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Abstract

We have proposed in previous works
[Konieczny and Pino Pérez, 2000; Konieczny
and Pino Pérez, 2001] a construction that
allows to define operators for iterated revi-
sion from classical AGM revision operators.
We called those operators revision operators
with memory and show that the operators ob-
tained have nice logical properties. But those
operators can be considered as too conserva-
tive, since the revision policy of the agent,
encoded as a faithful assignment, does not
change during her life. In this paper we pro-
pose an extension of those operators, that
aims to add more dynamics in the revision
process.

1 Introduction

One of the predominant approaches to modelling be-
lief change was proposed by Alchourrén, Gérdenfors
and Makinson and is known as the AGM framework
[Alchourrén et al., 1985; Gérdenfors, 1988]. The core
of this framework is a set of logical properties that
a revision operator has to satisfy to guarantee a nice
behaviour.

A drawback of AGM definition of revision is that it
is a static one, which means that, with this definition
of revision operators, one can have a rational one step
revision but the conditions for the iteration of the pro-
cess are very weak. The problem is that AGM postu-
lates state conditions only between the initial knowl-
edge base, the new evidence and the resulting knowl-
edge base. But the way to perform further revisions
on the new knowledge base does not depend on the
way the old knowledge base was revised.
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Numerous proposals have tried to state a logical char-
acterization that adequately models iterated belief
change behaviour [Darwiche and Pearl, 1997; Dar-
wiche and Pearl, 1994; Boutilier, 1996; Lehmann, 1995;
Nayak et al., 1996; Nayak, 1994; Konieczny and Pino
Pérez, 2000] . The more famous one seems to be
[Darwiche and Pearl, 1997]. The main idea that is
common to all of these works is that the belief base
framework is not sufficient to encompass iterated re-
vision, since one needs some additional information
for coding the revision policy of the agent. So the
need of epistemic states to encode the agent’s “state
of mind” is widely accepted. An epistemic state allows
to code the agent’s beliefs but also to code her relative
confidence in alternative possible states of the world.
Epistemic states can be represented by several means:
pre-orders on interpretations [Darwiche and Pearl,
1997; Lehmann, 1995], conditionals [Boutilier, 1996;
Darwiche and Pearl, 1997], epistemic entrenchments
[Williams, 1994; Nayak, 1994], prioritized belief bases
[Benferhat et al., 1999; Benferhat et al., 2000], etc. In
this work we will focus on the representation of epis-
temic states in terms of pre-orders on interpretations.

In [Konieczny and Pino Pérez, 2001; Konieczny and
Pino Pérez, 2000], we define a family of revision oper-
ators that we have called revision operators with mem-
ory. Those operators can be defined from any classi-
cal AGM revision operator [Alchourrén et al., 1985;
Katsuno and Mendelzon, 1991] and they have good
properties for iterated revision.

In fact revision operators with memory use the faith-
ful assignment provided by the classical AGM revision
operator as an a priori information. This a priori in-
formation is attached to the new evidence, and the
completed information obtained is then incorporated

!see also [Spohn, 1987; Williams, 1994; Williams, 1995].
‘We do not adress this kind of operators in this paper since
they require an additional numerical information with the
new evidence.



to the old epistemic state with the usual primacy of
update requirement.

The ontology for this pre-processing step, associating
an additional information to the incoming new evi-
dence is the following. Suppose that the agent has no
information (no belief) about the world and learns a
(first) new evidence. Then, this new evidence alone
can provide more change in the agent’s mind than just
the addition of a belief.

As an example, suppose that the agent learns ¢ =
aAbAcAd, where a, b, c,d are atomic formulae. Then
her preferred worlds (the ones she finds the more plau-
sible) will be the ones where the four atomic formulae
are true. But it can be sensible for her to find the
worlds where three of the atomic formulae are true
more plausible than the ones where only two are, etc.

So the new evidence does not simply imply a partition
between the believed worlds and the unbelieved ones,
but defines several stratas, depending of the plausibil-
ity of each world, given the new evidence. We call this
property strong primacy of update.

This induced preferential information was given here
by a “Dalal distance” policy?, but more complex or
realistic policies can be also used depending on the
particular context.

The point in the definition of revision operators with
memory, is that this a priori information, carried by
a new evidence depends only on the new evidence by
itself, and does not depend on the current agent’s be-
liefs. Going back to the previous example, the fact
that the worlds where three of the four atomic formu-
lae are true are preferred to the ones where only two
are, does not depend on any other information than
the new evidence itself. So this a priori information
has to be added to the new evidence before incorpo-
rating it in the agent’s epistemic state.

More precisely, the revision policy of revision opera-
tors with memory is the following: the revision of the
current epistemic state & — represented by a pre-order
over possible worlds — by a new piece of information
a — a formula — is the epistemic state (pre-order) ob-
tained after the following two steps:

— First, take the pre-order <, associated to a by
the AGM revision operator (faithful assignment
[Katsuno and Mendelzon, 1991]) given at the be-
ginning of the process.

— Second, take the lexicographical pre-order associ-

2The Dalal distance [Dalal, 1988] is a Hamming distance
between interpretations.

ated to <, and ®. The pre-order obtained in this
way is the new epistemic state.

Note that there is a very static feature in this process:
the way in which we associate a pre-order to the new
piece of information is always the same; it is given by
the fixed AGM operator from which we start all the
process. In some sense this is contrary to the principle
of priority of the new information.

In this work we solve this problem. In order to do that
we take the revision policy as an epistemic state and
naturally this revision policy will change progressively
with the successive revisions. The new process can
be described in the following manner: first of all, an
epistemic state is composed by a faithful assignment,
say f, and a distinguished formula ¢. When «, the
new evidence, arrives, we revise as follows:

(i) the new distinguished formula ¢ will be a for-
mula having as models the minimal models of «
with respect to the f(¢) pre-order.

(ii) The new assignment f’ will coincide with f on
the formulas not equivalent to ¢'. On formulas
equivalent to ¢' it will be the lexicographical pre-
order associated to f(a) and f(¢).

Thus, this method allows to incorporate the changes
step by step in a very natural way. This process agrees
with the postulate of primacy of the new information.
Unlike our first revision operators with memory that
mix the new piece of information with the oldest infor-
mation (which is static), our latter operators mix the
new piece of information with the current epistemic
state.

The rest of the paper is organized as follows: in sec-
tion 2, we recall the logical characterization of iterated
revision operators of Darwiche and Pearl. In section
3, we recall the definition of revision operators with
memory and state the general logical results. Then, in
section 4, we show how to add more dynamics to revi-
sion operators with memory. We conclude in section 5
with some general remarks.

2 Iterated Revision Postulates

We give here a formulation of AGM postulates for be-
lief revision d la Katsuno and Mendelzon [Katsuno and
Mendelzon, 1991]. More exactly, we give a formulation
of these postulates in terms of epistemic states [Dar-
wiche and Pearl, 1997]. The epistemic states frame-
work is an extension of the belief bases one. Intuitively



an epistemic state can be seen as a composed informa-
tion: the beliefs of the agent, plus all the information
that the agent needs about how to perform revision
(preference ordering, conditionals, etc.). Then we give
the additional iteration postulates proposed by Dar-
wiche and Pearl [Darwiche and Pearl, 1997].

2.1 Formal Preliminaries

We will work in the finite propositional case. A belief
base ¢ is a set of formulae, which can be considered
as the formula that is the conjunction of its formulae.
The set of all interpretations is denoted W. Let ¢ be
a formula, Mod(p) denotes the set of models of ¢, i.e.
Mod(p) ={I €W : I ¢}

A pre-order < is a reflexive and transitive relation,
and < is its strict counterpart, i.e I < J if and only if
I < Jand J £ 1I. As usual, ~ is defined by I ~ J iff
I < Jand J <1I. A pre-order is total if and only if
VI,J, I <JorJ<I.

To each epistemic state ¥ is associated a belief base
Bel(¥) which is a propositional formula represent-
ing the objective (logical) part of ¥. The models of
¥ are the models of its associated belief base, thus
Mod(¥) = Mod(Bel(¥)). Let ¥ be an epistemic state
and p be a sentence denoting the new information.
¥ o i denotes the epistemic state resulting of the re-
vision of ¥ by u. For reading convenience we will
write respectively ¥ F u, U A p and I = P instead of
Bel(¥) F p, Bel(P) A p and I = Bel(P).

Two epistemic states are equivalent, noted ¥ = ¥’ if
and only if their objective parts are equivalent formu-
lae, i.e. Bel(¥) «» Bel(¥'). Two epistemic states are
equal, noted ¥ = ¥’  if and only if they are identical.
Thus equality is stronger than equivalence.

2.2 AGM Postulates for Epistemic States

Let ¥ be an epistemic state and p and ¢ be formulae.
An operator o that maps an epistemic state ¥ and a
formula p to an epistemic state ¥ o u is said to be a
revision operator on epistemic states if it satisfies the
following postulates [Darwiche and Pearl, 1997]:

(R*1) Yoputpu

(R*2) O Ap¥ L then Popu+ TApu

(R*3) If p## L, then Topuk L

(R*4) If ¥y =5 and py > po, then ¥y opy = oo pus
(R*5) (Top)ApkTo(uAy)

(R*6) If (Topu)Ap¥F L, then Wo(uAp)F (Tou)Ap

This is nearly the Katsuno and Mendelzon formulation
of AGM postulates [Katsuno and Mendelzon, 1991];
the only differences are that we work with epistemic
states instead of belief bases and that postulate (R*4)
is weaker than its AGM counterpart. See [Darwiche
and Pearl, 1997] for a full motivation of this definition.

A representation theorem, stating how revisions can be
characterized in terms of pre-orders on interpretations,
holds. In order to give such semantical representation,
the concept of faithful assignment on epistemic states
is defined.

Definition 1 A function that maps each epistemic
state ¥ to a pre-order <g on interpretations is called
a faithful assignment over epistemic states if and only

if:

1. IfIEY and J =9, then I ~g J
2. IfTEY and J £, then I <g¢ J

3. If \I»’l = ‘I’z, then S\I;1:Sq;2

Now the reformulation of the Katsuno and Mendelzon
[Katsuno and Mendelzon, 1991] representation theo-
rem in terms of epistemic states is:

Proposition 1 A revision operator o satisfies postu-

lates (R*1-R*6) if and only if there exists a faithful as-

signment (over epistemic states) that maps each epis-

temic state U to a total pre-order <y such that:
Mod(¥ o ) = min(Mod(u), <w)

Notice that this theorem gives information only on the
objective part of the resulting epistemic state, but does
not allow to know what is the pre-order associated with
Wo y, i.e. we can not identify the new epistemic state,
but only its associated belief base Mod(¥ oy). Making
the parallel with the classical Katsuno and Mendelzon
representation theorem (cf definition 2 and [Katsuno
and Mendelzon, 1991]), that allows to define exactly
what is the belief base Mod(¥ o u)?, the last theorem
is only a weak representation theorem.

2.3 Darwiche and Pearl Postulates

A strong limitation of AGM revision postulates is that
they impose very weak constraints on the iteration of
the revision process. Darwiche and Pearl [Darwiche

3Recall that classical AGM operators are functions that
map a belief base and a formula to a belief base, which is
(completely) defined by the theorem, whereas proposition
1 concerns operators that are functions which map an epis-
temic state and a formula to an epistemic state, that is not
completely defined by the theorem.



and Pearl, 1994; Darwiche and Pearl, 1997] proposed
postulates for iterated revision. The aim of these pos-
tulates is to keep as much as possible of conditional
beliefs (a conditional belief can be expressed as “if u
would be the case, then ¢ must be true”) of the old be-
lief base. Those conditional beliefs are encoded in the
total pre-orders on interpretations. So, besides postu-
lates (R*1-R*6), a revision operator has to satisfy:

(C1) If o+ p, then (Top)op=Togp
(C2) If o+ =, then (Topu)op=Top
(C3) f Popt p,then (Top)ophkp
(C4) If T o ¥ -, then (Tou)opku

These postulates can be explained as follows: (C1)
states that if two pieces of information arrive and if
the second implies the first, the second alone would
give the same belief base. (C2) says that when two
contradictory pieces of information arrive, the second
alone would give the same belief base. (C3) states
that an information should be retained after revising
by a second information such that, when revising the
current belief base by it, the first one holds. (C4) says
that no piece of information can contribute to its own
denial.

3 Revision Operators with Memory

A “classical” AGM revision operator is equivalent to
a faithful assignment over belief bases as stated in the
following theorem [Katsuno and Mendelzon, 1991].

Definition 2 A function that maps each belief base ¢
to a pre-order <, on interpretations is called a faithful
assignment over belief bases if and only if:

1. IfI=pandJ =, thenI ~, J
2. If 1= and J |E ¢, then I <, J
3' If (101 An SOQ; then S(p1:§(p2

It is important to note that in what follows, we have
two distinct kinds of faithful assignments: one over
belief bases and one over epistemic states.

Proposition 2 A revision operator o satisfies classi-

cal AGM postulates (R1-R6)* if and only if there exists

a faithful assignment (over belief bases) that maps each

belief base ¢ to a total pre-order <, such that:
Mod(g o 1) = min(Mod(y), <,)

1t is the same set of postulates than (R*1-R*6) but
expressed for belief bases instead of epistemic states (cf
[Katsuno and Mendelzon, 1991]).

So one can define a revision operator directly by defin-
ing the corresponding faithful assignment over belief
bases. It is the case for most distance-based revi-
sion operators such as Dalal operator [Dalal, 1988;
Katsuno and Mendelzon, 1991].

More precisely we say that a revision operator o is
defined from a distance d iff the following conditions
hold:

— d is a distance, that is d is a function d
W x W — IN which satisfies: d(I,J) = d(J,I)
and d(I,J)=0iff I = J.

— The distance between an interpretation I and a
belief base ¢ is defined as:
d(I,¢) =min{d(I,J) : J E ¢}

— This distance induces a faithful assignment:

— And the revision operator is defined by
Mod(g o 1) = min(Mod(s), <)

One can check that the assignment obtained like this
is a faithful assignment and thus that all operators
defined in this way satisfy AGM postulates. It can also
be easily checked that operators defined in this way do
not satisfy many of the iterated revision postulates.

Now we will give a construction that allows, from a
given faithful assignment (i.e. from a given classical
AGM revision operator), to define another revision op-
erator that satisfies AGM postulates but also most of
the iterated revision postulates.

First, let us notice that an epistemic state can be
represented by a total pre-order on interpretations
as suggested by theorem 1 and by several related
works (cf e.g. [Darwiche and Pearl, 1997; Benfer-
hat et al., 2000]). So, with this particular represen-
tation (identifying the epistemic state ¥ with a pre-
order <), the belief base Bel(¥) is simply the for-
mula whose models are minimal for the pre-order, that
is Bel(¥) = min(W, <g). And the other interpreta-
tions are ordered according to their relative plausibil-
ity for the agent. For example, I <y J means that
the agent that is in the epistemic state ¥ considers
I as more plausible than J. It is this preferential
information that can be used to encompass the iter-
ated revision behaviour, by considering revision op-
erators as functions that map a pre-order (epistemic
state) and a formula (new information) into a new
pre-order (epistemic state). This idea is the main-
stay in most of iterated revision works [Williams, 1994;
Darwiche and Pearl, 1997; Nayak, 1994].



So, using this representation by means of pre-orders on
interpretations and theorem 1 we will define a familly
of revision operators as follows:

Definition 3 Suppose that we have a function that
maps each belief base ¢ to a pre-order <,. Then, we
define the epistemic state (the pre-order) Yoy resulting
of the revision of ¥ by the new information ¢ as:
I <wop Jiff I <, J or
I~,JandI<gJ

Then one can check that:

Proposition 3 If the function that maps each belief
base ¢ to a total pre-order <, is a faithful assignment
over belief bases, then the revision operator on epis-
temic states defined in definition 38 satisfies postulates
(R*1-R*6). We will call such operators revision oper-
ators with memory.

So, with definition 3, one can start from any epistemic
state (total pre-order over interpretations) and carry
on iterated revisions. A particular epistemic state we
can mention is the “empty” epistemic state, where the
agent has no belief and no preferential information,
that is, such that VI, J € W I ~ J. We will denote by
= this epistemic state. So, the objective part of this
epistemic state is Bel(Z) = T. It can be considered
as the epistemic state generalisation of T for the belief
base framework, since they are both neutral elements
for the corresponding operators: $o= = ¥ (as po T =
@ in the belief base framework). One can consider
that all agents start with this epistemic sate (we will
consider this in the examples).

Concerning iteration postulates stated by Darwiche
and Pearl [Darwiche and Pearl, 1997]:

Proposition 4 Revision operators with memory sat-
isfy postulates (C1),(C3) and (C4).

It can be also easily checked that (C2) is satisfied by
a unique revision operator with memory, since it de-
mands (in the presence of the other revision postu-
lates), that the pre-order associated to a belief base
by the faithful assignment on belief base used in defi-
nition 3 is a two-level pre-order with the models of the
belief base at the lowest level and the counter-models
at the higher one. This operator will be presented in
the next section.

So most of our revision operators with memory do not
satisfy (C2). But we do not consider this as a draw-
back. We rather think that it is (C2) that is not fully
satisfactory. See [Konieczny and Pino Pérez, 2001] for
more explanations on this point.

For a more complete logical characterization of this
family of operators see [Konieczny and Pino Pérez,
2000].

3.1 Basic memory operator

Let us define the assignment that maps each belief base
to a pre-order in the following way:

Definition 4 Let ¢ be a belief base, the pre-order 55’0
associated to ¢ is defined as :
Igbw,]ifandonly if IE=por
(I and J £ @)

So we have what we shall call a basic order, which is a
two-level order (at most), with the models of ¢ at the
lowest level and the other worlds at the highest level.

Definition 5 The basic memory operator is the mem-
ory operator obtained from this assignment (i.e. the
operator obtained by definitions 4 and 3).

It is worthy to note that if one uses this faithful assig-
ment (definition 4) to define a classical AGM operator
(proposition 2), one obtains the full meet revision op-
erator which is not quite a good operator. But, even
with this basic order on belief bases in the revision
with memory framework, one can build very complex
epistemic states. This is due to revision memory.

The assignment of Definition 4 is a faithful assignment
on belief bases; with propositions 3 and 4, it is easy to
show that:

Proposition 5 The only revision operator with mem-
ory that satisfies (R*1-R*6) and (C1-C4) is the basic
memory revision operator.

This operator has been already studied in the liter-
ature under different particular representations: in
[Nayak, 1994] with epistemic entrenchments, in [Ben-
ferhat et al., 1999; Papini, 2001] with polynomials
and syntactic belief bases. Finally, we can note that
Liberatore has shown [Liberatore, 1997] that sev-
eral problems are computationally simpler for the ba-
sic memory operator than for the other iterated be-
lief revision proposals (including Boutilier’s natural
revision [Boutilier, 1993], Lehmann’s ranking revi-
sion [Lehmann, 1995] and Williams’ transmutations
[Williams, 1994]).



3.2 Dalal memory operator

We use in this section the Hamming distance be-
tween interpretations®. The Dalal distance between

an interpretation I and a belief base ¢ is defined as
d(I, ) = miny,(d(1, J)).

Let’s define the assignment that maps each belief base
to a pre-order in the following way:

Definition 6 Let ¢ be a belief base, the pre-order Sﬁ,
associated to ¢ is defined as :
I Sg J if and only if d(I,¢) < d(J,p)

So we have a pre-order with the models of ¢ at the
lowest level and the other worlds in the higher levels,
according to their Dalal distance.

Definition 7 The Dalal memory operator is the
memory operator obtained from this assignment (i.e.
the operator obtained by definitions 6 and 3).

We can show through a simple example that this op-
erator differs from the classical Dalal revision opera-
tor [Dalal, 1988; Katsuno and Mendelzon, 1991]. Let
a and b be two propositional letters and consider for
example the sequence ¥ = Zoaobo—(aAb). The clas-
sical Dalal operator gives Bel(¥) = (a A—b)V (-aAb),
whereas Dalal memory operator gives Bel(¥) = (—a A
b). This behaviour seems more natural since at the
next to last step we learned that b was true, and it
is normal to keep some credit for this evidence in the
following step. It is in this way, that our operators use
revision with “memory”.

4 Dynamical Revision Operators with
Memory

For revision operators with memory, the revision pol-
icy is fixed once the operator is fixed. For example for
the Dalal memory operator, the way to associate a pre-
order to each new evidence is completely determined
at the beginning of the process by the Dalal distance.

So, whereas the aim of revision operators with memory
is to give a strong preference to the new evidence, one
can object that the faithful assignment used to asso-
ciate a pre-order to the new evidence does not change
and so, that an old information is used in each revision
step.

The solution to cope with this objection is to find
a way to change the faithful assignment during the

®The Hamming distance between two interpretations is
the number of propositional letters on which the two inter-
pretations differ.

course of revisions.
Such a solution will be given in this section.

So, first, let’s sum up the way revision operators with
memory work :

— The definition of a particular operator lies in the
chosen faithful assignment over belief bases. Let’s
call f such an assignment. So, for each formula
o, [ associates a total pre-order f(¢) (also noted
<f(y)) satisfying the conditions of definition 2.

— Each time a new evidence ¢ comes, the operator
associates to it its corresponding pre-order f(¢p).

— The new epistemic state is the result of incorpo-
rating the pre-order in the old epistemic state,
giving preference to the new evidence (i.e. to
the pre-order) by using a lexicographical order :

—_ 6
S@op=lex(f(¢),®) -

So, what we want now is to be able to change f during
the agent’s life. That is, to change the revision policy
of the agent, so that when a new evidence comes, it is
not always associated to the same pre-order.

The idea is to start from an a priori faithful assign-
ment over belief bases such as for revision by memory
operators, but then to modify it at each revision step.
To be able to do that, we have to use a slightly more
general definition of epistemic states. The (representa-
tion of) epistemic states we use for revision operators
with memory are pre-orders on interpretations <¢ ,
from which we can extract the corresponding belief
base Bel(®) = min(W, <s)-

For dynamical revision operators with memory, the
representation of an epistemic state we use is a couple
® = (p, f), where @ is the current belief base and f
is the current faithful assignment (So, with this rep-
resentation, we can extract the pre-order correspond-
ing to the belief base : f(¢), and straightforwardly
Bel(®) = ).

As for classical revision operators with memory, to de-
fine a particular dynamical revision with memory op-
erator, one needs an initial, a priori faithful assignment
over belief bases (i.e. a classical AGM revision opera-
tor), that will encode the initial revision policy of the
agent.

So let’s define dynamical revision operators with mem-

ory:

®Where I <jey(<,,<,) J means I <; J or (I ~; J and
1< ).



Definition 8 Let ® = (p, f) be an epistemic state
and let p be a formula denoting a new evidence. We
define the mnew epistemic state ® o u, resulting of
the dynamical revision with memory of ® by u, as
Dopu= (¢, 1), where ¢' is a formula whose models
are min(Mod(u), f(¢)), and f' is a function (faithful
assignment over belief bases) that is identical to f for
each belief base 1 except when ¥ < ¢'. In this case
f' () is defined as :
Igf,(w) Jiff I <#(w) J or
I=py J and I <p) J

So, pointwise, the dynamical operators work exactly
the same way as memory operators. The difference
is that they also change the given faithful assignment
over belief bases at each step. One could believe that
the difference between the two families of operators is
not huge, since the corresponding pre-orders (faithful
assignment) used change only for one value at each
step. But as we will see next the dynamical revision
operators with memory satisfy the following postulate
that the revision operators with memory do not always
satisfy (cf example 1):

(C5) If Bel(®) ¢ i then ® oy = &.

This axiom says that the current epistemic state does
not change in all cases where the new piece of infor-
mation coincides with the observable part of this epis-
temic state. Note that this axiom is almost trivial in
the classical AGM framework”. But in the framework
of complex epistemic states it is not the case. In fact,
as we already mentioned, the revision operators with
memory do not always satisfy (C5) as can be seen in
the following example.

Example 1 We are reasoning about two ships (coded
by two wariables). Suppose we start from the Dalal
classical AGM revision operator. Let ® be the epis-
temic state with observable part being the following
formula: “only one of the two ships is working”
(Bel(®) = IA-r)V (=l AT)). Let p be the formula
expressing that “the ship on the left is not working”
(u = —l). The epistemic state after the revision ® o u
using Dalal memory operator has observable part the
formula expressing “only the ship on the right is work-
ing”. The other (conditional) information of this epis-
temic state can be described by the conditionals “if the
ship on the right is not working then the two ships are
bad” and “if the ship on the left is working then only
the ship on the left is working”. Now if we revise this
current epistemic state by the fact that “only the ship

"In that framework, it is a consequence of the other
axioms.

on the right is working” (¢ = =l A r), which is indeed
the observable part of the current epistemic state, we
obtain a different epistemic state in which for instance
we have the conditional “if the ship on the left is work-
ing then the two ships are working”. On the contrary,
the current epistemic state does not change after revi-
ston by this new information when the operator is the
dynamical Dalal revision with memory operator.

We illustrate this example below. In order to do that
consider a language L with only two propositional let-
ters I and r. We will denote interpretations simply by
the truth assignment, i.e 10 denotes the interpretation
mapping | to true and r to false. Two interpretations
are equivalent, with respect to the pre-order, if they
appear ot the same level. An interpretation I is bet-
ter than another interpretation J (I < J) if it appears
at a lower level . oyp denotes the Dalal revision with
memory operator and opyp the dynamical Dalal with
memory operator.

Let’s see the pre-order associated to some belief bases
by the faithful assignment over belief bases given by the
Dalal distance:

10
11 00 10 11
D D D
Se 0110 Su 00 01 Se 1%{]0

And the epistemic states reached by the operators are:

11 10

11 00 10 11

<eo= 01 10 Saoypu= 00 S@oypronpy= 00
01 01

11 11

11 00 10 10

== 0110 S@opypu= 00 S®opypropupe= 00

01 01

Note that the idea here is that, when the agent receives
a new evidence that she has met before, the repetition
of this evidence suggests that the old beliefs of the
agent were correct, and so she holds on to the last
pre-order that corresponds to this evidence.

In fact, if one considers the definition of iterated re-
vision operators according to Darwiche and Pearl (cf
section 2.2), it amounts to say that we change the re-
vision operators at each step, since the corresponding
faithful assignment over epistemic states changes at
each step. So, in a sense, dynamical revision opera-
tors with memory are definable by a family of revision
operators with memory (that corresponds to the set



of all faithful assignments over belief bases reached by
the course of revisions).

Concerning the logical properties of this family of op-
erators, it is easy to check the following:

Proposition 6 A dynamical revision operator with
memory satisfies (R*1)-(R*6). It satisfies (C1), (C3),
(C4) and (C5) but it never satisfies (C2).

Finally, as another example, let’s see the behaviour of
the full meet revision operator op, the basic memory
operator oprp and the dynamical basic memory oper-
ator opyp (they are all built from the same faithful
assignment over belief bases) on the same situations.

Example 2 Consider o language L with only two
propositional letters a and b (considered in that order
for the valuations). Let’s see the pre-order associated
to some belief bases by the faithful assignment over be-
lief bases given by the Basic distance:

00 01 00 10
B__ B__
SeT 1011 ST o111
5 _ 000110 s _ loll
Sanb 11 === 0p 01

And the epistemic states reached by the operators are:

00
10
Saoppb = Saopypb™= 01
11
10
11
Saoygboyp—a = Zaopypbopup—a= 00
01
10
00
SaoMBboMB—uaoMBa/\b: 01
11
00
10
Saopypbopup—acpypanb= 01
11
So we have that:
aogbog—aogaAbog—b = -b
aoygboyg—-aoypaANboyg—b = -aA-b
aopypbopyp—aopypaNbopyp—b = aA-b

As noted previously, the full meet revision operator
og does not have a very good behaviour : each time
the new evidence contradicts the current beliefs, the
new beliefs are only the logical consequences of the
new evidence. So, it absolutely does not consider the

previous revisions. With the revision operator with
memory oyg, the agent is able to build complex epis-
temic states (pre-orders), that lead to a satisfactory
behaviour for iterated revision. With this operator,
the two evidences —a and —b recently learned lead to
this belief base. With the dynamical revision operator
with memory opyp, the evidence learned at the next
to last step (a A b) recalls the agent the last time she
had this belief (after a opyp b), and this modifies her
epistemic state.

5 Conclusion

It is worthy to note that the two families of operators
defined, revision with memory and dynamical revision
with memory, are revision operators in the sense of
Darwiche and Pearl, that is, they map an epistemic
state and a formula (new evidence) to an epistemic
state. The input is a formula and the pre-processing
step, that associates a pre-order to that formula is part
of the revision operator and not a part of the input.
So, this work differs in that respect to [Benferhat et al.,
2000], which considers revision of epistemic states by
epistemic states. This work return to the old AGM tra-
dition in which one revises a complex epistemic state
(a theory) by a simple fact (a formula).

An interesting future work is to try to characterize log-
ically the dynamical revision with memory operators.
A very first step in this sense is the (C5) axiom.
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