Implementing a Constraint
Solver: A Case Study

Road-map

® Goal

® Blueprint

e Data Structures
¢ Propagation

® Search

® Code Optimization
e Competition

Road-map

Goal

Goal

e “Constraint Programming
represents one of the
closest approaches computer
science has yet made to the
Holy Grail of programming:

the user states the problem,

olves it [E.

Goal

e “Constraint Programming
represents one of the
closest approaches computer
science has yet made to the
Holy Grail of programming:

the user states the problem,

olves it [E.

Does Mistral achieve this goal?

Does Mistral achieve this goal?

e Library in C++

Does Mistral achieve this goal?

e Library in C++
e Developed during my PhD

- Ilog Solver is not open
source

- Good substitutes (Gecode,

Does Mistral achieve this goal?

e Library in C++
e Developed during my PhD

- Ilog Solver is not open
source

- Good substitutes (Gecode,

Does Mistral achieve this goal?

e Library in C++
e Developed during my PhD

- Ilog Solver is not open
source

- Good substitutes (Gecode,
0co and others) di

Does Mistral achieve this goal?
Cork

e Library in C++
e Developed during my PhD

- Ilog Solver is not open
source

- Good substitutes (Gecode,
Choco and others) did not

lontpellie

rederick Mistral

Model: Golomb ruler

= (arge > 1 ? atoi(a
(nbMarks-1))

model

(nbMarks, @, rulerSize-1);
CnbMarks*(nbMarks-

(i=0; j
model.add(ma Cmark

}
model.add(BoundAl1Different(distar

Model: Golomb ruler

(nbMarks, @, rulerSize-1);
CnbMarks*(nbMarks-

L<nbMarks; ++
C mark[i-1]

jectt)
(MinimiseC Max(mark) 3 J;

L IRUNTIMEY);

Model: Golomb ruler

(model, mark J;
rbosity(1);

L IRUNTIMEY);

Model: Golomb ruler

int mainCint , char *argv[1)
f

7/ input
int = (argc > 1 7 atoiargv[1]) : 8);
int = (2 << (nbMarks-1));
// declare model and variables
// post constraints
int i, j, ;
for(i=1; i<nbMarks; ++i) {
model.add{ mark[i-1] < mark[i] J;
for(j=0; j<i; ++ i)
model.add{ mark[i] == (mark[j] + distance[k++]) J;
1
model.add{ BoundAllDifferent(distance));

7/ solve

Solver s(model, mark J;
s.setVerbosity(1);
5.50lve();

// print search statistics
s.printStatistics(cout, ¢ L IRUNTIMEY);
cout << endl;

Model: Golomb ruler

L IRUNTIMEY);

Model: Golomb ruler

ables

(nbMarks, 8, rulerSize-1);
CnbMarks*(nbMarks-1)/2, 1, ruler

i<nbMarks; ++
.addC mark[i-1]

Message:

Message:

e Efficient implementation

- Details do matter

Message:

e Efficient implementation
- Details do matter
® Modeling choices

- Automatic choices of the best representation/algorithm

Message:

e Efficient implementation
- Details do matter
® Modeling choices

- Automatic choices of the best representation/algorithm

Road-map

® Blueprint

A little bit of structure

Search
e Search algorithms
® Heuristics

Data Structures Propagation
* Variables ® Library of constraints
* Backtrackable types * Generic algorithms

A little bit of structure

Search
e Search algorithms

¢ Heuristics

Decision

Data Structures Propagation
* Variables ® Library of constraints
* Backtrackable types * Generic algorithms

Domain events Filtering

Road-map

e Data Structures
- Variables (Baktracks) A"
Rzt oS

o “ I

nnnnn m

Code OEhmz&hon

Competition

Backtrackable Data-
Structures

e Copying/Trailing
- See Shulte’s papers and
PhD Thesis
- Copying

¥ Easier fo implement data
structures

Copying Trailing

Domain as a Bitset

e One 32 bits word for every
value in [min(D)..max(D)]

Xin
{0,1,2,5,7,18,19,21}

L1 1joolrjof1] |olojoloiojololol (olofi]10f1]ol0]

Domain as a Bitset

One 32 bits word for every
value in [min(D)..max(D)]

For every word, we allocate X in
as many word as values in
that word: {0,1,2,5,7,18,19,21}

- 0((max-min+1) + 32*IDI) bits

olol1]of1] [olololololololol [ololi1]ol1]olo

Domain as a Bitset

One 32 bits word for every
value in [min(D)..max(D)]

For every word, we allocate X in
as many word as values in
that word: {0,1,2,5,7,18,19,21}

- 0((max-min+1) + 32*IDI) bits

olol1]of1] [olololololololol [ololi1]ol1]olo

Allocated statically

Domain as a Bitset

B | lolololojolololo] | |

X in {0,1,2,5,7,18,19,21}

Domain as a Bitset

~fil1jooltiof1| lololojooloiofol [ololi]1jol1i0jo]

X in {0,1,2,5,7,18,19,21}

Domain as a Bitset
= {0,5,7,18,19,21}

~liltlrjoofiof] |olojojooiojoio [olof 110l 1ofo

Xin {0,1,2,5,7,18,19,21}

Domain as a Bitset
= {0,5,7,18,19,21}

000
1lolololo

o

!O!OQlQOO|OO| 00 1{1]0111010
|

Xin {0,1,2,5,7,18,19,21}

[«)

Domain as a Bitset

= {0,5,7,18,19,21}
= {057,189}

000
1lolololo

(=)

!O!OQlQOO|OO| 00 1{1]0111010
|

Xin {0,1,2,5,7,18,19,2 1}

[«)

Domain as a Bitset

= {0,5,7,18,19,21}
= {057,189}

000
1lolololo

o

!0!0 010/010(0)

Xin {0,1,2,5,7,18,19,2 1}

[«)

00

00

000

oo

0

Domain as a Bitset

= {0,5,7,18,19,21}
CZD - (057.1819)
CZD > (0518

!o]o plglolololol [olo
00

Xin {0,1,2,5,7,18,19,21}

00
0l0[of

000
1lolololo

o
oo

[«)

Domain as a Bitset

= {0,5,7,18,19,21}
CZD - (057.1819)
EZDH> (0518 }

I[11jolof1Jof1] lololotefololetd [olol1]1lofiloo
Llolololol 1ol olo[1[1olololof
L lolololol 1 0lo olol1/ololojolo

Xin {0,1,2,5,7,18,19,21}

Domain as a Bitset

= {0,57,18,19,21}
CGED = (057.18,19)
CED=» (0518
CEED=» (03 ?

I11[1]olol1]of1] lololotefololerdl lolol1]ilo]1lolo
Llololojol 110l ool 1]1/olololo
L lolololol 1 0lo olol1/ololojolo

Xin {0,1,2,5,7,18,19,21}

Domain as a Bitset

= {0,5,7,18,19,21}
= {057,189}

CED=»> (0518
CEED=» (03
IT11jolofiJof1] |ololokefololetd [0lo
Llololojol 110l)
ololojol1/0lo 000

|
|
|
000

Xin {0,1,2,5,7,18,19,21}

Domain as a Bitset

= {0,5,7,18,19,21}
= {057,189}

CED=»> (0518
CEED=» (03
IT11jolofiJof1] |ololokefololetd [olo
Llololojol 110l)
ololojol1/0lo 000

|
|
|
000

Xin {0,1,2,5,7,18,19,21}

Domain as a Bitset

= {0,5,7,18,19,21}
CZD - (057.1819)
EZDH> (0518 }

IT11jolofiJof1] |ololokefololetd [olo
Llolololol 1ol 00
olololol1]0lo 00

|
|
|
oolo

1{of1]olo
1/ojololo]
000/0/0[0]
00j0jolo

Xin {0,1,2,5,7,18,19,21}

Domain as a Bitset

= {0,5,7,18,19,21}
= {057,189}

11]1]olol 1]l pbgﬂodod olo[1]1]of1Jolo
1lojojojol /01 olol1[1/ololo]
lololojol1 0lo) 0ol1/olojojolo

ojololojolojolo

Xin {0,1,2,5,7,18,19,2 1}

Domain as a List

Domain as a List

e e e T e P

Domain as a List

8 size

Domain as a List

8 size

Domain as a List

8 size

Domain as a List

8 size

Domain as a List

8 size

R

Domain as a List

Domain as a List

size

— N

Domain as a List

Domain as a List

Pigeon holes

Pigeon holes

e Domain as a Bitset:
¥ Space complexity in O(max-min)

¥ Restore up fo 32 values at a
time

¥ 600,000 Bts/second

Pigeon holes

e Domain as a Bitset:
¥ Space complexity in O(max-min)

¥ Restore up fo 32 values at a
time

¥ 600,000 Bts/second

Road-map

® Propagation 1 A
- Nested predicates ‘ P 140 Lo i ST

Sear
Code Optimization

Competition

Constraint Propagation

Variable/Constraint Queue Pruning;

Specific Propagators
Nested Predicates
Generic AC algorithms
- Binary: AC3Bitset

- Tight: GAC2001Allowed
- Loose: GAC3rValid

Nested Predicates

Example: open-shop scheduling:

<predicate name="P0">
<parameters>int X0 int X1 int X2 int X3 int X4 int X5</parameters>
<expression>

Nested Predicates: Decomposition

Example: open-shop scheduling:

Nested Predicates: Decomposition

Example: open-shop scheduling: Y =X;+85

Nested Predicates: Decomposition

Example: open-shop scheduling: Y =X;+85
Or o = (Yl < Xz)

Nested Predicates: Decomposition

Example: open-shop scheduling: Y =X;+85

or T A
Y3 =X+ 64

Nested Predicates: Decomposition

Example: open-shop scheduling: Y =X;+85

it X
Y3 =X+ 64

Nested Predicates: Decomposition

Example: open-shop scheduling: Y =X;+85

Nested Predicates: GAC-Checker

Example: open-shop scheduling:

Or

check ([30, 100]) {
assign leaves;

Nested Predicates: GAC-Checker

Example: open-shop scheduling:
Or
check ([30, 100]) {
assign leaves;
- query root;

Nested Predicates: GAC-Checker

Example: open-shop scheduling:

False

check ([30, 100]) {
assign leaves;

Golomb ruler / FAPP

Instance:

Decomposition 8

GAC-Checker

Golomb ruler / FAPP

Golomb

I :
nstance Ruler

128 nodes

= pecompeosition 0.18 seconds

87 nodes
GAC-Checker 38.22 seconds

Golomb ruler / FAPP

Golomb

I :
nstance Ruler

128 nodes 60181 nodes
0.18 seconds 55.18 seconds |

I Decomposition

87 nodes 374 nodes
GAC-Checker [8 e eonee

Making the Right Choice

Making the Right Choice

|Feature | GAC |Decomp| OSP |

Making the Right Choice

Feature

GAC

Decomp

OSsP

Constraint Arity

binary

Making the Right Choice

Feature

Constraint Arity

Ratio node/leaves

Making the Right Choice

Feature

OSsP

Constraint Arity

binary

i Ratl nod

e/leaves

22l

Making the Right Choice

Feature GAC |Decomp| OSP
Constraint Arity - A binary

Ratio node/leaves

5/2

Making the Right Choice

5/2

Feature GAC |Decomp| OSP
Constraint Arity - A binary
Ratio node/leaves o =

Making the

Right Choice

Feature GAC |Decomp| OSP
Constraint Arity - A binary

Ratio node/leaves

5/2

Making the Right Choice

Feature

OSsP

Constraint Arity

Ratio node/leaves

binary

GAC Allowed v. GAC Valid

Backtracks/second

Allowed ——
Valid ——
15000

14000

13000

12000

11000

10000

9000

k]
|4
g
o}
a
o

~
g

~
o
a
s

5

b
o
q

]

8000

7000

6000

2000
0,04 . - . 0,14

Tighter Looser

Road-map

1 | o.zs- 10:1em 5
Search \

nnnnn m

Code OEhmz&hon

Competition

Search Strategies

e Depth-first, Breadth-first,
LDS,...

e Branching Choices
- Domain Splitting
Arbitrary Constraint

Weighted Heuristics

e The best general purpose orderings are based on some
kind of learning (or weighting)

- Weighted Degree [Boussemart, Hemery, Lecoutre, Sais 2004]
- Impact [Refalo 2004]

e A “Weighter” can suscribe for different types of event

Road-map

Competition

Optimisation: Binary
Extensional

e Standard algorithms:
- AC3-bitset, Variable queue (fifo), revision condition
e Profiling, what does take time?
- Propagation:
* “&" operati

Intersection on Bitsets (25%)

bool VariableList::wordIntersect(const MistralSet& s) const

{

return values.wordintersect(s);

Values Iteration (20%)

Values Iteration (20%)

e Random binary CSP

Values Iteration (20%)

e Random binary CSP

e Domain as a Bitset: .
w4
- 6,500 Bts/second p 2

Values Iteration (20%)

e Random binary CSP

e Domain as a Bitset: T 10
CRRC)
- 6,500 Bts/second P A 8
i ; ; F i
e Domain as a List (hybrid]

Quick Comparison
(#instances)

[l Abscon B Choco [Mistral

Quick Comparison
(#instances)

[l Abscon B Choco [l Mistral

| 90%

Quick Comparison
(#instances)

90%

Quick Comparison
(cpu time)

[l Abscon B Choco [Mistral

Quick Comparison
(cpu time)

[l Abscon B Choco [l Mistral

180s

Quick Comparison
(cpu time)

[l Abscon B Choco [l Mistral

180s

Backtracks v CPU-time

X Mistral % Abscon % Choco

Bkts 3000000

220 — d

Backtracks v CPU-time

X Mistral % Abscon % Choco

Bkts 3000000

250

Conclusion

Conclusion

¢ Implementing a constraint
solver may appear like a
daunting task

Conclusion

¢ Implementing a constraint
solver may appear like a
daunting task

- Itis so.

Conclusion

¢ Implementing a constraint
solver may appear like a
daunting task

- Itis so.

- But you'll learn a lot!

Conclusion

¢ Implementing a constraint
solver may appear like a
daunting task

- Itis so.
- But you'll learn a lot!
Adaptability

Conclusion

¢ Implementing a constraint
solver may appear like a
daunting task

- Itis so.
- But you'll learn a lot!
Adaptability

Conclusion

¢ Implementing a constraint
solver may appear like a
daunting task

- Itis so.

- But you'll learn a lot!
® Adaptability

Conclusion

¢ Implementing a constraint
solver may appear like a
daunting task

- Itis so.

- But you'll learn a lot!
® Adaptability

fentl

