Implementing a Constraint
Solver: A Case Study
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Model: Golomb ruler

int mainCint , char *argv[1)
f

7/ input
int = (argc > 1 7 atoiargv[1]) : 8);
int = ( 2 << (nbMarks-1) );
// declare model and variables
// post constraints
int i, j, ;
for(i=1; i<nbMarks; ++i) {
model.add{ mark[i-1] < mark[i] J;
for(j=0; j<i; ++ i)
model.add{ mark[i] == (mark[j] + distance[k++]) J;
1
model.add{ BoundAllDifferent(distance) );

7/ solve

Solver s( model, mark J;
s.setVerbosity(1);
5.50lve();

// print search statistics
s.printStatistics( cout, ¢ L IRUNTIMEY );
cout << endl;




Model: Golomb ruler

L IRUNTIMEY );




Model: Golomb ruler

ables

(nbMarks, 8, rulerSize-1);
CnbMarks*(nbMarks-1)/2, 1, ruler

i<nbMarks; ++
.addC mark[i-1]
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Search
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Decision

Data Structures Propagation
* Variables ® Library of constraints
* Backtrackable types * Generic algorithms

Domain events Filtering



Road-map

e Data Structures
- Variables (Baktracks) A"
Rzt oS

o “ I

nnnnn m

Code OEhmz&hon

Competition



Backtrackable Data-
Structures

e Copying/Trailing
- See Shulte’s papers and
PhD Thesis
- Copying

¥ Easier fo implement data
structures

Copying Trailing
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Constraint Propagation

Variable/Constraint Queue Pruning;

Specific Propagators
Nested Predicates
Generic AC algorithms
- Binary: AC3Bitset

- Tight: GAC2001Allowed
- Loose: GAC3rValid



Nested Predicates

Example: open-shop scheduling:

<predicate name="P0">
<parameters>int X0 int X1 int X2 int X3 int X4 int X5</parameters>
<expression>
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Or
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Example: open-shop scheduling:
Or
check ([30, 100]) {
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- query root;




Nested Predicates: GAC-Checker

Example: open-shop scheduling:

False

check ([30, 100]) {
assign leaves;
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Golomb ruler / FAPP

Golomb

I :
nstance Ruler

128 nodes 60181 nodes
0.18 seconds 55.18 seconds |

I Decomposition

87 nodes 374 nodes
GAC-Checker [ 8 e eonee
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GAC Allowed v. GAC Valid

Backtracks/second
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Search Strategies

e Depth-first, Breadth-first,
LDS,...

e Branching Choices
- Domain Splitting
Arbitrary Constraint




Weighted Heuristics

e The best general purpose orderings are based on some
kind of learning (or weighting)

- Weighted Degree [Boussemart, Hemery, Lecoutre, Sais 2004]
- Impact [Refalo 2004]

e A “Weighter” can suscribe for different types of event
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Optimisation: Binary
Extensional

e Standard algorithms:
- AC3-bitset, Variable queue (fifo), revision condition
e Profiling, what does take time?
- Propagation:
* “&" operati




Intersection on Bitsets (25%)

bool VariableList::wordIntersect(const MistralSet& s) const

{

return values.wordintersect(s);
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Values Iteration (20%)

e Random binary CSP

e Domain as a Bitset: T 10
CRRC )
- 6,500 Bts/second P A 8
i ; ; F i
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