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Abstract
The first evaluation of pseudo-boolean solvers was organized as a subtrack of the SAT 2005

competition. The first goal of this event is to take a snapshot of the current state of the art in the
field of pseudo-boolean constraints. The second goal is to stimulate the research efforts in this field
and contribute to the creation of better technologies. This paper details the organization and the
results of this event.

1. Introduction

The SAT competition[15] aims at promoting interesting techniques for the propositional satisfia-
bility problem (SAT) as well as identifying challenging benchmarks. This competition organized
since 2002 [25] by Daniel Le Berre and Laurent Simon has been very fruitful to the SAT community
and has contributed to the wide use of SAT techniques in a number of applications. For its fourth
edition, the SAT 2005 competition has introduced a few subtracks, one of them being devoted to
pseudo-boolean solvers.

This first evaluation of pseudo-boolean solvers (PB’05)[18] inherits the same goals as the SAT
competition. It aims at providing the community with a snapshot of the current state of the art in
the field of pseudo boolean solvers through a comparison of their performances. The goal is both to
identify successful techniques as well as encouraging researchers to develop new techniques. This
first edition fulfills this desire since a few well known pseudo-boolean solvers entered the evaluation
as well as a few new solvers based on significantly different techniques.

Another goal of the evaluation is to identify a set of challenging benchmarks so as to stimulate
the improvement of solvers. This first evaluation brought the opportunity to gather existing bench-
marks under a common format as well as providing the community with a set of new instances.

This first event is called an evaluation rather than a competition because our goal is less to
identify a possible best solver than to set up the conditions for assessing the quality of the different
techniques. Besides, since pseudo-boolean solvers often solve an optimization problem, comparing
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two solvers is a significantly more difficult task than for the SAT competition. We knew we could
not get it right on the first try and our ambition was merely to gather some experience in order to
provide better conclusions the next time.

The first evaluation was rather successful since 8 different solvers were submitted (with a num-
ber of different versions) by 16 authors and co-authors. New benchmarks were also submitted by
5 different contributers. This paper explains how the evaluation was organized and tries to identify
what should be improved. It also describes the results of the different solvers.

Section 2 provides the reader with a definition of the pseudo-boolean problem and introduces
the key concepts to understand the sequel of the paper. Section 3 describes the input format that was
adopted for the evaluation and identifies an issue that must be addressed by pseudo-boolean solvers
but not by SAT solvers. Section 6 gives a short description of the solvers that where submitted. The
next section describes the experimental conditions used to run solvers. Section 9 provides the reader
with the final results of the evaluation. At last, some perspective for the next evaluation are drawn.

2. Definitions

In a propositional formula, a literal l j denotes either a variable x j or its complement x̄ j. If a literal
l j = x j and x j is assigned value 1 or l j = x̄ j and x j is assigned value 0, then the literal is said to be
true. Otherwise, the literal is said to be false.

Formally, an instance of a Linear Pseudo-Boolean Optimization (PBO) problem can be defined
as follows:

minimize
n
∑
j=1

c jx j

subject to
n
∑
j=1

ai jl j ≥ bi,

x j ∈ {0,1},ai j,bi ∈N+
0 , i ∈ {1, . . . ,m}

(1)

where c j is a non-negative integer cost associated with variable x j,1 ≤ j ≤ n and ai j denote the
coefficients of the literals l j in the set of m linear constraints. All pseudo-Boolean formulations
can be rewritten such that all coefficients ai j and right-hand side bi be non-negative [6]. Moreover,
equality constraints or other types of inequality constraints (such as greater than, smaller than or
smaller than or equal to), can also be transformed in linear time into greater than or equal to
constraints as defined in (1).

In a given constraint, if all ai j coefficients have the same value k, then it is called a cardinality
constraint, since it only requires that dbi/ke literals be true. A pseudo-boolean constraint where any
literal set to true is enough to satisfy the constraint, can be interpreted as a propositional clause.
This occurs when the value of all ai j coefficients are greater than or equal to bi. Otherwise, if
a constraint is neither a cardinality constraint or a propositional clause, then it is classified as a
general pseudo-boolean constraint.

If every constraint in a PBO instance P can be interpreted as a propositional clause then P is
an instance of the Binate Covering (BCP) problem. If all constraints in P can be interpreted as
propositional clauses with only positive literals, then P is an instance of the Unate Covering (UCP)
problem. When all coefficients c j of the cost function in P are equal to 0 (no cost function is
present), then we say that P is an instance of the Pseudo-Boolean Solving (PBS) problem. If all
constraints of a PBS instance can be interpreted as propositional clauses, then it is an instance of
the Propositional Satisfiability (SAT) problem.
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Notice that a linear pseudo-boolean optimization problem can also be viewed as a special case of
integer linear programming (ILP) problem. The ILP formulation for the constraints can be obtained
if we replace literals x̄ j by 1− x j.

3. Input Format

For this first evaluation, an input format that would be read by each solver had to be defined. This
common format should have the following properties

• be already used by some existing solver

• be easily parsable by a solver

• be easily read by a human being

• have no ambiguity in its definition

In our opinion, the last three points are the reason of the success of the DIMACS format for CNF
formulas used in SAT solvers. Among the different formats of pseudo-boolean problems that were
already available on the web, the OPB format[5] was certainly the one closest to our objectives.
Unfortunately, it was soon discovered that there were a few ambiguities in its definition. Therefore,
it was decided to use a strict variant of the OPB format to avoid any ambiguity and ease the parsing
of files. The description of this format is available on the evaluation web pages[18]. To encourage
the adoption of this format, parsers for a few languages were made available. The key points of
this format is that the objective function (if any) must be minimized, constraints must be ’greater
or equal’ or equality constraints, variables names can be any legal identifier and numbers can be of
any length. Another point is that it was easy to parse. To read the terms of a constraint, one only
had to read in a loop an integer, then a star, then the variable name.

To avoid any problem with the format of the benchmarks files, each instance was first normalized
to adhere to this stricter format. Files which were obtained in another format where systematically
converted.

A few problems can still be attributed to this format. Some solvers had problems with very long
lines, some others wrongly assumed that a variable was called “x” followed by a number. Another
problem which is not intrinsic to the format is the size of the integers. This is detailed in the next
section.

4. The Big Integer issue

One problem that may occur when solving a linear pseudo-boolean formula is integer overflow.
Usually, programs use integers of size corresponding to the processor registers. On the usual 32 bits
platforms, this means that the biggest positive integer is only 2,147,483,647 when using the int type
(C/C++/Java). This limit is fairly easy to reach. Using 64 bits integers gives a more comfortable
limit but does not really solve the problem. In fact, it is fairly easy and natural to get constraints
with big integers. For example, if you need to encode that A = B+C where A,B,C are integers, you
may just write that

∑
i

2i.Ai = ∑
i

2i.Bi +∑
i

2i.Ci
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As soon as the size of A,B,C equals the size of the integers used by the solver, we get an integer
overflow problem.

As far as PB solvers are concerned, integer overflow can occur either during the input of the
formula or during the resolution of the formula and will have different effects on the solver capabil-
ities:

• during the input of the formula

If a solver does not use big enough integers, it will fail to read some input file with large inte-
gers, or it will truncate some coefficients and give a random answer. This is a minor problem
provided that this failure is either detected of at least documented in the solver manual.

• during the resolution of the formula

This problem is more serious because it will break the correctness of the prover in ways that
will be subtle to identify. Suppose that each constraint in the formula contains only small
numbers (i.e. such that their sum fits into an integer). If the solver computes new constraints
or simply new weights, it may from time to time overflow the limit of the integer it uses
internally and give a wrong answer.

Such integer overflows were a concern for the evaluation because we expected to get some
wrong answer on some benchmarks triggering an integer overflow (and actually we got wrong
answers because of this problem).

On the other hand, integer overflows are easy to fix and are related to the implementation and
not to the algorithm used by the solver. One just has to use a multiple precision integer library to
get rid of the problem. Of course, computations will be a little bit slower with this kind of library
but a sound solver is always preferable to a faster but unsound solver.

Our policy for this evaluation was the following

• to specify a format which does not hide this problem by specifying that integers may be of
arbitrary size

• most of the benchmarks would use small integers to avoid integer overflows as much as pos-
sible

• any solver (subject or not to integer overflow) could be submitted

• to gather information about the integers internally used by each solver so as to explain possible
failures

5. Set of benchmarks

During the build up to this first evaluation, an effort was made to gather the largest number of
instances with pseudo-boolean constraints. We were able to find several instances available on the
web and others were submitted to the organizers. Additionally, a large number of linear integer
programming problems in MPS format were converted to pseudo-boolean optimization problems.
In this section we present the benchmark set used in the evaluation. Moreover, we also describe the
division of the benchmark set in several categories. Finally, we present the conversion process from
MPS instances to pseudo-boolean formulas.
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Categories #benchs Cl Crd PB Cl&Crd Cl&PB Crd&PB All
SAT/UNSAT 113 0 0 0 57 50 0 6
OPTSMALLINT 386 184 5 1 60 42 33 61
OPTMEDINT 191 0 28 57 5 1 61 39
OPTBIGINT 482 0 0 226 2 12 160 82
Total 1172 184 33 284 124 105 254 188

Table 1. Benchmark Categories

5.1 Classification of Benchmarks

It is well-known that solvers using different strategies or techniques behave better than others de-
pending on some characteristics of the benchmark instance. For example, it is well known that
pure SAT-based solvers are better in dealing with hard constrained instances while others are bet-
ter dealing with information from the cost function [17]. Hence, we find it necessary to make a
classification of the benchmarks in some classes and analyze the results considering those sets of
instances.

The two main sets of instances to consider are the optimization and the non-optimization in-
stances. While in the first set the solver must find the optimum value for the cost function, in the
latter it is sufficient to find a complete assignment that satisfies all problem constraints. However,
there are several optimization instances that are unsatisfiable.

We should also consider that in some instances, variable coefficients are big integers and some
solvers do not comply with it. Therefore, we divided the optimization set of instances into three cat-
egories (small, medium and big integers) depending on the value of the coefficients in the instance.

• Small Integers: For all constraints, the sum of the coefficients is smaller than 220 (20 bits).

• Medium Integers: For all constraints, no single coefficient is bigger than 230 (30 bits). How-
ever, there is at least one constraint with a sum of coefficients greater than 220 (20 bits).

• Big Integers: There is at least one coefficient bigger than 230 (30 bits).

It was observed that all non-optimization instances submitted to the evaluation have small integers.
Hence, no distinction was made regarding the value of the coefficients in the non-optimization
instances. Table 1 presents the number of benchmarks for each category. For each category, we
also present the number of instances considering the type of constraints. Instances with only a
specific type of constraints appear first: propositional clauses (Cl), cardinality constraints (Crd) and
general pseudo-boolean constraints (PB). The following columns provide the number of instances
that combine two types of constraints and the last column indicates the number of instances that
contain all three types of constraints.

In Table 2 we present a short description of the several benchmark sets used in the evaluation.
Observe that instances modelling different problem domains were used and in future evaluations,
instances can also be categorized according to their domain of origin. However, for this evaluation,
the number of instances from specific domains was considered to be too small. Hence, we chose to
present a simpler categorization.
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Category #benchs Short Problem Description
SAT/UNSAT 50 UCLID Benchmarks [13]
SAT/UNSAT 6 Progressive Party Problem [30]
SAT/UNSAT 57 FPGA switch-boxes [4]
OPTSMALLINT 40 Generated [31]
OPTSMALLINT 5 Basketball Scheduling Problem [30]
OPTSMALLINT 12 Radar Allocation Problem [30]
OPTSMALLINT 20 Converted from MPS to OPB format (submitted)
OPTSMALLINT 15 FPGA Routing [2]
OPTSMALLINT 17 Logic Synthesis [32]
OPTSMALLINT 156 Minimum-size Prime Implicant [23] DIMACS benchmarks [12]
OPTSMALLINT 10 Synthesis PTL-CMOS Circuits [34]
OPTSMALLINT 8 Travelling Tournament Problem [26]
OPTSMALLINT 7 Unknown Problem (submitted)
All Optimization Categories 769 Converted from MPS to OPB format (section 5.2)

Table 2. Benchmark Descriptions

5.2 The MPS instances

A number of linear integer programming problems are available on the web in MPS format. These
problems did not seem too hard to translate to pseudo-booleans constraints and were potentially an
interesting source of industrial problems. Besides, we could notice that some of the pseudo-boolean
instances which were available at that time were already a translation from problems expressed in
MPS format. As these problems could substantially increase the number of benchmarks used for
the evaluation, we decided to translate these problems to pseudo boolean constraints.

The MPS input format was originally introduced by IBM to express linear and integer programs
in a standard way. It is a pretty old format, with fixed columns width. Another peculiarity is that
constraints are described in columns rather than lines, which means that it lists for each variable the
constraints in which that variable appears instead of listing for each constraint the variables which
appear in the constraint.

Variables and weights in the MPS format are real numbers. Variables can be constrained to be
integers or even booleans (0/1). A variable can be free (without bounds) or bounded by a upper or
lower limit (or both). Constraints include the usual equality and inequality constraints.

The main problem for converting a problem in MPS format is that variables can have real values.
To translate this to pseudo-boolean constraints, we decompose a variable X into its binary represen-
tation as a fixed-point number: X = ∑

b
i=−a 2i.Xi In this decomposition, a represents the number of

digits after the binary point and b represents the number of digits before the binary point. These two
numbers are an important parameter of the translation. Greater numbers will provide more accu-
racy but will generate big integers in the translated pseudo-boolean constraints. Small a and b will
generate smaller weights in the pseudo-boolean constraint but will not be able to represent large
values of X and will have a poor precision as well. Faced to this choice, it was decided to use two
encodings: one with a = 10 and b = 20 and another one with a = 7 and b = 13. The name of the
translated formulas indicates which value where used: they all follow the pattern mps-v2-b-a. The
v2 simply indicates that this is the second version of the translator. Files named mps-v2-20-10-*
therefore use real variables encoded on a total of 30 bits, while files named mps-v2-13-7-* use real
variables encoded on a total of 20 bits.
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solver authors
bsolo Vasco Manquinho and João Marques-Silva

galena Donald Chai and Andreas Kuehlmann
minisat+ Niklas Eén and Niklas Sörensson

PBS4 Fadi Aloul and Bashar Al-Rawi
pb2sat+zchaff Olivier Bailleux, Yacine Boufkhad, Olivier Roussel

Pueblo Hossein Sheini and Karem Sakallah
sat4jpseudo Daniel Le Berre, Mederic Baron, Anne Parrain, Olivier Roussel

vallst 0.9.258 Daniel Vallstrom

Table 3. The submitted solvers and their authors

solver SAT OPTSMALLINT OPTMEDINT OPTBIGINT
vallst 0.9.258 X X
galena X X X
PBS4 X X X
Pueblo X X X
bsolo X X X X
minisat+ X X X X
pb2sat+zchaff X X X X
sat4jpseudo X X X X

Table 4. Ability of each solver to deal with different types of instances

Bounds on variables are used (when possible) to limit the size of their encoding. When a variable
X is bound by L ≤ X ≤U , it is rewritten as X = L+X ′ where X ′ will be a positive variable that will
be less or equal to U −L.

Once the encoding of each variable is chosen, each linear constraint is multiplied by the smallest
coefficient so that all its weights become integer numbers. Clearly, this multiplication can create
huge numbers. The biggest coefficient that was generated in an instance has 110 bits. These big
integers are partly due to the number of digits of the coefficients in the original MPS file. It is
questionable whether the number of digits after the decimal dot in the MPS files is really meaningful
or is only an artefact caused by some output format.

384 instances mps-v2-20-10* and 385 instance mps-v2-13-7* where generated. Compared to
the 403 instances which were submitted, the MPS instances are clearly over represented. Besides,
some submitted instances are already a translation of some MPS files. If this was not considered as
a major problem in this first evaluation, it is highly desirable to obtain a wider set of benchmarks
for the next evaluation.

6. Description of the solvers

Eight solvers were submitted to the evalution: bsolo [27, 17], galena [7], minisat+ [21, 9], PBS4
[3], pb2sat+zchaff [22, 20], Pueblo [11, 24], sat4jpseudo [14] and vallst [28, 29]. Table 3 presents
the authors of each solvers. Table 4 reports their ability to deal with instances from the different
categories (as defined in section 5.1). All solvers were presented to the evaluation as being able to
solve PBS instances as well as PBO instances with small integers. However, only half the solvers
have the ability to deal with big integers.
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Most of the solvers are generalizations of SAT solvers adapted to deal with pseudo-boolean
constraints. In fact, minisat+ and pb2sat+zchaff map the original pseudo-boolean constraints into
propositional clauses and use pure SAT solvers (minisat [9] and zchaff [33], respectively) to solve
problem instances. All other solvers manipulate directly pseudo-boolean constraints and also use
SAT-based techniques, namely conflict analysis and constraint learning. However, vallst, PBS4 and
bsolo use clause learning, but galena, Pueblo and sat4jpseudo have more elaborated learning mech-
anisms [7, 24] and are able to learn cardinality constraints and general pseudo-boolean constraints
from conflict analysis.

Besides being SAT-based, another common feature is that all solvers in the evaluation also use
lazy data structures to manipulate propositional clauses. However, only Pueblo and sat4jpseudo use
lazy data structures to manipulate other types of constraints.

The approach used by most solvers for solving PBO is the linear search on the value of the
cost function, first proposed in [6]. In fact, the only two exceptions in using this method are
pb2sat+zchaff and bsolo. While pb2sat+zchaff uses binary search on the value of the cost func-
tion, bsolo is a SAT-based branch and bound algorithm that uses lower bound estimation proce-
dures, namely the maximum independent set of constraints [8] and linear programming relaxations
(LPR) [16], to bound the search. Moreover, when using LPR, it also generates cutting planes [10]
from the information provided by the LPR solution.

7. Experimental Conditions

7.1 Available resources

The solvers were run on a cluster of 32 computers kindly provided by Michal Kouril and the LINC
Lab, Department of ECECS, University of Cincinnati. Each node of this cluster is a bi processor
Pentium III cadenced at 450MHz with 1GB RAM. The operating system was a Red Hat Enterprise
Linux WS release 3 running linux kernel version 2.6.8.1 (SMP).

Each solver was allowed to run for 1200 seconds of CPU time and could use up to 900 MB of
RAM.

7.2 Output requirements

Solvers were required to give their answer by two means: a message displayed on the standard
output and a specific exit code for each possible answer. A solver was also allowed to output any
data as long as each line started by “c ” to define a comment line.

Solvers were asked to give one out of four possible answers:

• “s SATISFIABLE” with exit code 10: the solver has found a solution but either there is no
function to optimize or it cannot prove that this solution gives the least value of the objective
function.

• “s OPTIMUM FOUND” with exit code 20: the solver has found a model and it can prove that
no other solution will give a value of the objective function strictly less than the one obtained
with this model. Let v be the value of the objective obtained with the valuation output by
the solver. Giving this result is a commitment that the formula extended with the constraint
ob jective < v is unsatisfiable.

• “s UNSATISFIABLE” with exit code 30: the solver can prove that the formula has no solution.
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• “s UNKNOWN” with exit code 0: the solver is unable to tell anything about the formula

Invalid output was considered as an UNKNOWN answer. Whenever the solver answered “OP-
TIMUM FOUND” or “SATISFIABLE”, it was required to output the best solution it had found on
a line starting with “v ” (as Value line). This solution had to define the value of each variable to
avoid any ambiguity on the value of the objective function.

8. Experimentations

There has been two campaigns of experimentations during the evaluation. The first phase which
took place from April to June 2005 allowed us to run several versions of the solvers and to detect
the first bugs in the solvers implementation. Unfortunately, the bug correctives that were submitted
by the authors still had some bugs. Therefore, the results that were presented to the SAT conference
in June 2005 were not completely satisfying since every solver had at least a problem (but some of
these problems where simple mistakes in the solver’s output).

To obtain more reliable results, it was decided to run the solvers one last time in September.
Authors were allowed to fix the bugs as well as to improve their solver. During this second phase,
only one version of the solvers was allowed to run.

There was a few differences between the two phases. A new version of the program runsolver
which controls the execution of a solver was used during the second phase. This second version
fixed some problems encountered during the first phase. Unfortunately, as will be seen in the next
section, it introduces some time penalty which was not anticipated. Fortunately, as the main criterion
to evaluate the solvers was not time but the number of instances it was able to solve in a fixed period
of time, this had insignificant influence (if any) on the results. Another difference is that the solvers
exit code was mostly ignored in the second phase and only the message output by the solver was
considered (to avoid the strange case where a solver’s message and its exit code did not match). At
last, the classification of the answers of the solvers was slightly changed.

Each time a solver was run, some informations were recorded about the host, the solver and
the instance (including checksums). The messages output by the solver were also recorded (up to
a global limit of 1 MB) as well as the information collected by the runsolver program. All these
informations form the trace of the execution of the solver and is available of the evaluation web site.

Each solution provided by a solver was verified by an independent program which checked that
each constraint was satisfied and computed the value of the objective function given by this solution

8.1 The runsolver program

Each solver was run under the control of another program called runsolver. The task of the
runsolver program is to ensure that the solver will not take too much resources (especially time
and memory) as well as gathering some data about the running solver (CPU time, exit code,...).

Two different versions of the runsolver program were used during the evaluation: one during
the first phase, and a much improved version during the second phase of the evaluation.

The first version of runsolver starts by enforcing some resource limits, then launches the
solver with its arguments and waits until the solver completes its execution. Every ten seconds,
it fetches some data about the system (average load) as well as informations on the solver pro-
cess such as the current memory consumption and CPU time elapsed so far (obtained from the
/proc/*/stat* files). On completion of the solver process, runsolver prints the child exit code,
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as well as the CPU time used by the process. runsolver enforces limits on the CPU time, the
memory usage and the stack size through the setrlimit system call. When a solver exceeds these
limits, it is killed by the system (through signal SIGKILL) and is not given any chance to output a
partial result. To give the solvers a chance to output a partial result when they exceed the time limit,
the runsolver program sends a SIGTERM signal to the solver before it reaches the system limit.
Then the solver has two seconds to output the best result it got so far and after this delay, it is killed
by runsolver.

All in all, the first version of runsolver is merely an integration of the ulimit and time
system commands with just a few improvements. This version has mainly two weaknesses: it does
not support correctly multi-processes solvers and cannot send a SIGTERM when the solver exceeds
the memory limit.

The problem with multi-processes solvers is that a child process CPU time is reported to its
parent process (through the wait() system call) only when the child process exits. This means that
the first version of runsolver which only watched the parent process CPU time could not notice
that the child exceeded the time limit until the child exited (when it was actually too late). This
is what happens when a shell script is used to run the solver since there are 2 processes. For this
reason, we observed that a solver which used a shell script to control the search actually used up to
4800 seconds (instead of the normal limit of 1200 seconds).

Another point is that if the first version of runsolver could easily anticipate the system CPU
time limit (remember it gathered data about the solver every ten seconds), it was absolutely unable
to anticipate a memory exhaustion because the program may request some memory from the system
at any time and at any rate. The only way to anticipate the violation of the memory limit (and send
a SIGTERM to the solver) is to intercept the system calls. This is what the second version of
runsolver does. This was inspired by two programs: strace [1] which prints the system calls
performed by a program and s4g [19] which is a generic sandbox for programs run on a grid.

The second version of runsolver intercepts the system calls by running the solver in a trace
mode. In this mode, the solver will be suspended by the kernel each time it enters or exits a system
call and the runsolver process will be notified by a SIGTRAP signal. The controlling process
can examine the system call and intercept its parameters and result. One big advantage is that this
technique does not require any privilege since it is accessible to any process through the ptrace()
call. Another advantage is that it works on any kind of binary (statically or dynamically linked)
without any modification.

The system calls of interest in our case are clone and exit to track the creation and deletion of
processes or threads, and the brk, mmap, munmap, mremap system calls to track memory alloca-
tion. We also intercept open, execve and the sockets system calls to check if the solver respects
the evaluation policy. In this version, we only log the file and network accesses but the next version
of runsolver will actively control these system calls and stop the process as in s4g as soon as the
solver violates the policy (such as trying to connect to a remote host).

The runsolver program easily maintains a list of the processes created by the solver and adds
the CPU time of all its child processes to decide if the solver must be stopped by a SIGTERM.
Tracking the memory usage of the solver is a bit more difficult because there are a number of system
calls to allocate memory with subtle interactions. The current version of the program maintains a
upper bound of the memory used by the solver and its children and, when this bound exceeds the
memory limit, it fetches the actual memory usage of the processes in the /proc/*/stat* files.
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solver time runsolver v1 runsolver v2

user system total user system total user system total
Pueblo 7.277 0.24 7.517 7.257 0.16 7.417 8.982 3.12 12.102
vallst 0.9.258 16.85 1.205 18.055 16.825 1.189 18.014 25.92 18.09 44.01
sat4jpseudo 3.73 0.1 3.83 3.8 0.1 3.9 6.5 0.17 6.67

9.165 0.245 9.41 10.525 0.4 10.925 12.3 0.3 12.6

Table 5. Difference of time measured by the time command and the runsolver program with
or without interception of system calls (all times in seconds). Host has a single hyperthreaded
Pentium 4 at 2.8GHz with 1GB RAM and kernel 2.4.20smp (RedHat 9)

When the memory used by the process and all its children is over the imposed limit, it sends a
SIGTERM to the solver and all its children.

Stopping a solver when it uses too much memory is actually a bit harder than stopping it when
it exceeds the time limit. In fact, we impose two limits: a soft limit which sends a SIGTERM to the
solver and a hard limit which will immediately kill the solver. The hard limit was set as the soft limit
plus 50 MB. For these reasons, a solver should not allocate too much memory in a single call to
avoid bumping into the hard limit immediately. Besides, when it is sent a SIGTERM, a solver should
be very careful about its memory usage to avoid reaching the hard limit while it outputs its results
(which might be pretty difficult in some languages such as Java).

Intercepting system calls has necessarily a side effect: it slows down the solver. However, the
solver is only stopped when it performs system calls and, as it should not happen that often in a
pseudo boolean or SAT solver, we could expect only slightly different performances. Table 5 com-
pares the time measured by the time command with the time measured by the two versions of the
runsolver program for a few different solvers on bench mps-v2-20-10/MIPLIB/miplib/normalized-
mps-v2-20-10-p0040.opb. The Pueblo solver is a classic mono-process program. The vallst solver
uses a script to run another solver in a loop. Therefore, it uses several processes. The sat4jpseudo
solver is written in Java and therefore uses multiple threads. These experiments were run on a Pen-
tium 4 (HT) at 2.8GHz with 1GB RAM and kernel 2.4.20smp (RedHat 9). The reported time is the
average of 4 runs.

The time measured for solver sat4jpseudo (written in Java and run by java -server -Xms650M
-Xmx650M) are extremely different from one run to another. We reported the average of the two
fastest runs on the first line and the average of the two slowest runs on the second line. We have no
explanation yet why these times are so different.

We can check that there is no real difference between the time command and the first version of
runsolver. However, the impact of the second version of runsolver is quite noticeable, from a
rough 50% (which could be considered as acceptable) to more than 240% for vallst (which is clearly
not acceptable).

To add some confusion, it appears that the time penalty induced by the interception of signals is
different form one version of the kernel to another and from a single CPU host to a multi processor
host.

So, we’re still missing the right way to time a solver and impose accurate restriction on the
resources it uses. The first version of runsolver gives accurate timing but does not enforce correct
limits. It can be fooled by mutlti-processes solvers. The second version of runsolver has a good
support for multi processes but has a time penalty which is too high in some cases.
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Answer Description
UNSAT. solver proved unsatisfiability (”s UNSATISFIABLE” was output)
OPT. solver found an optimum solution (”s OPTIMUM FOUND” was output), the

provided implicant satisfies each constraint and no solver gave a better solution
SAT. solver found a solution (”s SATISFIABLE” was output) and the provided im-

plicant satisfies each constraint
SAT (timeout) solver exceeded the time limit but was able to find a solution (”s SATISFI-

ABLE” was output) and the provided implicant satisfies each constraint
SAT (out of mem.) solver exceeded the memory limit but was able to find a solution (”s SATISFI-

ABLE” was output) and the provided implicant satisfies each constraint
UNKNOWN solver couldn’t decide (”s UNKNOWN” was output)
UNKNOWN (timeout) solver exceeded the time limit and gave no answer. These runs are considered

to give result UNKNOWN
UNKNOWN (out of mem.) solver exceeded the memory limit and gave no answer. These runs are consid-

ered to give result UNKNOWN.
UNKNOWN (exit code) solver didn’t output a solution line and terminated with an unexpected exit code

(different of 0, 10, 20 and 30). These runs are considered to give result UN-
KNOWN.

Sig. Caught solver was terminated by a signal (SIGSEGV for example) and didn’t output a
solution line

NO CERT. solver answered SATISFIABLE but either didn’t provide a certificate (the ”v ”
line) or either gave a truncated certificate (which doesn’t end in a new line)

WRONG CERT. solver gave an implicant but it appears that it doesn’t satisfy every constraint
WRONG OPT. solver found an optimum solution (”s OPTIMUM FOUND” was output) but

there exists an implicant which gives a better value to the objective function
WRONG UNSAT. solver proved unsatisfiability but was wrong (”s UNSATISFIABLE” was out-

put)

Table 6. Classification of the possible outcomes of a solver

Hopefully, the time penalty induced by the second version of runsolver had an insignificant
impact on the number of instances solved by each solver. As can be checked on the evaluation
web site, there are very few differences between the number of unsatisfiable formulae or optimums
found during the first phase and the second phase. However, the runsolver program must clearly
be improved for the next evaluation.

9. Results analysis

In this section we present the experimental results of the evaluation for the different solvers. For
each solver we present the information described in Table 6. Results are first presented for each
of the categories defined in section 5.1. Tables 7,8,9 and 10 present the results for each instance
category. The overall results for all instances are presented in Table 11. Moreover, in this section
we also present an analysis of partial solutions from the different solvers. Finally, we discuss bugs
detected in solvers.

Table 7 contains the results for instances with no optimization function. For these instances,
Pueblo have the best results for both UNSAT and SAT instances. PBS4 also performed very well
in UNSAT instances, being able to solve as many as Pueblo, but using less time (see Figure 2).
Both galena and bsolo have the lowest performances (specially in SAT instances). minisat+ did not
provide the necessary certificates for SAT instances.

12
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Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 113 36 0 8 0 0 69 0 0 0 0 0 0 0 0
galena 113 36 0 7 0 0 70 0 0 0 0 0 0 0 0
minisat+ 113 43 0 0 0 0 0 35 0 0 0 35 0 0 0
PBS4 113 61 0 28 0 0 0 24 0 0 0 0 0 0 0
Pueblo 113 61 0 42 0 0 0 10 0 0 0 0 0 0 0
sat4jpseudo 113 52 0 17 0 0 0 44 0 0 0 0 0 0 0
vallst 0.9.258 113 38 0 29 0 0 0 46 0 0 0 0 0 0 0
pb2sat+zchaff 113 42 0 36 0 0 0 35 0 0 0 0 0 0 0

Table 7. Results of the second phase for category "no optimization function" (SAT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 386 10 159 159 21 0 31 0 6 0 0 0 0 0 0
galena 386 9 98 135 0 0 140 0 0 0 0 0 0 0 4
minisat+ 386 10 176 0 0 0 0 78 1 1 0 120 0 0 0
PBS4 386 10 133 0 0 0 0 243 0 0 0 0 0 0 0
Pueblo 386 10 160 182 0 0 0 33 0 0 0 0 1 0 0
sat4jpseudo 386 10 120 0 225 0 1 29 0 0 0 1 0 0 0
vallst 0.9.258 386 10 131 4 0 0 0 231 0 0 0 0 3 0 7
pb2sat+zchaff 386 10 136 0 148 10 0 33 7 42 0 0 0 0 0

Table 8. Results of the second phase for category "optimization, small integers" (OPTSMALLINT)

For the optimization instances with small integers, results are presented in Table 8. All solvers
(with exception of galena) were able to solve the same number of UNSAT instances. In Figure 4
we can notice that minisat+ has the best performance for these instances. This result is only natural
since in 8 of the 10 instances all constraints are propositional clauses.

In the category of small integers, minisat+ is the solver with more instances for which was able
to proof optimality. However, Pueblo, bsolo and sat4jpseudo were able to find solutions (either
optimum or approximations) for almost 90% of instances. Observe that sat4jpseudo was able to
prove optimality to a smaller number of instances, probably due its mechanism to deal with the cost
function. Nevertheless, it was the solver that was able to output more certificates in this category.

In Figure 3, we can also see that the curve of pb2sat+zchaff is able to pass PBS4 and vallst 0.9.258
as the time limit increases. Hence, this hints that for higher time limits, pb2sat+zchaff would im-
prove on its results.

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 191 0 28 78 4 0 50 5 26 0 0 0 0 0 0
galena 191 4 5 15 0 0 109 0 0 0 51 0 0 0 7
minisat+ 191 0 24 0 0 0 0 92 7 1 0 67 0 0 0
PBS4 191 0 33 0 0 0 0 158 0 0 0 0 0 0 0
Pueblo 191 0 34 74 0 0 48 35 0 0 0 0 0 0 0
sat4jpseudo 191 2 19 0 107 0 1 62 0 0 0 0 0 0 0
pb2sat+zchaff 191 0 14 0 14 2 0 56 31 71 3 0 0 0 0

Table 9. Results of the second phase for category "optimization, medium integers" (OPTMEDINT)
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Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 482 90 9 81 1 1 241 5 54 0 0 0 0 0 0
minisat+ 482 103 26 0 0 0 0 239 41 9 0 64 0 0 0
sat4jpseudo 482 85 3 12 157 0 4 218 0 0 1 2 0 0 0
pb2sat+zchaff 482 8 11 0 11 0 0 69 119 259 5 0 0 0 0

Table 10. Results of the second phase for category "optimization, big integers" (OPTBIGINT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 1172 136 196 326 26 1 391 10 86 0 0 0 0 0 0
galena 690 49 103 157 0 0 319 0 0 0 51 0 0 0 11
minisat+ 1172 156 226 0 0 0 0 444 49 11 0 286 0 0 0
PBS4 690 71 166 28 0 0 0 425 0 0 0 0 0 0 0
Pueblo 690 71 194 298 0 0 48 78 0 0 0 0 1 0 0
sat4jpseudo 1172 149 142 29 489 0 6 353 0 0 1 3 0 0 0
vallst 0.9.258 499 48 131 33 0 0 0 277 0 0 0 0 3 0 7
pb2sat+zchaff 1172 60 161 36 173 12 0 193 157 372 8 0 0 0 0

Table 11. Results of the second phase for all categories

In the category with medium integers, Pueblo and PBS4 were able to solve and proof optimality
to more instances. In Figure 5 we can also note that Pueblo takes less time to prove optimality than
PBS4. As in the small integer category, sat4jpseudo is the solver able to provide more certificates,
but unable to proof optimality for the vast majority of instances inside the time limit. Because very
few instances in the category with medium integers could be proved unsatisfiable, no meaningful
graph could be drawn for the UNSAT answers in that category.

In the category with big integers, minisat+ was the solver able to find more optimum values to
problem instances. For these instances, bsolo does not use cuts since the linear programming pack-
age used with the solver has precision problems for these instances. Nevertheless, it was able to pro-
vide certificates (as well as proving unsatisfiability) to a large number of instances. pb2sat+zchaff
was unable to find solutions for most instances and only proves unsatisfiability to a small number
of instances. Considering Figure 7, it seems that pb2sat+zchaff finds it difficult to convert pseudo-
boolean and cardinality constraints to propositional clauses. Notice that for those instances that is
able to solve, it does not take much time.

The overall results of the evaluation are presented in Table 11. Remember that the solvers were
not run on the same number of instances since some of them had no support for some category.
These results show that minisat+ was able to prove unsatisfiability and optimality to a larger number
of instances than other solvers. Hence, the approach of converting pseudo-boolean formulations to
propositional clauses seems to be competitive with pure pseudo-boolean solvers. bsolo and Pueblo
are also able to prove optimality to a large number of instances due to their specific techniques.
bsolo is more effective in instances with small integers since the linear programming relaxations
and cut generation are more effective. The learning mechanisms and lighter data structures from
Pueblo were also able to provide good results in several instances, in particular for the SAT category.
Observe from Figure 8 that sat4jpseudo finds it very hard to prove optimality. However, there are
several instances for which no other solver was able to find a partial solution. Therefore, sat4jpseudo
was a valuable contribution to this evaluation. PBS4 also has some good results, specially in the
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Categories #benchs UNSAT SAT OPT. Unknown
SAT/UNSAT 113 61 42 0 10
OPTSMALLINT 386 10 150 202 24
OPTMEDINT 191 6 106 41 38
OPTBIGINT 482 113 157 26 186
Total 1172 190 455 269 258

Table 12. Overall benchmark results by category

Solver SAT/UNSAT OPTSMALLINT OPTMEDINT OPTBIGINT Total
bsolo 44 271 62 136 513
galena 43 112 10 0 165
minisat+ 43 186 24 129 382
PBS4 89 143 33 0 265
Pueblo 103 207 70 0 380
sat4jpseudo 69 154 64 208 495
vallst 0.9.258 67 141 34 0 242
pb2sat+zchaff 78 146 15 19 258

Table 13. Number of Best Results for each solver

UNSAT instances. pb2sat+zchaff also has sound overall results. Finally, vallst 0.9.258 and galena
have a more erratic behavior. Moreover, for some instances these solvers provided wrong answers.
This issue is discussed in section 9.2.

After the evaluation, many instances are still unresolved. For most of the optimization bench-
marks, the optimum value of the cost function is unknown and for those where a partial solution
is known, there is no idea of how far the optimum value is. In Table 12 we present the number of
instances for each category already solved, as well as the number of unresolved instances.

9.1 Evaluating partial solutions

In optimization instances, finding the optimum value is the main goal. However, for many instances
that cannot be achieved inside a given time limit. As shown in Table 12, for most optimization
instances, only partial solutions were obtained. Nevertheless, we need to evaluate how good these
partial solutions are.

In Table 13 we can see how many best solutions were provided by each solver. We consider as
best solutions the UNSAT solutions, the SAT solutions for the non-optimization category and when
the optimum value is found. Moreover, we should also consider as best, solutions to optimization
instances for which no other solver was able to find a better solution.

Clearly, bsolo and sat4jpseudo are the solvers able to provide the largest number of best solu-
tions. However, remember that solvers were not run in the same number of benchmark instances.
Moreover, note that minisat+ was unable to output certificates for its partial solution answers.
Hence, we did not consider minisat+ partial solutions, since we were unable to verify its correct-
ness. Nevertheless, Pueblo has the best results in SAT and optimization instances with medium
integers, while bsolo is clearly the solver with more best solutions in optimization instances with
small integers. sat4jpseudo has best results in big integer category, since in several instances it was
the only solver able to output a certificate.
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Solver SAT/UNSAT OPTSMALLINT OPTMEDINT OPTBIGINT Total
bsolo 0 112 32 37 181
galena 0 1 3 0 4
minisat+ 0 20 1 12 33
PBS4 0 0 0 0 0
Pueblo 4 29 27 0 60
sat4jpseudo 0 19 41 120 180
vallst 0.9.258 0 0 0 0 0
pb2sat+zchaff 0 0 1 0 1

Table 14. Solver contributions for the best solutions in the evaluation

We can also observe a different perspective by considering a solver contribution to the evalua-
tion. We say that a solver provides a contribution to the evaluation if it is the only solver to give a
best answer to an instance. In Table 14 we present the results for each solver in each category.

These clearly show that bsolo (in the small integer category) and sat4jpseudo (in the big integer
category) are the main contributers. For solvers with 0 values, this indicates that there is not a
particular instance for which only that solver is able to give a best solution. Note that this does not
mean that these solvers are not good. In fact, some solvers with all 0 in Table 14 have very good
results in a large number of instances. What it means is that solvers with more contributions have
specific features that enable them to be unique for several benchmark instances.

9.2 Bugs in solvers

Fixing bugs is often a long and tedious task and each programmer knows that a bug can remain
hidden for a long time. The last version of some solvers were unfortunately still buggy. We report
here what we know about these problems.

On one single instance, solver Pueblo outputs a solution which did not satisfy all constraints.
According to its author, that problem was caused by an objective function that contains terms with
both positive and negative coefficients, which was not correctly handled by the solver. The problem
has been fixed since then.

Because of a missing flush in its signal handler, minisat+ never outputs a complete solution on
the “v ” line and therefore, all its SAT answer are counted as NO CERTIFICATE.

On 3 instances classified as NO CERTIFICATE, solver sat4jPseudo required more than two
seconds to output a solution when it received a SIGTERM and was therefore killed before it could
provide a complete solution.

The wrong UNSAT answers of vallst 0.9.258 seem to be caused by an error in the script (a
’grepres’ command is called but not found).

10. Next Evaluation

In this section we present suggestions for the next evaluation of pseudo-boolean solvers. Next we
propose a new and simpler to parse input format and afterwards we discuss some new ideas for the
next evaluation of pseudo-boolean solvers.
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Figure 2. Number x of instances that can be solved (UNSAT answers only) in y seconds for cate-
gory SAT

17



MANQUINHO & ROUSSEL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180

tim
e 

(s
)

number of instances

Number x of instances that can be solved (OPT only) in y seconds for category OPTSMALLINT

bsolo
galena

minisat+
PBS4

Pueblo
sat4jpseudo

vallst_0.9.258
pb2sat+zchaff

Figure 3. Number x of instances that can be solved (OPT answers only) in y seconds for category
OPTSMALLINT

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8  9  10

tim
e 

(s
)

number of instances

Number x of instances that can be solved (UNSAT only) in y seconds for category OPTSMALLINT

bsolo
galena

minisat+
PBS4

Pueblo
sat4jpseudo

vallst_0.9.258
pb2sat+zchaff
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Figure 8. Number x of instances that can be solved (OPT answers only) in y seconds for all cate-
gories
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Figure 9. Number x of instances that can be solved (UNSAT answers only) in y seconds for all
categories
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Figure 10. Number x of instances that can be solved (OPT+UNSAT answers) in y seconds for all
categories
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10.1 Input Format

In this evaluation, the input format for the solvers was a restriction of the general OPB format, as
described in section 3. However, several problems were detected in some solvers, namely related
with the variable identifiers.

One approach is to modify the input format to a CNF-like format commonly used in SAT. In
this case, each text-based variable identifier must be mapped into a numerical identifier. Each line
in the file would represent a constraint starting with pairs (coefficient,variable) and ending with the
constraint sign and the value of the right-hand side. In pratice, we do not think it is a good idea to
assume that the sign in all constraints is ≥, as in (1), since some solvers might introduce strategies
that take advantage of some types of constraints, namely equality constraints. Hence, constraint

2∗ x+3∗ y+1∗ z ≥ 3 (2)

could be written as
2 1 3 2 1 3 ≥ 3 (3)

where variables x, y and z are respectively mapped into numerical identifiers 1, 2 and 3.
The major drawback from this CNF-like format is that some perspective is lost to the human

eye when observing the contents of an instance file. We think it is better to keep a simple way to
identify what are the coefficients and variables in the constraint. Therefore, we propose to use a
fixed letter x as a prefix in the variable identifiers. Hence, the constraint in (2) could be written as

2 x1 3 x2 1 x3 ≥ 3 (4)

10.2 Evaluation Procedures

In this first evaluation, categories of solvers were defined only after the first phase of submissions.
At first, submitters only had to declare if a solver was able to solve PBS and/or PBO instances.
However, we noticed from the first phase results that some solvers were unable to deal with medium
or big integers. Hence, categories had to be defined depending on the type of coefficients.

For the next evaluation, categories must be defined before the submission process and submit-
ters must declare which categories the solver is able to tackle without providing wrong answers.
Moreover, if a solver provides a wrong answer, it should be excluded from that category.

Besides having a categorization of benchmarks depending on the type of coefficients, we should
also have other categories depending on different features of instances, namely the type of con-
straints or the number of coefficients in the cost function. Having categories depending on the
domain from which were generated is also an option. However, a significant number of instances
from a given domain must be gathered. Additionally, a more representative set of benchmarks must
be considered in order to avoid a polarization of the evaluation process.

11. Conclusion

The first evaluation of pseudo-boolean solvers, has allowed the gathering of pseudo-boolean solvers
using very different techniques in a single experimental evaluation. Comparing the pseudo-boolean
solvers results is a challenging task because there are a few more parameters than for a SAT solver
and also because half of the submitted solvers were not able to deal with all the benchmarks cate-
gories. It would be hazardous to try to summarize the solvers performances in a single ranking.

22



THE FIRST EVALUATION OF PSEUDO-BOOLEAN SOLVERS

In spite of the variety of techniques used by the solvers, most optimization instances remain an
open challenge for future events. Nevertheless, people are encouraged to submit new benchmarks
from different problem domains, in order to diversify the benchmark set.

We believe that this first evaluation has contributed to the evaluation of different techniques
and the improvement of existing solvers. Moreover, we also expect that it will contribute to the
development of future solvers.

We would like to insist on the fact that the evaluation of pseudo-boolean solvers has two goals
which cannot be dissociated. The first one of course is to identify the most successful techniques.
The second one – and probably the most important – is to encourage researchers to submit innovat-
ing algorithms. Such an event would be a terrible waste of time if the community only remembered
the solver with the best results and only tried to marginally improve its performances. Major im-
provements necessarily come from new visions of the problem and the pseudo-boolean evaluation
must encourage the development of new techniques.
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