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Abstract

We proposein this papera new family of belief meiging op-
erators,that is basedon a gamebetweensources. Until a
coherensetof sourcess reachedat eachrounda contestis
organizedto find outthe wealestsourcesthenthosesources
hasto concedgwealentheir point of view). Thisidealeads
to numerousew interestingoperatorgdependingof the ex-
actmeaningof “weakest”and “concede; that givesthe two
parameterdor this family) and opensnew perspecties for
belief melging. Someexisting operatorsare alsorecovered
asparticularcases.Thoseoperatorscanbe seenasa special
caseof Booth's Belief NegotiationModels(Booth2002),but
the achievedrestrictionformsa consistenfamily of memging
operatordghatworthsto be studiedon its own.

Intr oduction

The problem of (propositional) belief memging (Revesz
1997;Lin & Mendelzon1999;Liberatore& Schaerf1998;
Konieczry & PinoPérez1999;2002a;Konieczly, Lang, &
Marquis 2004) can be summarizedy the following ques-
tion: givena setof sourceqpropositionabelief bases}hat
are mutually inconsistent,how to reacha coherentbelief
basereflectingthe beliefsof the set?

Theideahereis thatsome/eackourcesiasto conceden
somepointsin orderto solve the conflicts. If onehassome
notion of relative reliability betweensourcesijt is enough
andsensibleto force the lessreliable onesto give up first.
Thereis alot of differentmeango do that, which haspro-
videdalargeliterature,e.g.(Cholvy 1993;1995;1998;Ben-
ferhatetal. 1998;Benferhat,Dubois,& Pradel1998). But
oftenwe do nothave suchinformation,andevenif we getit,
it remainsthe morefundamentaproblemof how to melge
sourceof equalreliability (Konieczry & Pino Pérez1999;
2002a).

In this paperwe will investicate the merging methods
basednanotionof gamebetweerthesourcesTheintuitive
ideais simple: whentrying to imposeits wish, eachsource
will try to form somecoalition with nearmindedsources.
Sothe sourcethatis the “furthest” from the otheroneswill
certainlybethewealestone. And it will bethatsourcethat
have to conceddirst. In thiswork, we will notfocusonhow
the coalitionsform, we only take this ideato designatehe
wealestones.

Sothe memging is basedon the following game: Until a
coherensetof sourcess reachedat eachrounda contestis
organizedto find outthewealestsourcesthenthosesources
hasto concedgwealentheir point of view).

We can stateseveral intuitions and justificationsfor the
useof suchoperators.We have alreadygiven thefirst one:
coalitionwith nearmindedsourcesln agroupdecisionpro-
cesshetweerrationalsourcesit canbesensiblgo expectthe
sourcego look for nearmindedsourcesn orderto find help
to defendtheir view, so the “furthest” sourceis the more
likely to have to concedeon its view.

A secondintuition is the one given by a social pressure
on the sources. When confronting several points of view,
usuallypeoplethathave themoreexotic views try to change
theiropinionin orderto beacceptedby theothermemberof
thegroup,soopinionsthataredefendedy theleastnumber
of sourcesreusuallygivenup moreeasilyin thenegotiation
process.

A lastintuition thatgivesthe mainrationalefor thatkind
of operatorsis Condorcet Jury theorem. This theorem
statesthat if all the membersof a jury arereliable (in the
senseahatthey have morethana half of chancego find the
truth), thenlistento the majority is themorerationalchoice.

After statingsomeusefuldefinitionsandnotationsin the
following section,we will definethe new family of opera-
torswe propose.The definition will usea notion of weak-
eningand choicefunctions. We will explore thosenotions
in a subsequensectionand we will give someexamples
of specificoperatorsin order to illustrate their behaiour.
We will thenlook at the logical propertiesof thoseopera-
tors. Finally, we will look at the links betweenthis work
andrelatedworks(especiallyBooth’'s proposa(Booth2001;
2002)), beforeconcludingwith someopenissuesand per
spectvesof this work.

Preliminaries

We considera propositionalanguagel over afinite alpha-
betP of propositionalsymbols.An interpretationis a func-
tion from P to {0,1}. Thesetof all the interpretationss
denotedV. An interpretationu is a modelof aformulap,
notedw = ¢, if andonly if it makesit truein the usualclas-
sicaltruth functionalway. Let ¢ beaformula, mod(y) de-
notesthe setof modelsof , i.e. mod(p) = {w e W |w |
}. Conversely let X beasetof interpretationsform(X)



denotegheformula(upto logical equivalencewhosesetof
modelsis X.

A belief basep is a consistenpropositionaformula (or,
equialently afinite consistensetof propositionaformulae
considereatonjunctizely).

Let 1,..., @, ben belief baseqnot necessarilydiffer-
ent). We call belief profile the multi-set & consistingof
thosen belief bases:¥ = (¢1,...,p,) (i.e. two sources
canhave the samebelief base). We note A ¥ the conjunc-
tion of the belief basesof U, i.e. AU = o1 A -+ A @y.
We saythatabelief profileis consistentf A ¥ is consistent.
Themulti-setunionwill benotedu andthe multi-setinclu-
sionwill benotedC. The cardinalof a finite (multi-)set A
is noted#(A) (the cardinalof a finite multi-setis the sum
of thenumbersof occurrencesf eachof its elements).Let
£ bethesetof all finite belief profiles.

Two belief profiles W, and ¥, are saidto be equivalent
(I, = W,) if andonly if thereis abijectionbetween?; and
W, suchthateachbelief baseof ¥, is logically equivalent
to itsimagein W.

Belief GameModel

In (Booth 2001; 2002) Richard Booth proposea frame-
work for meiging sourcef informationincrementally He
namedthis framevork “Belief Negotiation Model” (BNM)
In this work we will usethe name “Belief GameModel”
(BGM) becausen our frameawork thereis no roomfor ne-
gociation,so we find it more accurateandit allows us to
make a distinctionin this paperbetweenBooth’s proposal
and our. The BGM framevork can be seenas a restric-
tion of Booth’s BNM framework: the main differencese-
tweenBooth’s proposalandouris thatBooth's onetake the
sourcesascandidateso wealening,whereasverestrictour
selesto “points of view”. That meansthatin Booth’s if
one sourcehasto wealen, it canbe the casethat another
sourcewith exactly the samebeliefsdo not have to wealen
too (thatis not allowed in our framework). Our proposal
addmoreanorymity by sayingthatonly beliefsdecidewho
hasto wealen, not theidentity of onesource.Similarly, the
choicefunctionsaremoreMarkovian in our framevork than
in Booth’s one. We think that thosehypothesisare more
realistic(andnecessarydn a belief meiging point of view,
whereasBooth’s framavork allows to modelmoregeneral-
ized ngyotiation schemeswhereone candecidefor exam-
ple that eachsourcehasto wealen one after the other(see
SectionComparisorbetweenBGM and BNM for a deeper
comparisorof thetwo approaches).

Definition 1 A choicefunctionis afunctiong : £ — £ sut
that:

*g(V)EV

If U £ (), theng(¥) # ()

IfAT £ T,thendp € g(V)st.p#T

If & =0/, theng(¥) = g(¥)

The choicefunction aimsto find which are the sources

that mustwealen at a given round. So the two first con-
ditions meanthat the sourceghat will have to wealen are

a non-emptysubset of the belief profile. As the wealen-
ing function aims at wealen the belief base,and as there
is no wealer basethan a tautologicalone, the third condi-
tion statesthat at leastone non-tautologicabasemust be
selected. This conditionis necessaryo ensuredo always
reacharesultwith Belief GameModel. Lastconditionis an

irrelevanceof syntaxcondition. It stateghatthe selectiornof

the basego wealendoesnot dependon the particularform

of the basesput only of they informationalcontent. Note
that we also have an additional property: anorymity, that
meanghatthe resultdoesnot dependof the “name” of the
source but only on its point of view. Thisis dueto thefact
thatwe work with multi-sets thatareequivalentby permu-
tation. If oneworks with an otherrepresentatiorfordered
lists of sourcesfor example), this anorymity propertycan
be givenby thelastcondition,providedthatthe equivalence
betweentwo belief profilesis rightly defined(asin the Pre-
liminariessection).

Definition 2 Awealeningfunctionis afunctionv : £ — L
sud that:

e o V(p)
o Ifo=V(p),thenp=T
e If p = ¢/, thenv(p) = v(¢')

The wealeningfunction aimsto give the new beliefs of
a sourcethat hasbeenchosento be wealen. The two first
conditionsensurehatthe basewill bereplacedoy astrictly
wealer one (unlessthe baseis alreadya tautologicalone).
Thelastconditionis anirrelevanceof syntaxrequirement
theresultof the wealeningmustonly dependon the infor-
mationcorvey by thebasenotonits syntacticaform.

We extendthe wealening functionson belief profilesas
follows: let ¥’ beasubsebf ¥,

vo )= | vou || ¢

pew’ PET\ T’

This meanghatwe wealenonly thebelief baseof ¥ that
arein ¥’, the otheronesdo not change.

Definition 3 A Belief GameModelis a pair N' = (g, V)
whete g is a choicefunctionand v is a wealeningfunction.

Thesolutionto a beliefprofile U for a BeliefGameModel
N = (g, V), noted N (¥), is the belief profile ¥ 5, defined
as:

[ ] WO = \I/
o Wit = Vo) (V)
e U, isthefirst ¥; thatis consistent

Sothesolutionto abeliefprofile is theresultof agameon
thebeliefsof thesourcesAt eachroundthereis acontesto
find out the wealestbaseqthe losers),andthe losershave
to concedeontheir belief by wealeningthem.

Yindeed,all setnotionsusedin this paper(subset,inclusion,
union, etc.),aremulti-setsone. Sohereit is strictly speakingsub-
muti-set. For the sale of simplicity, and sinceit cannot leadto
confusionsincewe work in this paperonly with multi-sets we will
take the setnotions,without mentioningthe “multi-".



In somecasesthe resultof the meiging hasto obey to
someconstraints(physical constraintsnorms, etc...). We
will assumehatthoseintegrity constraintsareencodedasa
propositionalformula (a belief base),andwe will notethis
baseu. Thenwe introducethefollowing notion:

Definition 4 Thesolutionto a belief profile ¥ for a Belief
GameModel N = (g, ¥) undertheintegrity constaints y,
noted\,, (¥), is thebeliefprofile U definedas:

[ ) \IIO = \Ij
o Uiy =V, (W)
° \Ifj([ is thefirst W; thatis consistentvith 1

Oftenin thefollowing in this paperwe will call resultof
the meging operator(Belief GameModel), the belief base
A\ W, A p. This aluseof notationis not problematic since
this belief basedenoteghe consensupoint obtainedby the
belief profile U\, solutionof the Belief GameModel pro-
cess.

Note thatthe definition of the Belief GameModel and of
the wealening and choice functionsensureghat eachbe-
lief profile U hasa solutionassoonasthe constraints are
consistent.

Weakening and Choice Functions

In orderto definea particularBelief GameModel, we have
to choosea choicefunction anda wealeningfunction. We
will givein this sectionsomenaturalchoicesfor thosefunc-
tionsandseewhataretheresultingBGM operators.

Weakening Function

Let usfist turn out on wealeningfunction. Canwe find out
a‘“natural” one? In factit is a difficult task,sincethe exact
choiceof awealeningfunctiondepend®nthe expectedbe-
haviour for the Belief GameModel anddependslsoon the
existenceof some*preferential’information.Butif we have
no suchadditionalinformation,we have atleasttwo natural
candidates drasticwealeninganddilatation.

Definition 5 Lety bea beliefbase Thedrasticwealening
function forget all the informationaboutone source i.e. :
VT(QO) =T.

After this roughfunction, let us seea morefine grained
one. Let us first recall what is the Hammings distance
betweeninterpretationgalsocalled Dalal’s distance(Dalal
1988))sincewe will useit sereraltimesin this paper

Definition 6 The Hamming distance betweeninterpreta-
tions is the numberof propositionalsymbolson which the
two interpretationsdiffer. Letw andw’ be two interpreta-
tions,then

dp(w,w’) = #{a € P |w(a) # w'(a)})
Thenthedilatationwealeningfunctionis definedas:

Definition 7 Lety bea beliefbase Thedilatationwealen-
ing functionis definedas:

mod(Vs(p)) ={weW | E pdy(w,o') <1}

Choice Function

Let us turn out now on choicefunction. The aim of this
function is to determinethe “losers”, that are the sources
that have to concedeby wealeningtheir beliefsat a given
round.

One of the simplestchoice function one can chooseis
identity (denotedy;4). It is not the expectedbehaiour for
thisfunction,but it canprove therationality of our operators
if, evenin this casewe obtaina sensiblaneging.

We will focuson two familiesof choicefunctions. The
first oneis model-basedthe secondoneis formula-based.
We think that mostof the sensiblechoicefunctionsbelong
to oneof thosefamilies.

Model-Based Choice Functions We will focus hereon
somemodelizationof whatcanbe called“social pressure”,
andcanbe viewed asa majority principle. Namely at each
roundit is the “furthest” sourcesfrom the group that will
concedeTheexactchoiceof the meaningof “furthest” will
fix thechoseroperatoifrom thisfamily. Technicallywe will
useadistancebetweerbeliefbasesandanaggreationfunc-
tion to evaluatethe distanceof a belief basewith respecto
theothers.

We will startfrom the definition of the distancebetween
two beliefbases.

Definition 8 A (pseudo)distancée d betweentwo belief
baseds a functiond : £ x £ — IN sud that:
e d(p, @) =0iff oA ¥ L
o d(p, @) = d(¢', )
Two examplesof a suchdistancesre:

nN_ O ifong FL
. dD(QOa(p)_{ 1 otherwise

e dy(p,¢')= min dg(w,w’)

wEpw Ee’
Definition 9 An aggregation functionis a total function f
associatinga nonngativeinteger to everyfinite tupleof non-
negativeintegers and verifying (non-decreasingnesgnin-
imality) and (identity).
o if =« < y, then f(z1,...,2,...,2y) <
flxy, ooy, o ). (non-decreasingness)
e f(z1,...,2,) =0if andonlyif z; = ... =z, = 0.
(minimality)
(identity)
We saythatan aggregationfunctionis symmetrigf it also
satisfies
e For any permutation o, f(z1,...,2,) =
flo(z1,...,xn)) (symmetry

Definition 10 A model-basecthoice function ¢%" is de-
finedas:

o for everynonngativeinteger z, f(z) = z.

2Remarkthat we missan importantpropertyof distanceswe
haveonly d(¢, ¢') = 0 if o = ¢, but notthe only if part. Remark
alsothatwe do notrequirethetriangularinequality



9" (¥) = {pi € U | (d(i, 1), - -+
..., d(pi, pn)) iIs maximal}

whee h is an aggregation function,andd is a distancebe-
tweenbeliefbases.

We saythat the model-basedhoicefunctionis symmetric
if the aggregationfunctionis symmetric.

We will focuson somespecificaggreation functionsin
this paper but we can usedifferentaggreation functions
here. In particularwe will only focuson symmetricalag-
gregation functionsin this paper(to fit with choicefunc-
tions requirementsput note that the definition allows non-
symmetricalfunctions. This allows to defineoperatorghat
arenot anorymous,i.e. whereeachbasehasnot the same
importance. So one can use priorities (a weight or a pre-
orderonthesourcesfor denotingdifferentlevel of reliabil-
ity, differenthierarchicaimportanceegtc.

We will usein the following asexamplesof aggr@ation
functions,two typical onesthe sum(notedX) andthe max-
imum (notedmax).

Formula-BasedChoice Functions All interestingchoice

functions are not capturedin the definition given in the

previous section. In particular a lot of interestingchoice

functionscan be definedby usingmaximal consistensub-

sets.Note, however that, corverselyto usualformula-based
melging operatorgBaraletal. 1992;Konieczty 2000),we

usemulti-setsinsteadof simplesets.

Definition 11 LetMAXCONS(¥) bethe setof the maxcons
of ¥, i.e. the maximal(with respecto multi-setinclusion)
consistensubsetof U. Formally, MAXCONS() is the set
of all multi-setsM sud that:

e M C Wand

o if M T M'C U,then\M' = L.

Definition 12 A formula-basedchoice function ¢™¢ is a

functionof the setof the maxconsof U andthe beliefbase
i.e. :

g™ (U) = {@; € U | h(ps;, MAXCONS(W)) is minimal }

Examplesof the useof maxconsarenumerous|et ussee
two of them.

Definition 13

R (o, MAXCONS(¥)) =
#({M | M € MAXCONS(T) andy € M})

R (p, MAXCONS()) =
max({#(M) | M € mAXCONS(¥) andp € M})

The first function computeshe numberof maxconsthe
belief basebelongsto. The secondfunction computesthe
sizeof the biggestmaxconghebelief basebelongsto.

We will noteg™<! (respectrely g™2) theformula-based
choicefunctionthatuseh™*! (resp.h™2).

Instantiating the BGM Framework

In this sectionwe will try to illustrate how interestingthe
definedBelief GameModel framework is by giving several
examples.We will first seesomeof the simplestoperators
thatwe candefinewith this framevork. Thenwe will illus-
tratethe behaiour of morecomplex operatorson a typical
meiging example.

SomeSimple Examples

Let usfirst seewhatoperatorareobtainedwith thesimplest
wealkeninganddilatationfunctions(thatmeanghatwe will
eitherchoosethe wealeningfunctionto be the drasticone,
or thechoicefunctionto beidentity).

e (giq, Y7): In this casethe belief baseresultof the BGM
on ¥ underthe constraints: is the conjunctionof all the
base®of theprofilewith theintegrity constraint{ A\ ¥ A )
if this conjunctionis consistentand p otherwise. This
operatoiis calledthe basicmeiging operator (Konieczry
& PinoPérez1999).

e (g4, ¥5): In this case,at eachstepof the game, each
source wealen using dilatation. This gives the well
known model-basedneming operatorA%#:m2x defined
in (Revesz1993;1997;Konieczty & PinoPérez2002a).

e (g9P:= v+): Here,theresultis the cardinality-maximal
consistensubsef W if it is uniqueandconsistentvith
theconstraintsg:, andit is simply u otherwise.This oper
atoris anew one. It is interestingsinceit canbe viewed
asageneralizecconjunction: it givesthe conjunctionof
all thebasesandthe constraintsf it is consistentput if it
is not, it triesto find theresultby doingtheleastnumber
of repairs(forget of onebelief base)of the belief profile.
If thereis no ambiguity on the correction(i.e. a unique
cardinality-maxcons}henit acceptst astheresult.

o (gdpmax w1\ Thisoperatorgivesasresultthe conjunc-
tion of all the formulasthatbelongsto all maxcongalso
calledfreeformulasin (BenferhatPubois,& Pradel997;
1999))andtheintegrity constraintsf it is consistentand
1 otherwise.

e (g™ w): This operatorgives the conjunctionof the
formulasthat belongsto the maximumnumberof max-
consandtheintegrity constraintsf consistentandy. oth-
erwise.

e (g™ w1): In this case,the belief baseresult of the
meging is the conjunctionof thebelief baseghatbelong
to the biggestmaxconsfor cardinality and the integrity
constraintsf consistentandy otherwise.

All thoseoperatorsare not logically independentsome
of themarelogically strongerthan others,as statedin the
following proposition.

Proposition1 In figure 1 an arrow betweeran opemator A
andanopemtor B (A — B) meanghatopemtor A islog-
ically stronger (or lesscautious)than operator B. Results
obtainedby transitivity are notrepresented.



(g™, v (g%, VT>\
(9ia; 6 /,<gid, Vo)
<gnLC1,VT/ <ng,max’ vT)

Figurel: Cautiousness

An Example

We will see on an example (Revesz 1997), what is .
the behaiour or some BGM operators, namely the Mod(¥ (gme,vs)) = {(1,0,1), (1,1,0), (0,1, 1)}
operators (g4#:h” ws), (gmh™ ws) (gmel ws) and o (g™2 W) U is not consistent, and we have
(g™2,¥s5). Here is the example : There are three MAXCONS(P) = {{¢1, 2}, {ps}}. SOrP(p1) =
sourcest = {1, 2, p3} with the following belief bases % (ps) = 2 and hiy“*(p3) = 1, and g"%(¥) =
Mod(¢1) = {(1,0,0),(0,0,1),(1,0,1)}, Mod(ps) = {s}. Sos is replacedby ¥s(ps) = form({(1,1,1),
{(0,1,0),(0,0,1)}, Mod(p3) = {(1,1,1)}. Thereareno (1,1,0), (1,0,1), (0,1,1)}). The belief profile is still
constraintontheresult,soy = T. not consistent,so one needsone more round. Now
we have MAXCONS(‘I/) {{(pl,(pz} {(pl,(pg}} So

form( {(1,1,1),(1,1,0),(1,0,1), (0,1,1)}). This be-
lief profile is consistent, and the resulting base is

o <gdH7h2,v5> : As ¥ is not consistentlet us make the BB (pr) = hT2(py) = hP%(p3) = 2, and
firstround. d(¢1, p2) = 0, d(¢1,03) = 1, d(p2,¢3) = gm?(¥) = WU. So we wealen the three bases,
2. Sohy(er) = 1, hi(p2) = 2, hips) = 3. that gives respectiely Vs(¢1) = form({(1,0,0),

1
(0,0,1), (1,0,1), (0,0,0), (1,1,0), (0,1,1), (1,1,1
V() = form({(0,1,0). (0,0,1). (1,1,0), (0,0,0),
(0,1,13. (1,0,1)}), and ¥5(p3) = form( {(1,1,1),

That gives g47-"" () = {p3}. S0 s is replaced by .
Vi5(p3) = form({(1,1,1),(1,1,0),(1,0,1),(0,1,1)}).
We have not reachyet a consistent¥, so let us make
a further round. Let us first computethe newv dis-
tances. d(¢1,p2) = 0, d(p1,p3) = 0, d(p2,03) =
L Sohyler) = 0, hg(pz) = 1, hylps) = 1.
That gives gde’LE(\If) = {p2,03}. S0 ¢y is re-
placedby V5(§02) - rm({(07 1, 0)1 (07 0, 1)1 (17 1, 0)1
(0,0,0), (0,1,1), (1,0,1)}), and 3 is replacedby
v5((p3) = form({(l 171)7 (15170)7 (15071)7 (07171)5
(0,1,0), (1,0,0),(0,0,1)}). We have reacha consis-
tentbelief proflle sotheresultis MOd(‘IdiH-,hE,m) =

{(0,0,1),(1,0,1)}.

o (g?mh™ ws) 1 As U is not consistent)et us malke the

first rOUnd.d((,Dl,Q02> =0, d((pl,(pg) =1, d(QOQ,ng) =
2. So hy™(p1) = 1, hy™(p2) = 2, hy™(ps) =
2. That gives g?=-""" (U) = {p,, p3}. S0, is re-
placedby V5(§02) = form({(O, 1, 0)1 (07 0, 1)1 (17 1, 0)1
(0,0,0), (0,1,1), (1,0,1)}), and 3 is replacedby

):
(1,1,0), (1,0,1), (0,1,1)}). The belief profile is con-
sistent, and the resulting baseis Mod(¥ gme y,y) =
{(0,0,1), (1,0,1),(1,1,0), (0,1, 1)}.

As onecannote,on this examplethe four operatorgjive
different (non trivial) results. As all theseoperatorstake
dilatation as wealening functions,we sometimeshave the
interpretation(1,1,0) as model of the baseresult of the
meuging, whereast is a modelof noneof theinitial belief
bases.This meansthat, cornverselyto usualformula-based
meing operators(Baral et al. 1992; Konieczly 2000;
Konieczty, Lang, & Marquis2004),theresultof the BGM
doesnot (always)imply the disjunctionof the belief bases
of the profile.

Logical Properties

Somework in belief meging aims at finding setsof ax-
iomatic propertiesoperatorsmay exhibit the expectedbe-

v5((p3) = form({(l, 1, 1)7 (17 1, 0)7 (17 0, 1)7 (07 1, 1)}>
The obtained profile is consistent, so the result is
Mod(¥ (yay.nmax y y) = {(1,0,1)}.

(g™ ws) 1 W is not consistentand MAXCONS(W)
{{%,m} {pst}. S0 hg(p1) = hyp(p2)
hE(p3) = 1, andgmd(\I/) = U. Sowe wealen
the three bases that gives respectiely v5(<p1) =
form({(1,0,0), (0,0,1), (1,0,1), (0,0,0), (1,1,0),
(0,1,1),(1,1,1)}),%(902):form({(O,l,O ( 0,1),
(171a0)7 ( ) a0)7 (07151)5 (17071)})

%In orderto avoid unnecessaryotations,we do not usesub-

scriptsto denotethe different wealening stepsof the baseswe
simply replacethe belief basesby their wealenedcounterparts.

Hopefully, it cannotleadto confusions.

haviour (Revesz 1993; 1997; Liberatore& Schaerf1998;
Konieczly & Pino Pérez 1998; 1999; 2002b). We fo-

cus here on the characterizatiorof Integrity Constraints
(IC) mewing operators(Konieczly & Pino Pérez 1999;
2002a).

Definition 14 (IC merging operators) A isanlC meging
operatoiif andonlyif it satisfieghefollowing postulates:

(IC0) A,(¥) =
(IC1) If uis consistentthenA () is consistent
(IC2) If A\ W isconsistenwith iz, thenA, (V) = AV A p

(IC3) If ¥y = WUy and 1 = po, then A, (V) =
Allrz(\pZ)



(IC4) If o1 |= pandyps = p, thenA, ({¢1, p2}) A pris
consistentf andonlyif A, ({¢1,¢2}) A g2 is consistent

(IC5) AL(T1) AAL(T2) = AL (T L T,)

(IC6) If A, (Tq) A AL(T2) is consistentthen A, (¥ U
Uo) = Au(W1) AAL(T2)

(IC7) A (W) Apz = Dpyaps (V)

(IC8) If AL, (W) A pe is consistentthen A, a,, () =

Ha

For moreexplanationsonthosepropertiesee(Konieczty
& PinoPérez2002a).So,let us seenow whatarethe prop-
ertiesof BGM operators.

Proposition2 BGM operators satisfy properties (IC0),
(IC1), (IC2), (IC3), (IC7), (IC8). They do not necessarily
satisfyproperties(IC4), (IC5), (IC6).

So, as statedin the previous proposition,BGM opera-
tors do not fit all propertiesof IC meiging operators. On
the other hand, we know for example that the operator
(gia, ¥5) = AdHmax gatisfiesalso(IC4), (IC5) (Konieczly
& PinoPérez2002a).Sothe questionis to know if we can
ensuremorelogical propertieshy makingsomerestrictions
onthewealeningand/orthe choicefunctions.

A first remarkis that(IC4) cannot be provedto hold for
ary BGM operatoy but it is satisfiedfor all the particular
operatorave have definedin this paper

Proposition3 If the wealening function is dilatation or

drasticwealening andif the choicefunctionis a symmetric
model-basedthoice function or the formula-basedchoice
function g™¢! or ¢™<2, then the BGM opelator satisfies
(1C4).

The property(IC5) canalsoberecoseredfor someBGM
operatorsjput (IC6) seemshardly recoserable. Thosetwo
propertiesareimportantfor classicamergingoperatorsThe
BGM operatorsaim at focusingon sourceseliefsinterac-
tions, soit seemaaturalto missegproperty(IC6). Indeed,
whereasclassicalmeging operatorsaim at giving the re-
sultof thememing processn anidealframevork, BGM op-
eratorsseemmore adequatelyeflectthe behaiour of real
multi-sourcemerging process.

Anotherimportantlogical link to be underlinedis there-
lationship betweenBGM operatorsand AGM belief revi-
sionoperatorgAlchourron, Gardenfors& Makinson1985;
Gardenfors1988;Katsuno& Mendelzon1991;Gardenfors
1992). Belief revision aim is to make the minimum change
in abelief basein orderto take into accounta new informa-
tion thatis morereliable thanthe currentbelief base(and
thatusuallycontradictshe currentbelief base).Technically
thoseoperatorcanbedescribedasfollows : until the belief
baseis consistentvith the new item of information(seenas
anintegrity constraintithenwealen the belief basé. Stat-
ing thisway, onecanimmediatelyseetheparallelwith BGM
operatorsincethey aredescribeasfollows : until the belief
profile is consistentwith the constraintthenwealen some

“It is theintuitive meaningbehindKatsunoandMendelzorrep-
resentatiortheoremin termsof faithful assignmentgKatsuno&
Mendelzon1991).

beliefbasesThefollowing resultshavs moreformally that,
as explainedabove, BGM operatorscan be seenas direct
generalizatiorof AGM belief revision operators.

Proposition4 Let N' = (g, ¥) bea BGM opertor. Let ¢
andy betwo beliefbases.Theopermator o definedaspo =

N, ({¢}) isanAGM beliefrevisionopenator (i.e. it satisfies

properties(R1-R6)of (Katsuno& Mendelzorl991)).

In particular we have thateachBGM usingthe dilatation
wealening function is a generalizatiorof Dalal’s revision
operator(Dalal 1988).

Finally let us seeanothercardinalityrestrictionon belief
profile.

Proposition5 LetA" = (¢%", v;) bea BGM opemtor de-

finedfroma symmetrianodel- base«th0|cefunct|onandd|-

latationwealeningfunction.Lety,, o andu bethreebelief

basesthenthe opemtor NV, ({¢1, ¢2}) is the model-based
mewging opemtor Ademax({gzl,@z}) (Konieczny& Pino

Pérez2002a).

Note that the previous resultholds only whenwe memge
two beliefbases.

Comparison betweenBGM and BNM

In this sectionwe will mainly compareour proposalwith
Booth's Belief Negotiation Model (BNM) (Booth 2002).
Let usfirst briefly recallBooth’s proposal.

Belief profilesin this framavork are no more multi-sets
but vectorsof belief basesnoted¥. Let usnoteé the set

of belief profiles,andlet usnote ¥ the setof all sequences
(vectors)of belief profiles, and & one elementof this set.

WhenX is avector wewill note X™ thenth elementf the
vectorand X™ thelastelemenibf thevector
Thena BNM negotiation(choice)functionis definedas:

Definition 15 A BNM negotiation function is a function
g\ % — £ sudh that:

° {]BNM( )l:O'

o () £0
o If p; € ¢®M(5), thenp; T

And a BNM wealeningfunctionis definedas:

Definitign 16#A BNM wealening function is a function
vEWM . Y — £ sudthat:
° (5:m)z [ vBNM<O—:)z’
o If (™))" = ¥v®"WM(53)! then(d™)i =T
Finally thesolutionto aBNM is definedas:
Definition 17 Thesolutionto a beliefprofile ¥ for a Belief

NegotiationModel VB = (gP, wE") undertheintegrity
constaints ., notedN;"(W), is g|venbythefunct|oan

£ — ¥ definedas:
o N(U) =37 =(Tg,...,0)



with Uy = ¥, k is the smallestinteger sud that A U, A
is consistentandfor ead1 0 < j < k wehave( g; denotes

(\170, ceey \f/]))
. ) vBNM(U—'_)i
(Wj41)" = { 5y
! (¥;)
Finally, the beliefbaseresultof the BNMis A Uy, A L.

We changesomenotations,in orderto shav the close-
nesswith our presentwork. For the original presenta-
tion and explanationson the definitions see (Booth 2002;
2001).

ThemaindifferencedbetweerBNM andBGM are:

i. BNM'’s definition of belief profile asvectorsallows to
speakaboutsourcesseparately So whenthereis two
identicalbelief basedn the belief profile, it is possible
to wealenonly oneof thisbase.lt is notpossiblen the
BGM framework.

ii. TheBNM negotiationfunctiontakesasinputthewhole
negotiationhistory from the initial belief profile. Soit
is possibleto implementnegotiation processsuchthat
eachsourcewealenafterthepreviousone(for example,
sourcel, thensource2, ...), or suchthat we prevent
a sourceto weak two times successiely. The BGM
choicefunctionsare more Markovian, taking only into
accounthe currentbelief profile.

ii. Similarly, theBNM wealeningfunctionalsotake asin-
put the whole negotiation history, It allows to weaken
differentlytwo identicalbelief basebtainedat differ-
entroundsor to wealendifferentlytwo identicalbelief
basef the samebelief profile.

iv. Accordingto the previous itemsideas,the irrelevance
of syntaxcondition of BGM wealeningfunction, and
the anorymity condition of BGM choicefunction are
notrequiredin the BNM framawork.

ThemaindifferencebetweerBooth’s proposalndouris
that Booth’s onetake the sourcesascandidateso wealen-
ing, whereaswve restrictourselhesto “points of view”. That
meanghatin Booth'sif onesourcehasto wealen,it canbe
thecasethatanothersourcewith exactly thesamebeliefsdo
not have to wealkentoo. Our proposaladd moreanorymity
by sayingthatonly beliefsdecidewhohasto wealen,notthe
identity of one source. Similarly, the choicefunctionsare
moreMarkovian in our framevork thanin Booth's one. We
think thatthosehypothesisaremorerealistic(andnecessary)
on a belief meiging point of view. WhereadBooth’s frame-
work allows to modelmore generalizechegotiationframe-
works, whereone candecidefor examplethat eachsource
hasto wealenoneafterthe other So,despitethe closeness
of the models,andthe objectve factthat our proposalis a
particularcaseof Booth's one(i.e. eachof ouroperatorsan
bedefinedin Booth's frameawork), theintendedapplications
of thosetwo frameavorksarequite different. And the partic-
ular propertiesachieved by addingthoserestrictionsshavs
thatthisframevork formsaconsistenfamily of memgingop-
erators.It explainswhy it worthsto focuson the modelwe
defined.

if (U,)" € ¢*"™(c7))
otherwise

A lastdifferenceis that, in this paper we areinterested
ontheresultof theprocesgasabeliefbase)whereaBNM
framavork aimsat studyingtheresultingprofile,in connec-
tion with anotionof “social contraction” See(Booth2002)
for astudyof logical propertiesor socialcontraction.

An additionalcontrikbution of this work is to give exam-
plesof purelypropositionalogic BNM operatorsin (Booth
2002),Booth proposewo examplesof BNM, bothworking
on ordinal conditionalfunctions (OCF) (Spohn1987), but
noneon propositionabelief base.Sothis work canbe seen
asaninvestigation of whatkind of operatorghis definition
cangive on propositionabelief basegthroughaddingaddi-
tional requirements).

Conclusion

We have proposedn this paperanew family of belief meig-
ing operatorsthatwe call Belief GameModel (BGM) op-
erators. The hypothesisfor thoseoperatorsis that all the
sourcesare a priori reliable, or that we know that some
sourcesarelessreliablethanthe others,but without know-
ing which ones. This hypothesideadto choosea majority
approachjustified by Condorcet Jury Theorem.Theidea
behindBelief GameModel is simple: Until a coherentset
of sourcess reachedat eachrounda contestis organized
to find out the wealest sourcesthenthosesourceshasto
concede(wealen their point of view). This idealeadsto
numerougew interestingoperatorandopensnew perspec-
tivesfor belief melging. Someexisting operatorsare also
recoveredasparticularcases.

Non-surprisingly the operatorsdefineddo not satisfyall
logical propertiesproposedor IC meiging operators.The
reasonis thatthoselogical propertiesaim at give constraints
ontheresultof thememging in anideal framevork, whereas
BGM operatorsaim at describingmoreaccuratelywhatcan
happenin a real multi-sourceervironment. So usual IC
melging operatorscanbe seenasa normativeapproachto
memging. They shav the way to a purely logical result.
Corversely BGM operatorsadopta descriptiveapproach
to meging, takinginto accountthe interactionbetweerthe
sourcesThey try to simulatemoreadequatelyvhatcanhap-
penin a group-decisiorprocess.So they are maybemore
realistic.

This papermainly aimsto introduceBGM operatorsput
it provides several openquestionsthat are left for further
research.

Thefirst oneis aboutthedefinitionof BGM operatorand
thecomputatiorof theresult. We give aniterative definition
of BGM operatorsthatleadsto aniteratve computatiorof
the result. The questionis to know if we canfind a non-
iterative equivalentdefinition. We know that somesimple
operatorcanbe definednon-iteratvely. But the questionis
to know if all operatorsor a non-trivial subclas®of themare
alsodefinablenon-iteratvely.

Anotheropenquestionis aboutthe logical characteriza-
tion of thisfamily. In this paperwe studythelogical proper
tiesof thisfamily with respecto thegeneralefinitionof IC
meming operators The questionis to know if we canfind a
setof logical propertieghatcharacterizeBGM operators.



Finally, we haverecentlystudiedthestratgyy-proofnessf
usualpropositionaimerging operatorsshaving thatmostof
them are not strategyy-proof (Everaere Konieczry, & Mar-
quis 2004). And we have exhibit several restrictionson
which strat@y-proofnessanbe achieved. So an interest-
ing questionis to comparethe stratgy-proofnesof BGM
operatorswith the oneof classicaimeiging operators.
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