x4369 -x4368 -x4367 -x4366 -x4365 -x4364
1325.38/1328.56 v -x4363 -x4362 -x4361 -x4360 -x4359 -x4358 -x4357 -x4356 -x4355 -x4354 -x4353 -x4352 -x4351 -x4350 -x4349 -x4348 -x4347
1325.38/1328.56 v x4346 -x4345 -x4344 -x4343 -x4342 -x4341 -x4340 -x4339 -x4338 -x4337 -x4336 -x4335 -x4334 -x4333 -x4332 -x4331 -x4330 -x4329
1325.38/1328.56 v -x4328 -x4327 -x4326 -x4325 -x4324 -x4323 -x4322 -x4321 -x4320 -x4319 -x4318 -x4317 -x4316 -x4315 -x4314 -x4313 -x4312 -x4311
1325.38/1328.56 v -x4310 -x4309 -x4308 -x4307 -x4306 -x4305 -x4304 -x4303 -x4302 -x4301 -x4300 -x4299 -x4298 -x4297 -x4296 -x4295 -x4294 -x4293
1325.38/1328.56 v -x4292 -x4291 -x4290 -x4289 -x4288 -x4287 -x4286 -x4285 -x4284 -x4283 -x4282 -x4281 -x4280 -x4279 -x4278 -x4277 -x4276 -x4275
1325.38/1328.56 v -x4274 -x4273 -x4272 -x4271 -x4270 -x4269 -x4268 -x4267 -x4266 -x4265 x4264 -x4263 -x4262 -x4261 -x4260 -x4259 -x4258 -x4257
1325.38/1328.56 v -x4256 -x4255 -x4254 -x4253 -x4252 -x4251 -x4250 -x4249 -x4248 -x4247 -x4246 -x4245 -x4244 -x4243 -x4242 -x4241 -x4240 -x4239
1325.38/1328.56 v -x4238 -x4237 -x4236 -x4235 -x4234 -x4233 -x4232 -x4231 -x4230 -x4229 -x4228 -x4227 -x4226 -x4225 -x4224 -x4223 -x4222 -x4221
1325.38/1328.56 v -x4220 -x4219 -x4218 -x4217 -x4216 -x4215 -x4214 -x4213 -x4212 -x4211 -x4210 -x4209 -x4208 -x4207 -x4206 -x4205 -x4204 -x4203
1325.38/1328.56 v -x4202 -x4201 -x4200 -x4199 -x4198 -x4197 -x4196 -x4195 -x4194 -x4193 -x4192 -x4191 -x4190 -x4189 -x4188 -x4187 -x4186
1325.38/1328.56 v -x4185 -x4184 -x4183 -x4182 -x4181 -x4180 -x4179 -x4178 -x4177 -x4176 -x4175 -x4174 -x4173 -x4172 -x4171 -x4170 -x4169 -x4168
1325.38/1328.56 v -x4167 -x4166 -x4165 -x4164 -x4163 -x4162 -x4161 -x4160 -x4159 -x4158 -x4157 -x4156 -x4155 -x4154 -x4153 -x4152 -x4151 -x4150
1325.38/1328.56 v -x4149 -x4148 -x4147 -x4146 -x4145 -x4144 -x4143 -x4142 -x4141 -x4140 -x4139 -x4138 -x4137 -x4136 -x4135 -x4134 -x4133 -x4132
1325.38/1328.56 v -x4131 -x4130 -x4129 -x4128 -x4127 -x4126 -x4125 -x4124 -x4123 -x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116 -x4115 -x4114
1325.38/1328.56 v -x4113 -x4112 -x4111 -x4110 -x4109 -x4108 -x4107 -x4106 -x4105 -x4104 -x4103 x4102 -x4101 -x4100 -x4099 -x4098 -x4097 -x4096
1325.38/1328.56 v -x4095 -x4094 -x4093 -x4092 -x4091 -x4090 -x4089 -x4088 -x4087 -x4086 -x4085 -x4084 -x4083 -x4082 -x4081 -x4080 -x4079 -x4078
1325.38/1328.56 v -x4077 -x4076 -x4075 -x4074 -x4073 -x4072 -x4071 -x4070 -x4069 -x4068 -x4067 -x4066 -x4065 -x4064 -x4063 -x4062 -x4061 -x4060
1325.38/1328.56 v -x4059 -x4058 -x4057 -x4056 -x4055 -x4054 -x4053 -x4052 -x4051 x4050 -x4049 -x4048 -x4047 -x4046 -x4045 -x4044 -x4043 -x4042
1325.38/1328.56 v -x4041 -x4040 -x4039 -x4038 -x4037 -x4036 -x4035 -x4034 -x4033 -x4032 -x4031 -x4030 -x4029 -x4028 -x4027 -x4026 -x4025
1325.38/1328.56 v -x4024 -x4023 -x4022 -x4021 -x4020 -x4019 -x4018 -x4017 -x4016 -x4015 -x4014 -x4013 -x4012 -x4011 -x4010 -x4009 -x4008 -x4007
1325.38/1328.56 v -x4006 -x4005 -x4004 -x4003 -x4002 -x4001 -x4000 -x3999 -x3998 -x3997 -x3996 -x3995 -x3994 -x3993 -x3992 -x3991 -x3990 -x3989
1325.38/1328.56 v -x3988 -x3987 -x3986 -x3985 -x3984 -x3983 -x3982 -x3981 -x3980 -x3979 -x3978 -x3977 -x3976 -x3975 -x3974 -x3973 -x3972 -x3971
1325.38/1328.56 v -x3970 -x3969 -x3968 -x3967 -x3966 -x3965 -x3964 -x3963 -x3962 -x3961 -x3960 -x3959 -x3958 -x3957 -x3956 -x3955 -x3954 -x3953
1325.38/1328.56 v -x3952 -x3951 -x3950 -x3949 -x3948 -x3947 -x3946 x3945 -x3944 -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937 -x3936 -x3935
1325.38/1328.56 v -x3934 -x3933 -x3932 -x3931 -x3930 -x3929 -x3928 -x3927 -x3926 -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917
1325.38/1328.56 v -x3916 -x3915 -x3914 -x3913 -x3912 -x3911 -x3910 -x3909 -x3908 -x3907 -x3906 -x3905 -x3904 -x3903 -x3902 -x3901 -x3900 -x3899
1325.38/1328.56 v -x3898 -x3897 -x3896 -x3895 -x3894 -x3893 -x3892 -x3891 -x3890 -x3889 -x3888 -x3887 -x3886 -x3885 -x3884 -x3883 -x3882
1325.38/1328.56 v -x3881 -x3880 -x3879 -x3878 -x3877 -x3876 x3875 -x3874 -x3873 -x3872 -x3871 -x3870 -x3869 -x3868 -x3867 -x3866 -x3865 -x3864
1325.38/1328.56 v -x3863 -x3862 -x3861 -x3860 -x3859 -x3858 -x3857 -x3856 -x3855 -x3854 -x3853 -x3852 -x3851 -x3850 -x3849 -x3848 -x3847 -x3846
1325.38/1328.56 v -x3845 -x3844 -x3843 -x3842 -x3841 -x3840 -x3839 -x3838 -x3837 -x3836 -x3835 -x3834 -x3833 -x3832 -x3831 -x3830 -x3829 -x3828
1325.38/1328.56 v -x3827 -x3826 -x3825 -x3824 -x3823 -x3822 -x3821 -x3820 -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813 -x3812 -x3811 -x3810
1325.38/1328.56 v -x3809 -x3808 -x3807 -x3806 -x3805 -x3804 -x3803 -x3802 -x3801 -x3800 -x3799 -x3798 -x3797 -x3796 -x3795 -x3794 -x3793 -x3792
1325.38/1328.56 v -x3791 -x3790 -x3789 -x3788 -x3787 -x3786 -x3785 -x3784 -x3783 -x3782 -x3781 -x3780 -x3779 -x3778 -x3777 -x3776 -x3775 -x3774
1325.38/1328.56 v -x3773 -x3772 -x3771 -x3770 -x3769 -x3768 -x3767 -x3766 -x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758 -x3757 -x3756
1325.38/1328.56 v -x3755 -x3754 -x3753 -x3752 -x3751 -x3750 -x3749 -x3748 -x3747 -x3746 -x3745 -x3744 x3743 -x3742 -x3741 -x3740 -x3739 -x3738
1325.38/1328.56 v -x3737 -x3736 -x3735 -x3734 -x3733 -x3732 -x3731 -x3730 -x3729 -x3728 -x3727 -x3726 -x3725 -x3724 -x3723 -x3722 -x3721
1325.38/1328.56 v -x3720 -x3719 -x3718 -x3717 -x3716 -x3715 -x3714 -x3713 -x3712 -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703
1325.38/1328.56 v -x3702 -x3701 -x3700 -x3699 -x3698 -x3697 -x3696 x3695 -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685
1325.38/1328.56 v -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677 -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667
1325.38/1328.56 v -x3666 -x3665 -x3664 -x3663 -x3662 -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649
1325.38/1328.56 v -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631
1325.38/1328.56 v -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613
1325.38/1328.56 v -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605 -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 -x3596 -x3595
1325.38/1328.56 v -x3594 -x3593 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587 -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578
1325.38/1328.56 v -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 x3571 -x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 -x3561 -x3560
1325.38/1328.56 v -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542
1325.38/1328.56 v -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524
1325.38/1328.56 v -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3513 -x3512 -x3511 -x3510 -x3509 -x3508 -x3507 -x3506
1325.38/1328.56 v -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497 -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 x3489 -x3488
1325.38/1328.56 v -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 -x3480 -x3479 -x3478 -x3477 -x3476 -x3475 -x3474 -x3473 -x3472 -x3471 -x3470
1325.38/1328.56 v -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452
1325.38/1328.56 v -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441 -x3440 x3439 -x3438 -x3437 -x3436 -x3435 -x3434
1325.38/1328.56 v -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 -x3418 -x3417 -x3416
1325.38/1328.56 v -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407 -x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3400 -x3399
1325.38/1328.56 v -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381
1325.38/1328.56 v -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363
1325.38/1328.56 v -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345
1325.38/1328.56 v x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327
1325.38/1328.56 v -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309
1325.38/1328.56 v -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291
1325.38/1328.56 v -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273
1325.38/1328.56 v -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256
1325.38/1328.56 v -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238
1325.38/1328.56 v -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224 x3223 -x3222 -x3221 -x3220
1325.38/1328.56 v -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206 -x3205 -x3204 -x3203 -x3202
1325.38/1328.56 v -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189 -x3188 -x3187 -x3186 -x3185 -x3184
1325.38/1328.56 v -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170 -x3169 -x3168 -x3167 -x3166
1325.38/1328.56 v -x3165 -x3164 -x3163 -x3162 -x3161 -x3160 x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152 -x3151 -x3150 -x3149 -x3148
1325.38/1328.56 v -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136 -x3135 -x3134 -x3133 -x3132 -x3131 -x3130
1325.38/1328.56 v -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 -x3112
1325.38/1328.56 v -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098 -x3097 -x3096 -x3095
1325.38/1328.56 v -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079 -x3078 -x3077
1325.38/1328.56 v -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 -x3061 -x3060 -x3059
1325.38/1328.56 v -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043 -x3042 -x3041
1325.38/1328.56 v -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027 -x3026 -x3025 -x3024 -x3023
1325.38/1328.56 v -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007 -x3006 -x3005
1325.38/1328.56 v -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989 -x2988 -x2987
1325.38/1328.56 v -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973 -x2972 -x2971 -x2970 -x2969
1325.38/1328.56 v -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 -x2953 -x2952
1325.38/1328.56 v -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 x2937 -x2936 -x2935 -x2934
1325.38/1328.56 v -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916
1325.38/1328.56 v -x2915 -x2914 -x2913 -x2912 -x2911 x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898
1325.38/1328.56 v -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880
1325.38/1328.56 v -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862
1325.38/1328.56 v -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844
1325.38/1328.56 v -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827 -x2826
1325.38/1328.56 v -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810 -x2809 -x2808
1325.38/1328.56 v -x2807 -x2806 -x2805 -x2804 -x2803 -x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791
1325.38/1328.56 v -x2790 -x2789 -x2788 -x2787 -x2786 -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773
1325.38/1328.56 v -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755
1325.38/1328.56 v -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 x2739 -x2738 -x2737
1325.38/1328.56 v -x2736 -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719
1325.38/1328.56 v -x2718 -x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701
1325.38/1328.56 v -x2700 x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683
1325.38/1328.56 v -x2682 -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665
1325.38/1328.56 v -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647
1325.38/1328.56 v -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630
1325.38/1328.56 v -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612
1325.38/1328.56 v -x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594
1325.38/1328.56 v -x2593 -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586 x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576
1325.38/1328.56 v -x2575 -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558
1325.38/1328.56 v -x2557 -x2556 -x2555 -x2554 -x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540
1325.38/1328.56 v x2539 -x2538 -x2537 -x2536 -x2535 -x2534 -x2533 -x2532 -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522
1325.38/1328.56 v -x2521 -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504
1325.38/1328.56 v -x2503 -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486
1325.38/1328.56 v -x2485 -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469
1325.38/1328.56 v -x2468 -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451
1325.38/1328.56 v -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433
1325.38/1328.56 v -x2432 -x2431 -x2430 -x2429 -x2428 -x2427 -x2426 -x2425 -x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415
1325.38/1328.56 v -x2414 -x2413 -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397
1325.38/1328.56 v -x2396 -x2395 -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379
1325.38/1328.56 v -x2378 -x2377 -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361
1325.38/1328.56 v -x2360 -x2359 -x2358 -x2357 -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343
1325.38/1328.56 v -x2342 -x2341 -x2340 -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325
1325.38/1328.56 v -x2324 -x2323 -x2322 -x2321 -x2320 -x2319 -x2318 -x2317 -x2316 -x2315 -x2314 -x2313 -x2312 -x2311 -x2310 -x2309 -x2308
1325.38/1328.56 v -x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290
1325.38/1328.56 v -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272
1325.38/1328.56 v -x2271 -x2270 -x2269 -x2268 -x2267 -x2266 -x2265 -x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254
1325.38/1328.56 v -x2253 -x2252 -x2251 -x2250 -x2249 -x2248 x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236
1325.38/1328.56 v -x2235 -x2234 -x2233 -x2232 -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218
1325.38/1328.56 v -x2217 -x2216 -x2215 -x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200
1325.38/1328.56 v -x2199 -x2198 -x2197 -x2196 -x2195 -x2194 -x2193 -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182
1325.38/1328.56 v -x2181 -x2180 -x2179 -x2178 -x2177 -x2176 -x2175 -x2174 -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165
1325.38/1328.56 v -x2164 -x2163 -x2162 -x2161 -x2160 -x2159 -x2158 -x2157 -x2156 -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 -x2147
1325.38/1328.56 v -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 x2134 -x2133 -x2132 -x2131 -x2130 -x2129
1325.38/1328.56 v -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122 -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111
1325.38/1328.56 v -x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104 -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093
1325.38/1328.56 v -x2092 -x2091 -x2090 -x2089 -x2088 -x2087 -x2086 -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075
1325.38/1328.56 v -x2074 -x2073 -x2072 -x2071 -x2070 -x2069 -x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057
1325.38/1328.56 v -x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 -x2039
1325.38/1328.56 v -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 x2025 -x2024 -x2023 -x2022 -x2021
1325.38/1328.56 v -x2020 -x2019 -x2018 -x2017 -x2016 -x2015 -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004
1325.38/1328.56 v -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986
1325.38/1328.56 v -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968
1325.38/1328.56 v -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950
1325.38/1328.56 v -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932
1325.38/1328.56 v -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 -x1925 -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914
1325.38/1328.56 v -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 -x1906 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896
1325.38/1328.56 v -x1895 -x1894 x1893 -x1892 -x1891 -x1890 -x1889 -x1888 -x1887 -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878
1325.38/1328.56 v -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860
1325.38/1328.56 v -x1859 -x1858 -x1857 -x1856 -x1855 -x1854 -x1853 -x1852 -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843
1325.38/1328.56 v -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834 -x1833 -x1832 -x1831 -x1830 -x1829 -x1828 -x1827 -x1826 -x1825
1325.38/1328.56 v -x1824 -x1823 -x1822 -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x1815 -x1814 -x1813 -x1812 -x1811 x1810 -x1809 -x1808 -x1807
1325.38/1328.56 v -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798 -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789
1325.38/1328.56 v -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780 -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771
1325.38/1328.56 v -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 -x1764 -x1763 -x1762 -x1761 -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753
1325.38/1328.56 v -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742 -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735
1325.38/1328.56 v -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 -x1728 -x1727 -x1726 -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717
1325.38/1328.56 v -x1716 -x1715 -x1714 -x1713 -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705 -x1704 -x1703 -x1702 -x1701 -x1700
1325.38/1328.56 v -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688 -x1687 -x1686 -x1685 -x1684 -x1683 -x1682
1325.38/1328.56 v -x1681 -x1680 -x1679 -x1678 x1677 -x1676 -x1675 -x1674 -x1673 -x1672 -x1671 -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664
1325.38/1328.56 v -x1663 -x1662 -x1661 -x1660 -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 -x1648 -x1647 -x1646
1325.38/1328.56 v -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630 -x1629 -x1628
1325.38/1328.56 v -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617 -x1616 -x1615 -x1614 -x1613 -x1612 -x1611 -x1610
1325.38/1328.56 v -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603 -x1602 -x1601 -x1600 -x1599 x1598 -x1597 -x1596 -x1595 -x1594 -x1593 -x1592
1325.38/1328.56 v -x1591 -x1590 -x1589 -x1588 -x1587 -x1586 -x1585 -x1584 -x1583 -x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575 -x1574
1325.38/1328.56 v -x1573 -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556
1325.38/1328.56 v -x1555 -x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539
1325.38/1328.56 v -x1538 -x1537 -x1536 -x1535 -x1534 -x1533 -x1532 -x1531 -x1530 -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 -x1522 -x1521
1325.38/1328.56 v -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514 -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503
1325.38/1328.56 v -x1502 -x1501 -x1500 -x1499 -x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 x1490 -x1489 -x1488 -x1487 -x1486 -x1485
1325.38/1328.56 v -x1484 -x1483 -x1482 -x1481 -x1480 -x1479 -x1478 -x1477 -x1476 -x1475 -x1474 -x1473 -x1472 -x1471 -x1470 -x1469 -x1468 -x1467
1325.38/1328.56 v -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460 -x1459 -x1458 -x1457 -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449
1325.38/1328.56 v -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431
1325.38/1328.56 v -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413
1325.38/1328.56 v -x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405 -x1404 -x1403 -x1402 -x1401 -x1400 -x1399 -x1398 -x1397 -x1396
1325.38/1328.56 v -x1395 -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378
1325.38/1328.56 v -x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 x1370 -x1369 -x1368 -x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360
1325.38/1328.56 v -x1359 -x1358 -x1357 -x1356 -x1355 -x1354 -x1353 -x1352 -x1351 -x1350 -x1349 -x1348 -x1347 -x1346 -x1345 -x1344 -x1343 -x1342
1325.38/1328.56 v -x1341 -x1340 -x1339 -x1338 -x1337 -x1336 -x1335 -x1334 -x1333 -x1332 -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325 -x1324
1325.38/1328.56 v -x1323 -x1322 -x1321 -x1320 -x1319 -x1318 -x1317 -x1316 -x1315 -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306
1325.38/1328.56 v -x1305 -x1304 -x1303 -x1302 -x1301 -x1300 -x1299 x1298 -x1297 -x1296 -x1295 -x1294 -x1293 -x1292 -x1291 -x1290 -x1289 -x1288
1325.38/1328.56 v -x1287 -x1286 -x1285 -x1284 -x1283 -x1282 -x1281 -x1280 -x1279 -x1278 -x1277 -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270
1325.38/1328.56 v -x1269 -x1268 -x1267 -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252
1325.38/1328.56 v -x1251 -x1250 -x1249 -x1248 -x1247 -x1246 -x1245 -x1244 -x1243 -x1242 -x1241 -x1240 -x1239 -x1238 -x1237 -x1236 -x1235
1325.38/1328.56 v -x1234 -x1233 -x1232 -x1231 -x1230 -x1229 -x1228 x1227 -x1226 -x1225 -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 -x1217
1325.38/1328.56 v -x1216 -x1215 -x1214 -x1213 -x1212 -x1211 -x1210 -x1209 -x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 -x1199
1325.38/1328.56 v -x1198 -x1197 -x1196 -x1195 -x1194 -x1193 -x1192 -x1191 -x1190 -x1189 -x1188 -x1187 -x1186 -x1185 -x1184 -x1183 -x1182 -x1181
1325.38/1328.56 v -x1180 -x1179 -x1178 -x1177 -x1176 -x1175 -x1174 -x1173 -x1172 -x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165 -x1164 -x1163
1325.38/1328.56 v -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 -x1155 -x1154 -x1153 -x1152 x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145
1325.38/1328.56 v -x1144 -x1143 -x1142 -x1141 -x1140 -x1139 -x1138 -x1137 -x1136 -x1135 -x1134 -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127
1325.38/1328.56 v -x1126 -x1125 -x1124 -x1123 -x1122 -x1121 -x1120 -x1119 -x1118 -x1117 -x1116 -x1115 -x1114 -x1113 -x1112 -x1111 -x1110 -x1109
1325.38/1328.56 v -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 -x1100 -x1099 -x1098 -x1097 -x1096 -x1095 -x1094 -x1093 -x1092 -x1091
1325.38/1328.56 v -x1090 -x1089 -x1088 -x1087 -x1086 -x1085 -x1084 -x1083 -x1082 -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074
1325.38/1328.56 v -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066 -x1065 -x1064 -x1063 -x1062 -x1061 -x1060 -x1059 -x1058 -x1057 -x1056
1325.38/1328.56 v -x1055 -x1054 -x1053 -x1052 -x1051 x1050 -x1049 -x1048 -x1047 -x1046 -x1045 -x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038
1325.38/1328.56 v -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031 -x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 -x1021 -x1020
1325.38/1328.56 v -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 -x1003 -x1002
1325.38/1328.56 v -x1001 -x1000 -x999 -x998 -x997 -x996 -x995 -x994 -x993 -x992 -x991 -x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982
1325.38/1328.56 v -x981 -x980 -x979 -x978 -x977 -x976 -x975 -x974 -x973 -x972 -x971 -x970 -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961
1325.38/1328.56 v -x960 -x959 -x958 -x957 -x956 -x955 -x954 -x953 -x952 -x951 -x950 -x949 -x948 -x947 -x946 -x945 -x944 -x943 -x942 -x941 -x940
1325.38/1328.56 v -x939 -x938 -x937 -x936 -x935 -x934 -x933 -x932 -x931 -x930 -x929 x928 -x927 -x926 -x925 -x924 -x923 -x922 -x921 -x920 -x919
1325.38/1328.56 v -x918 -x917 -x916 -x915 -x914 -x913 -x912 -x911 -x910 -x909 -x908 x907 -x906 -x905 -x904 -x903 -x902 -x901 -x900 -x899 -x898
1325.38/1328.56 v -x897 -x896 -x895 -x894 -x893 -x892 -x891 -x890 -x889 -x888 -x887 -x886 -x885 -x884 -x883 -x882 -x881 -x880 -x879 -x878 -x877
1325.38/1328.56 v -x876 -x875 -x874 -x873 -x872 -x871 -x870 -x869 -x868 -x867 -x866 -x865 -x864 -x863 -x862 -x861 -x860 -x859 -x858 -x857 -x856
1325.38/1328.56 v -x855 -x854 -x853 -x852 -x851 -x850 -x849 -x848 -x847 -x846 -x845 -x844 -x843 -x842 -x841 -x840 -x839 -x838 -x837 -x836 -x835
1325.38/1328.56 v -x834 -x833 -x832 -x831 -x830 -x829 -x828 -x827 -x826 -x825 -x824 -x823 -x822 -x821 -x820 -x819 -x818 -x817 -x816 -x815
1325.38/1328.56 v -x814 -x813 -x812 -x811 -x810 -x809 x808 -x807 -x806 -x805 -x804 -x803 -x802 -x801 -x800 -x799 -x798 -x797 -x796 -x795 -x794
1325.38/1328.56 v -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786 -x785 -x784 -x783 -x782 -x781 -x780 -x779 -x778 -x777 -x776 -x775 -x774 -x773
1325.38/1328.56 v -x772 -x771 -x770 -x769 -x768 -x767 -x766 -x765 -x764 -x763 -x762 -x761 -x760 -x759 -x758 -x757 -x756 -x755 -x754 -x753 -x752
1325.38/1328.56 v -x751 -x750 -x749 -x748 -x747 -x746 -x745 -x744 -x743 -x742 -x741 -x740 -x739 -x738 -x737 -x736 -x735 -x734 -x733 -x732 -x731
1325.38/1328.56 v -x730 -x729 -x728 -x727 -x726 -x725 -x724 -x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710
1325.38/1328.56 v -x709 -x708 -x707 -x706 -x705 -x704 -x703 -x702 -x701 -x700 -x699 -x698 -x697 -x696 -x695 -x694 -x693 -x692 -x691 -x690 -x689
1325.38/1328.56 v -x688 -x687 -x686 -x685 -x684 -x683 -x682 -x681 -x680 -x679 -x678 -x677 -x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669
1325.38/1328.56 v -x668 -x667 -x666 -x665 -x664 -x663 -x662 -x661 -x660 -x659 -x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648
1325.38/1328.56 v -x647 -x646 -x645 -x644 -x643 -x642 -x641 -x640 x639 -x638 x637 -x636 -x635 -x634 -x633 -x632 -x631 -x630 -x629 -x628 -x627
1325.38/1328.56 v -x626 -x625 -x624 -x623 -x622 -x621 -x620 -x619 -x618 -x617 -x616 -x615 -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606
1325.38/1328.56 v -x605 -x604 -x603 -x602 -x601 -x600 -x599 -x598 -x597 -x596 -x595 -x594 -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 -x585
1325.38/1328.56 v -x584 -x583 -x582 -x581 -x580 -x579 -x578 -x577 -x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564
1325.38/1328.56 v -x563 -x562 -x561 -x560 -x559 -x558 -x557 -x556 -x555 -x554 -x553 -x552 -x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543
1325.38/1328.56 v -x542 x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 -x531 -x530 -x529 -x528 -x527 -x526 -x525 -x524 -x523 -x522
1325.38/1328.56 v -x521 -x520 -x519 -x518 -x517 -x516 -x515 -x514 -x513 -x512 -x511 -x510 -x509 -x508 -x507 -x506 -x505 -x504 -x503 -x502 -x501
1325.38/1328.56 v -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 -x486 -x485 -x484 -x483 -x482 -x481
1325.38/1328.56 v -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 -x466 -x465 -x464 -x463 -x462 -x461 -x460
1325.38/1328.56 v -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442 x441 -x440 -x439
1325.38/1328.56 v -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418
1325.38/1328.56 v -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397
1325.38/1328.56 v -x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386 -x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376
1325.38/1328.56 v -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355
1325.38/1328.56 v -x354 -x353 -x352 -x351 -x350 -x349 -x348 -x347 -x346 -x345 -x344 -x343 -x342 -x341 -x340 -x339 -x338 x337 -x336 -x335 -x334
1325.38/1328.56 v -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317 -x316 -x315 -x314
1325.38/1328.56 v -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 -x302 -x301 -x300 -x299 -x298 -x297 -x296 -x295 -x294 -x293
1325.38/1328.56 v -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 -x281 -x280 -x279 -x278 -x277 -x276 -x275 -x274 -x273 -x272
1325.38/1328.56 v -x271 -x270 -x269 -x268 -x267 -x266 -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251
1325.38/1328.56 v -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 -x239 -x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 -x230
1325.38/1328.56 v x229 -x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209
1325.38/1328.56 v -x208 -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188
1325.38/1328.56 v -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168
1325.38/1328.56 v -x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 -x156 -x155 -x154 -x153 -x152 -x151 -x150 -x149 -x148 -x147
1325.38/1328.56 v -x146 -x145 -x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126
1325.38/1328.56 v -x125 -x124 -x123 -x122 -x121 -x120 -x119 -x118 x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110 -x109 -x108 -x107 -x106 -x105
1325.38/1328.56 v -x104 -x103 -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 -x93 -x92 -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81
1325.38/1328.56 v -x80 -x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56
1325.38/1328.56 v -x55 -x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31
1325.38/1328.56 v -x30 -x29 -x28 -x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 -x17 -x16 -x15 -x14 -x13 -x12 -x11 -x10 -x9 -x8 -x7 -x6 -x5
1325.38/1328.56 v -x4 -x3 -x2 x1
1325.38/1328.56 c SCIP Status : problem is solved [optimal solution found]
1325.38/1328.56 c Total Time : 1328.55
1325.38/1328.56 c solving : 1328.55
1325.38/1328.56 c presolving : 7.95 (included in solving)
1325.38/1328.56 c reading : 0.03 (included in solving)
1325.38/1328.56 c copying : 0.96 (77 #copies) (minimal 0.01, maximal 0.02, average 0.01)
1325.38/1328.56 c Original Problem :
1325.38/1328.56 c Problem name : HOME/instance-4443015-1721297468.opb
1325.38/1328.56 c Variables : 8281 (8281 binary, 0 integer, 0 implicit integer, 0 continuous)
1325.38/1328.56 c Constraints : 826 initial, 826 maximal
1325.38/1328.56 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
1325.38/1328.56 c Presolved Problem :
1325.38/1328.56 c Problem name : t_HOME/instance-4443015-1721297468.opb
1325.38/1328.56 c Variables : 6637 (6637 binary, 0 integer, 0 implicit integer, 0 continuous)
1325.38/1328.56 c Constraints : 465 initial, 2315 maximal
1325.38/1328.56 c Objective : minimize, 0 non-zeros (abs.min = 1e+20, abs.max = -1e+20)
1325.38/1328.56 c Nonzeros : 97709 constraint, 153420 clique table
1325.38/1328.56 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
1325.38/1328.56 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c domcol : 0.00 0.00 21 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c dualsparsify : 0.01 0.00 1 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c gateextraction : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c implics : 0.00 0.00 28 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c milp : 0.06 0.00 1 0 0 0 0 0 826 462 0 0
1325.38/1328.56 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c sparsify : 0.17 0.00 2 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c trivial : 0.01 0.00 34 487 0 0 0 0 0 0 0 0
1325.38/1328.56 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c dualfix : 0.00 0.00 34 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c probing : 7.15 0.00 21 903 0 0 0 0 0 0 0 0
1325.38/1328.56 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c symmetry : 0.11 0.00 1 172 0 0 0 0 0 31 0 0
1325.38/1328.56 c vbounds : 0.05 0.00 15 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c knapsack : 0.20 0.00 81 0 0 0 0 0 14 14 0 22
1325.38/1328.56 c setppc : 0.07 0.00 81 2 4 0 73 0 28 0 0 0
1325.38/1328.56 c linear : 0.05 0.01 3 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c orbitope : 0.01 0.00 25 76 0 0 0 0 0 0 0 0
1325.38/1328.56 c logicor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c components : 0.02 0.00 1 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c root node : - - - 25 - - 25 - - - - -
1325.38/1328.56 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
1325.38/1328.56 c benderslp : 0 0 0 0 19557 0 0 1129 0 0 0 0 0 0 0
1325.38/1328.56 c integral : 0 0 0 0 19557 0 0 1129 0 0 9 0 0 0 39108
1325.38/1328.56 c knapsack : 84+ 98 13 144152 1 0 0 1124 413222 199 586753 0 0 0 0
1325.38/1328.56 c setppc : 350+ 397 13 143953 1 0 0 1 3629443 1034 1215385 1 0 0 0
1325.38/1328.56 c linear : 0+ 13 0 56823 0 0 0 2 585 19 6242 0 0 0 0
1325.38/1328.56 c orbitope : 31 31 0 142800 0 0 0 0 218138 394 4826 0 0 0 0
1325.38/1328.56 c logicor : 0+ 1787 13 44463 0 0 0 0 38459 90 16942 2 1 0 0
1325.38/1328.56 c benders : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1325.38/1328.56 c fixedvar : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1325.38/1328.56 c countsols : 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0
1325.38/1328.56 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
1325.38/1328.56 c benderslp : 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c integral : 5.13 0.00 0.00 0.00 5.13 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c knapsack : 2.61 0.00 0.01 1.92 0.00 0.00 0.00 0.04 0.63 0.00
1325.38/1328.56 c setppc : 4.31 0.00 0.00 3.52 0.00 0.00 0.00 0.00 0.79 0.01
1325.38/1328.56 c linear : 0.15 0.01 0.00 0.12 0.00 0.00 0.00 0.00 0.03 0.00
1325.38/1328.56 c orbitope : 39.02 0.00 0.00 38.99 0.00 0.00 0.00 0.00 0.01 0.02
1325.38/1328.56 c logicor : 0.56 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.10 0.00
1325.38/1328.56 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c components : 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c Propagators : #Propagate #ResProp Cutoffs DomReds
1325.38/1328.56 c dualfix : 3 0 0 0
1325.38/1328.56 c genvbounds : 0 0 0 0
1325.38/1328.56 c nlobbt : 0 0 0 0
1325.38/1328.56 c obbt : 0 0 0 0
1325.38/1328.56 c probing : 0 0 0 0
1325.38/1328.56 c pseudoobj : 0 0 0 0
1325.38/1328.56 c redcost : 0 0 0 0
1325.38/1328.56 c rootredcost : 0 0 0 0
1325.38/1328.56 c symmetry : 0 0 0 0
1325.38/1328.56 c vbounds : 59888 0 0 0
1325.38/1328.56 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
1325.38/1328.56 c dualfix : 0.00 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c genvbounds : 0.02 0.00 0.00 0.02 0.00 0.00
1325.38/1328.56 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
1325.38/1328.56 c probing : 7.15 0.00 7.15 0.00 0.00 0.00
1325.38/1328.56 c pseudoobj : 0.02 0.00 0.00 0.02 0.00 0.00
1325.38/1328.56 c redcost : 0.01 0.00 0.00 0.01 0.00 0.00
1325.38/1328.56 c rootredcost : 0.01 0.00 0.00 0.01 0.00 0.00
1325.38/1328.56 c symmetry : 0.15 0.00 0.11 0.04 0.00 0.00
1325.38/1328.56 c vbounds : 0.69 0.00 0.05 0.64 0.00 0.00
1325.38/1328.56 c Symmetry :
1325.38/1328.56 c orbitopal red. : 0 reductions applied, 0 cutoffs
1325.38/1328.56 c orbital reduction: 0 reductions applied, 0 cutoffs
1325.38/1328.56 c lexicographic red: 0 reductions applied, 0 cutoffs
1325.38/1328.56 c shadow tree time : 0.00 s
1325.38/1328.56 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
1325.38/1328.56 c propagation : 2.22 1709 1426 - 34266 546.9 324 164.4 - - -
1325.38/1328.56 c infeasible LP : 89.41 17683 1701 - 66119 1337.0 220 223.5 37 647.9 0
1325.38/1328.56 c bound exceed. LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
1325.38/1328.56 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
1325.38/1328.56 c pseudo solution : 0.00 1 1 - 1 0.0 0 0.0 - - -
1325.38/1328.56 c applied globally : 3.47 - - 0 15359 356.3 - - 37 - -
1325.38/1328.56 c applied locally : - - - 0 0 0.0 - - 0 - -
1325.38/1328.56 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
1325.38/1328.56 c cut pool : 0.02 - 2216 27 - - 608 2465 - - - - - (maximal pool size: 462)
1325.38/1328.56 c aggregation : 0.21 0.00 113 13 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c > cmir : - - - - - - - 0 0 0 0 0 -
1325.38/1328.56 c > flowcover : - - - - - - - 0 0 0 0 0 -
1325.38/1328.56 c > knapsackcover : - - - - - - - 0 0 0 0 0 -
1325.38/1328.56 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c clique : 0.22 0.00 13 13 0 0 97 1237 0 266 266 0 0
1325.38/1328.56 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c gomory : 2.01 0.00 110 10 0 0 6 4 2 4 3 1 0
1325.38/1328.56 c > gomorymi : - - - - - - - 0 1 0 0 0 -
1325.38/1328.56 c > strongcg : - - - - - - - 4 1 4 3 1 -
1325.38/1328.56 c impliedbounds : 0.38 0.00 113 13 0 0 486 1171 0 419 419 0 0
1325.38/1328.56 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c mcf : 0.00 0.00 1 1 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c multilinear : 0.00 0.00 1667 13 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c rapidlearning : 5.47 0.00 69 1 0 3524 0 0 0 0 0 0 50
1325.38/1328.56 c rlt : 0.00 0.00 60 10 0 0 0 0 0 0 0 0 0
1325.38/1328.56 c zerohalf : 1.40 0.00 113 13 0 0 269 53 248 262 44 218 0
1325.38/1328.56 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
1325.38/1328.56 c hybrid : 0.00 0.00 163 15 952 0 1766 80 0 162
1325.38/1328.56 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c Pricers : ExecTime SetupTime Calls Vars
1325.38/1328.56 c problem variables: 0.00 - 0 0
1325.38/1328.56 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
1325.38/1328.56 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c inference : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c random : 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c relpscost : 5.11 0.00 19556 0 0 0 9 0 0 39108
1325.38/1328.56 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
1325.38/1328.56 c Primal Heuristics : ExecTime SetupTime Calls Found Best
1325.38/1328.56 c LP solutions : 0.00 - - 1 1
1325.38/1328.56 c relax solutions : 0.00 - - 0 0
1325.38/1328.56 c pseudo solutions : 0.00 - - 0 0
1325.38/1328.56 c strong branching : 0.00 - - 0 0
1325.38/1328.56 c actconsdiving : 0.00 0.00 0 0 0
1325.38/1328.56 c adaptivediving : 4.91 0.00 4 0 0
1325.38/1328.56 c alns : 56.64 0.00 7 0 0
1325.38/1328.56 c bound : 0.00 0.00 0 0 0
1325.38/1328.56 c clique : 0.04 0.00 1 0 0
1325.38/1328.56 c coefdiving : 0.00 0.00 0 0 0
1325.38/1328.56 c completesol : 0.00 0.00 0 0 0
1325.38/1328.56 c conflictdiving : 30.72 0.00 8 0 0
1325.38/1328.56 c crossover : 0.01 0.00 0 0 0
1325.38/1328.56 c dins : 0.00 0.00 0 0 0
1325.38/1328.56 c distributiondivin: 21.12 0.00 5 0 0
1325.38/1328.56 c dps : 0.00 0.00 0 0 0
1325.38/1328.56 c dualval : 0.00 0.00 0 0 0
1325.38/1328.56 c farkasdiving : 0.00 0.00 0 0 0
1325.38/1328.56 c feasjump : 0.04 0.00 1 0 0
1325.38/1328.56 c feaspump : 8.05 0.00 2 0 0
1325.38/1328.56 c fixandinfer : 0.00 0.00 0 0 0
1325.38/1328.56 c fracdiving : 12.89 0.00 5 0 0
1325.38/1328.56 c gins : 0.00 0.00 0 0 0
1325.38/1328.56 c guideddiving : 0.00 0.00 0 0 0
1325.38/1328.56 c indcoefdiving : 0.00 0.00 0 0 0
1325.38/1328.56 c indicator : 0.01 0.00 0 0 0
1325.38/1328.56 c indicatordiving : 0.00 0.00 0 0 0
1325.38/1328.56 c indoneopt : 0.01 0.00 0 0 0
1325.38/1328.56 c indrounding : 0.00 0.00 0 0 0
1325.38/1328.56 c indtwoopt : 0.00 0.00 0 0 0
1325.38/1328.56 c intdiving : 0.00 0.00 0 0 0
1325.38/1328.56 c intshifting : 0.00 0.00 0 0 0
1325.38/1328.56 c linesearchdiving : 10.72 0.00 6 0 0
1325.38/1328.56 c localbranching : 0.00 0.00 0 0 0
1325.38/1328.56 c locks : 1.38 0.00 1 0 0
1325.38/1328.56 c lpface : 0.15 0.00 0 0 0
1325.38/1328.56 c mpec : 0.00 0.00 0 0 0
1325.38/1328.56 c multistart : 0.00 0.00 0 0 0
1325.38/1328.56 c mutation : 0.00 0.00 0 0 0
1325.38/1328.56 c nlpdiving : 0.00 0.00 0 0 0
1325.38/1328.56 c objpscostdiving : 9.14 0.00 3 0 0
1325.38/1328.56 c octane : 0.00 0.00 0 0 0
1325.38/1328.56 c ofins : 0.01 0.00 0 0 0
1325.38/1328.56 c oneopt : 0.01 0.00 0 0 0
1325.38/1328.56 c padm : 0.00 0.00 0 0 0
1325.38/1328.56 c proximity : 0.00 0.00 0 0 0
1325.38/1328.56 c pscostdiving : 12.05 0.00 27 0 0
1325.38/1328.56 c randrounding : 0.88 0.00 1140 0 0
1325.38/1328.56 c rens : 0.03 0.00 1 0 0
1325.38/1328.56 c reoptsols : 0.00 0.00 0 0 0
1325.38/1328.56 c repair : 0.00 0.00 0 0 0
1325.38/1328.56 c rins : 0.01 0.00 0 0 0
1325.38/1328.56 c rootsoldiving : 6.83 0.00 1 0 0
1325.38/1328.56 c rounding : 0.73 0.00 1948 0 0
1325.38/1328.56 c scheduler : 0.00 0.00 0 0 0
1325.38/1328.56 c shiftandpropagate: 0.03 0.00 1 0 0
1325.38/1328.56 c shifting : 0.59 0.00 602 0 0
1325.38/1328.56 c simplerounding : 0.01 0.00 0 0 0
1325.38/1328.56 c smallcard : 0.00 0.00 0 0 0
1325.38/1328.56 c subnlp : 0.02 0.00 0 0 0
1325.38/1328.56 c trivial : 0.00 0.00 2 0 0
1325.38/1328.56 c trivialnegation : 0.00 0.00 0 0 0
1325.38/1328.56 c trustregion : 0.00 0.00 0 0 0
1325.38/1328.56 c trysol : 0.01 0.00 0 0 0
1325.38/1328.56 c twoopt : 0.00 0.00 0 0 0
1325.38/1328.56 c undercover : 0.00 0.00 0 0 0
1325.38/1328.56 c vbounds : 1.38 0.00 1 0 0
1325.38/1328.56 c veclendiving : 9.61 0.00 7 0 0
1325.38/1328.56 c zeroobj : 0.00 0.00 0 0 0
1325.38/1328.56 c zirounding : 0.05 0.00 1000 0 0
1325.38/1328.56 c other solutions : - - - 0 -
1325.38/1328.56 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
1325.38/1328.56 c rens : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1325.38/1328.56 c rins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1325.38/1328.56 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1325.38/1328.56 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1325.38/1328.56 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1325.38/1328.56 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1325.38/1328.56 c dins : 0 0.00 0.00 0 0 0 0.00000 0.14286 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
1325.38/1328.56 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
1325.38/1328.56 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
1325.38/1328.56 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
1325.38/1328.56 c primal LP : 0.46 66 0 0.00 0.00 0.46 66
1325.38/1328.56 c dual LP : 963.68 37474 6037931 161.90 6265.49 0.16 180
1325.38/1328.56 c lex dual LP : 0.00 0 0 0.00 -
1325.38/1328.56 c barrier LP : 0.00 0 0 0.00 - 0.00 0
1325.38/1328.56 c resolve instable : 1.15 95 1024 10.78 887.71
1325.38/1328.56 c diving/probing LP: 117.66 1334 533091 399.62 4530.61
1325.38/1328.56 c strong branching : 3.15 22 7176 326.18 2274.56 - - 6
1325.38/1328.56 c (at root node) : - 22 7176 326.18 -
1325.38/1328.56 c conflict analysis: 0.00 0 0 0.00 -
1325.38/1328.56 c B&B Tree :
1325.38/1328.56 c number of runs : 1
1325.38/1328.56 c nodes : 38522 (19554 internal, 18968 leaves)
1325.38/1328.56 c feasible leaves : 1
1325.38/1328.56 c infeas. leaves : 18967
1325.38/1328.56 c objective leaves : 0
1325.38/1328.56 c nodes (total) : 38522 (19554 internal, 18968 leaves)
1325.38/1328.56 c nodes left : 0
1325.38/1328.56 c max depth : 80
1325.38/1328.56 c max depth (total): 80
1325.38/1328.56 c backtracks : 6412 (16.6%)
1325.38/1328.56 c early backtracks : 0 (0.0%)
1325.38/1328.56 c nodes exc. ref. : 0 (0.0%)
1325.38/1328.56 c delayed cutoffs : 126
1325.38/1328.56 c repropagations : 7719 (37391 domain reductions, 57 cutoffs)
1325.38/1328.56 c avg switch length: 2.87
1325.38/1328.56 c switching time : 4.11
1325.38/1328.56 c Root Node :
1325.38/1328.56 c First LP value : +0.00000000000000e+00
1325.38/1328.56 c First LP Iters : 38832 (4740.08 Iter/sec)
1325.38/1328.56 c First LP Time : 8.19
1325.38/1328.56 c Final Dual Bound : +0.00000000000000e+00
1325.38/1328.56 c Final Root Iters : 74296
1325.38/1328.56 c Root LP Estimate : +2.48170823926660e-02
1325.38/1328.56 c Solution :
1325.38/1328.56 c Solutions found : 1 (1 improvements)
1325.38/1328.56 c First Solution : +0.00000000000000e+00 (in run 1, after 38522 nodes, 1328.54 seconds, depth 73, found by <relaxation>)
1325.38/1328.56 c Gap First Sol. : 0.00 %
1325.38/1328.56 c Gap Last Sol. : 0.00 %
1325.38/1328.56 c Primal Bound : +0.00000000000000e+00 (in run 1, after 38522 nodes, 1328.55 seconds, depth -1, found by <relaxation>)
1325.38/1328.56 c Dual Bound : +0.00000000000000e+00
1325.38/1328.56 c Gap : 0.00 %
1325.38/1328.56 c Integrals : Total Avg%
1325.38/1328.56 c primal-dual : 132854.42 100.00
1325.38/1328.56 c primal-ref : - - (not evaluated)
1325.38/1328.56 c dual-ref : - - (not evaluated)
1325.48/1328.61 c Time complete: 1325.5.