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• “Constraint Programming 
represents one of the 
closest approaches computer 
science has yet made to the 
Holy Grail of programming: 
the user states the problem, 
the computer solves it.” [E. 
Freuder]

• ...if given enough time!
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• Under GNU General Public 
License

• Why Mistral?
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Terrific Recursive Acronym 
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Message:

• Efficient implementation 

- Details do matter

• Modeling choices 

- Automatic choices of the best representation/algorithm
! Variable (Constant, Boolean, Interval, Bitset, List, ...)

! Constraints (Specific algorithm, Decomposition, Generic 
algorithms, ...)

! Heuristics

- Automatic rewritting?

• Robustness 

- Worst case principle
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Road-map

• Goal
• Blueprint
• Data Structures

- Variables (Baktracks)

• Propagation
• Search
• Code Optimization
• Competition



Backtrackable Data-
Structures

• Copying/Trailing

- See Shulte’s papers and 
PhD Thesis

- Copying
! Easier to implement data 

structures

! Easier to implement search 
strategies

! Easier to parallelize

- Trailing
! Do only necessary work

! Memory efficient

Copying Trailing



 Domain as a Bitset

• One 32 bits word for every 
value in [min(D)..max(D)]

11100101

X in
{0,1,2,5,7,18,19,21}

00000000 00110100



Domain as a Bitset

• One 32 bits word for every 
value in [min(D)..max(D)]

• For every word, we allocate 
as many word as values in 
that word: 

- 0((max-min+1) + 32*|D|) bits

11100101

X in
{0,1,2,5,7,18,19,21}

00000000 00110100



Domain as a Bitset

• One 32 bits word for every 
value in [min(D)..max(D)]

• For every word, we allocate 
as many word as values in 
that word: 

- 0((max-min+1) + 32*|D|) bits

11100101

X in
{0,1,2,5,7,18,19,21}

00000000 00110100

Allocated statically



Domain as a Bitset

00000000

X in {0,1,2,5,7,18,19,21}



Domain as a Bitset

11100101 00000000 00110100

X in {0,1,2,5,7,18,19,21}



Domain as a Bitset

11100101 00000000 00110100

decision 1 {0,5,7,18,19,21}

X in {0,1,2,5,7,18,19,21}1,2,



Domain as a Bitset

11100101
10000101

00000000 00110100

decision 1 {0,5,7,18,19,21} w1

X in {0,1,2,5,7,18,19,21}1,2,



Domain as a Bitset

11100101
10000101

00000000 00110100

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

w1

X in {0,1,2,5,7,18,19,21}1,2, ,21



Domain as a Bitset

11100101
10000101

00000000 00110100
00110000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

w1

w2

X in {0,1,2,5,7,18,19,21}1,2, ,21



Domain as a Bitset

11100101
10000101

00000000 00110100
00110000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

w1

w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19



Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19



Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

decision 4 {0,5}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19,7,18,



w2

Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000
00000000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

decision 4 {0,5}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19,7,18,



w2

Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000
00000000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

decision 4 {0,5}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19,7,18,



Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000
00000000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19



Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000
00000000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

w1

w2

X in {0,1,2,5,7,18,19,21}1,2, ,21



Domain as a List



Domain as a List

9 1 5 12 2 14 6 4 list



Domain as a List

9 1 5 12 2 14 6 4

8 size

list



Domain as a List

9 1 5 12 2 14 6 4

1 4 7 2 6 0 3 5∞ ∞ ∞ ∞ ∞∞ ∞

8 size

list
index



Domain as a List

9 1 5 12 2 14 6 4

1 4 7 2 6 0 3 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

8

membership: index[v] < size

size

list
index



Domain as a List

9 1 5 12 2 14 6 4

1 4 7 2 6 0 3 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

8

membership: index[v] < size

size

list
index



Domain as a List

9 1 5 12 2 14 6 4

1 4 7 2 6 0 3 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

8

membership: index[v] < size

size

list
index



Domain as a List

9 1 5 12 4 14 6 2

1 7 4 2 6 0 3 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

7

membership: index[v] < size

size

list
index



Domain as a List

6 12 5 1 4 14 9 2

3 7 4 2 0 6 1 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

2

membership: index[v] < size

size

list
index



Domain as a List

6 12 5 1 4 14 9 2

3 7 4 2 0 6 1 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

2 Backtrack

membership: index[v] < size

size

list
index



Domain as a List

6 12 5 1 4 14 9 2

3 7 4 2 0 6 1 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

8

membership: index[v] < size

size

list
index



Pigeon holes



Pigeon holes

• Domain as a Bitset:
! Space complexity in O(max-min)

! Restore up to 32 values at a 
time

! 600,000 Bts/second



Pigeon holes

• Domain as a Bitset:
! Space complexity in O(max-min)

! Restore up to 32 values at a 
time

! 600,000 Bts/second

• Domain as a List:
! Similar space complexity 

! Restore any number of values in 
one operation

! 900,000 Bts/second

! However, operations are much 
slower on the list (interval 
reasoning, set operations)
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• Goal
• Blueprint
• Data Structures
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- Nested predicates
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Constraint Propagation

• Variable/Constraint Queue

• Specific Propagators

• Nested Predicates

• Generic AC algorithms
- Binary: AC3Bitset

- Tight: GAC2001Allowed

- Loose: GAC3rValid

Pruning:



Nested Predicates

<predicate name="P0">
  <parameters>int X0 int X1 int X2 int X3 int X4 int X5</parameters>
  <expression>
    <functional>or(le(add(X0,X1),X2),le(add(X3,X4),X5))<functional>
  </expression>
</predicate>

 <constraint name="C0" arity="2" scope="V0 V1" reference="P0">
   <parameters>V0 85 V1 V1 64 V0</parameters>
 </constraint>

Example: open-shop scheduling:
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Nested Predicates: Decomposition

Example: open-shop scheduling: Y1 = X1 + 85

Y3 = X2 + 64
Y2 = (Y1 < X2)

Y4 = (Y3 < X1)
(Y2 ∨ Y4)
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Nested Predicates: GAC-Checker

Example: open-shop scheduling:

Or

< >

+ +

6485

check ([30, 100]) {
  assign leaves;
  query root;
}

 assign leaves;
  query root;

False

115 164

False False

X1 X2

X1X2

30

100 30

100
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Golomb ruler / FAPP

Instance:

Decomposition

GAC-Checker

Golomb
Ruler

128 nodes
0.18 seconds

87 nodes
38.22 seconds

FAPP

60181 nodes
55.18 seconds

374 nodes
1.18 seconds
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Making the Right Choice

Feature GAC Decomp OSP

Constraint Arity - + binary

Ratio node/leaves + - 5/2

Domain continuity - + no holes

Cartesian product cardinality - + >60,000

Boolean domains - + no

Total number of constraints + - small

Decomposition!



GAC Allowed v. GAC Valid
Backtracks/second

Tighter                                                    Looser
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Search Strategies

• Depth-first, Breadth-first, 
LDS,...

• Branching Choices
- Domain Splitting

- Arbitrary Constraint

• Variable/Value Ordering

- “Learning” heuristics
! Weighted Degree, Impact



Weighted Heuristics

• The best general purpose orderings are based on some 
kind of learning (or weighting)
- Weighted Degree [Boussemart, Hemery, Lecoutre, Sais 2004]

- Impact [Refalo 2004]

• A “Weighter” can suscribe for different types of event
- Weighted degree: failures

- Impact: Decisions, success, failures 

• This architecture allows easy development of variations 
around these models
- Why isn’t Impact/Weighted Degree any good?
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Optimisation: Binary 
Extensional

• Standard algorithms:
- AC3-bitset, Variable queue (fifo), revision condition

• Profiling, what does take time?
- Propagation:.......................................... 68%

• “&” operation:..................................... 25.9%
• Domain iteration:................................ 20.6%
• AC3 (queuing/dequeuing):................ 11.4%
• Revision condition + virtual call:.. 10.0%

- Data structure modification:........... 19%
• Domain modification:.......................... 19.0%

- Search:..................................................... 12%
• Trailing:..................................................... 9.7%
• Variable choice + Branching:........... 2.2%



Intersection on Bitsets (25%)

  inline bool MistralSet::wordIntersect(const MistralSet& s) const 
  {
    return ( table[neg_words] & s.table[neg_words] ) ;
  }

  bool VariableList::wordIntersect(const MistralSet& s) const
  {
    return values.wordIntersect(s);
  }
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Values Iteration (20%)

• Random binary CSP

• Domain as a Bitset:
- 6,500 Bts/second

• Domain as a List (hybrid 
bitset/list):
- 10,000 Bts/second

- Values are stored 
contiguously in an array

- The order does not matter
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• Propagation
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Conclusion

• Implementing a constraint 
solver may appear like a  
daunting task
- It is so.

- But you’ll learn a lot!

• Adaptability

• Attention to details

• Robustness
- Weaknesses are always 

more obvious to a user 
than strengths 


