Sugar: A SAT-based CSP Solver

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara

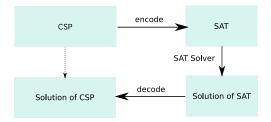
Kobe University, Japan

Sep. 14, 2008

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara Sugar: A SAT-based CSP Solver

Sugar Order encoding Max-CSP

Features of Sugar CSP Solver



- Sugar is a SAT-based solver for CSPs, COPs, and Max-CSPs.
- It uses order encoding method (Tamura et al. CP2006) which is better for various problems than other encodings, such as direct encoding and support encoding.
- SAT problems are solved by an external efficient SAT solver, such as MiniSat and PicoSAT.

Order encoding

- Order encoding is a generalization of the encoding method originally used by Crawford and Baker for Job-Shop Scheduling problems.
- It uses a different Boolean variable P_{x,a} representing x ≤ a for each integer variable x and integer value a.

$$P_{x,a} \iff x \leq a$$

Order encoding

- Order encoding is a generalization of the encoding method originally used by Crawford and Baker for Job-Shop Scheduling problems.
- It uses a different Boolean variable P_{x,a} representing x ≤ a for each integer variable x and integer value a.

$$P_{x,a} \iff x \leq a$$

 For example, the following four Boolean variables are used to encode an integer variable x ∈ {1, 2, 3, 4, 5}.

$$P_{x,1}$$
 $P_{x,2}$ $P_{x,3}$ $P_{x,4}$

Please note $P_{x,5}$ (i.e. $x \le 5$) is not necessary because it is always true.

Order encoding of variables

Integer variable x ∈ {1, 2, 3, 4, 5} can be encoded into the following *three* SAT clauses while the direct encoding requires 11 clauses (one at-least-one clause and 10 at-most-one clauses).

$$\begin{array}{ll} \neg P_{x,1} \lor P_{x,2} & (\text{i.e. } (x \leq 1) \supset (x \leq 2)) \\ \neg P_{x,2} \lor P_{x,3} & (\text{i.e. } (x \leq 2) \supset (x \leq 3)) \\ \neg P_{x,3} \lor P_{x,4} & (\text{i.e. } (x \leq 3) \supset (x \leq 4)) \end{array}$$

Order encoding of variables

Integer variable x ∈ {1, 2, 3, 4, 5} can be encoded into the following *three* SAT clauses while the direct encoding requires 11 clauses (one at-least-one clause and 10 at-most-one clauses).

$$\begin{array}{ll} \neg P_{x,1} \lor P_{x,2} & (\text{i.e.} \ (x \leq 1) \supset (x \leq 2)) \\ \neg P_{x,2} \lor P_{x,3} & (\text{i.e.} \ (x \leq 2) \supset (x \leq 3)) \\ \neg P_{x,3} \lor P_{x,4} & (\text{i.e.} \ (x \leq 3) \supset (x \leq 4)) \end{array}$$

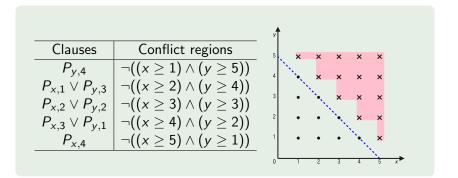
• The followings are the satisfiable assignments.

$P_{x,1}$	$P_{x,2}$	$P_{x,3}$	$P_{x,4}$	Interpretation
Т	Т	Т	Т	x = 1
F	Т	Т	Т	<i>x</i> = 2
F	F	Т	Т	<i>x</i> = 3
F	F	F	Т	<i>x</i> = 4
F	F	F	F	<i>x</i> = 5

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara Sugar: A SAT-based CSP Solver

Order encoding of linear constraints

- **Constraints** can be encoded by representing conflict regions instead of conflict points as used in direct encoding.
- For example, x + y ≤ 5 is encoded into the following *five* SAT clauses while the direct encoding requires 15 clauses.



Order encoding of other intensional constraints

Expression	Replacement	Extra condition
E < F	$E+1 \leq F$	
E = F	$(E \leq F) \land (E \geq F)$	
$E \neq F$	$(E < F) \lor (E > F)$	
max(E, F)	x	$(x \ge E) \land (x \ge F) \land ((x \le E) \lor (x \le F))$
$\min(E, F)$	X	$(x \leq E) \land (x \leq F) \land ((x \geq E) \lor (x \geq F))$
abs(E)	x	$(x \ge E) \land (x \ge -E) \land ((x \le E) \lor (x \ge -E))$
E div c	q	$(E = c q + r) \land (0 \le r) \land (r < c)$
<i>E</i> mod <i>c</i>	r	$(E = c q + r) \land (0 \le r) \land (r < c)$

• Other intensional expressions are translated as described above.

Order encoding of other intensional constraints

Expression	Replacement	Extra condition
E < F	$E+1 \leq F$	
E = F	$(E \leq F) \land (E \geq F)$	
$E \neq F$	$(E < F) \lor (E > F)$	
max(E, F)	x	$(x \ge E) \land (x \ge F) \land ((x \le E) \lor (x \le F))$
$\min(E, F)$	X	$(x \leq E) \land (x \leq F) \land ((x \geq E) \lor (x \geq F))$
abs(E)	X	$(x \ge E) \land (x \ge -E) \land ((x \le E) \lor (x \ge -E))$
E div c	q	$(E = c q + r) \land (0 \le r) \land (r < c)$
<i>E</i> mod <i>c</i>	r	$(E = c q + r) \land (0 \le r) \land (r < c)$

- Other intensional expressions are translated as described above.
- Encodings of variable multiplications (such as $x \cdot y$) are possible, but the current Sugar implementation does not support them.
- However, some heuristic conversion rules (e.g. x · y > 0) are introduced to reduce the demerits.

Order encoding of global constraints

• all different (x₁, x₂,..., x_n) constraint is translated as follows:

$$igwedge_{i < j} (x_i
eq x_j) \
eg \left(x_i < lb + n - 1
ight) \
eg \left(x_i > ub - n + 1
ight)$$

where the last two are extra pigeon hole constraints, and *lb* and *ub* are the lower and upper bounds of $\{x_1, x_2, \ldots, x_n\}$.

• Other global constraints are translated in a straightforward way.

Order encoding of extensional constraints

- **Conflict tuples** are combined into conflict regions and encoded by the order encoding.
- **Support tuples** are encoded by considering their complements.

Solving Max-CSPs and COPs

- Max-CSP is solved by converting it into an equivalent COP.
- **COP** is solved by repeatedly invoking a SAT solver with varying the bound condition of the objective variable in a bisection-search way.

Solving Max-CSPs and COPs

- Max-CSP is solved by converting it into an equivalent COP.
- **COP** is solved by repeatedly invoking a SAT solver with varying the bound condition of the objective variable in a bisection-search way.
- Detailed explanations will be given in the next talk.