
Restricted OPB Format
in Use in the PB Competitions

Olivier ROUSSEL

roussel@cril.fr

Version of this document
The version number and the date of this document (as recorded by the versioning sys-
tem) are given below. They let you identify quickly if you have the most recent version
of this document.

Version: $Rev: 4524 $
Last modification: $Date: 2024-03-11 18:52:57 +0100 (Mon, 11 Mar 2024) $

This document is based on the description of the OPB format used in the PB16
competition [RM16], with the following main changes :

• separation of the description of the general OPB format from the description of
the restricted format used in the competition

• introduction of the #equal= hint to facilitate constraints allocation

• introduction of the intsize= hint to let the solver decide if it can deal with the
integers used in the formula

1 Summary of the simplifications applied to the general
OPB format

In order to facilitate the participation of a solver to the competition, the general OPB
format is not used, but instead, a simplified, restricted version. This simplified format
is a subset of the general format. High quality provers are encouraged to parse the
general format, which is more user-friendly.

The main simplifications and restrictions are presented below:

• Only ASCII characters may be used in the file. Other Unicode characters are
forbidden.

• The objective function can only be min:.

1

• A Boolean variable (atom) always starts by a lowercase ’x’ immediately followed
by a strictly positive integer number. The integer number can be considered
as an identifier of the variable. This integer identifier is strictly less than 232.
Therefore, a solver can input a variable name by reading a character (to skip the
’x’) and then a 32 bits integer.

• Variable names are guaranteed to range from ”x1” to ”xN” where N is the total
number of variables in the instance (as given on the first line of the file). Each
variable between x1 and xN will occur in at least one constraint or the objective
function.

• Each variable present in the objective function will occur in at least one con-
straint.

• The negation of an atom A (∼ A) will not appear in a linear pseudo-Boolean file
(it will be translated to 1-A).

• The only relational operators used are >= and =. These are always written with
ASCII characters.

• As a hint to perform memory allocation, the first line of a linear instance will be
a comment containing a sequence of keyword-value pairs. A space separates the
keyword and the value to make parsing trivial. The separator between pairs is a
space. The list of keywords, in order, is the following (new keywords are shown
in bold face):

1. ”#variable=” is followed by a space and the number of variables in the file,

2. ”#constraint=” followed by a space and the number of constraints in the
file,

3. ”#equal=” followed by a space and the number of “strictly equal” con-
straints in the file,

4. ”intsize=” followed by a space and the number of bits required to
represent, for any constraint of the formula, the sum of the absolute
value of all integers that appear in the constraint. Formally, let Ci be
a constraint

∑
j c

i
j .xj ≥ d (where ≥ may be replaced by =). If there

is an objective function, it is seen as a pseudo constraint with a null de-
gree (d = 0). The value size that appears after ”intsize=” is given by
size = maxi(1 + ⌊log2(|d| +

∑
j |cij |)⌋). A solver which uses integers

of at least size bits (plus one for signed integers) and that simply checks
the satisfaction of constraints by summing the coefficient of all true lit-
erals and subtracting the degree of the constraint will never face integer
overflow. Solvers that perform more clever computations (such as PB con-
straints learning) should be more careful.

• For a non-linear instance, the first line will be a comment containing the sequence
of keyword-value pairs defined for linear instances, followed by the pairs given
below, in order:

2

1. ”#product=” is followed by a space and the number of different products of
variables present in the file

2. ”sizeproduct=” is followed by a space and the total number of literals which
appear in different products.

These two informations allow the parsers to compute the total number of linear
constraints that will be passed to the solver when the parser is asked to linearize
the formula. The keyword ”#product=” also clearly indicates that this is a non-
linear instance.

• Variables that appear inside a product are guaranteed to be ordered from the
lowest to the greatest index.

• In the WBO tracks of PB competition, the top cost will always be specified.
When all interpretations are admissible (i.e. when T = ∞), T will be given as 1
plus the sum of each soft constraint cost.

2 Introduction
This document presents the restricted OPB format, which is intended to be used only in
the PB competitions. A high quality pseudo-Boolean solver is expected to support the
general OPB format, which is slightly more complex, but more user-friendly. In con-
strast, the restricted format is solver-friendly, that is, it simplifies the implementation
of a PB solver.

The initial OPB format was described at the end of the README file in the dis-
tribution of OPBDP http://opbdp.sourceforge.net/. It was subsequently
extended and modified for the needs of the PB competitions (from PB05 https://
www.cril.univ-artois.fr/PB05/ to PB16 https://www.cril.univ-artois.
fr/PB16/).

The current version of the OPB format allows to express two different kinds of
constraints (linear and non-linear) and three different problems: PBS (Pseudo-Boolean
Satisfaction), PBO (Pseudo-Boolean Optimization), WBO (Weighted-Boolean Opti-
mization). The OPB format allows to express constraints with integer coefficients of
arbitrary size.

3 Input Format
This section details the input format for

• Pseudo-Boolean Satisfaction (PBS) instances (Section 4.1)
the solver must find an interpretation which satisfies each constraint (decision
problem)

• Pseudo-Boolean Optimization (PBO) instances (Section 4.1)
the solver must find an interpretation which satisfies each constraint and mini-
mizes the value of an objective function (optimization problem)

3

http://opbdp.sourceforge.net/
https://www.cril.univ-artois.fr/PB05/
https://www.cril.univ-artois.fr/PB05/
https://www.cril.univ-artois.fr/PB16/
https://www.cril.univ-artois.fr/PB16/

• Weighted Boolean Optimization (WBO) instances (Section 4.2)
the solver must find an interpretation which minimizes the cost of violated con-
straints (optimization problem)

4 Size of integers
A pseudo-Boolean formula may use integers of arbitrary size, because this can simplify
the encoding of different problems (such as the factorization problem). A solver that
uses fixed precision integers (such as 32 or 64 bits integers) may be faced with two
problems:

• a coefficient in the formula may be larger than the maximum value of the integer
type used by a solver. This is rather easy to check at parse time.

• when a solver combines different constraints (with addition for example), it may
exceed the largest integer that can be represented (integer overflow). This is
much harder to detect in general.

A simple solution is to use an arbitrary precision library such as GNU Multi-
ple Precision Arithmetic Library for C/C++ (http://gmplib.org/) or the Big-
Integer class in Java (https://docs.oracle.com/javase/8/docs/api/
java/math/BigInteger.html). This has an obvious computational cost, but
is the only way to support any possible instance. Another policy is to detect such
integer overflows, or to avoid operations that could cause integer overflows.

In the past PB competitions, a SMALLINT category of instances was defined, and
was supposed to limit the possibility of an integer overflow. However, there was no
guarantee since this depends on the techniques used by the solver (e.g. learning). Be-
sides, the SMALLINT category was defined by a limit of 221 on the sum of coefficients,
but this limit does not make sense for all solvers. Indeed, a single limit cannot fit all
the solvers limitations.

Therefore, it is now the solver sole responsibility to check if it can handle the
coefficient used in a PB formula. If it cannot, it must print ’s UNSUPPORTED’ at
parse time to indicate that it cannot deal with the instance. The ”intsize=” hint given
on the first line of the instance can help the solver take a decision.

4.1 Pseudo-Boolean Satisfaction (PBS) and Pseudo-Boolean Opti-
mization (PBO)

A PBO file and a PBS file only differ by the presence of an objective function (starting
with the keyword min:) at the beginning of the file.

Lines beginning with a star are comments and can appear anywhere in the files.
A PBS file contains a list of pseudo-Boolean constraints. Each pseudo-Boolean (PB)
constraint consists of a left side (a list of weighted Boolean terms), a comparison op-
erator and a right side which is an integer constant. A PBO file contains an objective
function followed by the constraints.

4

http://gmplib.org/
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

In the PB competitions, an OPB file is written in pure ASCII. Since PB constraints
can be normalized, only two comparison operators are allowed (greater than, equal)
and PBO instances only use the min: keyword in the objective function.

The syntax of these files can be described by a simple BNF grammar (see http:
//en.wikipedia.org/wiki/Backus-Naur_form). <formula> is the start
symbol of this grammar.

<formula>::=
<sequence_of_comments>
[<objective>]
<sequence_of_comments_or_constraints>

<sequence_of_comments>::=
<comment> [<sequence_of_comments>]

<comment>::=
"*" <any_sequence_of_characters_other_than_EOL> <EOL>

<sequence_of_comments_or_constraints>::=
<comment_or_constraint>
[<sequence_of_comments_or_constraints>]

<comment_or_constraint>::=
<comment>|<constraint>

<objective>::=
<objective_type> <zeroOrMoreSpace> <sum> ";"

<constraint>::=
<sum> <relational_operator>
<zeroOrMoreSpace> <integer> <zeroOrMoreSpace> ";"

<sum>::=
<weightedterm> | <weightedterm> <sum>

<weightedterm>::=
<integer> <oneOrMoreSpace> <term> <oneOrMoreSpace>

<integer>::=
<unsigned_integer>
| "+" <unsigned_integer>
| "-" <unsigned_integer>

<unsigned_integer>::=
<digit> | <digit><unsigned_integer>

<objective_type>::=
"min:"

<relational_operator>::=
"=" | ">="

<variableName>::=
"x" <unsigned_integer>

5

http://en.wikipedia.org/wiki/Backus-Naur_form
http://en.wikipedia.org/wiki/Backus-Naur_form

<oneOrMoreSpace>::=
" " [<oneOrMoreSpace>]

<zeroOrMoreSpace>::=
[" " <zeroOrMoreSpace>]

The input format allows the specification of both linear and non-linear pseudo-
Boolean instances. The definition of <term> will be given in the corresponding sub-
sections.

This grammar let us write a very simple parser and avoid some ambiguities present
in the original description of the OPB format. At the same time, the format remains
easily human readable and is mostly compatible with solvers using the OPB format.

Integers may be of arbitrary size (i.e. contain any number of digits) (see section 4).
Some details:

• A line starting with a ’*’ is a comment and can be ignored. Comment lines are
allowed anywhere in the file.

• Each non comment line must end with a semicolon ’;’

• In a PBO instance, the first non comment line is an objective function to mini-
mize. It starts with the word ”min:” followed by the linear function to minimize
and is terminated by a semicolon. No other objective function can be found after
this first non comment line.

• A constraint is written on a single line and is terminated by a semicolon.

• A Boolean variable (atom) is named by a lowercase ’x’ followed by a strictly
positive integer number. The integer number can be considered as an identifier
of the variable. This integer identifier is strictly less than 232. Therefore, a solver
can input a variable name by reading a character (to skip the ’x’) and then a 32
bits integer.

• Variable names are guaranteed to range from ”x1” to ”xN” where N is the total
number of variables in the instance (as given on the first line of the file). Each
variable between x1 and xN will occur in at least one constraint or the objective
function.

• Each variable present in the objective function will occur in at least one con-
straint.

• Each variable name must be followed by a space

• The weight of a variable may contain an arbitrary number of digits. There must
be no space between the sign of an integer and its digits.

• Lines may be very long. Programmers should avoid reading a line as a whole.

• PBS and PBO files are expected to have a “.opb” extension.

6

4.1.1 Linear instances

For linear pseudo-Boolean instances, <term> is defined as

<term>::=<variableName>

The negation of an atom A will not appear in a linear pseudo-Boolean file (it will
be translated to 1-A).

As a hint to perform memory allocation, the first line of a linear instance will be
a comment containing a sequence of keyword-value pairs. A space separates the key-
word and the value to make parsing trivial. The separator between pairs is a space. The
list of keywords, in order, is the following (new keywords are shown in bold face):

1. ”#variable=” is followed by a space and the number of variables in the file,

2. ”#constraint=” followed by a space and the number of constraints in the file,

3. ”#equal=” followed by a space and the number of “strictly equal” con-
straints in the file,

4. ”intsize=” followed by a space and the number of bits required to repre-
sent, for any constraint of the formula, the sum of the absolute value of
all integers that appear in the constraint. Formally, let Ci be a constraint∑

j c
i
j .xj ≥ d (where ≥ may be replaced by =). If there is an objective func-

tion, it is seen as a pseudo constraint with a null degree (d = 0). The value size
that appears after ”intsize=” is given by size = maxi(1+⌊log2(|d|+

∑
j |cij |)⌋).

A solver which uses integers of at least size bits (plus one for signed integers)
and that simply checks the satisfaction of constraints by summing the coefficient
of all true literals and subtracting the degree of the constraint will never face
integer overflow. Solvers that perform more clever computations (such as PB
constraints learning) should be more careful.

Examples

* #variable= 5 #constraint= 4 #equal= 1 intsize= 61

*
* this is a dummy instance

*
min: 1 x2 -1 x3 ;
1 x1 +4 x2 -2 x5 >= 2;
-1 x1 +4 x2 -2 x5 >= +3;
1234567890123456789 x4 +4 x3 >= 10;

* an equality constraint
2 x2 +3 x4 +2 x1 +3 x5 = 5;

4.1.2 Non-Linear Instances

The format for non-linear pseudo-Boolean instances is a straightforward generalization
of the linear format. The main changes are:

7

• Both in the objective function and in the constraints, the input format allows the
specification of product of literals. Since literals are assigned values from {0, 1},
a product of literals is interpreted as 1 if and only if all of its literals are assigned
to 1. In Boolean terms, a product represents a conjunction of literals.

• Products contain literals instead of variables. Therefore, variable names can be
preceded with the character ’∼’ in order to specify the negative literal of that
variable

With these generalizations, it is possible to specify constraints like:

3 x1 x2 + 2 ˜x3 ˜x4 ˜x5 -3 x6 >= +2 ;

If we would not allow negative literals in the format, we would have to replace this
simple term

2 ˜x3 ˜x4 ˜x5

with the significantly longer expression

-2 x3 -2 x4 -2 x5 +2 x3 x4 +2 x3 x5 +2 x4 x5 -2 x3 x4 x5 +2

For non-linear instances, <term> is defined as

<term>::=
<oneOrMoreLiterals>

<oneOrMoreLiterals>::=
<literal> | <literal> <oneOrMoreSpace> <oneOrMoreLiterals>

<literal>::=
<variableName> | "˜"<variableName>

There are further restriction enforced in the PB competitions:

• A product which contains one single literal will not use a negation (the negation
∼L will be replaced by 1-L during the normalization process)

• For a non-linear instance, the first line will be a comment containing the sequence
of keyword-value pairs defined for linear instances, followed by the pairs given
below, in order:

1. ”#product=” is followed by a space and the number of different products of
variables present in the file

2. ”sizeproduct=” is followed by a space and the total number of literals which
appear in different products.

These two informations allow the parsers to compute the total number of linear
constraints that will be passed to the solver when the parser is asked to linearize
the formula. The keyword ”#product=” also clearly indicates that this is a non-
linear instance.

• Variables that appear inside a product are guaranteed to be ordered from the
lowest to the greatest index. High quality provers are encouraged to avoid relying
on this assumption as it may not hold outside the competition environment.

8

Examples The first example only illustrates the syntax (it does not encode any con-
crete problem).

* #variable= 5 #constraint= 4 #equal= 1 intsize= 64 #product= 5 sizeproduct= 13

*
* this is a dummy instance

*
min: 1 x2 x3 -1 x3 ;
1 x1 +4 x1 ˜x2 -2 x5 >=2;
-1 x1 +4 x2 -2 x5 >= 3;
12345678901234567890 x4 +4 x3 >= 10;
2 x2 x3 +3 x4 ˜x5 +2 ˜x1 x2 +3 ˜x1 x2 x3 ˜x4 ˜x5 = 5 ;

This second example encodes a factorization problem (see the comments for the
details). For lack of space, the last constraint has been printed on 2 lines but is actually
stored on a single line in the file.

* #variable= 6 #constraint= 3 #equal= 1 intsize= 7 #product= 9 sizeproduct= 18

*
* Factorization problem: find the smallest P such that P*Q=N

* P is a 3 bits number (x3 x2 x1)

* Q is a 3 bits number (x6 x5 x4)

* N=35

*
* minimize the value of P
min: +1 x1 +2 x2 +4 x3 ;

* P>=2 (to avoid trivial factorization)
+1 x1 +2 x2 +4 x3 >= 2 ;

* Q>=2 (to avoid trivial factorization)
+1 x4 +2 x5 +4 x6 >= 2 ;

* P*Q=N
+1 x1 x4 +2 x1 x5 +4 x1 x6 +2 x2 x4 +4 x2 x5 +8 x2 x6 +4 x3 x4

+8 x3 x5 +16 x3 x6 = 35;

This formula can easily be linearized and transformed into the following linear
formula. The parsers provided for the competition are able to perform this linearization
automatically.

* #variable= 15 #constraint= 21 #equal= 1 intsize=7

*
* linearized version of the factorization problem (P*Q=35)

* this linearization can be automatically done by the parsers we

* provide
min: +1 x1 +2 x2 +4 x3;
+1 x1 +2 x2 +4 x3 >= 2;
+1 x4 +2 x5 +4 x6 >= 2;
+1 x7 +2 x8 +4 x9 +2 x10 +4 x11 +8 x12 +4 x13 +8 x14 +16 x15 = 35;

* new variables introduced to represent the products
+1 x7 -1 x1 -1 x4 >= -1;
-2 x7 +1 x1 +1 x4 >= 0;
+1 x8 -1 x1 -1 x5 >= -1;
-2 x8 +1 x1 +1 x5 >= 0;
+1 x9 -1 x1 -1 x6 >= -1;
-2 x9 +1 x1 +1 x6 >= 0;
+1 x10 -1 x2 -1 x4 >= -1;
-2 x10 +1 x2 +1 x4 >= 0;

9

+1 x11 -1 x2 -1 x5 >= -1;
-2 x11 +1 x2 +1 x5 >= 0;
+1 x12 -1 x2 -1 x6 >= -1;
-2 x12 +1 x2 +1 x6 >= 0;
+1 x13 -1 x3 -1 x4 >= -1;
-2 x13 +1 x3 +1 x4 >= 0;
+1 x14 -1 x3 -1 x5 >= -1;
-2 x14 +1 x3 +1 x5 >= 0;
+1 x15 -1 x3 -1 x6 >= -1;
-2 x15 +1 x3 +1 x6 >= 0;

4.2 Weighted Boolean Optimization (WBO)
The Weighted Boolean Optimization (WBO) framework extends the MaxSAT con-
cepts to pseudo-Boolean constraints. In [MMSP09], the WBO framework is defined as
follows:

A Weighted Boolean Optimization (WBO) formula ϕ is composed of
two sets of pseudo-Boolean constraints, ϕs and ϕh, where ϕs contains
the soft constraints and ϕh contains the hard constraints. For each soft
constraint ωi ∈ ϕs there is an associated integer weight ci > 0. The
WBO problem consists in finding an assignment to the problem vari-
ables such that all hard constraints are satisfied and the total weight
of the unsatisfied soft constraints is minimized (i.e. the total weight
of satisfied soft constraints is maximized).

The WCSP (Weighted Constraint Satisfaction Problem) uses the notion of top cost
T . All interpretation with a cost greater than or equal to T are non admissible and
cannot be a solution. This notion is quite natural in practice. Therefore, we choose to
refine the definition of the WBO formalism as follows:

The WBO problem consists in finding an assignment to the problem variables such that
all hard constraints are satisfied and the total weight of the unsatisfied soft constraints
is minimized and strictly less than T .

A WBO instance does not contain an objective function. The first non comment line
of the file starts with the keyword “soft:”, followed by the top cost T and a semi-colon.
If T = ∞, the top cost can be omitted and the first line is just “soft: ;”

A WBO file is expected to have a ’.wbo’ extension.
In the PB competition, the top cost will always be specified. When all interpreta-

tions are admissible (i.e. when T = ∞), T will be given as 1 plus the sum of each soft
constraint cost.

In the rest of the file, hard constraints use the same syntax as in PBS files. Soft
constraints are prefixed with their cost written in square brackets. As an example, “+1
x1 +2 x2 >= 2 ;” is a hard constraint and “[5] +1 x1 +2 x2 >= 2 ;” is a soft constraint
which has a cost of 5.

The differences between the grammar of a PBS/PBO file and the grammar of a
WBO file are small and detailed below.

10

<softformula>::=
<sequence_of_comments>
<softheader>
<sequence_of_comments_or_constraints>

<softheader>::=
"soft:" [<unsigned_integer>] ";"

<comment_or_constraint>::=
<comment>|<constraint>|<softconstraint>

<softconstraint>::=
"[" <zeroOrMoreSpace> <unsigned_integer> <zeroOrMoreSpace> "]"
<constraint>

The cost of a soft constraint can be any positive integer (including big integers) as
long as it is strictly less than T (otherwise the constraint would be hard).

A WBO instance can be transformed into a PBO instance by introducing extra
variables which allow to neutralize soft constraints and adding an objective function
which requires to minimize the cost of neutralized soft constraints.

In the PB competition, it is guaranteed that the first line of the file will be a comment
that will start with the usual information given for a linear, or non-linear file. This line
will then contain the following key-value pairs (separated by a space):

• #soft= followed by a space and the number of soft constraints in the file,

• mincost= followed by a space and the smallest cost of a soft constraint,

• maxcost= followed by a space and the greatest cost used in the file,

• sumcost= followed by a space and the sum of the soft constraints costs.

The value of sumcost= is used in place of the sum of the objective function
coefficients to compute the value of intsize=.

As an example, a WBO instance with only linear constraints could start with the
following line:

* #variable= 15 #constraint= 21 #equal 0 intsize= 20 #soft= 5 mincost= 1 maxcost= 1
sumcost= 5

A WBO instance with non-linear constraints could start with the following line:

* #variable= 15 #constraint= 21 #equal 0 intsize= 20 #product= 5 sizeproduct= 13
#soft= 5 mincost= 1 maxcost= 2 sumcost= 9

In the PB competition, it is also guaranteed that the costs used in the file will be
as small as possible (but still may be of arbitrary size if this is needed to encode the
problem). This implies that at least one cost will be 1, and if all costs are equal, their
value will be 1.

11

4.2.1 Examples

Example 1 The optimal solution of the instance below is x1 = 0 and has a cost of 2.

soft: 6 ;
[2] +1 x1 >= 1 ;
[3] -1 x1 >= 0 ;

Example 2 The optimal solution of the instance below is x1 = 0, x2 = 1 and has a
cost of 2.

soft: 6 ;
[2] +1 x1 >= 1 ;
[3] +1 x2 >= 1 ;
-1 x1 -1 x2 >= -1 ;

Example 3 The instance below has no solution at all (the minimal cost is 6 which is
not admissible).

soft: 6 ;
[2] +1 x1 >= 1 ;
[3] +1 x2 >= 1 ;
[4] +1 x3 >= 1 ;
[5] +1 x4 >= 1 ;
-1 x1 -1 x2 >= -1 ;
-1 x3 -1 x4 >= -1 ;

References
[MMSP09] Vasco Manquinho, Joao Marques-Silva, and Jordi Planes, Algorithms for

Weighted Boolean Optimization, SAT ’09: Proceedings of the 12th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(Berlin, Heidelberg), Springer-Verlag, 2009, pp. 495–508.

[RM16] Olivier Roussel and Vasco Manquinho, Input/Output Format and Solver
Requirements for the Competitions of Pseudo-Boolean Solvers, http:
//www.cril.univ-artois.fr/PB16/format.pdf, 2016.

12

http://www.cril.univ-artois.fr/PB16/format.pdf
http://www.cril.univ-artois.fr/PB16/format.pdf

	Summary of the simplifications applied to the general OPB format
	Introduction
	Input Format
	Size of integers
	Pseudo-Boolean Satisfaction (PBS) and Pseudo-Boolean Optimization (PBO)
	Linear instances
	Non-Linear Instances

	Weighted Boolean Optimization (WBO)
	Examples

