0.00/0.00 c SCIP version 10.0.0 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.0.0] [GitHash: 405ed0d46f]
0.00/0.00 c Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-4432806-1721124031.opb>
0.00/0.05 c original problem has 5980 variables (5980 bin, 0 int, 0 impl, 0 cont) and 26929 constraints
0.00/0.05 c problem read in 0.05
0.00/0.10 c presolving:
0.10/0.14 c (round 1, fast) 764 del vars, 1290 del conss, 0 add conss, 32 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 9389 clqs
0.10/0.15 c (round 2, fast) 976 del vars, 5233 del conss, 0 add conss, 52 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 10059 clqs
0.10/0.15 c (round 3, fast) 1012 del vars, 5370 del conss, 0 add conss, 52 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 9931 clqs
0.10/0.15 c (round 4, fast) 1536 del vars, 6415 del conss, 0 add conss, 52 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 8886 clqs
0.10/0.19 c (0.2s) running MILP presolver
0.42/0.43 c (0.4s) MILP presolver (19 rounds): 675 aggregations, 504 fixings, 0 bound changes
0.42/0.44 c (round 5, medium) 2715 del vars, 26929 del conss, 10606 add conss, 52 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 6378 clqs
0.42/0.46 c (round 6, fast) 2830 del vars, 27044 del conss, 10606 add conss, 52 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 6247 clqs
0.42/0.47 c (round 7, exhaustive) 2830 del vars, 27229 del conss, 10606 add conss, 52 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 6247 clqs
0.42/0.47 c (round 8, fast) 2833 del vars, 27232 del conss, 10606 add conss, 52 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 6244 clqs
0.42/0.51 c (round 9, exhaustive) 2833 del vars, 27237 del conss, 10606 add conss, 52 chg bounds, 3 chg sides, 0 chg coeffs, 10283 upgd conss, 0 impls, 6244 clqs
0.52/0.52 c (round 10, medium) 2843 del vars, 27257 del conss, 10611 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6218 clqs
0.52/0.53 c (round 11, fast) 2843 del vars, 27280 del conss, 10614 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6218 clqs
0.52/0.53 c (round 12, medium) 2846 del vars, 27285 del conss, 10614 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6214 clqs
0.52/0.55 c (round 13, exhaustive) 2846 del vars, 30806 del conss, 11477 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6214 clqs
0.52/0.56 c (round 14, fast) 3014 del vars, 30896 del conss, 11477 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6460 clqs
0.52/0.56 c (round 15, fast) 3095 del vars, 31309 del conss, 11477 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6374 clqs
0.52/0.56 c (round 16, fast) 3201 del vars, 31365 del conss, 11477 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6256 clqs
0.52/0.57 c (round 17, fast) 3223 del vars, 31433 del conss, 11477 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6231 clqs
0.52/0.57 c (round 18, fast) 3246 del vars, 31455 del conss, 11477 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6207 clqs
0.52/0.57 c (round 19, fast) 3256 del vars, 31478 del conss, 11477 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6195 clqs
0.52/0.57 c (round 20, fast) 3263 del vars, 31483 del conss, 11477 add conss, 52 chg bounds, 8 chg sides, 17 chg coeffs, 10283 upgd conss, 0 impls, 6185 clqs
0.52/0.58 c (round 21, medium) 3790 del vars, 31527 del conss, 11477 add conss, 52 chg bounds, 494 chg sides, 503 chg coeffs, 10283 upgd conss, 0 impls, 4642 clqs
0.52/0.58 c (round 22, fast) 3792 del vars, 31571 del conss, 11477 add conss, 52 chg bounds, 494 chg sides, 503 chg coeffs, 10283 upgd conss, 0 impls, 4642 clqs
0.52/0.59 c (round 23, medium) 3798 del vars, 31585 del conss, 11477 add conss, 52 chg bounds, 494 chg sides, 503 chg coeffs, 10283 upgd conss, 0 impls, 4628 clqs
0.52/0.59 c (round 24, fast) 3799 del vars, 31595 del conss, 11477 add conss, 52 chg bounds, 494 chg sides, 503 chg coeffs, 10283 upgd conss, 0 impls, 4627 clqs
0.52/0.60 c (round 25, exhaustive) 3800 del vars, 31600 del conss, 11478 add conss, 52 chg bounds, 494 chg sides, 503 chg coeffs, 10283 upgd conss, 0 impls, 4622 clqs
0.60/0.63 c (round 26, exhaustive) 3800 del vars, 31670 del conss, 11478 add conss, 52 chg bounds, 494 chg sides, 512 chg coeffs, 10283 upgd conss, 0 impls, 4622 clqs
0.60/0.64 c (round 27, exhaustive) 3801 del vars, 31674 del conss, 11481 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4620 clqs
0.60/0.65 c (round 28, exhaustive) 3824 del vars, 31882 del conss, 11689 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4574 clqs
0.60/0.65 c (round 29, fast) 3826 del vars, 31882 del conss, 11689 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4778 clqs
0.60/0.66 c (round 30, exhaustive) 3826 del vars, 31907 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4778 clqs
0.60/0.66 c (round 31, fast) 3826 del vars, 31930 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4779 clqs
0.60/0.67 c (round 32, medium) 3832 del vars, 32153 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4773 clqs
0.60/0.67 c (round 33, fast) 3838 del vars, 32179 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4748 clqs
0.60/0.67 c (round 34, medium) 3844 del vars, 32239 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4741 clqs
0.60/0.68 c (round 35, fast) 3851 del vars, 32275 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4725 clqs
0.60/0.68 c (round 36, fast) 3858 del vars, 32288 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4717 clqs
0.60/0.68 c (round 37, medium) 3864 del vars, 32308 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4712 clqs
0.60/0.68 c (round 38, fast) 3866 del vars, 32308 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4712 clqs
0.60/0.69 c (round 39, medium) 3868 del vars, 32313 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4709 clqs
0.60/0.69 c (round 40, medium) 3870 del vars, 32315 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4708 clqs
0.69/0.75 c (round 41, exhaustive) 3871 del vars, 32631 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4708 clqs
0.69/0.75 c (round 42, fast) 3901 del vars, 32640 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4644 clqs
0.69/0.75 c (round 43, fast) 3903 del vars, 32641 del conss, 11729 add conss, 52 chg bounds, 495 chg sides, 513 chg coeffs, 10283 upgd conss, 0 impls, 4643 clqs
0.69/0.75 c (round 44, medium) 3909 del vars, 32643 del conss, 11729 add conss, 52 chg bounds, 499 chg sides, 517 chg coeffs, 10283 upgd conss, 0 impls, 4624 clqs
0.69/0.76 c (round 45, exhaustive) 3909 del vars, 32648 del conss, 11729 add conss, 52 chg bounds, 499 chg sides, 517 chg coeffs, 10283 upgd conss, 0 impls, 4624 clqs
0.79/0.82 c (round 46, exhaustive) 3909 del vars, 32904 del conss, 11729 add conss, 52 chg bounds, 499 chg sides, 517 chg coeffs, 10283 upgd conss, 0 impls, 4624 clqs
0.79/0.82 c (round 47, fast) 3956 del vars, 32915 del conss, 11729 add conss, 52 chg bounds, 499 chg sides, 517 chg coeffs, 10283 upgd conss, 0 impls, 4484 clqs
0.79/0.83 c (round 48, exhaustive) 3957 del vars, 32917 del conss, 11729 add conss, 52 chg bounds, 499 chg sides, 517 chg coeffs, 10295 upgd conss, 0 impls, 4483 clqs
0.79/0.84 c (round 49, exhaustive) 3957 del vars, 32940 del conss, 11729 add conss, 52 chg bounds, 499 chg sides, 906 chg coeffs, 10295 upgd conss, 0 impls, 4483 clqs
0.79/0.84 c (round 50, fast) 3980 del vars, 32973 del conss, 11729 add conss, 52 chg bounds, 499 chg sides, 906 chg coeffs, 10295 upgd conss, 0 impls, 4468 clqs
0.79/0.84 c (round 51, medium) 3985 del vars, 32978 del conss, 11729 add conss, 52 chg bounds, 499 chg sides, 906 chg coeffs, 10295 upgd conss, 0 impls, 4459 clqs
0.79/0.85 c (round 52, medium) 3986 del vars, 32982 del conss, 11729 add conss, 52 chg bounds, 500 chg sides, 906 chg coeffs, 10295 upgd conss, 0 impls, 4458 clqs
0.79/0.86 c (round 53, exhaustive) 3987 del vars, 32995 del conss, 11730 add conss, 52 chg bounds, 500 chg sides, 906 chg coeffs, 10295 upgd conss, 0 impls, 4458 clqs
0.79/0.87 c (round 54, exhaustive) 3987 del vars, 33182 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4458 clqs
0.79/0.87 c (round 55, fast) 4012 del vars, 33204 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4431 clqs
0.79/0.87 c (round 56, fast) 4020 del vars, 33210 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4426 clqs
0.79/0.87 c (round 57, medium) 4024 del vars, 33241 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4422 clqs
0.79/0.87 c (round 58, fast) 4034 del vars, 33253 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4401 clqs
0.79/0.88 c (round 59, fast) 4036 del vars, 33255 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4399 clqs
0.79/0.88 c (round 60, medium) 4038 del vars, 33258 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4392 clqs
0.79/0.88 c (round 61, fast) 4038 del vars, 33263 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4392 clqs
0.79/0.89 c (round 62, exhaustive) 4040 del vars, 33267 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4390 clqs
0.79/0.89 c (round 63, fast) 4042 del vars, 33272 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 908 chg coeffs, 10295 upgd conss, 0 impls, 4386 clqs
0.89/0.90 c (round 64, exhaustive) 4042 del vars, 33272 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 1166 chg coeffs, 10295 upgd conss, 0 impls, 4386 clqs
0.89/0.90 c (round 65, fast) 4053 del vars, 33326 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 1166 chg coeffs, 10295 upgd conss, 0 impls, 4358 clqs
0.89/0.91 c (round 66, fast) 4056 del vars, 33336 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 1166 chg coeffs, 10295 upgd conss, 0 impls, 4351 clqs
0.89/0.91 c (round 67, fast) 4058 del vars, 33337 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 1166 chg coeffs, 10295 upgd conss, 0 impls, 4350 clqs
0.89/0.91 c (round 68, medium) 4067 del vars, 33346 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 1166 chg coeffs, 10295 upgd conss, 0 impls, 4334 clqs
0.89/0.91 c (round 69, fast) 4067 del vars, 33354 del conss, 11731 add conss, 52 chg bounds, 500 chg sides, 1167 chg coeffs, 10295 upgd conss, 0 impls, 4335 clqs
0.89/0.92 c (round 70, exhaustive) 4067 del vars, 33363 del conss, 11733 add conss, 52 chg bounds, 500 chg sides, 1167 chg coeffs, 10295 upgd conss, 0 impls, 4335 clqs
1.29/1.39 c (1.4s) probing: 1000/2049 (48.8%) - 0 fixings, 4 aggregations, 6899 implications, 0 bound changes
1.78/1.83 c (1.8s) probing: 2000/2049 (97.6%) - 1 fixings, 10 aggregations, 10290 implications, 0 bound changes
1.78/1.86 c (1.9s) probing cycle finished: starting next cycle
1.78/1.86 c (round 71, exhaustive) 4078 del vars, 33363 del conss, 11733 add conss, 52 chg bounds, 500 chg sides, 1168 chg coeffs, 10295 upgd conss, 0 impls, 14578 clqs
1.78/1.86 c (round 72, fast) 4078 del vars, 33398 del conss, 11734 add conss, 52 chg bounds, 500 chg sides, 1168 chg coeffs, 10295 upgd conss, 0 impls, 14578 clqs
1.78/1.87 c (round 73, medium) 4078 del vars, 33399 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1175 chg coeffs, 10295 upgd conss, 0 impls, 14580 clqs
1.78/1.88 c (round 74, exhaustive) 4078 del vars, 33403 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1669 chg coeffs, 10295 upgd conss, 0 impls, 14580 clqs
1.78/1.88 c (round 75, fast) 4091 del vars, 33462 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1669 chg coeffs, 10295 upgd conss, 0 impls, 14233 clqs
1.78/1.88 c (round 76, fast) 4107 del vars, 33498 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1669 chg coeffs, 10295 upgd conss, 0 impls, 13967 clqs
1.78/1.89 c (round 77, fast) 4114 del vars, 33567 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1669 chg coeffs, 10295 upgd conss, 0 impls, 13841 clqs
1.78/1.89 c (round 78, fast) 4129 del vars, 33631 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1669 chg coeffs, 10295 upgd conss, 0 impls, 13802 clqs
1.78/1.89 c (round 79, fast) 4136 del vars, 33644 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1669 chg coeffs, 10295 upgd conss, 0 impls, 13788 clqs
1.78/1.89 c (round 80, fast) 4142 del vars, 33649 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1669 chg coeffs, 10295 upgd conss, 0 impls, 13781 clqs
1.78/1.89 c (round 81, medium) 4151 del vars, 33663 del conss, 11736 add conss, 52 chg bounds, 502 chg sides, 1669 chg coeffs, 10295 upgd conss, 0 impls, 13723 clqs
1.88/1.92 c (1.9s) probing: 53/2038 (2.6%) - 1 fixings, 10 aggregations, 10484 implications, 0 bound changes
1.88/1.92 c (1.9s) probing aborted: 50/50 successive totally useless probings
1.88/1.92 c (1.9s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
1.88/1.93 c (1.9s) symmetry computation finished: 274 generators found (max: 1500, log10 of symmetry group size: 10.0) (symcode time: 0.00)
1.88/1.95 c dynamic symmetry handling statistics:
1.88/1.95 c orbitopal reduction: 4 components: 2x3, 2x3, 2x3, 2x3
1.88/1.95 c orbital reduction: no components
1.88/1.95 c lexicographic reduction: 19 permutations with support sizes 6, 8, 4, 8, 4, 10, 4, 4, 4, 8, 8, 4, 4, 6, 4, 4, 4, 4, 4
1.88/1.95 c handled 226 out of 226 symmetry components
1.88/1.95 c (round 82, exhaustive) 4174 del vars, 33667 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 1671 chg coeffs, 10295 upgd conss, 0 impls, 13866 clqs
1.88/1.95 c (round 83, fast) 4176 del vars, 33734 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 1732 chg coeffs, 10295 upgd conss, 0 impls, 13893 clqs
1.88/1.96 c (round 84, exhaustive) 4177 del vars, 33735 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 1732 chg coeffs, 10510 upgd conss, 0 impls, 13886 clqs
1.88/1.96 c (round 85, medium) 4179 del vars, 33737 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 1738 chg coeffs, 10510 upgd conss, 0 impls, 13879 clqs
1.88/1.96 c (round 86, fast) 4181 del vars, 33741 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 1740 chg coeffs, 10510 upgd conss, 0 impls, 13877 clqs
1.88/1.98 c (round 87, exhaustive) 4182 del vars, 33744 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 2507 chg coeffs, 10510 upgd conss, 0 impls, 13860 clqs
1.88/1.98 c (round 88, fast) 4365 del vars, 34311 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 2507 chg coeffs, 10510 upgd conss, 0 impls, 13227 clqs
1.88/1.98 c (round 89, fast) 4394 del vars, 34429 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 2511 chg coeffs, 10510 upgd conss, 0 impls, 13099 clqs
1.88/1.98 c (round 90, fast) 4416 del vars, 34453 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 2511 chg coeffs, 10510 upgd conss, 0 impls, 13016 clqs
1.88/1.98 c (round 91, fast) 4421 del vars, 34459 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 2512 chg coeffs, 10510 upgd conss, 0 impls, 13009 clqs
1.88/1.99 c (round 92, medium) 4427 del vars, 34476 del conss, 11974 add conss, 52 chg bounds, 502 chg sides, 2512 chg coeffs, 10510 upgd conss, 0 impls, 12988 clqs
1.88/1.99 c (round 93, fast) 4430 del vars, 34495 del conss, 11974 add conss, 53 chg bounds, 503 chg sides, 2512 chg coeffs, 10510 upgd conss, 0 impls, 12986 clqs
1.88/1.99 c (round 94, fast) 4434 del vars, 34496 del conss, 11974 add conss, 53 chg bounds, 503 chg sides, 2512 chg coeffs, 10510 upgd conss, 0 impls, 12893 clqs
1.88/1.99 c (round 95, medium) 4437 del vars, 34499 del conss, 11974 add conss, 53 chg bounds, 504 chg sides, 2513 chg coeffs, 10510 upgd conss, 0 impls, 12717 clqs
1.88/2.00 c (round 96, exhaustive) 4440 del vars, 34502 del conss, 11974 add conss, 53 chg bounds, 504 chg sides, 2513 chg coeffs, 10510 upgd conss, 0 impls, 12712 clqs
2.00/2.01 c (round 97, exhaustive) 4445 del vars, 34507 del conss, 11974 add conss, 53 chg bounds, 504 chg sides, 2513 chg coeffs, 10510 upgd conss, 0 impls, 12666 clqs
2.00/2.01 c (round 98, fast) 4450 del vars, 34523 del conss, 11974 add conss, 53 chg bounds, 504 chg sides, 2513 chg coeffs, 10510 upgd conss, 0 impls, 12666 clqs
2.00/2.01 c (round 99, medium) 4450 del vars, 34528 del conss, 11977 add conss, 53 chg bounds, 507 chg sides, 2525 chg coeffs, 10510 upgd conss, 0 impls, 12666 clqs
2.00/2.02 c (2.0s) probing: 58/2038 (2.8%) - 1 fixings, 10 aggregations, 10484 implications, 0 bound changes
2.00/2.02 c (2.0s) probing aborted: 50/50 successive totally useless probings
2.00/2.03 c presolving (100 rounds: 100 fast, 48 medium, 26 exhaustive):
2.00/2.03 c 4459 deleted vars, 34535 deleted constraints, 11977 added constraints, 53 tightened bounds, 0 added holes, 507 changed sides, 2525 changed coefficients
2.00/2.03 c 0 implications, 12637 cliques
2.00/2.03 c presolved problem has 1664 variables (1664 bin, 0 int, 0 impl, 0 cont) and 4372 constraints
2.00/2.03 c 8 constraints of type <knapsack>
2.00/2.03 c 2607 constraints of type <setppc>
2.00/2.03 c 8 constraints of type <and>
2.00/2.03 c 1 constraints of type <linear>
2.00/2.03 c 21 constraints of type <orbitope>
2.00/2.03 c 1727 constraints of type <logicor>
2.00/2.03 c transformed objective value is always integral (scale: 1)
2.00/2.03 c Presolving Time: 1.94
2.00/2.03 c - non default parameters ----------------------------------------------------------------------
2.00/2.03 c # SCIP version 10.0.0
2.00/2.03 c
2.00/2.03 c # maximal time in seconds to run
2.00/2.03 c # [type: real, advanced: FALSE, range: [0,1e+20], default: 1e+20]
2.00/2.03 c limits/time = 3596.997049
2.00/2.03 c
2.00/2.03 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
2.00/2.03 c # [type: real, advanced: FALSE, range: [0,8796093022207], default: 8796093022207]
2.00/2.03 c limits/memory = 27900
2.00/2.03 c
2.00/2.03 c # belongs reading time to solving time?
2.00/2.03 c # [type: bool, advanced: FALSE, range: {TRUE,FALSE}, default: FALSE]
2.00/2.03 c timing/reading = TRUE
2.00/2.03 c
2.00/2.03 c -----------------------------------------------------------------------------------------------
2.00/2.03 c start solving
2.00/2.03 c
2.00/2.07 o 23749
2.00/2.07 c time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
2.00/2.07 c p 2.1s| 1 | 0 | 0 | - | clique| 0 |1664 |4371 |4357 | 0 | 0 | 0 | 0 |-9.796500e+04 | 2.374900e+04 | Inf | unknown
2.00/2.10 o 23612
2.00/2.10 c p 2.1s| 1 | 0 | 7 | - | vbounds| 0 |1664 |4372 |4357 | 0 | 0 | 3 | 0 |-9.796500e+04 | 2.361200e+04 | Inf | unknown
2.10/2.13 c 2.1s| 1 | 0 | 214 | - | 87M | 0 |1664 |4413 |4357 | 0 | 0 | 47 | 0 | 6.941833e+03 | 2.361200e+04 | 240.14%| unknown
2.10/2.13 o 10279
2.10/2.13 c r 2.1s| 1 | 0 | 214 | - |shifting| 0 |1664 |4413 |4357 | 0 | 0 | 47 | 0 | 6.941833e+03 | 1.027900e+04 | 48.07%| unknown
2.10/2.13 o 6948
2.10/2.13 c i 2.1s| 1 | 0 | 214 | - | oneopt| 0 |1664 |4413 |4357 | 0 | 0 | 47 | 0 | 6.941833e+03 | 6.948000e+03 | 0.09%| unknown
2.10/2.17 c 2.2s| 1 | 0 | 220 | - | 89M | 0 |1664 |4413 |4339 | 12 | 1 | 47 | 0 | 6.943000e+03 | 6.948000e+03 | 0.07%| unknown
2.10/2.17 o 6943
2.10/2.17 c r 2.2s| 1 | 0 | 220 | - |randroun| 0 |1664 |4413 |2075 | 0 | 1 | 47 | 0 | 6.943000e+03 | 6.943000e+03 | 0.00%| unknown
2.10/2.17 c 2.2s| 1 | 0 | 220 | - | 89M | 0 |1664 |4413 |2075 | 12 | 1 | 47 | 0 | 6.943000e+03 | 6.943000e+03 | 0.00%| unknown
2.10/2.17 c 2.2s| 1 | 0 | 220 | - | 89M | 0 |1664 |4413 |2075 | 12 | 1 | 47 | 0 | 6.943000e+03 | 6.943000e+03 | 0.00%| unknown
2.10/2.17 c
2.10/2.17 c SCIP Status : problem is solved [optimal solution found]
2.10/2.17 c Solving Time (sec) : 2.17
2.10/2.17 c Solving Nodes : 1
2.10/2.17 c Primal Bound : +6.94300000000000e+03 (5 solutions)
2.10/2.17 c Dual Bound : +6.94300000000000e+03
2.10/2.17 c Gap : 0.00 %
2.10/2.18 s OPTIMUM FOUND
2.10/2.18 v -x3766 -x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758 -x3757 -x3756 -x3755 -x3754 -x3753 -x3752 -x3751 -x3750 -x3749 -x3748
2.10/2.18 v -x3747 -x3746 -x3745 x3744 -x3743 -x3742 -x3741 -x3740 -x3739 -x3738 -x3737 -x3736 -x3735 -x3734 x3733 -x3732 -x3731 -x3730
2.10/2.18 v -x3729 -x3728 -x3727 -x3726 -x3725 -x3724 -x3723 -x3722 -x3721 -x3720 -x3719 -x3718 -x3717 -x3716 -x3715 -x3714 -x3713 -x3712
2.10/2.18 v -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703 -x3702 -x3701 -x3700 -x3699 -x3698 -x3697 -x3696 -x3695
2.10/2.18 v -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677
2.10/2.18 v -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667 -x3666 -x3665 -x3664 -x3663 -x3662 -x3661 -x3660 -x3659
2.10/2.18 v -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641
2.10/2.18 v -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 x3627 -x3626 -x3625 -x3624 -x3623
2.10/2.18 v -x3622 -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605
2.10/2.18 v -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 -x3596 -x3595 -x3594 -x3593 x3592 -x3591 -x3590 -x3589 -x3588 -x3587
2.10/2.18 v -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569
2.10/2.18 v -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551
2.10/2.18 v -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533
2.10/2.18 v -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515
2.10/2.18 v -x3514 -x3513 -x3512 -x3511 -x3510 x3509 -x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497
2.10/2.18 v -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 -x3480
2.10/2.18 v -x3479 -x3478 -x3477 -x3476 -x3475 -x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462
2.10/2.18 v -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444
2.10/2.18 v -x3443 -x3442 -x3441 -x3440 -x3439 -x3438 -x3437 -x3436 -x3435 -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426
2.10/2.18 v -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 x3418 -x3417 -x3416 -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408
2.10/2.18 v -x3407 -x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390
2.10/2.18 v -x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372
2.10/2.18 v -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354
2.10/2.18 v -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337
2.10/2.18 v -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 x3329 -x3328 -x3327 -x3326 x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318
2.10/2.18 v -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300
2.10/2.18 v -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282
2.10/2.18 v -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273 -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265
2.10/2.18 v -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247
2.10/2.18 v -x3246 -x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229
2.10/2.18 v -x3228 -x3227 -x3226 -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 x3214 x3213 -x3212 -x3211
2.10/2.18 v -x3210 x3209 -x3208 -x3207 -x3206 x3205 -x3204 x3203 -x3202 x3201 -x3200 -x3199 -x3198 x3197 -x3196 x3195 -x3194 x3193 -x3192
2.10/2.18 v -x3191 -x3190 -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 x3181 -x3180 -x3179 -x3178 -x3177 -x3176 x3175 -x3174
2.10/2.18 v -x3173 -x3172 x3171 -x3170 -x3169 -x3168 x3167 -x3166 -x3165 -x3164 -x3163 -x3162 -x3161 -x3160 -x3159 -x3158 x3157 x3156 x3155
2.10/2.18 v x3154 x3153 -x3152 -x3151 x3150 -x3149 -x3148 -x3147 x3146 -x3145 -x3144 x3143 -x3142 -x3141 x3140 x3139 -x3138 -x3137 -x3136
2.10/2.18 v x3135 x3134 x3133 -x3132 -x3131 x3130 x3129 -x3128 x3127 -x3126 x3125 -x3124 x3123 -x3122 x3121 -x3120 x3119 -x3118 x3117
2.10/2.18 v -x3116 -x3115 x3114 x3113 x3112 -x3111 x3110 -x3109 x3108 -x3107 x3106 -x3105 -x3104 x3103 -x3102 -x3101 -x3100 -x3099 x3098
2.10/2.18 v -x3097 -x3096 x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 x3087 x3086 -x3085 -x3084 -x3083 x3082 -x3081 -x3080 -x3079
2.10/2.18 v -x3078 x3077 -x3076 x3075 -x3074 x3073 -x3072 x3071 -x3070 -x3069 x3068 -x3067 -x3066 x3065 -x3064 -x3063 -x3062 -x3061
2.10/2.18 v -x3060 -x3059 x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 x3050 -x3049 x3048 -x3047 -x3046 -x3045 -x3044 x3043 -x3042
2.10/2.18 v -x3041 -x3040 -x3039 -x3038 x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 x3029 -x3028 -x3027 -x3026 -x3025 -x3024
2.10/2.18 v x3023 -x3022 -x3021 -x3020 -x3019 -x3018 x3017 -x3016 x3015 -x3014 -x3013 x3012 -x3011 x3010 -x3009 -x3008 -x3007 x3006 -x3005
2.10/2.18 v -x3004 -x3003 x3002 -x3001 x3000 -x2999 -x2998 -x2997 -x2996 x2995 -x2994 -x2993 -x2992 x2991 -x2990 -x2989 -x2988 x2987
2.10/2.18 v x2986 -x2985 x2984 x2983 x2982 -x2981 x2980 -x2979 -x2978 -x2977 -x2976 x2975 x2974 -x2973 x2972 -x2971 -x2970 -x2969 -x2968
2.10/2.18 v x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 x2958 -x2957 -x2956 -x2955 -x2954 -x2953 x2952 -x2951 -x2950
2.10/2.18 v -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 x2937 x2936 -x2935 -x2934 x2933 -x2932 x2931
2.10/2.18 v -x2930 -x2929 x2928 x2927 x2926 -x2925 -x2924 -x2923 -x2922 x2921 x2920 -x2919 -x2918 -x2917 -x2916 x2915 -x2914 -x2913 x2912
2.10/2.18 v x2911 -x2910 -x2909 x2908 -x2907 -x2906 -x2905 -x2904 -x2903 x2902 -x2901 -x2900 x2899 -x2898 -x2897 -x2896 -x2895 x2894
2.10/2.18 v -x2893 -x2892 x2891 -x2890 x2889 -x2888 -x2887 -x2886 -x2885 x2884 x2883 -x2882 -x2881 -x2880 -x2879 -x2878 x2877 -x2876 x2875
2.10/2.18 v -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 x2864 x2863 -x2862 -x2861 -x2860 -x2859 x2858 x2857
2.10/2.18 v -x2856 x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844 -x2843 -x2842 -x2841 -x2840 -x2839
2.10/2.18 v -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 x2830 -x2829 -x2828 x2827 -x2826 x2825 x2824 -x2823 -x2822 x2821 -x2820
2.10/2.18 v x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 x2812 -x2811 x2810 -x2809 -x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802
2.10/2.18 v -x2801 -x2800 -x2799 -x2798 x2797 -x2796 x2795 -x2794 -x2793 -x2792 -x2791 x2790 -x2789 x2788 -x2787 -x2786 -x2785 -x2784 -x2783
2.10/2.18 v x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 x2772 -x2771 -x2770 x2769 x2768 -x2767 -x2766 -x2765
2.10/2.18 v -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 x2751 x2750 -x2749 x2748 x2747 -x2746
2.10/2.18 v x2745 -x2744 x2743 -x2742 -x2741 x2740 -x2739 x2738 x2737 -x2736 -x2735 -x2734 -x2733 x2732 -x2731 -x2730 x2729 -x2728
2.10/2.18 v -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 x2717 x2716 -x2715 -x2714 -x2713 -x2712 x2711 -x2710 -x2709
2.10/2.18 v -x2708 -x2707 -x2706 -x2705 x2704 -x2703 x2702 -x2701 -x2700 -x2699 x2698 -x2697 x2696 -x2695 -x2694 -x2693 -x2692 -x2691
2.10/2.18 v -x2690 -x2689 -x2688 x2687 -x2686 x2685 -x2684 -x2683 -x2682 -x2681 x2680 x2679 -x2678 -x2677 -x2676 -x2675 x2674 x2673 -x2672
2.10/2.18 v -x2671 -x2670 x2669 -x2668 -x2667 -x2666 -x2665 x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 -x2654
2.10/2.18 v -x2653 x2652 -x2651 -x2650 -x2649 -x2648 x2647 x2646 -x2645 -x2644 -x2643 -x2642 x2641 -x2640 x2639 x2638 -x2637 -x2636 -x2635
2.10/2.18 v -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 -x2628 -x2627 -x2626 x2625 -x2624 -x2623 x2622 -x2621 -x2620 -x2619 -x2618 -x2617
2.10/2.18 v -x2616 -x2615 -x2614 x2613 -x2612 x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599
2.10/2.18 v -x2598 -x2597 x2596 -x2595 x2594 -x2593 -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581
2.10/2.18 v x2580 -x2579 -x2578 -x2577 x2576 -x2575 x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568 -x2567 x2566 -x2565 x2564 -x2563 -x2562
2.10/2.18 v -x2561 -x2560 x2559 x2558 -x2557 -x2556 -x2555 -x2554 x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544
2.10/2.18 v -x2543 x2542 x2541 -x2540 -x2539 x2538 -x2537 -x2536 x2535 -x2534 -x2533 x2532 -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525
2.10/2.18 v -x2524 x2523 x2522 -x2521 x2520 -x2519 x2518 -x2517 -x2516 -x2515 -x2514 x2513 -x2512 -x2511 x2510 -x2509 -x2508 -x2507
2.10/2.18 v -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 x2499 x2498 -x2497 x2496 -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 x2489 -x2488
2.10/2.18 v -x2487 -x2486 x2485 -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 x2476 x2475 -x2474 -x2473 -x2472 -x2471 -x2470
2.10/2.18 v -x2469 -x2468 -x2467 -x2466 x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 x2453 x2452
2.10/2.18 v -x2451 x2450 -x2449 -x2448 x2447 -x2446 -x2445 -x2444 x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 x2435 -x2434 -x2433
2.10/2.18 v -x2432 -x2431 -x2430 x2429 -x2428 -x2427 -x2426 -x2425 x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415
2.10/2.18 v x2414 -x2413 -x2412 -x2411 x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402 x2401 x2400 -x2399 -x2398 x2397
2.10/2.18 v -x2396 -x2395 -x2394 x2393 x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378
2.10/2.18 v -x2377 -x2376 x2375 x2374 -x2373 -x2372 -x2371 -x2370 x2369 -x2368 -x2367 x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360
2.10/2.18 v -x2359 -x2358 -x2357 -x2356 x2355 -x2354 -x2353 -x2352 x2351 -x2350 -x2349 -x2348 -x2347 x2346 -x2345 x2344 -x2343 x2342 -x2341
2.10/2.18 v x2340 -x2339 x2338 -x2337 -x2336 -x2335 x2334 -x2333 -x2332 -x2331 x2330 -x2329 -x2328 -x2327 x2326 -x2325 x2324 x2323
2.10/2.18 v x2322 -x2321 -x2320 -x2319 -x2318 -x2317 -x2316 -x2315 x2314 x2313 -x2312 x2311 -x2310 x2309 -x2308 x2307 -x2306 -x2305 x2304
2.10/2.18 v -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 x2296 x2295 -x2294 x2293 x2292 -x2291 x2290 -x2289 -x2288 -x2287 -x2286 -x2285
2.10/2.18 v -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 x2276 x2275 x2274 x2273 x2272 x2271 x2270 x2269 x2268 -x2267 -x2266
2.10/2.18 v -x2265 -x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248
2.10/2.18 v -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230
2.10/2.18 v -x2229 -x2228 -x2227 -x2226 x2225 -x2224 -x2223 x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 x2214 x2213 x2212
2.10/2.18 v -x2211 -x2210 -x2209 x2208 -x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 x2199 -x2198 -x2197 x2196 -x2195 -x2194 -x2193
2.10/2.18 v x2192 x2191 -x2190 -x2189 -x2188 -x2187 x2186 -x2185 -x2184 -x2183 -x2182 x2181 -x2180 -x2179 -x2178 -x2177 -x2176 -x2175
2.10/2.18 v x2174 x2173 -x2172 x2171 x2170 -x2169 -x2168 -x2167 -x2166 x2165 x2164 -x2163 -x2162 -x2161 -x2160 x2159 x2158 -x2157 -x2156
2.10/2.18 v -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 x2143 -x2142 -x2141 -x2140 x2139 -x2138
2.10/2.18 v x2137 -x2136 -x2135 -x2134 -x2133 x2132 -x2131 x2130 x2129 -x2128 x2127 x2126 -x2125 -x2124 -x2123 x2122 x2121 -x2120 -x2119
2.10/2.18 v x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 x2111 -x2110 -x2109 x2108 -x2107 -x2106 -x2105 x2104 -x2103 -x2102 x2101 -x2100
2.10/2.18 v -x2099 -x2098 x2097 -x2096 -x2095 -x2094 -x2093 x2092 x2091 -x2090 -x2089 -x2088 -x2087 -x2086 -x2085 -x2084 -x2083 -x2082
2.10/2.18 v x2081 -x2080 -x2079 -x2078 x2077 -x2076 -x2075 -x2074 -x2073 -x2072 x2071 -x2070 x2069 -x2068 -x2067 -x2066 -x2065 x2064 x2063
2.10/2.18 v -x2062 -x2061 -x2060 x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 x2046 -x2045
2.10/2.18 v -x2044 -x2043 -x2042 x2041 x2040 x2039 -x2038 -x2037 -x2036 x2035 -x2034 -x2033 x2032 -x2031 x2030 -x2029 -x2028 -x2027 -x2026
2.10/2.18 v -x2025 x2024 -x2023 -x2022 -x2021 -x2020 -x2019 x2018 -x2017 x2016 x2015 -x2014 x2013 x2012 -x2011 -x2010 -x2009 -x2008
2.10/2.18 v x2007 -x2006 -x2005 -x2004 x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996 x1995 -x1994 -x1993 -x1992 -x1991 x1990 -x1989
2.10/2.18 v x1988 -x1987 x1986 -x1985 -x1984 -x1983 -x1982 x1981 x1980 -x1979 x1978 -x1977 -x1976 -x1975 -x1974 x1973 x1972 -x1971 x1970
2.10/2.18 v -x1969 x1968 -x1967 x1966 -x1965 x1964 -x1963 x1962 -x1961 -x1960 x1959 -x1958 -x1957 x1956 -x1955 x1954 x1953 -x1952 -x1951
2.10/2.18 v x1950 -x1949 -x1948 x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933
2.10/2.18 v -x1932 -x1931 -x1930 -x1929 -x1928 x1927 -x1926 -x1925 -x1924 -x1923 x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915
2.10/2.18 v -x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 -x1906 -x1905 -x1904 -x1903 -x1902 x1901 -x1900 -x1899 x1898 -x1897
2.10/2.18 v -x1896 -x1895 -x1894 x1893 -x1892 x1891 -x1890 x1889 x1888 -x1887 x1886 -x1885 -x1884 -x1883 -x1882 -x1881 x1880 -x1879 -x1878
2.10/2.18 v x1877 -x1876 -x1875 -x1874 x1873 -x1872 -x1871 -x1870 -x1869 -x1868 -x1867 x1866 x1865 -x1864 x1863 -x1862 -x1861 -x1860
2.10/2.18 v -x1859 -x1858 -x1857 -x1856 x1855 -x1854 -x1853 -x1852 -x1851 x1850 -x1849 x1848 -x1847 x1846 -x1845 x1844 -x1843 x1842 -x1841
2.10/2.18 v x1840 -x1839 x1838 -x1837 x1836 -x1835 -x1834 -x1833 -x1832 -x1831 x1830 -x1829 x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822
2.10/2.18 v -x1821 -x1820 -x1819 -x1818 x1817 -x1816 -x1815 -x1814 -x1813 x1812 -x1811 -x1810 -x1809 -x1808 -x1807 x1806 -x1805 -x1804
2.10/2.18 v -x1803 -x1802 -x1801 -x1800 x1799 -x1798 -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 x1789 -x1788 x1787 -x1786
2.10/2.18 v -x1785 x1784 x1783 -x1782 x1781 -x1780 -x1779 -x1778 -x1777 x1776 -x1775 -x1774 -x1773 -x1772 -x1771 x1770 -x1769 -x1768 -x1767
2.10/2.18 v -x1766 x1765 x1764 -x1763 -x1762 -x1761 x1760 -x1759 x1758 -x1757 x1756 x1755 -x1754 x1753 -x1752 x1751 -x1750 x1749 -x1748
2.10/2.18 v -x1747 -x1746 x1745 x1744 -x1743 x1742 -x1741 -x1740 -x1739 -x1738 x1737 x1736 -x1735 -x1734 -x1733 x1732 -x1731 -x1730 x1729
2.10/2.18 v -x1728 x1727 -x1726 -x1725 -x1724 -x1723 x1722 -x1721 x1720 -x1719 x1718 -x1717 x1716 x1715 -x1714 -x1713 -x1712 x1711 -x1710
2.10/2.18 v -x1709 x1708 x1707 -x1706 -x1705 x1704 -x1703 -x1702 -x1701 -x1700 -x1699 x1698 x1697 -x1696 x1695 -x1694 x1693 -x1692 -x1691
2.10/2.18 v -x1690 -x1689 -x1688 -x1687 -x1686 x1685 x1684 -x1683 -x1682 -x1681 -x1680 -x1679 x1678 -x1677 x1676 -x1675 -x1674 -x1673
2.10/2.18 v -x1672 -x1671 -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661 -x1660 x1659 -x1658 -x1657 -x1656 -x1655
2.10/2.18 v -x1654 x1653 -x1652 -x1651 -x1650 -x1649 -x1648 -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637
2.10/2.18 v -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619
2.10/2.18 v -x1618 -x1617 -x1616 -x1615 -x1614 -x1613 -x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603 -x1602 -x1601
2.10/2.18 v -x1600 -x1599 -x1598 -x1597 -x1596 -x1595 -x1594 -x1593 -x1592 -x1591 x1590 -x1589 -x1588 -x1587 -x1586 -x1585 -x1584 -x1583
2.10/2.18 v -x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565
2.10/2.18 v -x1564 -x1563 -x1562 -x1561 -x1560 x1559 -x1558 -x1557 -x1556 x1555 -x1554 x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547
2.10/2.18 v -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 -x1534 -x1533 x1532 -x1531 -x1530 x1529
2.10/2.18 v -x1528 -x1527 -x1526 x1525 -x1524 x1523 -x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 x1514 x1513 -x1512 -x1511
2.10/2.18 v -x1510 x1509 -x1508 x1507 -x1506 -x1505 -x1504 -x1503 x1502 -x1501 -x1500 x1499 -x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492
2.10/2.18 v x1491 -x1490 x1489 x1488 -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 x1481 -x1480 -x1479 -x1478 -x1477 -x1476 -x1475 x1474
2.10/2.18 v -x1473 x1472 -x1471 -x1470 -x1469 x1468 -x1467 -x1466 -x1465 -x1464 -x1463 -x1462 x1461 x1460 -x1459 -x1458 x1457 -x1456 x1455
2.10/2.18 v -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440 x1439 -x1438 -x1437
2.10/2.18 v -x1436 -x1435 -x1434 x1433 -x1432 -x1431 x1430 -x1429 x1428 -x1427 x1426 -x1425 -x1424 x1423 -x1422 -x1421 -x1420 -x1419 -x1418
2.10/2.18 v -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405 -x1404 -x1403 x1402 x1401 -x1400
2.10/2.18 v -x1399 -x1398 -x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 x1390 -x1389 x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382
2.10/2.18 v -x1381 -x1380 -x1379 -x1378 x1377 -x1376 -x1375 -x1374 x1373 -x1372 -x1371 x1370 -x1369 x1368 -x1367 -x1366 x1365 -x1364 x1363
2.10/2.18 v -x1362 -x1361 -x1360 x1359 -x1358 -x1357 x1356 x1355 -x1354 -x1353 -x1352 x1351 -x1350 -x1349 x1348 -x1347 x1346 -x1345
2.10/2.18 v -x1344 -x1343 -x1342 x1341 x1340 -x1339 -x1338 x1337 -x1336 x1335 -x1334 x1333 -x1332 x1331 -x1330 x1329 -x1328 -x1327 x1326
2.10/2.18 v -x1325 x1324 -x1323 -x1322 x1321 -x1320 -x1319 x1318 x1317 x1316 -x1315 x1314 -x1313 x1312 -x1311 x1310 -x1309 x1308 -x1307 -x1306
2.10/2.18 v -x1305 -x1304 -x1303 -x1302 -x1301 x1300 x1299 x1298 x1297 x1296 x1295 x1294 x1293 x1292 x1291 x1290 x1289 -x1288 -x1287
2.10/2.18 v -x1286 -x1285 -x1284 -x1283 x1282 -x1281 -x1280 x1279 -x1278 x1277 -x1276 x1275 x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268
2.10/2.18 v -x1267 -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 -x1260 -x1259 -x1258 x1257 x1256 x1255 x1254 x1253 -x1252 -x1251 x1250
2.10/2.18 v -x1249 -x1248 -x1247 -x1246 -x1245 -x1244 -x1243 -x1242 -x1241 -x1240 -x1239 -x1238 -x1237 -x1236 -x1235 -x1234 -x1233 -x1232
2.10/2.18 v -x1231 -x1230 -x1229 -x1228 -x1227 -x1226 x1225 -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 x1217 x1216 -x1215 -x1214 -x1213
2.10/2.18 v -x1212 x1211 -x1210 -x1209 -x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 x1199 -x1198 -x1197 -x1196 -x1195
2.10/2.18 v x1194 -x1193 -x1192 x1191 -x1190 x1189 x1188 -x1187 -x1186 -x1185 -x1184 -x1183 -x1182 -x1181 -x1180 -x1179 -x1178 x1177
2.10/2.18 v x1176 -x1175 x1174 -x1173 -x1172 -x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159
2.10/2.18 v -x1158 -x1157 x1156 -x1155 x1154 x1153 x1152 -x1151 x1150 x1149 -x1148 x1147 -x1146 -x1145 -x1144 -x1143 -x1142 x1141 -x1140
2.10/2.18 v -x1139 -x1138 -x1137 -x1136 x1135 -x1134 -x1133 -x1132 -x1131 -x1130 x1129 -x1128 x1127 -x1126 -x1125 -x1124 -x1123 -x1122 -x1121
2.10/2.18 v -x1120 x1119 -x1118 -x1117 -x1116 -x1115 -x1114 -x1113 -x1112 -x1111 -x1110 -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103
2.10/2.18 v -x1102 -x1101 -x1100 -x1099 -x1098 -x1097 -x1096 -x1095 -x1094 -x1093 -x1092 -x1091 -x1090 -x1089 -x1088 -x1087 -x1086 -x1085
2.10/2.18 v -x1084 -x1083 -x1082 -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068
2.10/2.18 v -x1067 -x1066 -x1065 -x1064 -x1063 -x1062 -x1061 -x1060 -x1059 -x1058 -x1057 -x1056 -x1055 x1054 -x1053 -x1052 -x1051 x1050 -x1049
2.10/2.18 v -x1048 -x1047 -x1046 x1045 -x1044 x1043 -x1042 -x1041 -x1040 x1039 -x1038 -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031
2.10/2.18 v -x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 -x1021 -x1020 x1019 -x1018 -x1017 -x1016 x1015 -x1014 -x1013
2.10/2.18 v -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 -x1003 -x1002 -x1001 -x1000 -x999 -x998 x997 -x996 -x995 x994
2.10/2.18 v -x993 x992 -x991 x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 -x981 -x980 -x979 -x978 x977 x976 -x975 -x974 x973 -x972
2.10/2.18 v -x971 x970 -x969 x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 -x960 -x959 -x958 -x957 -x956 -x955 -x954 x953 x952 -x951
2.10/2.18 v -x950 -x949 -x948 -x947 -x946 -x945 -x944 x943 -x942 -x941 x940 x939 -x938 -x937 -x936 x935 -x934 -x933 -x932 x931 -x930 -x929
2.10/2.18 v -x928 -x927 -x926 -x925 x924 x923 -x922 x921 -x920 x919 x918 -x917 x916 -x915 -x914 -x913 -x912 -x911 x910 -x909 -x908 -x907
2.10/2.18 v -x906 -x905 -x904 -x903 -x902 -x901 x900 -x899 -x898 x897 -x896 x895 -x894 x893 -x892 -x891 -x890 -x889 -x888 -x887 x886
2.10/2.18 v -x885 x884 x883 -x882 x881 -x880 x879 x878 -x877 -x876 x875 -x874 -x873 -x872 -x871 -x870 -x869 -x868 -x867 x866 x865 -x864 x863
2.10/2.18 v -x862 -x861 -x860 -x859 x858 x857 -x856 x855 -x854 -x853 -x852 -x851 x850 -x849 x848 -x847 -x846 x845 x844 -x843 -x842 -x841
2.10/2.18 v -x840 -x839 -x838 -x837 x836 x835 -x834 -x833 -x832 x831 x830 -x829 x828 -x827 x826 x825 -x824 x823 -x822 -x821 -x820 x819
2.10/2.18 v -x818 x817 -x816 x815 -x814 -x813 -x812 -x811 -x810 -x809 x808 -x807 -x806 -x805 -x804 -x803 -x802 -x801 x800 -x799 x798 x797
2.10/2.18 v -x796 -x795 -x794 -x793 -x792 x791 -x790 x789 -x788 -x787 -x786 x785 x784 -x783 -x782 x781 x780 -x779 -x778 -x777 -x776 -x775
2.10/2.18 v -x774 -x773 -x772 -x771 -x770 -x769 -x768 -x767 -x766 -x765 x764 -x763 -x762 -x761 -x760 -x759 -x758 -x757 -x756 x755 -x754
2.10/2.18 v x753 -x752 x751 x750 -x749 -x748 -x747 -x746 -x745 -x744 -x743 -x742 -x741 -x740 -x739 -x738 -x737 -x736 -x735 -x734 x733
2.10/2.18 v x732 -x731 -x730 -x729 -x728 -x727 -x726 -x725 -x724 -x723 -x722 -x721 x720 x719 -x718 x717 -x716 -x715 -x714 x713 -x712 -x711
2.10/2.18 v -x710 -x709 x708 x707 -x706 x705 -x704 x703 -x702 -x701 x700 x699 -x698 x697 x696 -x695 x694 -x693 -x692 -x691 x690 -x689 x688
2.10/2.18 v -x687 x686 -x685 -x684 x683 x682 -x681 x680 -x679 x678 -x677 -x676 -x675 -x674 -x673 x672 -x671 -x670 x669 -x668 -x667 -x666
2.10/2.18 v x665 -x664 -x663 -x662 -x661 -x660 -x659 -x658 x657 -x656 -x655 -x654 -x653 x652 -x651 -x650 -x649 x648 -x647 -x646 -x645
2.10/2.18 v -x644 -x643 -x642 -x641 -x640 -x639 x638 -x637 -x636 -x635 x634 x633 -x632 -x631 -x630 -x629 -x628 -x627 -x626 x625 -x624 -x623
2.10/2.18 v -x622 -x621 x620 x619 -x618 x617 x616 -x615 x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603 x602 -x601
2.10/2.18 v -x600 x599 -x598 -x597 x596 -x595 -x594 x593 -x592 -x591 -x590 x589 x588 -x587 -x586 -x585 x584 -x583 -x582 x581 -x580 -x579
2.10/2.18 v -x578 -x577 -x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564 x563 -x562 -x561 -x560 -x559 x558
2.10/2.18 v -x557 -x556 -x555 x554 -x553 -x552 -x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 -x537
2.10/2.18 v -x536 x535 -x534 -x533 -x532 -x531 x530 -x529 -x528 -x527 -x526 x525 x524 -x523 -x522 -x521 -x520 -x519 x518 x517 x516 -x515
2.10/2.18 v x514 -x513 -x512 -x511 -x510 x509 -x508 -x507 -x506 -x505 -x504 x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x495 -x494
2.10/2.18 v -x493 -x492 -x491 -x490 -x489 x488 -x487 -x486 -x485 -x484 x483 -x482 -x481 -x480 -x479 x478 -x477 x476 -x475 -x474 x473 x472
2.10/2.18 v -x471 x470 -x469 -x468 x467 -x466 -x465 x464 x463 -x462 -x461 x460 x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 -x450
2.10/2.18 v -x449 -x448 -x447 -x446 -x445 -x444 x443 x442 x441 x440 x439 x438 -x437 -x436 -x435 -x434 -x433 x432 x431 x430 -x429 x428
2.10/2.18 v -x427 -x426 x425 x424 x423 x422 -x421 x420 x419 -x418 x417 -x416 -x415 x414 x413 -x412 x411 -x410 x409 -x408 -x407 x406 -x405
2.10/2.18 v -x404 x403 x402 x401 -x400 x399 -x398 -x397 -x396 -x395 -x394 -x393 -x392 -x391 -x390 x389 -x388 -x387 -x386 -x385 -x384 -x383
2.10/2.18 v -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 x374 x373 -x372 -x371 x370 -x369 -x368 -x367 x366 -x365 -x364 -x363 x362
2.10/2.18 v -x361 -x360 -x359 -x358 -x357 -x356 x355 -x354 x353 -x352 x351 x350 -x349 x348 -x347 x346 -x345 -x344 -x343 -x342 x341 x340 -x339
2.10/2.18 v -x338 -x337 -x336 -x335 -x334 x333 -x332 -x331 x330 -x329 x328 -x327 x326 -x325 -x324 x323 x322 x321 -x320 -x319 x318 x317
2.10/2.18 v -x316 -x315 -x314 -x313 -x312 x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 -x302 -x301 -x300 -x299 -x298 x297 -x296
2.10/2.18 v -x295 x294 -x293 x292 -x291 x290 x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 x281 -x280 -x279 x278 -x277 -x276 -x275 x274
2.10/2.18 v -x273 x272 x271 x270 -x269 x268 -x267 -x266 x265 -x264 x263 -x262 -x261 -x260 -x259 -x258 x257 -x256 -x255 -x254 x253 -x252
2.10/2.18 v -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 x242 -x241 -x240 x239 x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 -x230
2.10/2.18 v -x229 -x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210
2.10/2.18 v -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189
2.10/2.18 v -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168
2.10/2.18 v -x167 -x166 -x165 -x164 -x163 x162 x161 -x160 -x159 -x158 x157 -x156 -x155 x154 -x153 x152 -x151 -x150 -x149 -x148 -x147 x146
2.10/2.18 v -x145 -x144 -x143 -x142 x141 -x140 x139 -x138 x137 -x136 -x135 x134 -x133 -x132 -x131 -x130 -x129 -x128 x127 -x126 -x125 -x124
2.10/2.18 v x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110 -x109 x108 -x107 -x106 -x105 x104 -x103
2.10/2.18 v -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 x93 -x92 x91 -x90 x89 -x88 -x87 x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78
2.10/2.18 v x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53
2.10/2.18 v x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43 x42 -x41 x40 -x39 x38 -x37 -x36 -x35 x34 -x33 x32 -x31 -x30 x29 x28 -x27 -x26
2.10/2.18 v x25 -x24 x23 x22 -x21 x20 -x19 -x18 x17 -x16 -x15 x14 -x13 x12 -x11 x10 -x9 -x8 -x7 x6 -x5 -x4 -x3 x2 x1 x5980 x5979 -x5978
2.10/2.18 v -x5977 -x5976 -x5975 -x5974 -x5973 -x5972 -x5971 -x5970 x5969 -x5968 -x5967 -x5966 -x5965 -x5964 -x5963 -x5962 x5961 x5960
2.10/2.18 v -x5959 -x5958 -x5957 -x5956 -x5955 -x5954 -x5953 -x5952 -x5951 -x5950 -x5949 -x5948 -x5947 -x5946 -x5945 x5944 x5943 x5942 x5941
2.10/2.18 v x5940 -x5939 x5938 x5937 x5936 -x5935 x5934 -x5933 -x5932 -x5931 -x5930 -x5929 -x5928 -x5927 -x5926 -x5925 -x5924 -x5923
2.10/2.18 v -x5922 -x5921 -x5920 -x5919 -x5918 -x5917 -x5916 -x5915 -x5914 -x5913 -x5912 -x5911 -x5910 -x5909 -x5908 -x5907 -x5906 -x5905
2.10/2.18 v -x5904 -x5903 -x5902 -x5901 -x5900 -x5899 x5898 -x5897 -x5896 -x5895 -x5894 -x5893 -x5892 -x5891 -x5890 -x5889 x5888 x5887 x5886
2.10/2.18 v x5885 -x5884 -x5883 -x5882 -x5881 -x5880 -x5879 -x5878 -x5877 -x5876 -x5875 -x5874 -x5873 -x5872 -x5871 -x5870 -x5869 x5868
2.10/2.18 v -x5867 -x5866 x5865 -x5864 -x5863 -x5862 -x5861 -x5860 -x5859 -x5858 -x5857 -x5856 -x5855 -x5854 -x5853 -x5852 -x5851 -x5850
2.10/2.18 v -x5849 -x5848 -x5847 -x5846 -x5845 x5844 -x5843 -x5842 -x5841 -x5840 -x5839 -x5838 -x5837 -x5836 x5835 x5834 -x5833 -x5832
2.10/2.18 v -x5831 -x5830 -x5829 -x5828 -x5827 -x5826 -x5825 -x5824 -x5823 -x5822 -x5821 -x5820 -x5819 -x5818 -x5817 -x5816 -x5815 -x5814
2.10/2.18 v -x5813 x5812 -x5811 -x5810 -x5809 -x5808 -x5807 -x5806 -x5805 -x5804 -x5803 -x5802 -x5801 -x5800 x5799 -x5798 x5797 -x5796
2.10/2.18 v -x5795 -x5794 -x5793 -x5792 x5791 -x5790 -x5789 -x5788 -x5787 -x5786 x5785 -x5784 x5783 -x5782 -x5781 -x5780 x5779 x5778 -x5777
2.10/2.18 v -x5776 -x5775 -x5774 -x5773 -x5772 x5771 -x5770 -x5769 x5768 x5767 -x5766 x5765 -x5764 x5763 x5762 x5761 -x5760 x5759 -x5758
2.10/2.18 v -x5757 -x5756 -x5755 -x5754 x5753 -x5752 -x5751 -x5750 -x5749 -x5748 -x5747 -x5746 -x5745 -x5744 -x5743 -x5742 -x5741 -x5740
2.10/2.18 v -x5739 -x5738 -x5737 -x5736 -x5735 -x5734 -x5733 -x5732 -x5731 -x5730 -x5729 -x5728 -x5727 -x5726 -x5725 -x5724 -x5723 -x5722
2.10/2.18 v -x5721 -x5720 -x5719 -x5718 -x5717 x5716 x5715 x5714 x5713 x5712 -x5711 -x5710 -x5709 -x5708 -x5707 -x5706 -x5705 -x5704
2.10/2.18 v -x5703 -x5702 -x5701 x5700 -x5699 -x5698 -x5697 -x5696 x5695 -x5694 -x5693 -x5692 -x5691 -x5690 -x5689 -x5688 -x5687 -x5686
2.10/2.18 v -x5685 -x5684 -x5683 -x5682 -x5681 -x5680 -x5679 -x5678 -x5677 -x5676 -x5675 -x5674 -x5673 -x5672 -x5671 -x5670 -x5669 -x5668
2.10/2.18 v -x5667 -x5666 x5665 -x5664 -x5663 -x5662 -x5661 -x5660 -x5659 -x5658 -x5657 -x5656 -x5655 -x5654 -x5653 -x5652 -x5651 -x5650
2.10/2.18 v -x5649 -x5648 x5647 -x5646 -x5645 -x5644 x5643 -x5642 -x5641 -x5640 -x5639 -x5638 -x5637 -x5636 -x5635 -x5634 -x5633 -x5632
2.10/2.18 v x5631 -x5630 x5629 -x5628 x5627 -x5626 -x5625 -x5624 -x5623 -x5622 -x5621 -x5620 -x5619 -x5618 -x5617 -x5616 -x5615 -x5614 -x5613
2.10/2.18 v -x5612 -x5611 -x5610 -x5609 -x5608 -x5607 -x5606 -x5605 -x5604 -x5603 -x5602 -x5601 -x5600 -x5599 -x5598 x5597 -x5596 -x5595
2.10/2.18 v x5594 -x5593 x5592 x5591 -x5590 -x5589 -x5588 -x5587 -x5586 -x5585 -x5584 x5583 -x5582 x5581 x5580 -x5579 -x5578 -x5577
2.10/2.18 v -x5576 -x5575 -x5574 x5573 x5572 -x5571 -x5570 x5569 -x5568 -x5567 -x5566 -x5565 -x5564 -x5563 -x5562 -x5561 -x5560 x5559 -x5558
2.10/2.18 v -x5557 -x5556 x5555 -x5554 x5553 -x5552 -x5551 -x5550 -x5549 x5548 -x5547 -x5546 -x5545 x5544 x5543 x5542 -x5541 -x5540 x5539
2.10/2.18 v -x5538 -x5537 -x5536 -x5535 -x5534 -x5533 -x5532 -x5531 x5530 -x5529 x5528 x5527 -x5526 x5525 -x5524 x5523 x5522 -x5521
2.10/2.18 v -x5520 -x5519 x5518 -x5517 -x5516 -x5515 x5514 -x5513 -x5512 -x5511 -x5510 -x5509 -x5508 -x5507 -x5506 -x5505 -x5504 -x5503 -x5502
2.10/2.18 v -x5501 -x5500 -x5499 -x5498 x5497 x5496 x5495 -x5494 x5493 -x5492 -x5491 -x5490 x5489 -x5488 x5487 -x5486 -x5485 x5484
2.10/2.18 v x5483 -x5482 -x5481 -x5480 -x5479 x5478 -x5477 -x5476 x5475 -x5474 -x5473 -x5472 -x5471 -x5470 x5469 -x5468 -x5467 -x5466 -x5465
2.10/2.18 v x5464 x5463 -x5462 x5461 -x5460 -x5459 -x5458 -x5457 -x5456 -x5455 -x5454 -x5453 -x5452 x5451 x5450 -x5449 -x5448 -x5447
2.10/2.18 v -x5446 -x5445 -x5444 -x5443 x5442 x5441 x5440 -x5439 -x5438 x5437 x5436 x5435 x5434 x5433 x5432 -x5431 -x5430 -x5429 -x5428 -x5427
2.10/2.18 v -x5426 -x5425 -x5424 -x5423 x5422 x5421 -x5420 -x5419 x5418 -x5417 -x5416 -x5415 -x5414 -x5413 -x5412 -x5411 -x5410 -x5409
2.10/2.18 v -x5408 -x5407 -x5406 -x5405 x5404 -x5403 -x5402 x5401 -x5400 -x5399 -x5398 -x5397 -x5396 -x5395 x5394 -x5393 -x5392 -x5391
2.10/2.18 v -x5390 x5389 -x5388 -x5387 -x5386 -x5385 -x5384 -x5383 -x5382 -x5381 x5380 -x5379 -x5378 -x5377 -x5376 -x5375 -x5374 -x5373
2.10/2.18 v -x5372 -x5371 -x5370 -x5369 -x5368 -x5367 -x5366 -x5365 -x5364 -x5363 -x5362 -x5361 -x5360 -x5359 -x5358 x5357 x5356 -x5355
2.10/2.18 v -x5354 -x5353 -x5352 -x5351 -x5350 -x5349 -x5348 -x5347 -x5346 -x5345 -x5344 -x5343 -x5342 -x5341 -x5340 -x5339 -x5338 -x5337
2.10/2.18 v -x5336 -x5335 -x5334 -x5333 -x5332 -x5331 -x5330 -x5329 -x5328 -x5327 -x5326 -x5325 -x5324 -x5323 -x5322 -x5321 -x5320 -x5319
2.10/2.18 v -x5318 -x5317 -x5316 -x5315 -x5314 -x5313 -x5312 -x5311 -x5310 -x5309 -x5308 -x5307 -x5306 -x5305 -x5304 -x5303 -x5302 -x5301
2.10/2.18 v -x5300 -x5299 -x5298 x5297 x5296 -x5295 -x5294 -x5293 -x5292 -x5291 -x5290 x5289 x5288 x5287 x5286 x5285 -x5284 -x5283 -x5282
2.10/2.18 v -x5281 x5280 -x5279 x5278 -x5277 -x5276 -x5275 -x5274 -x5273 -x5272 -x5271 -x5270 -x5269 -x5268 -x5267 x5266 x5265 -x5264
2.10/2.18 v -x5263 -x5262 -x5261 -x5260 -x5259 -x5258 -x5257 x5256 -x5255 -x5254 x5253 -x5252 -x5251 -x5250 x5249 -x5248 -x5247 -x5246 -x5245
2.10/2.18 v -x5244 -x5243 -x5242 -x5241 -x5240 -x5239 -x5238 -x5237 x5236 -x5235 -x5234 -x5233 -x5232 x5231 -x5230 -x5229 -x5228 -x5227
2.10/2.18 v -x5226 -x5225 -x5224 -x5223 -x5222 -x5221 x5220 x5219 x5218 x5217 x5216 -x5215 -x5214 -x5213 -x5212 -x5211 -x5210 x5209
2.10/2.18 v x5208 -x5207 -x5206 -x5205 -x5204 x5203 x5202 x5201 -x5200 x5199 x5198 x5197 -x5196 x5195 x5194 -x5193 -x5192 x5191 x5190 x5189
2.10/2.18 v -x5188 x5187 -x5186 -x5185 -x5184 -x5183 -x5182 -x5181 -x5180 -x5179 -x5178 -x5177 -x5176 -x5175 -x5174 -x5173 -x5172 -x5171
2.10/2.18 v -x5170 x5169 -x5168 -x5167 x5166 x5165 -x5164 -x5163 -x5162 -x5161 -x5160 -x5159 -x5158 -x5157 -x5156 -x5155 -x5154 -x5153
2.10/2.18 v -x5152 -x5151 x5150 x5149 -x5148 -x5147 -x5146 -x5145 x5144 -x5143 -x5142 -x5141 -x5140 -x5139 -x5138 -x5137 x5136 -x5135 -x5134
2.10/2.18 v x5133 -x5132 x5131 -x5130 -x5129 -x5128 -x5127 -x5126 -x5125 x5124 -x5123 -x5122 -x5121 -x5120 -x5119 -x5118 -x5117 -x5116
2.10/2.18 v -x5115 -x5114 -x5113 -x5112 -x5111 -x5110 -x5109 -x5108 x5107 -x5106 -x5105 -x5104 -x5103 -x5102 -x5101 x5100 -x5099 x5098
2.10/2.18 v -x5097 -x5096 -x5095 -x5094 -x5093 -x5092 -x5091 -x5090 -x5089 -x5088 -x5087 x5086 -x5085 -x5084 -x5083 -x5082 -x5081 -x5080
2.10/2.18 v -x5079 -x5078 -x5077 x5076 -x5075 -x5074 -x5073 x5072 -x5071 x5070 -x5069 -x5068 -x5067 -x5066 -x5065 -x5064 x5063 -x5062 -x5061
2.10/2.18 v x5060 x5059 -x5058 -x5057 x5056 -x5055 -x5054 -x5053 -x5052 -x5051 x5050 x5049 -x5048 x5047 -x5046 -x5045 x5044 -x5043 x5042
2.10/2.18 v -x5041 x5040 x5039 x5038 -x5037 -x5036 -x5035 -x5034 -x5033 -x5032 x5031 x5030 x5029 x5028 -x5027 x5026 -x5025 -x5024 x5023
2.10/2.18 v x5022 -x5021 -x5020 x5019 -x5018 -x5017 x5016 -x5015 -x5014 -x5013 -x5012 -x5011 -x5010 -x5009 x5008 -x5007 -x5006 -x5005
2.10/2.18 v -x5004 -x5003 -x5002 -x5001 -x5000 -x4999 -x4998 x4997 x4996 x4995 -x4994 -x4993 x4992 -x4991 x4990 x4989 -x4988 x4987 -x4986
2.10/2.18 v -x4985 -x4984 -x4983 -x4982 -x4981 -x4980 -x4979 -x4978 -x4977 -x4976 -x4975 -x4974 -x4973 x4972 -x4971 -x4970 -x4969 x4968
2.10/2.18 v x4967 x4966 -x4965 -x4964 -x4963 -x4962 -x4961 -x4960 -x4959 -x4958 -x4957 -x4956 -x4955 -x4954 x4953 -x4952 -x4951 -x4950 -x4949
2.10/2.18 v x4948 -x4947 -x4946 -x4945 x4944 -x4943 x4942 x4941 -x4940 -x4939 -x4938 -x4937 -x4936 -x4935 -x4934 x4933 x4932 -x4931
2.10/2.18 v -x4930 -x4929 -x4928 -x4927 -x4926 -x4925 -x4924 x4923 -x4922 x4921 -x4920 -x4919 -x4918 -x4917 -x4916 -x4915 -x4914 x4913 x4912
2.10/2.18 v -x4911 -x4910 -x4909 -x4908 -x4907 -x4906 -x4905 -x4904 x4903 -x4902 -x4901 -x4900 -x4899 -x4898 -x4897 -x4896 -x4895 -x4894
2.10/2.18 v -x4893 x4892 -x4891 -x4890 -x4889 -x4888 -x4887 -x4886 -x4885 -x4884 -x4883 x4882 x4881 x4880 -x4879 -x4878 -x4877 -x4876
2.10/2.18 v -x4875 -x4874 -x4873 -x4872 x4871 x4870 x4869 x4868 -x4867 -x4866 -x4865 x4864 -x4863 -x4862 -x4861 -x4860 -x4859 -x4858 -x4857
2.10/2.18 v -x4856 -x4855 -x4854 -x4853 x4852 -x4851 -x4850 -x4849 -x4848 -x4847 x4846 x4845 x4844 -x4843 -x4842 -x4841 -x4840 -x4839
2.10/2.18 v -x4838 -x4837 -x4836 -x4835 -x4834 -x4833 -x4832 -x4831 -x4830 -x4829 -x4828 -x4827 x4826 -x4825 -x4824 -x4823 -x4822 x4821
2.10/2.18 v -x4820 -x4819 -x4818 -x4817 -x4816 -x4815 -x4814 -x4813 -x4812 -x4811 -x4810 -x4809 -x4808 -x4807 -x4806 -x4805 -x4804 -x4803
2.10/2.18 v -x4802 -x4801 -x4800 x4799 -x4798 -x4797 -x4796 -x4795 -x4794 -x4793 -x4792 -x4791 -x4790 -x4789 -x4788 -x4787 -x4786 -x4785
2.10/2.18 v -x4784 -x4783 -x4782 -x4781 -x4780 x4779 -x4778 -x4777 -x4776 -x4775 -x4774 x4773 x4772 x4771 x4770 -x4769 -x4768 x4767 x4766
2.10/2.18 v -x4765 -x4764 -x4763 -x4762 -x4761 -x4760 -x4759 -x4758 -x4757 -x4756 -x4755 -x4754 x4753 -x4752 x4751 -x4750 -x4749 -x4748
2.10/2.18 v -x4747 -x4746 -x4745 -x4744 -x4743 -x4742 -x4741 -x4740 -x4739 -x4738 -x4737 -x4736 -x4735 -x4734 -x4733 -x4732 -x4731 -x4730
2.10/2.18 v -x4729 -x4728 -x4727 -x4726 -x4725 -x4724 x4723 x4722 -x4721 -x4720 -x4719 x4718 -x4717 -x4716 -x4715 -x4714 x4713 -x4712
2.10/2.18 v -x4711 -x4710 x4709 x4708 -x4707 -x4706 -x4705 -x4704 -x4703 -x4702 -x4701 -x4700 -x4699 -x4698 -x4697 -x4696 -x4695 -x4694 x4693
2.10/2.18 v -x4692 x4691 -x4690 -x4689 -x4688 -x4687 -x4686 -x4685 -x4684 x4683 -x4682 -x4681 -x4680 -x4679 -x4678 -x4677 -x4676 -x4675
2.10/2.18 v -x4674 -x4673 -x4672 -x4671 -x4670 -x4669 -x4668 -x4667 -x4666 -x4665 -x4664 -x4663 -x4662 -x4661 -x4660 -x4659 -x4658 -x4657
2.10/2.18 v -x4656 -x4655 -x4654 -x4653 -x4652 -x4651 -x4650 -x4649 -x4648 -x4647 -x4646 -x4645 -x4644 -x4643 -x4642 -x4641 -x4640 -x4639
2.10/2.18 v -x4638 -x4637 -x4636 -x4635 -x4634 -x4633 -x4632 -x4631 -x4630 -x4629 -x4628 -x4627 x4626 -x4625 -x4624 -x4623 -x4622 -x4621
2.10/2.18 v -x4620 -x4619 x4618 -x4617 -x4616 -x4615 -x4614 -x4613 -x4612 -x4611 -x4610 -x4609 -x4608 -x4607 -x4606 -x4605 -x4604 -x4603
2.10/2.18 v -x4602 -x4601 -x4600 -x4599 -x4598 x4597 -x4596 -x4595 -x4594 -x4593 -x4592 -x4591 -x4590 x4589 -x4588 -x4587 -x4586 x4585
2.10/2.18 v x4584 -x4583 -x4582 -x4581 -x4580 -x4579 -x4578 -x4577 -x4576 -x4575 -x4574 -x4573 -x4572 -x4571 x4570 x4569 x4568 -x4567
2.10/2.18 v -x4566 -x4565 -x4564 -x4563 -x4562 -x4561 -x4560 -x4559 -x4558 -x4557 -x4556 x4555 -x4554 -x4553 -x4552 -x4551 -x4550 -x4549
2.10/2.18 v -x4548 -x4547 -x4546 -x4545 -x4544 -x4543 -x4542 -x4541 -x4540 -x4539 -x4538 -x4537 -x4536 x4535 -x4534 -x4533 -x4532 -x4531
2.10/2.18 v -x4530 -x4529 -x4528 -x4527 -x4526 -x4525 -x4524 -x4523 -x4522 -x4521 -x4520 -x4519 -x4518 -x4517 -x4516 -x4515 -x4514 -x4513
2.10/2.18 v -x4512 -x4511 -x4510 -x4509 -x4508 -x4507 -x4506 -x4505 -x4504 -x4503 -x4502 -x4501 -x4500 -x4499 -x4498 -x4497 -x4496 -x4495
2.10/2.18 v -x4494 -x4493 -x4492 -x4491 -x4490 -x4489 -x4488 -x4487 -x4486 -x4485 -x4484 -x4483 -x4482 -x4481 -x4480 -x4479 -x4478 -x4477
2.10/2.18 v -x4476 -x4475 -x4474 -x4473 -x4472 x4471 x4470 x4469 -x4468 -x4467 -x4466 -x4465 -x4464 -x4463 -x4462 -x4461 -x4460 -x4459
2.10/2.18 v -x4458 -x4457 -x4456 -x4455 -x4454 -x4453 -x4452 -x4451 -x4450 -x4449 -x4448 x4447 x4446 x4445 -x4444 -x4443 -x4442 -x4441
2.10/2.18 v -x4440 -x4439 -x4438 -x4437 -x4436 -x4435 -x4434 -x4433 -x4432 -x4431 -x4430 -x4429 -x4428 -x4427 -x4426 -x4425 -x4424 -x4423
2.10/2.18 v -x4422 x4421 x4420 -x4419 -x4418 -x4417 -x4416 -x4415 -x4414 -x4413 -x4412 -x4411 -x4410 -x4409 -x4408 -x4407 -x4406 -x4405
2.10/2.18 v -x4404 -x4403 -x4402 -x4401 -x4400 -x4399 -x4398 x4397 x4396 -x4395 -x4394 -x4393 -x4392 -x4391 -x4390 -x4389 -x4388 -x4387 x4386
2.10/2.18 v x4385 x4384 x4383 -x4382 -x4381 -x4380 -x4379 -x4378 -x4377 -x4376 -x4375 -x4374 x4373 -x4372 -x4371 -x4370 -x4369 -x4368
2.10/2.18 v -x4367 -x4366 -x4365 -x4364 -x4363 -x4362 -x4361 x4360 x4359 x4358 -x4357 -x4356 -x4355 x4354 -x4353 -x4352 -x4351 -x4350 -x4349
2.10/2.18 v -x4348 -x4347 -x4346 -x4345 x4344 x4343 -x4342 -x4341 x4340 x4339 x4338 -x4337 -x4336 -x4335 x4334 -x4333 -x4332 -x4331
2.10/2.18 v x4330 -x4329 -x4328 -x4327 -x4326 -x4325 -x4324 -x4323 -x4322 -x4321 -x4320 -x4319 -x4318 -x4317 -x4316 -x4315 -x4314 -x4313
2.10/2.18 v -x4312 -x4311 -x4310 -x4309 -x4308 -x4307 -x4306 -x4305 -x4304 -x4303 -x4302 -x4301 -x4300 -x4299 -x4298 -x4297 -x4296 -x4295
2.10/2.18 v -x4294 -x4293 -x4292 -x4291 -x4290 -x4289 -x4288 -x4287 -x4286 -x4285 -x4284 -x4283 -x4282 -x4281 -x4280 -x4279 -x4278 -x4277
2.10/2.18 v -x4276 -x4275 -x4274 -x4273 -x4272 -x4271 -x4270 -x4269 -x4268 -x4267 -x4266 -x4265 -x4264 -x4263 -x4262 -x4261 -x4260 -x4259
2.10/2.18 v -x4258 -x4257 -x4256 -x4255 -x4254 -x4253 -x4252 -x4251 -x4250 -x4249 -x4248 -x4247 -x4246 -x4245 -x4244 -x4243 -x4242 -x4241
2.10/2.18 v -x4240 -x4239 -x4238 -x4237 -x4236 -x4235 -x4234 -x4233 -x4232 -x4231 -x4230 -x4229 -x4228 -x4227 -x4226 -x4225 -x4224 -x4223
2.10/2.18 v -x4222 -x4221 -x4220 -x4219 -x4218 -x4217 -x4216 -x4215 -x4214 -x4213 -x4212 -x4211 -x4210 -x4209 -x4208 -x4207 -x4206
2.10/2.18 v -x4205 -x4204 -x4203 -x4202 -x4201 -x4200 -x4199 -x4198 -x4197 -x4196 -x4195 -x4194 -x4193 -x4192 -x4191 -x4190 -x4189 -x4188
2.10/2.18 v -x4187 -x4186 -x4185 -x4184 -x4183 -x4182 -x4181 -x4180 -x4179 -x4178 x4177 -x4176 -x4175 -x4174 -x4173 -x4172 -x4171 -x4170
2.10/2.18 v -x4169 -x4168 -x4167 -x4166 -x4165 -x4164 -x4163 -x4162 -x4161 -x4160 -x4159 -x4158 -x4157 -x4156 -x4155 -x4154 -x4153 -x4152
2.10/2.18 v -x4151 -x4150 -x4149 -x4148 -x4147 -x4146 -x4145 -x4144 x4143 -x4142 -x4141 -x4140 -x4139 -x4138 -x4137 -x4136 -x4135 -x4134
2.10/2.18 v -x4133 -x4132 -x4131 -x4130 -x4129 -x4128 -x4127 -x4126 -x4125 -x4124 -x4123 -x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116
2.10/2.18 v -x4115 -x4114 -x4113 -x4112 -x4111 -x4110 -x4109 -x4108 -x4107 -x4106 -x4105 -x4104 -x4103 -x4102 -x4101 -x4100 -x4099 -x4098
2.10/2.18 v -x4097 -x4096 -x4095 -x4094 -x4093 -x4092 -x4091 -x4090 -x4089 -x4088 -x4087 -x4086 -x4085 -x4084 -x4083 -x4082 -x4081 -x4080
2.10/2.18 v -x4079 -x4078 -x4077 -x4076 -x4075 -x4074 -x4073 -x4072 -x4071 -x4070 -x4069 -x4068 -x4067 -x4066 -x4065 -x4064 x4063 -x4062
2.10/2.18 v -x4061 -x4060 -x4059 -x4058 -x4057 -x4056 -x4055 -x4054 -x4053 -x4052 -x4051 -x4050 -x4049 -x4048 -x4047 -x4046 -x4045 -x4044
2.10/2.18 v -x4043 -x4042 -x4041 -x4040 -x4039 -x4038 -x4037 -x4036 -x4035 -x4034 -x4033 -x4032 -x4031 -x4030 -x4029 -x4028 -x4027
2.10/2.18 v -x4026 -x4025 -x4024 -x4023 -x4022 -x4021 -x4020 -x4019 -x4018 -x4017 -x4016 -x4015 -x4014 -x4013 -x4012 -x4011 -x4010 -x4009
2.10/2.18 v -x4008 -x4007 -x4006 -x4005 -x4004 -x4003 -x4002 -x4001 -x4000 -x3999 -x3998 -x3997 -x3996 -x3995 -x3994 -x3993 -x3992 -x3991
2.10/2.18 v -x3990 -x3989 -x3988 -x3987 -x3986 -x3985 -x3984 -x3983 -x3982 -x3981 -x3980 -x3979 -x3978 -x3977 -x3976 -x3975 -x3974 -x3973
2.10/2.18 v -x3972 -x3971 -x3970 -x3969 -x3968 -x3967 -x3966 -x3965 -x3964 -x3963 -x3962 -x3961 -x3960 -x3959 -x3958 -x3957 -x3956 -x3955
2.10/2.18 v -x3954 -x3953 -x3952 -x3951 -x3950 -x3949 -x3948 -x3947 -x3946 -x3945 -x3944 -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937
2.10/2.18 v -x3936 -x3935 -x3934 -x3933 -x3932 -x3931 -x3930 -x3929 -x3928 -x3927 -x3926 -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919
2.10/2.18 v -x3918 -x3917 -x3916 -x3915 -x3914 -x3913 -x3912 -x3911 -x3910 -x3909 -x3908 -x3907 -x3906 -x3905 -x3904 -x3903 -x3902
2.10/2.18 v -x3901 -x3900 -x3899 -x3898 -x3897 -x3896 -x3895 -x3894 -x3893 -x3892 -x3891 -x3890 -x3889 -x3888 x3887 -x3886 -x3885 -x3884
2.10/2.18 v -x3883 -x3882 -x3881 -x3880 -x3879 -x3878 -x3877 -x3876 -x3875 -x3874 -x3873 -x3872 -x3871 -x3870 -x3869 -x3868 -x3867 -x3866
2.10/2.18 v -x3865 -x3864 -x3863 -x3862 -x3861 -x3860 -x3859 -x3858 -x3857 -x3856 -x3855 -x3854 -x3853 -x3852 -x3851 -x3850 -x3849 -x3848
2.10/2.18 v -x3847 -x3846 -x3845 -x3844 -x3843 -x3842 -x3841 -x3840 -x3839 -x3838 -x3837 -x3836 -x3835 -x3834 -x3833 -x3832 -x3831 -x3830
2.10/2.18 v -x3829 -x3828 -x3827 -x3826 -x3825 -x3824 -x3823 -x3822 -x3821 -x3820 -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813 -x3812
2.10/2.18 v -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805 -x3804 -x3803 -x3802 -x3801 -x3800 -x3799 -x3798 -x3797 -x3796 -x3795 -x3794
2.10/2.18 v -x3793 -x3792 -x3791 -x3790 -x3789 -x3788 -x3787 -x3786 -x3785 -x3784 -x3783 -x3782 -x3781 -x3780 -x3779 -x3778 -x3777 -x3776
2.10/2.18 v -x3775 -x3774 -x3773 -x3772 -x3771 -x3770 -x3769 -x3768 -x3767
2.10/2.18 c SCIP Status : problem is solved [optimal solution found]
2.10/2.18 c Total Time : 2.17
2.10/2.18 c solving : 2.17
2.10/2.18 c presolving : 1.94 (included in solving)
2.10/2.18 c reading : 0.05 (included in solving)
2.10/2.18 c copying : 0.00 (0 times copied the problem)
2.10/2.18 c Original Problem :
2.10/2.18 c Problem name : HOME/instance-4432806-1721124031.opb
2.10/2.18 c Variables : 5980 (5980 binary, 0 integer, 0 implicit integer, 0 continuous)
2.10/2.18 c Constraints : 26929 initial, 26929 maximal
2.10/2.18 c Objective : minimize, 2214 non-zeros (abs.min = 1, abs.max = 1665)
2.10/2.18 c Presolved Problem :
2.10/2.18 c Problem name : t_HOME/instance-4432806-1721124031.opb
2.10/2.18 c Variables : 1664 (1664 binary, 0 integer, 0 implicit integer, 0 continuous)
2.10/2.18 c Constraints : 4372 initial, 4413 maximal
2.10/2.18 c Objective : minimize, 1179 non-zeros (abs.min = 1, abs.max = 4998)
2.10/2.18 c Nonzeros : 12712 constraint, 25722 clique table
2.10/2.18 c Presolvers : ExecTime SetupTime Calls FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
2.10/2.18 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c domcol : 0.00 0.00 3 0 0 0 0 0 0 0 0 0
2.10/2.18 c dualagg : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c dualcomp : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c dualinfer : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c dualsparsify : 0.00 0.00 2 0 0 0 0 0 0 0 0 0
2.10/2.18 c gateextraction : 0.10 0.00 24 0 0 0 0 0 3551 869 0 0
2.10/2.18 c implics : 0.00 0.00 48 0 0 0 0 0 0 0 0 0
2.10/2.18 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c milp : 0.28 0.00 1 504 675 0 0 0 20514 10606 0 0
2.10/2.18 c qpkktref : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c redvub : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c sparsify : 0.00 0.00 1 0 0 0 0 0 0 0 0 0
2.10/2.18 c stuffing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c trivial : 0.01 0.00 100 143 0 0 0 0 0 0 0 0
2.10/2.18 c tworowbnd : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c dualfix : 0.01 0.00 100 879 0 0 0 0 0 0 0 0
2.10/2.18 c genvbounds : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c probing : 0.94 0.00 3 1 10 0 0 0 0 0 0 0
2.10/2.18 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.18 c symmetry : 0.03 0.00 1 21 0 0 0 0 1 237 0 0
2.10/2.18 c vbounds : 0.00 0.00 2 0 0 0 0 0 0 0 0 0
2.10/2.18 c knapsack : 0.00 0.00 155 0 0 0 0 0 13 16 10 56
2.10/2.18 c setppc : 0.29 0.00 155 413 757 0 0 0 2048 0 493 492
2.10/2.18 c and : 0.00 0.00 100 0 23 0 0 0 232 249 0 0
2.10/2.18 c linear : 0.11 0.01 113 53 794 0 53 0 6726 0 4 0
2.10/2.18 c orbitope : 0.00 0.00 9 0 0 0 0 0 0 0 0 0
2.10/2.18 c logicor : 0.13 0.00 145 11 28 0 0 0 1444 0 0 1977
2.10/2.19 c benders : 0.00 0.00 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c components : 0.01 0.00 1 9 0 0 0 0 6 0 0 0
2.10/2.19 c root node : - - - 485 - - 485 - - - - -
2.10/2.19 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoRelax #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Applied Conss Children
2.10/2.19 c benderslp : 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0
2.10/2.19 c integral : 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0
2.10/2.19 c knapsack : 8 8 1 8803 0 0 0 9 0 0 0 0 0 0 0
2.10/2.19 c setppc : 2607+ 2645 1 10072 0 0 0 8 117 22 0 3 0 0 0
2.10/2.19 c and : 8 8 1 9324 0 0 0 6 0 0 0 0 0 0 0
2.10/2.19 c linear : 1 1 1 8154 0 0 0 9 2 0 0 0 0 0 0
2.10/2.19 c orbitope : 21 21 0 4507 0 0 0 6 0 1 0 0 0 0 0
2.10/2.19 c logicor : 1727+ 1730 1 6209 0 0 0 6 43 25 0 0 0 0 0
2.10/2.19 c benders : 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0
2.10/2.19 c fixedvar : 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0
2.10/2.19 c countsols : 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0
2.10/2.19 c components : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS EnfoRelax Check ResProp SB-Prop
2.10/2.19 c benderslp : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c integral : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c knapsack : 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c setppc : 0.28 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c and : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c linear : 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c orbitope : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c logicor : 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c benders : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c fixedvar : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c components : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c Propagators : #Propagate #ResProp Cutoffs DomReds
2.10/2.19 c dualfix : 2 0 0 0
2.10/2.19 c genvbounds : 0 0 0 0
2.10/2.19 c nlobbt : 0 0 0 0
2.10/2.19 c obbt : 0 0 0 0
2.10/2.19 c probing : 0 0 0 0
2.10/2.19 c pseudoobj : 5 0 0 1
2.10/2.19 c redcost : 2 0 0 478
2.10/2.19 c rootredcost : 0 0 0 0
2.10/2.19 c symmetry : 0 0 0 0
2.10/2.19 c vbounds : 2992 0 0 0
2.10/2.19 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp SB-Prop
2.10/2.19 c dualfix : 0.01 0.00 0.01 0.00 0.00 0.00
2.10/2.19 c genvbounds : 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c nlobbt : 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c obbt : 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c probing : 0.94 0.00 0.94 0.00 0.00 0.00
2.10/2.19 c pseudoobj : 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c redcost : 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c rootredcost : 0.00 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c symmetry : 0.03 0.00 0.03 0.00 0.00 0.00
2.10/2.19 c vbounds : 0.01 0.00 0.00 0.00 0.00 0.00
2.10/2.19 c Symmetry :
2.10/2.19 c orbitopal red. : 0 reductions applied, 0 cutoffs
2.10/2.19 c orbital reduction: 0 reductions applied, 0 cutoffs
2.10/2.19 c lexicographic red: 0 reductions applied, 0 cutoffs
2.10/2.19 c shadow tree time : 0.00 s
2.10/2.19 c Conflict Analysis : Time Calls Success DomReds Conflicts Literals Reconvs ReconvLits Dualrays Nonzeros LP Iters (pool size: [10000,10000])
2.10/2.19 c propagation : 0.00 43 42 - 43 2.2 4 2.0 - - -
2.10/2.19 c infeasible LP : 0.00 0 0 - 0 0.0 0 0.0 0 0.0 0
2.10/2.19 c bound exceed. LP : 0.00 3 0 - 0 0.0 0 0.0 0 0.0 30
2.10/2.19 c strong branching : 0.00 0 0 - 0 0.0 0 0.0 - - 0
2.10/2.19 c pseudo solution : 0.00 0 0 - 0 0.0 0 0.0 - - -
2.10/2.19 c applied globally : 0.00 - - 0 47 2.0 - - 0 - -
2.10/2.19 c applied locally : - - - 0 0 0.0 - - 0 - -
2.10/2.19 c Separators : ExecTime SetupTime Calls RootCalls Cutoffs DomReds FoundCuts ViaPoolAdd DirectAdd Applied ViaPoolApp DirectApp Conss
2.10/2.19 c cut pool : 0.00 - 1 1 - - 54 54 - - - - - (maximal pool size: 54)
2.10/2.19 c aggregation : 0.00 0.00 1 1 0 0 0 0 0 0 0 0 0
2.10/2.19 c > cmir : - - - - - - - 0 0 0 0 0 -
2.10/2.19 c > flowcover : - - - - - - - 0 0 0 0 0 -
2.10/2.19 c > knapsackcover : - - - - - - - 0 0 0 0 0 -
2.10/2.19 c cgmip : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c clique : 0.02 0.00 1 1 0 0 7 7 0 1 1 0 0
2.10/2.19 c closecuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c convexproj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c disjunctive : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c eccuts : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c gauge : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c gomory : 0.00 0.00 1 1 0 0 5 5 0 1 1 0 0
2.10/2.19 c > gomorymi : - - - - - - - 1 0 0 0 0 -
2.10/2.19 c > strongcg : - - - - - - - 4 0 1 1 0 -
2.10/2.19 c impliedbounds : 0.00 0.00 1 1 0 1 39 39 0 10 10 0 0
2.10/2.19 c interminor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c intobj : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c lagromory : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c mcf : 0.00 0.00 1 1 0 0 0 0 0 0 0 0 0
2.10/2.19 c minor : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c mixing : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c multilinear : 0.00 0.00 1 1 0 0 0 0 0 0 0 0 0
2.10/2.19 c oddcycle : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c rapidlearning : 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0
2.10/2.19 c rlt : 0.00 0.00 1 1 0 0 0 0 0 0 0 0 0
2.10/2.19 c zerohalf : 0.00 0.00 1 1 0 0 3 3 0 0 0 0 0
2.10/2.19 c Cutselectors : ExecTime SetupTime Calls RootCalls Selected Forced Filtered RootSelec RootForc RootFilt
2.10/2.19 c hybrid : 0.00 0.00 1 1 12 0 45 12 0 45
2.10/2.19 c ensemble : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c dynamic : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c Pricers : ExecTime SetupTime Calls Vars
2.10/2.19 c problem variables: 0.00 - 0 0
2.10/2.19 c Branching Rules : ExecTime SetupTime BranchLP BranchExt BranchPS Cutoffs DomReds Cuts Conss Children
2.10/2.19 c allfullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c cloud : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c distribution : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c fullstrong : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c gomory : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c inference : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c leastinf : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c lookahead : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c mostinf : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c multaggr : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c nodereopt : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c pscost : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c random : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c relpscost : 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c vanillafullstrong: 0.00 0.00 0 0 0 0 0 0 0 0
2.10/2.19 c Primal Heuristics : ExecTime SetupTime Calls Found Best
2.10/2.19 c LP solutions : 0.00 - - 0 0
2.10/2.19 c relax solutions : 0.00 - - 0 0
2.10/2.19 c pseudo solutions : 0.00 - - 0 0
2.10/2.19 c strong branching : 0.00 - - 0 0
2.10/2.19 c actconsdiving : 0.00 0.00 0 0 0
2.10/2.19 c adaptivediving : 0.00 0.00 0 0 0
2.10/2.19 c alns : 0.00 0.00 0 0 0
2.10/2.19 c bound : 0.00 0.00 0 0 0
2.10/2.19 c clique : 0.04 0.00 1 1 1
2.10/2.19 c coefdiving : 0.00 0.00 0 0 0
2.10/2.19 c completesol : 0.00 0.00 0 0 0
2.10/2.19 c conflictdiving : 0.00 0.00 0 0 0
2.10/2.19 c crossover : 0.00 0.00 0 0 0
2.10/2.19 c dins : 0.00 0.00 0 0 0
2.10/2.19 c distributiondivin: 0.00 0.00 0 0 0
2.10/2.19 c dps : 0.00 0.00 0 0 0
2.10/2.19 c dualval : 0.00 0.00 0 0 0
2.10/2.19 c farkasdiving : 0.00 0.00 0 0 0
2.10/2.19 c feasjump : 0.00 0.00 0 0 0
2.10/2.19 c feaspump : 0.00 0.00 0 0 0
2.10/2.19 c fixandinfer : 0.00 0.00 0 0 0
2.10/2.19 c fracdiving : 0.00 0.00 0 0 0
2.10/2.19 c gins : 0.00 0.00 0 0 0
2.10/2.19 c guideddiving : 0.00 0.00 0 0 0
2.10/2.19 c indcoefdiving : 0.00 0.00 0 0 0
2.10/2.19 c indicator : 0.00 0.00 0 0 0
2.10/2.19 c indicatordiving : 0.00 0.00 0 0 0
2.10/2.19 c indoneopt : 0.00 0.00 0 0 0
2.10/2.19 c indrounding : 0.00 0.00 0 0 0
2.10/2.19 c indtwoopt : 0.00 0.00 0 0 0
2.10/2.19 c intdiving : 0.00 0.00 0 0 0
2.10/2.19 c intshifting : 0.00 0.00 0 0 0
2.10/2.19 c linesearchdiving : 0.00 0.00 0 0 0
2.10/2.19 c localbranching : 0.00 0.00 0 0 0
2.10/2.19 c locks : 0.01 0.00 1 0 0
2.10/2.19 c lpface : 0.00 0.00 0 0 0
2.10/2.19 c mpec : 0.00 0.00 0 0 0
2.10/2.19 c multistart : 0.00 0.00 0 0 0
2.10/2.19 c mutation : 0.00 0.00 0 0 0
2.10/2.19 c nlpdiving : 0.00 0.00 0 0 0
2.10/2.19 c objpscostdiving : 0.00 0.00 0 0 0
2.10/2.19 c octane : 0.00 0.00 0 0 0
2.10/2.19 c ofins : 0.00 0.00 0 0 0
2.10/2.19 c oneopt : 0.00 0.00 2 1 1
2.10/2.19 c padm : 0.00 0.00 0 0 0
2.10/2.19 c proximity : 0.00 0.00 0 0 0
2.10/2.19 c pscostdiving : 0.00 0.00 0 0 0
2.10/2.19 c randrounding : 0.00 0.00 2 1 1
2.10/2.19 c rens : 0.00 0.00 0 0 0
2.10/2.19 c reoptsols : 0.00 0.00 0 0 0
2.10/2.19 c repair : 0.00 0.00 0 0 0
2.10/2.19 c rins : 0.00 0.00 0 0 0
2.10/2.19 c rootsoldiving : 0.00 0.00 0 0 0
2.10/2.19 c rounding : 0.00 0.00 1 0 0
2.10/2.19 c scheduler : 0.00 0.00 0 0 0
2.10/2.19 c shiftandpropagate: 0.00 0.00 0 0 0
2.10/2.19 c shifting : 0.00 0.00 1 1 1
2.10/2.19 c simplerounding : 0.00 0.00 2 0 0
2.10/2.19 c smallcard : 0.00 0.00 0 0 0
2.10/2.19 c subnlp : 0.00 0.00 0 0 0
2.10/2.19 c trivial : 0.00 0.00 2 0 0
2.10/2.19 c trivialnegation : 0.00 0.00 0 0 0
2.10/2.19 c trustregion : 0.00 0.00 0 0 0
2.10/2.19 c trysol : 0.00 0.00 0 0 0
2.10/2.19 c twoopt : 0.00 0.00 0 0 0
2.10/2.19 c undercover : 0.00 0.00 1 0 0
2.10/2.19 c vbounds : 0.04 0.00 1 1 1
2.10/2.19 c veclendiving : 0.00 0.00 0 0 0
2.10/2.19 c zeroobj : 0.00 0.00 0 0 0
2.10/2.19 c zirounding : 0.00 0.00 0 0 0
2.10/2.19 c other solutions : - - - 0 -
2.10/2.19 c LNS (Scheduler) : Calls SetupTime SolveTime SolveNodes Sols Best Exp3 Exp3-IX EpsGreedy UCB TgtFixRate Opt Inf Node Stal Sol Usr Othr Actv
2.10/2.19 c rens : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
2.10/2.19 c rins : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
2.10/2.19 c mutation : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
2.10/2.19 c localbranching : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
2.10/2.19 c crossover : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
2.10/2.19 c proximity : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
2.10/2.19 c zeroobjective : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
2.10/2.19 c dins : 0 0.00 0.00 0 0 0 0.00000 0.12500 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 1
2.10/2.19 c trustregion : 0 0.00 0.00 0 0 0 0.00000 0.00000 -1.00000 1.00000 0.900 0 0 0 0 0 0 0 0
2.10/2.19 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It ItLimit
2.10/2.19 c primal LP : 0.00 0 0 0.00 - 0.00 0
2.10/2.19 c dual LP : 0.01 4 213 106.50 - 0.00 2
2.10/2.19 c lex dual LP : 0.00 0 0 0.00 -
2.10/2.19 c barrier LP : 0.00 0 0 0.00 - 0.00 0
2.10/2.19 c resolve instable : 0.00 0 0 0.00 -
2.10/2.19 c diving/probing LP: 0.01 1 7 7.00 -
2.10/2.19 c strong branching : 0.00 0 0 0.00 - - - 0
2.10/2.19 c (at root node) : - 0 0 0.00 -
2.10/2.19 c conflict analysis: 0.00 3 30 10.00 -
2.10/2.19 c B&B Tree :
2.10/2.19 c number of runs : 1
2.10/2.19 c nodes : 1 (0 internal, 1 leaves)
2.10/2.19 c feasible leaves : 0
2.10/2.19 c infeas. leaves : 0
2.10/2.19 c objective leaves : 0
2.10/2.19 c nodes (total) : 1 (0 internal, 1 leaves)
2.10/2.19 c nodes left : 0
2.10/2.19 c max depth : 0
2.10/2.19 c max depth (total): 0
2.10/2.19 c backtracks : 0 (0.0%)
2.10/2.19 c early backtracks : 0 (0.0%)
2.10/2.19 c nodes exc. ref. : 0 (0.0%)
2.10/2.19 c delayed cutoffs : 0
2.10/2.19 c repropagations : 0 (0 domain reductions, 0 cutoffs)
2.10/2.19 c avg switch length: 2.00
2.10/2.19 c switching time : 0.00
2.10/2.19 c Root Node :
2.10/2.19 c First LP value : +6.94183333333334e+03
2.10/2.19 c First LP Iters : 207 (52141.06 Iter/sec)
2.10/2.19 c First LP Time : 0.00
2.10/2.19 c Final Dual Bound : +6.94300000000000e+03
2.10/2.19 c Final Root Iters : 213
2.10/2.19 c Root LP Estimate : -
2.10/2.19 c Solution :
2.10/2.19 c Solutions found : 5 (5 improvements)
2.10/2.19 c First Solution : +2.37490000000000e+04 (in run 1, after 1 nodes, 2.07 seconds, depth 423, found by <clique>)
2.10/2.19 c Gap First Sol. : infinite
2.10/2.19 c Gap Last Sol. : 0.00 %
2.10/2.19 c Primal Bound : +6.94300000000000e+03 (in run 1, after 1 nodes, 2.17 seconds, depth 5, found by <randrounding>)
2.10/2.19 c Dual Bound : +6.94300000000000e+03
2.10/2.19 c Gap : 0.00 %
2.10/2.19 c Integrals : Total Avg%
2.10/2.19 c primal-dual : 212.81 98.05
2.10/2.19 c primal-ref : - - (not evaluated)
2.10/2.19 c dual-ref : - - (not evaluated)
2.18/2.22 c Time complete: 2.21116.