Analysing rational properties of change
operators based on forward chaining

Hassan Bezzazi, Stéphane Janot, Sébastien Konieczny and Ramén Pino Pérez

LIFL U.A. 369 du CNRS, Université de Lille I
59655 Villeneuve d’Ascq, FRANCE

E-mail: {bezzazi,janot konieczn,pino }@lifl fr

Abstract. We propose an abstract framework to analyse the rationality
of change operators defined in a syntactical way. More precisely we pro-
pose “syntactical” postulates of rationality stemming from AGM ones.
Then we introduce five change operators based on forward chaining. Fi-
nally we apply our abstract framework to analyse the rationality of our
operators.

Introduction

Revision is the process of according an old knowledge base with a new evidence.
In order to have a good behaviour, a revision operator must obey a minimal set
of rationality requirements. For example it must obey the principle of primacy
of update that demands the new evidence to be true in the new knowledge
base, and the principle of minimal change that imposes that the new knowledge
base has to be as close as possible to the old one. These properties are intuitive
requirements one can expect from revision operators. These operators and their
properties have been formally studied in philosophy, artificial intelligence and
databases [1,12,16] and several operators have already been proposed [5,9, 27,
28,25].

In general, revision is a complex process [8,20] and is not efficiently com-
putable. The problem is that revision operators usually handle theories closed
under logical consequences. Then, the computation of (all the consequences of)
the new theory according to the old one and to the new information is gener-
ally prohibitive. One solution is to work with theories that are not closed under
logical consequences [11,14,15,22,23,26] and to take their logical closure only
when one needs them. Of course such an approach is syntax sensitive. Another
solution is to work in a restrained framework, a “weaker” (tractable) logic, in-
stead of the classical one. It is a combination of these two approaches that is
proposed here.

In this paper, we investigate five change operators based on forward chaining.
The use of forward chaining provides us with an efficient way to compute the
revision of a knowledge base.

Furthermore these operators are readily suitable for expert systems based on
the same kind of inference. Thus, we have an easy way to include non-monotonic

reasoning in such systems. Such operators may have numerous other applica-
tions, in diagnosis systems for example.

For some operators, our approach is close to REVISE [6] and Revision Pro-
gramming [21] but is simpler, since we use only forward chaining on propositional
formulae; in particular, we don’t assume negation by failure.

We propose five knowledge change operators. The first one, called factual
update, updates a set of facts with another set of facts coding a new evidence,
according to a set of rules which can be seen as integrity constraints of the
system. The other operators revise programs by programs. More precisely the
second one, called ranked revision, is based on a hierarchy over the rules which
denotes how exceptional the rules are, and when a new evidence arrives, it finds
the least exceptional rules consistent with this new information. The third one,
called hull revision, extends the result of ranked revision to a set which remains
consistent with the new information. The fourth operator, extended hull, com-
bines the approaches of hull revision and factual update operators. The fifth
operator, called selection hull, is actually a family of operators defined by selec-
tion functions.

One of the main contributions of this work is the study of the rationality
properties of these operators. To do that we introduce syntactical relativiza-
tions of the main postulates proposed in the literature for theory change. We
prove that factual update can be seen as an update operator, i.e. satisfying
a syntactical version of Katsuno and Mendelzon postulates [17]. In the same
way, ranked revision and selection hull (when the selection function used to
define it has good properties) can be seen as revision operators, according to
Alchourrén-Gardenfors-Makinson (AGM) postulates [1, 12]. Concerning hull re-
vision and extended hull revision, although they seem to be rational extensions
of the ranked operator, we prove that only some basic postulates of change hold.

The paper is organized as follows: section 1 contains the basic definitions of
our abstract framework; in section 2.1 we define factual revision (an algorithm
to compute it is given in the appendix); section 2.2 is devoted to definitions of
ranked revision, hull revision and extended hull revision; in section 3 we study
the properties of these knowledge change operators. In section 4 we introduce
the selection hull operators. Finally, we conclude with some remarks and some
perspectives for future work.

1 Preliminaries

Our framework is finite propositional logic.

A literal (or fact) is an atom or a negation of an atom. The set of literals will
be denoted Lit. A rule is a formula of the shape 1 AlaA---Al, — l,,41 where [; is
aliteral for 2 = 1,...,n+1. A rule as before will be denoted l1,{s,...,l, — lh41.
We admit rules of the form — [which actually code facts.

Let R and L be a finite set of rules and a finite set of literals (both possibly
empty) respectively. A program P is a set of the form RU L and we will say

that the elements of R are the rules of P and the elements of L are the facts of
P. The set of programs will be denoted by Prog

Let P = RU L be a program. We define the set of consequences by forward
chaining of P, denoted C's(P), as the smallest set of literals L’ such that:
i Lcr.
(i) If ly,la,...,lp = lisin Rand [; € L' for i =1,...,n then [€ L".
(iii) If L' contains two opposite literals then L' = Lit

A program P is said to be consistent iff C'g.(P) # Lit.

Let P and L be a program and a finite set of literals respectively. L is said
to be P-consistent iff P U L is consistent (with respect to forward chaining).

In the sequel w will denote the set of positive integers.

1.1 Revision and update postulates

We begin this section by recalling the rationality postulates that have been pro-
posed [1,12,16,17] in the area of revision theory, i.e. properties that an operator
has to satisfy in order to have a “good” behaviour as a change operator. Then
we will give a relativization of these notions to a syntactical abstract framework.

First let’s consider the postulates for revision operators. Let ¢ be a formula
representing a knowledge base and let u be a formula representing a new piece
of information. ¢ o u will denote a formula representing the changes that u pro-
duces on . The operator o is a revision operator [1, 16] if it satisfies the following
postulates:

(R1) F (pou)— p.

(R2) If ¢ A p is consistent then F (¢ o p) & (¢ A p).

(R3) If p is consistent then ¢ o u is consistent.

(R4) If F (1 > ¢2) and F (1 ¢ pa) then F (p1 0 1) & (p2 0 p2).
(R5) F ((pop) Aod) = (po(und)).

(R6) If (pop) Ag¢is consistent then F (g o (uA¢)) = ((¢ou) Ag).

The intuitive meaning of these postulates is the following: the new piece
of information must be true in the new knowledge base, which is required by
(R1). (R2) states that if the new piece of information is consistent with the old
knowledge base then the revision is reduced to the addition of the new piece
of information to the old knowledge base. (R3) assures that if the new piece of
information is consistent then the new knowledge base must be consistent. (R4)
is the so called Dalal’s principle of irrelevance of syntax and says that the result
of the revision depends neither on the syntax of the new piece of information
nor on the one of the knowledge base. (R5) and (R6) assure that the result of
the revision is “closest” to the old base and that this notion of closeness behaves
well. For more explanations on the meaning of these postulates see [12,16].

Revision is adequate to model change of belief about a static world but, as
shown in [17], is not able to cope with change in a dynamic world. Katsuno and
Mendelzon have defined update operators for this case. The rationality postulates
for update operators they propose are given next.

The operator o is an update operator [17] if it satisfies the following postu-
lates:

(U1) F (pou) = p

(U2) If - o — p then F (pop) & .

(U3) If both ¢ and p are consistent then ¢ o p is also consistent.

(U4) If - (1 & p2) and F (1 & p2) then F (o1 0 1) & (92 0 p2).

(US) F ((popu) Aod) = (po(und)).

(UB) If - (p o p1) — pa and F (¢ o pa) — py then F (g o p1) ¢ (p o pa).

(U7) If ¢ is complete then F ((¢ o 1) A (po pa)) = (po (p1 V pa)).

(U8) = ((p1 V p2) o) & ((pr0op) V(20 p)).

These postulates are close to those for revision. Postulates (U1)-(U5) correspond
to postulates (R1-R5) and the intuitive meaning of these postulates is: (Ul) is
exactly (R1),i.e. the new piece of information must be true in the new knowl-
edge base, (U2) states that if the new piece of information is weaker than the
knowledge base then updating by this new piece of information has no effect on
the knowledge base. Notice that if the knowledge base is consistent then (U2) is
weaker than (R2). (U3) assures that if the new piece of information and the old
knowledge base are consistent then the new knowledge base is consistent. (U4)
is exactly (R4), the principle of irrelevance of syntax. (U5) is exactly (R5). It
assures that the notion of “minimal change” behaves well. (U6) says that if p is
true when we update the knowledge base by us and if ps is true when we update
the knowledge base by pi, then the two updates are equivalent. (U7) states that
for a complete knowledge base the conjunction of two updates contains the in-
formation of the update by the disjunction of the two pieces of information. (U8)
is the disjunction rule: from a semantical point of view a knowledge base can
be considered as the sum of all its possible worlds, so (U8) states that updating
this sum is the sum of updating. This assures that each possible world of the
knowledge base is given independent consideration.

Note that in revision and update postulates the notions of consequence, con-
sistency and equivalence are the classical ones. We will investigate the instantia-
tion of these postulates to different “logics”. This point is essential in this paper
because when manipulating syntactical objects (such as databases) we have to
define some abstract notions of consequence, conjunction, disjunction in order
to be able to analyse the properties of the operators. Particularly, we will focus
in this paper on a “forward chaining logic”.

More precisely, a first case of this sort of instantiation concerns the postulates
for revision. This is done in next definition.

Definition 1. Suppose that we are manipulating objects of a set £2 (a set of
“formulas” or ‘“knowledge bases”), a set I' C 2 and a set L (the “deducible
atoms”) such that P(L) C 2. Consider we have a map C : 2 — P(L) (C is a
consequence operator for the chosen logic). Finally suppose we have a function
(a change operator) a : 2xI' — §2 and a function (the “conjunction”) ® :
OxI' — 2, such that @ : I'xI'" —> I, i.e. the restriction of ® to couples in
I' takes its values in I'. Then a is said to be a syntactical revision operator

(with respect to C and ®) if the following postulates hold:

(SR1) C(Y) C C(XaY).

(SR2) IfC(X ®Y) # L then C(XaY)=C(X ®Y).

(SR3) IfC(Y) # L then C(XaY) # L.

(SR5) C(Xa(Y ® Z)) CC((XaY) ® Z).

(SR6) IfC((XaY) ® Z) # L then C((XaY) ® Z) CC(Xa(Y ® Z)).

Let us remark that the postulates (SRi) are the natural counterparts of
postulates (Ri) when we interpret ® as the conjunction of formulas and thinking
X consistent iff C(X) # L.

There is no postulate corresponding to (R4) (alias U4), the postulate of
irrelevance of syntax, because the operators we will define are in general syntax-
sensitive. Nevertheless in our abstract setting we could define the counterpart of
(R4) in the following way:

(IS) If C(X) =C(Y) and C(Z) = C(W) then C(XaZ) = C(Y aW).
Unfortunately this does not hold for our operators as we will see in observation
6.

The second case of instantiation we consider concerns the postulates for up-
date. This is the object of next definition.

Definition 2. Consider two sets £2 and L such that there is a set I' C P(L)
with I' C (2. Let C be a function C : 2 — P(L). Suppose we have a function
(a change operator) a : 2xI'" — (2. Now suppose that we have an associative
“connector” (our “disjunction”) @ : I'xI' — I' such that C(X @Y) =C(X) N
C(Y), i.e. the behaviour of ® with respect to C is like a disjunction. We also
suppose we have a function @ : 2xI" — §2, such that @ : I'xI" — I', i.e. the
restriction of ® to couples in I' takes its values in I'. The operator a is said to
be a syntactical update operator with respect to C, @ and @ if the following
postulates hold:

(SU1) C(Y) C C(XaY).

(SU2) IfC(Y) C C(X) then C(XaY) = C(X).

(SU3) IfC(X) # L and C(Y) # L then C(XaY) # L.

(SU5) C(Xa(Y ® Z)) CC(XaY) ® Z).

(5U6)]fC(Yl) C C(XAYQ) and C(YQ) g C(XAYl) then C(XAYl) = C(XAYQ)
(SUS) C((X & Y)aZ) = C((XaZ) @ (Y aZ)).

The postulates (SU1) are the natural counterparts of postulates (Ui) (notice
that we have asked the “connector” & to have the behaviour of a disjunction with
respect to the notion of consequence C). Remark also that there is no postulate
corresponding to (U7) because in general the image of a couple of elements of
I" under @ will not belong to I'.

As for syntactical revision operators, there is no postulate corresponding to
U4.

2 Some syntactical change operators

The purpose of this section is to define some change operators essentially based
on forward chaining. The first one, factual update, updates a set of facts by a set
of facts coding a change in the world according to a set of integrity constraints.
The following three ones, namely ranked revision, hull revision and extended hull
revision are based on a ranking of sentences of the programs. We will analyse
the rational properties they satisfy in section 3.

2.1 Factual update

Let P be a fixed program which in this context can be seen as our background
theory or our integrity constraints. Let L be a set of facts which can be seen as
our beliefs about the world. We would like to define the change produced by a
set of facts L’ coding a new piece of information about the world. The following
definition describes the result of this change:

Lit if L or L' is not P-consistent
L op L/ =
(Ly UL, ..., Ly, UL") otherwise

where {L1,..., Ly} is the set of subsets of L which are maximal and P U L'-
consistent.

So more generally than a set of facts L we are considering unordered tuples
of sets of facts (Li,..., L) called flocks in the literature [9]. Such flocks can be
also seen as multisets.

We define the concatenation of flocks

- in the obvious way:

(Ly, ... Lo) (L, DY Ly, Lo, L), L)

and we define the change produced in a flock by a new piece of information by
the following

Lit if L' or all the L; are not P-consistent
(Ly,...,Lp)yop L' &
Li op L) - Li op L)y Li op L otherwise
1 2 k

where {L
with P.
In order to investigate the relation between op and the postulates of change
we need to define the intensional content (the consequences) of a flock F =
(L1,...,Lyp). So we define the consequences by forward chaining (with respect

to P) of such a flock, denoted C¥ (F), by the following:

., L. } is the set of all sets in {L1,...,L,} which are consistent

iy

CH(F) = CrlLiuP)

i=1

So, we adopt here a sceptical point of view, since the consequences of a flock
are the facts that are true in every elements of the flock.
In section 3 we will show that ¢op is a syntactical update operator.

Ezxample 1. We consider the program P and the set of literals L, defined by
P ={a,b—>c;a,d—>c}and L = {a,b,d}. Put L' = {=c}. L’ isnot PUL
consistent and then some facts must be “retracted” from the old base L. Then
it is easy to see that

Lop L' ={{a} U{~c}, {b,d} U {=c})

For the sake of completeness we give in the appendix an algorithm to compute
L op L.

2.2 Ranked revision, hull revision and extended hull revision

In the case of factual update the program is fixed and we restrain the new piece
of information to be a set of facts. When it is not the case a natural question
that one may ask is how to change a program when a new piece of information
arrives. The aim of this section is to give an answer to this question even when
the new piece of information is a program.

The change operators introduced in this section are inspired by the duality
existing between revision and rational inference relations [10,13]. So the first
operator can be seen as the ‘relativization’ of the rational closure [19] to the
forward chaining logic. The second operator is an extension of the first one and
it is aimed to satisfy a little bit more of transitivity [3,4].

Definition 3 (Exceptional sets of literals and rules). Let P be a pro-
gram. A set of literals L is said to be exceptional with respect to P iff L is not
P-consistent and a rule L — | of P 1s said to be exceptional in P iff L is
exceptional in P.

Notice that, when the body of a rule is empty, this rule will be exceptional
iff P is not consistent. In this case all the rules are exceptional.
A similar definition of exceptionality for a formula can be found in [19].

Definition 4 (Base). Let P be a program. Let (Pi)ic, be the decreasing se-
quence defined by: Py is P and P41 is the sel of all exceptional rules of P;.
Since P s finite there is a smallest integer ng such that for all m > ng we have
Py = Py, If Py, # 0 we say that (Py, ..., Pn,,0) is the base of P. If Py, = 0§
we say that (Py, ..., Py,) is the base of P.

Thus a program P has intrinsically a hierarchy, its base, in which the greater
n is, the more exceptional the information in P, is.

Definition 5 (Rank function). Fiz a program P and let (Fy, ..., P,) be the
base of P. Let p : Prog — w be the rank function defined as follows: p(P') =

min{i € w : P’ is Pj-consistent} if P is consistent, otherwise p(P') = n. It is a
fact that if P C P then p(P') < p(P").

Notice that actually the rank function has two parameters. Thus in the nota-
tion Pypry, p(P') denotes the rank of P' with respect to P.

The rank of a new program P’ denotes how this program is exceptional
according to the old program P.

Definition 6 (Ranked revision). Let P and P’ be two programs. We define
the ranked revision of P by P', denoted P o, P’, as follows:

Po,p P = Pp(P’) U P!

In other words we take from the base of P the first program (the least excep-
tional) that agrees with the new piece of information.

We will now slightly generalize the ranked revision operator, and define the
hull revision operator from the definition of the “hull of P” ((h(P)).

Let Ip(P') be the set of maximal subsets of P which are consistent with P’
and which contain P, p:y. Define h : Prog — P(P) by h(P') =) Ip(P')

Definition 7 (Hull revision). The hull revision of a program P by a program
P’ denoted P o, P’ is defined as follows

Po, PP=h(P)UP
Remark 1. By the definitions it is easy to see that
Cfc(P Ork P/) g Cfc(P Op P/)

Thus one can say that oj is a conservative extension of o,. It keeps information
that does not come into account in the contradiction.

Remember that in the definition of hull revision of P by P’ we first calculate
the set Ip(P’) of subsets of P maxiconsistent with P’ and containing P,(p;
then we take a very sceptical approach putting Po, P’ = ((Ip(P’))UP’. What
we want now is to be more permissive and we are going to manipulate Ip(P’)
as a flock. The ideas here are very close to the ones of factual update (cf section
2.1).

First given two programs P and P’ we are going to define P o, P’. Let
Ip(P') be as before. Then we put:

/ (HLUP',... H, UP)if Ip(P') = {H,,...,H,}
POehP =
P’ if Ip(P') =0

Remark that the result is a flock of programs.

Now suppose that F is a flock of programs, say F = (Q1, ..., @n). Then we
define F o.p, P by putting

foehP:(Qloehp)'(QQOehP)"'(QnOehP)

where as in section 2.1 ‘-’ is the concatenation of flocks.
IfF = {(Q1,...,Qn) is a flock of programs we define Cy(F) by putting
Cre(F) = Nizy Cre(Qi).-

Remark 2. Notice that with this definition o., 1s a conservative extension of
op, t.e. Cg(Pop P') C C(P oep P'). For this reason the operator o, is called
extended hull revision .

We will identify a program P with the flock (P).

In section 3 we will show that o, is a syntactical revision operator and that
the operators o, and ogp enjoy some of the properties of syntactical revision
operators.

2.3 Examples of ranked revision, hull revision and extended hull
revision.

In this subsection we give examples that illustrate the behaviour of ranked re-
vision, hull, and extended hull operators and at the same time the differences
between them.

In the following examples we are interested in facts one can infer from Po P’
i.e. the facts [€ C(P o P’) when o is o, op, or ogy. For simplicity we will take
for P a set of rules with non empty body and P’ a set of facts.

Ezample 2. Consider P={b— f;b—>w; o—b; o— —f} where b0, f,w
stand respectively for birds, ostriches, fly and have wings. It is easy to see that
the base is < Py, Py, P, > where

Po={b—=f;b—>w; 0o=b; 0—>~f}

P={o—=b; 0=-f}

Py=1

Notice that p(b) = 0 so Ip(b) = Py = P and therefore

P oy {b} = Pop {b} = Pouy {b} = P U {b}

Cre(P org {b}) = {b, f, w}

Thus on this example the three operators have exactly the same behaviour.

For the same P, an easy computation shows that p(o) = 1. Since the set
{o—=b; 0= —f; b— w} is the unique extension of P; consistent with {o} we
have h(o) ={o—=b; o= ~f; b= w} so

Pop{o} =Pog{o}={0o—=b; 0—>-f; b= wtU{o}

Since p(0) = 1 we have P oy, {0} = {0 = b; 0 = —f} U{o}. Therefore
CfC(P Oh {0}) = CfC(P Och {0}) = {b,O, _'fa ’UJ}

but Ct.(P o1 {o}) = {b,0,—f}. Thus this example shows that hull revision and
extended hull revision keep more information from the old program than ranked
revision.

Another classic taxonomic example (the calculations are left to the reader)
is given by

Ezample 8. P = {m — s ; ¢ > m; ¢ — —s; n — c¢; n — s} where
m, s, ¢, n stand respectively for mollusc, shell, cephalopod and nautili. The base
is < Py, Py, Py, P3 > where

Php={m—=s;c—=m;c—>-s;n—c;n—s}

Pi={c—>m;c—>-s;n—c;n—s}

Po={n—c¢; n—s}

P3s=1

We have
Cre(Pon{n}) ={n,c,s,m} = Cre(P och {n})
and
Cte(Popi {n}) = {n, ¢, s}

this shows that the hull (and extended hull) revision allows more inferences than
ranked revision. In some other cases the revisions coincide, for instance

Ctc(P op {c,—n}) = Cp(P oen {¢,n}) = {c,~n,m,ns} = Cp(P orx {c,n})

Now we consider an example showing that in general the extended hull revi-
sion allows more inferences than the hull revision

Ezxample 4. Take the following program
P={ab—c;a,~c—d;b-c—d;a;b}

Put P’ = {—c}. The base of P is (P, P1, P3) with
Py={a,b—c;a,—¢c—d; b-c—d;a;b}
P, ={a,m¢c—d; b,—c—d}
Py=1

Clearly p(P')y = 1 and Ip(P') = {PyU{a,b = ¢,a}, PLU{a,b— c,b}, Py U{a,b}}.
Thus h(P') = P; and therefore d € Cr(P oy P') = Cp(Pr U—c). Whereas
d € C(P o P') because for any @) € Ip(P') we have d € Cp(Q U {—c}).

2.4 Computing hull revision and extended hull revision

In this subsection we show how, via a simple coding, we can compute the hull
revision by using the factual revision defined in section 2.1.

The base < Py, ..., P, > of P is easily computed.

To compute the class of maximal subsets of P which are consistent with L
and which contain P,p/) we use the update algorithm given in the appendix in
the following way.

Let &/ : P — {ry,...,7m} and & : P" — {qi1,...,qx} be two bijections
where the 7; and the ¢; are new atoms. Define £ : PUP' — {r1,...,rm} U
{q1,---,q5} by £(r) = €'(r) if r € R and £(r") = £'(r") if ¥ € P'. Let M(P) be
the modification of P in the following way: each rule L — [of P is replaced by
the rule v, L — [where r = {(L —). Analogously, let M (P’) be the modification
of P’ in the following way: each rule L — [of P’ is replaced by the rule r, L — [
where r = £(L — (). Note that the maximal subsets of P which are consistent
with P’ and which contain P,(p:y are then those corresponding to the maximal
subsets of the base of facts £(P) computed as being its possible updatings with
respect to M (P) U M(P') by £(P’) U£(P,pr)). More precisely we have:

Poy P =07 (IUP) oppyuns(pry (L(P') UL(Pppn))]}
In an analogous way
Pogy P' = L7HU(P) oprpyumpry (E(P') UL(Pypny))]

In order to illustrate this method take the following example:

Ezample 5. P = {b — f,b = w,0— b,0 — —f}. Let P' = {o}. Define £ : P U
P — {1,2,3,4,5} such that M(P)={1,b—=>f, 2,b>w, 3,0=3b, 40—
—f} and M(P') = {5 — o}. We have seen above that P,p:) = {0 = b,0 = —f}
s0 £(Pypry) = {3,4}. Therefore

E(P) OM(P)UM(P’) (E(P/) UE(P’D(P/))) = {1,2,3,4} OM(P)UM(P’) {5} U {3,4}
=({2,3,4,5})

and so Cg.(P oy P') = Cpe(€71({2,3,4,5})) = Cpe({o = b0 = =f,b = w,0}) =
{O’ b’ _‘fi 'w}.

3 Change properties for ¢p, 0,%, 0p and o

In this section we analyse the rationality of our operators.

More exactly we will show that factual update can be seen as an update
operator in our relativized version of the Katsuno-Mendelzon postulates and
that ranked revision can be considered as a revision operator in in our relativized
version of the Alchourrén-Gardenfors-Makinson postulates. And we give some
properties satisfied by hull revision and extended hull revision.

We begin with an observation the proof of which is straightforward.

Observation 1 The functions Cy. and C’f; are idempotent and monotonic, i.e.
C(C(X)) =C(X) and C(X) CC(X UY). Thus if X CC(Y) then C(X) C C(Y)
forC=Cf orC = C;Z and X and Y in the appropriate domains. a

We will show that ¢p is a syntactical update operator. In order to do that
we must give the instantiations for £, 2, C & and ® used in definition 2. We do
that in next definition.

Definition 8. £ = Lit; I' = P(L); §2 is the set of flocks in which each element
is in I'. We identify L € I' with the flock (L). With this identification we have
I' C 2. The function C : 2 — P(L) is defined by C = C';z. The function & :
Nx2 — 2 is defined by Fy & Fo = Fy - Fa (notice that this definition satisfies
the requirement C(Fy ® Fa) = C(F1) NC(Fz). The function @ : 2xI' — 2 is
defined in the following way:

(Ly,...,Lp)®L=(LUL,... L,UL)

Notice that with the previous identification we have L @ L' = LU L', that is ®
satisfies the requirement that its restriction to couples of I' takes its values in I.

With this definition we can state the following theorem:

Theorem 2. The operator op is a syntactical update operator. More precisely,
taking £, I', 2, C and ® as in definition 8 the postulates SU1, SU2, SU3,
SU5, SU6 and SUS8 hold.

Proof: SU1: We want to show that C(L') C C(F op L'), i.e. that C’;Z(L’) is
a subset of C;Z(]: op L'). If L' is P-inconsistent or all the elements of F are
P-inconsistent, the result follows trivially.

Now suppose that F op L' = (L1,...,L,). By definition of op, we have
L' C L;fori=1,...,n. Therefore L' C ﬂ?le;Z(Li) = C}Z(f op L'). We con-
clude using observation 1

SU2: Suppose that C’;Z(L’) C C’;Z(T). We want to show that C’;Z(]-") =
C';Z(]: op L'). If C’f;(]:) = Lit or C'f,z(L’) = Lit then the result follows trivially
from definitions. Thus, assume that C’;Z(f) # Lit and C'JI,Z(L’) # Lit By the
assumption, we can suppose that F = (Li,...,L,) and F op L' = (L;, op
L") - (Li,opL') where the set {L;, ... L;, }is the maximal subset of {L; ... L, }
such that each L;; is P-consistent. Since C;z(L’) C C’;Z(Li ') we have that

7

Li; op L' = L;; UL" and by observation 1 that C’;Z(Lij UlrL) = C}Z(Lij)- Thus

k n
Ch(Fop L')=CR(Li, UL,...,Liy UL') = () CR(Lsi,) = () Ch(Li) = CR(F)
j=1 i=1

where the next to last equality is due to the fact that if L; is different of all L;;
then C’;Z(Li) = Lit.

SU3: It is straightforward by definition of ¢op.

SU5: We want to show that C;Z(]: op(L® L)) C C;z((]: op L) ® L'). First
we prove the result when F is a flock with one element, say F = (H). If H
is P-inconsistent or L U L’ is P-inconsistent the result is quite straightforward.
Now suppose that both H and P U P’ are P-consistent. By definition we have

Hop(L®L)=(LiULUL,...,LyULUL"
(HopL)® L' =(KyUL,...,K,ULY® L'
=(K;ULUL ... K,ULUL'

where L; is a maximal subset of H such that L; UL U L’ is P-consistent, for
t=1,...,n, K; is a maximal subset of H such that K; U L is P-consistent,
for j = 1,...,p. Notice that either C’;Z(Kj ULUL') = Lit or there exists an
m such that K; = L,,. Therefore if I € (_; Cpe(PUL; UL'UL") then | €
Miz1 Cre(PUK;; UL UL").

Now we prove the general case. Suppose F = (Ly,...,L,). If F is P-
inconsistent or LUL' is P-inconsistent the result is straightforward. Thus assume
that F and P U P’ are P-consistent. Then

Fop (Lo L) = (Li, op (LULY) - (Li, op (LU L)
(fOP LI) QL = ((L“ oplL-- 'Lz'k op L)) ® L’
((Liy op L) @ L') -+ ((Liy op L) @ L')

where {L;,,..., L;, } is the maximal subset of {L;,..., L,} such that each ele-
ment is P-consistent. By the first case we have

Ch((Li;op (L® L) CCR((Li; op L)@ L') forj=1,...,k
Therefore CL((F op (L® L") C CL((Fop L) ® L').

SU6: Suppose C’;Z(Lz) C C’;Z(]: op L) and C’;Z(Ll) C C;Z(]: op La). We
want to show that C;Z(f opLy) = C';Z(f op Ly). When one of F, Ly, Ly is
P-inconsistent the result is trivial. So suppose all three of them P-consistent.

First we suppose that F = L. By the assumption it is clear that L, C
Ch(Lop Ly) and Ly C CL(L op Ly) Put

LOPL1:<L%,...,L71M>®L1
LOPL2:<L%,...,LT212>®L2

where Ll1 1s a maximal subset of L such that LZ1 U Lq is P-consistent for i =
1,...,ny and LJ2» is a maximal subset of L such that LJ2» U Ly is P-consistent for
j=1,...,n9. From the hypothesis it is easy to see that:

(a) Ly U L? is P-consistent for j = 1,...n9 and

(b) Ly U L} is P-consistent for i = 1,...n;.

From (b) we have Vi € {1,...,n1} 3 j € {1,...,na} such that L} C sz_ and
from (a) we have V j € {1,...,na} 3 i € {1,...,n1} such that sz_ C L}. But

this implies, by maximality of sets L} and L?, that ny = ns and there is a
permutation ¢ of {1,...,n1} such that L} = Li ;- Without loss of generality
we can suppose that o is the identity. Finally note that

=CL((LY, ..., L2) ® (Lo U Ly))
=CL((LY, ..., L3,) © L)

The first and third equalities follow from the hypothesis and observation 1.
Now we prove the general case. Put F = (Hy,. .., H,) and suppose C% (L2) C

CP(F op L) and CR(L1) C CE(F op Ls). Then
Fop Li=(Hj op Li) - (Hj, op Li) i=1,2

But it is easy to see that L; C C;z(Hjm op La) and Ly C C’;Z(Hjm op Ly) for
m =1,..., k. Then, because of the first case, C}Z(Hjm op L1) = CE(H;j, op L)
and therefore C’;Z(}' op L1) = C';Z(f op Ly).

SUS8: It is trivially verified because of definitions. a

We will show now that o,; is a syntactical revision operator and that the
operator o has some of the properties of syntactical revision operators. In order
to do that we give the instantiations of the sets £, £2 and the functions C and ®
used in 1.

Definition 9. £ = Lit. 2 = I' = Prog. Clearly P(L) C 2. The consequence
operator C : 2 — P(L) is defined by C = Cy.. The function @ : 2x2 — 2 is
defined by P® P' = PU P’.

Theorem 3. The operator o is a syntactical revision operator. More precisely,
taking L, 2, C and ® like in definition 9, the postulates SR1, SR2, SR3, SR5
and SR6 hold.

The operator oy, satisfies the postulates SR1, SR2 and SR3 but it does not
satisfy SR5 nor SR6.

Proof: We do the verifications for oj concerning the postulates SR1, SR2, SR3
(the postulates for o,; are verified in an analogous way). Then we verify SR5
and SR6 for o,;. Finally we show counterexamples to SR5 and SR6 for oy,.

SR1: We want to show that C'g.(P’) C C.(P op P’). This is clearly true because
Poy P' = h(P')UP'.

SR2: Suppose that C(P ® P’) # L, i.e. Cp (P UP’') # Lit. We want to show
that Po, P’ = PUP’. This is straightforward because Cy.(P U P') # Lit implies
p(P') =0.

SR3: Suppose C(P') # L, i.e. P’ is consistent. We want to show that P o, P’ is
also consistent, i.e. C(P op P') # L. This is true because P oy, P’ = h(P')U P’

and h(P’) is by definition contained in a set consistent with P’.

SR5 and SR6 for o, : We suppose that C((Po,; P')@P") # L, i.e. (Pox P)UP"
is consistent (otherwise SR5 is trivial). We want to prove that C((P o P') ®
P")y = C(P orr (P' ® P")). In order to do that it is enough to show that
Popp (P'UP") = (Poyg P')UP". By hypothesis (P,pyUP')UP" is consistent.
Thus p(P' U P") < p(P’') and then p(P’' U P") = p(P’). From this we conclude
easily.

In order to show that SR5 does not hold it is enough to consider the fol-
lowing example: the program P is defined by P = {b - w,w — w',w' —
fyo = bjo = —f}. The base is in this case (P, P, P3) with P, = P, P, =
{o—=b,0—~=f} and P, = . Put P’ = {0} and P’ = {w'}. It is not hard
to establish that hA(P') = P, and h(P'UP") = P, U {b— w,w — w'}. Thus
Cr((Pop PYUP")={o,uw,b,—f} and Cg(P op (P'UP")) = {o,uw,b,—f, w}.
Therefore Cy.(Pop (P'UP")) & Cp((Pop P')UP"), that is SR5 does not
hold.

To prove that SR6 does not hold we consider the following example: Put
P ={rg,r1,r2} where ro =a — ¢, ry =e — —¢, 7o = b — —c. Put P/ = {a,e}
and P"” = {b}. The base for P is (P,0). Then it is easy to see that P,p, =
Pp(plupu) = @ and

Ip(P') = {{ro,ra},{r1,72}} and
Ip(P'UP")={{ro}, {r1,r2}}

Thus h(P') = {rs} and h(P'UP") = 0. Therefore =¢ € C((P op P') U P") and
—c ¢ Cp(P oy (P'UP")), so R6 fails. m|

Now, in order to analyse the postulates of syntactical revision satisfied by
oen, we need to state in a very precise way what are the sets and functions of
definition 1. This is the subject of the next definition.

Definition 10. We put L = Lit; §2 is the set of flocks of programs; I' = Prog;
notice that with the above identification we have I' C §2; o, : 2xI" —> 2 as
defined above; the function ® : 2xI" — (2 s defined by:

(Q,..,Qn)®P=(Q1UP,...,Q,UP)

Notice that the restriction of ® to couples of elements in I' takes its values in

I'; and finally we define C : 2 — P (L) by putting C = C..

The extended hull revision operator satisfies some of our syntactical postu-
lates. More precisely we have the following theorem:

Theorem 4. The operator o.p satisfy SR1, SR3 and SR5, when we take the
definitions of 10. It satisfies a weak version of SR2: if P is consistent with all
the elements of F then F oo, P=F ® P.

Proof: SR1 is proved in an analogous way than the same postulate (SU1) for
the operator op (see the proof of theorem 2).

SR3 and the weak form of SR2 are straightforward from definitions.

Now we prove SR5. First, we consider the case F = P. Then we want to prove
that C(P oep (P’ @ P")) C C((P oe, P') @ P"). Suppose that

Powy P'=(Q:UP,....Q,UP
Poey (P'®P")=Po., (P'UP")=(H, UP'"UP", ... HyUP UP")

Then (P oy P') @ P" = (Q, UP'UP",... QnUP UP".
If Ct((P oep P') @ P") = Lit we are done. Otherwise there is a @; such that
Q; U P"U P" is consistent. But since (J; is a subset of P maxiconsistent with
P’ and containing P,p) necessarily p(P') = p(P' U P"). Now we claim that
for all 7 = 1,...,n either @Q; U P’ U P” is inconsistent or there is a j < k such
that @; = H;. To see that suppose that @; U P’ U P” is consistent then Q;
is a subset maximal consistent with P’ U P" containing P,py = P,prupny,
t.e. Q; = Hj for a j, by definition of sets H, for ¢ = 1,..., k. Finally from
the claim we get easily ﬂf’:l Cr(H; UP'UP"Y C N, Cre(QiUP UP"), ie.
C(P oun (P P")) C C((F our) 7).

The general case, when F = (Py,..., P,), follows from the first case by
definition of o.; and using the same trick that we used in the proof of SU5 in
theorem 2. ad

Observation 5 The postulates SR2, SU2, SU6 and SR6 don’t hold for o.p.

Proof: We build counterexamples for each of those postulates.

For SR2: Take F = ({a}, {-b}) and P = {b}. Then
Cfc(f® P) = Cfc(<{a: b}, {_'b¢b}>) = {a, b}

So F ® P is consistent. But Cr(F ocp P) = Cr.({{a,b},{b})) = {b}; so SR2
fails.

For SU2: Take P = {a} and P’ = {a — b}. Then §§ = Cr.(P’) C C.(P) = {a}.
But Cp(P ocp P') = Cpe(P U P') = {a,b}; so SU2 fails.

For SU6: Take P; = {a — b}, P, = {¢ — d} and Q = {a}. Clearly Cr(P1) =
Cte(P2) = 0, so the hypothesis of SU6 is true. But

Cre(Q oen P1) = Cre(QU P1) = {a,b} # {a} = C(Q U P2) = Cpc(Q 0cp Pa)

For SR6: The same counterexample given in the proof of theorem 3 to show
that SR.6 fails for op, works in this case. a

Observation 6 All the operators previously defined are syntaz-sensitive, i.e.
(1S) fails for the operators op, opi, op and op.

Proof: First we give a counterexample for op. Put P = {a — b}. Define L, =
{a,b} and Ls = {a}. Put L' = {-a}. Clearly C;Z(Ll) = C;Z(L2) = {a,b}.
It is easy to see that Ly op L' = {b,—a}. Thus C’;Z(Ll op L') = {b,—a}. But

it is easy to see that Ly op L' = {=a} so CE(Lyop L') = {-a}. Therefore
Ch(Lyop L') # CL(Laop L').

Now we give a counterexample for o,;, op and o.p. Put P = {a — b},
Py ={a— c} and P’ = {a}. Then Cp(P1) = 0 = Cpe(P). But Cp(Pro P') =
Ci(PLUP) ={a,b} # {a} = Cp(PoUP') = Cp(Lao P)
for any o € {o,k,0n,0n}-]

4 Still another operator: selection hull

In the previous section we have seen that the two sceptical approaches to extend
the ranked revision fail to be syntactical revision operators. In this section we
give another extension of ranked revision based on the idea of using a selection
function.

Let S be a function mapping sets of programs into programs, i.e.
S :P(Prog) — Prog. We will say that S is a selection function iff the following
properties hold:

(i) S@)y =10
(ii) If D # () then S(D) € D

Let us remark that this kind of selection functions are known as maxichoice
functions in the literature [1,12].

Let P and P’ be two programs. Let Ip(P’) be as defined in section 2.2,
i.e. the set of subsets of P which are maxiconsistent with P’ and which contain
P,pry. Let S be a selection function. We define the operator osp, by the following:

Pogp PIIS(IP(PI))UPI

We will take the same instantiations as in definition 9 in order to analyse the
postulates satisfied by ogp.

The following definition gives us a class of selection functions for which the
operator oyp is a syntactical revision operator.

Definition 11. A selection function S s said to be sensible iff the following
property holds: for any programs P, P’ and P"

Ip(P) N Ip(P'UP") £ 0 = S(Ip(P")) = S(Ip(P' U P"))

Theorem 7. If S is an sensible selection function then oy is a syntactical
revision operator when we consider L, 2, I', C and ® as in definition 9.

Proof: SR1 and SR3 follow easily from definition of og,. The verification of
SR3 is also easy using the property (ii) of selection function. Now we prove
SR5 and SR6. Actually with the hypothesis on S we are going to prove that if
(P osp P') U P” is consistent then (P oz, P') U P” = P ogp, (P'U P"”) which is
obviously stronger than SR5 and SR6.

Suppose that I(P') = {Q}UD; and S(I(P')) = @. By hypothesis QU P'UP"
is consistent so p(P') = p(P'UP") and @ € I(P'UP"). Therefore I(P'UP") =

{@} U Ds. Since p(P') = p(P' U P") and P’ C P’ U P"” we have that for any R
in Dy there exists R’ in D; such that R C R’. Then by the property assumed
for S we have S(I(P'U P")) = @; and from this we conclude. a

We remark that the property required for S in definition 11 can be explained
in an intuitive way: if you are choosing among elements of {@} U D; and your
preference i1s @, it means that you think @ is the set which best fits P, then in
the situation where you are choosing among elements of {Q}U Dy with elements
of Dy contained in elements of D;, you must reasonably choose).

Notice also that with this definition oy, is a conservative extension of oy,
i.e. C(P oep P') C Cpo(P osp P'). Thus we have

Cre(P op P') C Cpe(P op P') C Cpe(P oo P') € Cpe(P ogh P')

A natural question one can ask is if there are selection functions with the
property required in theorem 7. We show next a method for building such selec-
tion functions.

4.1 Building sensible selection functions

An easy way to build a sensible selection function is to use a linear ordering
among propositions, that codes agent preferences in the program.

Let |@| be the cardinality of a set @. Let {r1,...,7,} be an enumera-
tion without repetition of rules and facts. Let m be a function (weighting)
7 {r1,...,rn} — w such that m(r;) = 2°. We extend in a natural way =
to P(Prog) by putting

k
71'({7’2'1, sy rik}) = 22“
j=1

Notice that if P, P’ € Prog and P # P’ then n(P) # ©(P').
Let <, the lexicographical order on w?. Then define S : P(Prog) — Prog
by S(#) = 0 and if D is nonempty

S(P)=QiffQe DandVRe D (R#Q = (|R],7(R)) < (1@, 7(Q)))

That is S chooses among the sets of greatest cardinality the set with higher
weighting.

Because of definition of 7 it is quite easy to see that S is a sensible selection
function.

Conclusion

We have proposed in this paper a methodological framework in order to analyse
rational properties for syntactical change operators. We have also introduced
five knowledge change operators based on forward chaining. The ideas behind

the definition of these operators are very natural and simple. In most of the
cases, they are connected with well known methods [9,2,21]. The originality of
our work relies on the definition of the rank function for the revision operators
and concerning the factual update on the fact that we consider the flocks with
a logical content: their consequences by forward chaining. This point -endowing
the result of an operator with a logical content- is particularly important because
it makes possible the analysis of the operators in our abstract framework.
The following table summarizes the main results:

Operator Satisfied postulates | Unsatisfied postulates
op SU1+SU2+4+SU3+SU5+SU6+SUT+SUS
Ork SR1+SR2+SR3+SR5+SR6
op SR1+SR2+SR3 SR5+SR6
Och SR1+SR3+SR5 SR2+4+SU2+SR6+SU6
Osh SR1+SR2+SR3+SR5+SR6 |

Thus three of our operators have desirable properties. In particular factual
update i1s a syntactical update operator according to our version of Katsuno
and Mendelzon postulates. Ranked revision and selection hull are, syntactical
revision operators according to our version of Alchourrén-Mendelzon-Gardenfors
postulates. The other operators, hull and extended hull revision, don’t have good
rational properties. Nevertheless they extend ranked revision in order to keep
more information from the old program and thus seem to be less drastic than
ranked revision.

These operators based on forward chaining are easily computable. Notice
that, in particular, the operator of ranked revision is polynomial. The factual
update operator, from a complexity point of view, is exponential (actually it is
NP-complete since it requires the computation of all minimal hitting sets).

The operators based on hull revision are more complicated but can be com-
puted with the help of the two others.

An interesting further work is to investigate the properties of our operators
with respect to some relativisation of iteration postulates [7,18]. Another inter-
esting point to develop is the extension of these operators to the first order. By
the way, our results can be translated in an obvious way to Datalog without
negation by failure.

References

1. C.E. Alchourrén, P. Gardenfors, and D. Makinson. On the logic of theory change:
partial meet contraction and revision functions. Journal of Symbolic Logic, 50:510—
530, 1985.

2. C. Baral, S. Kraus, J. Minker and V.S. Subrahmanian. Combining knowledge bases
consisting of first order theories. Computational Intelligence, 80:45-71, 1992.

3. H. Bezzazi and R. Pino Pérez. Rational transitivity and its models. In Proc. of
the Twenty-Sizth International Symposium on Multiple- Valued Logic, Santiago de
Compostela, Spain, May, 1996, pp. 160-165, IEEE Computer Society Press.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

H. Bezzazi, D. Makinson, and R. Pino Pérez. Beyond rational monotony: some
strong non-horn rules for nonmonotonic inference relations. Journal of Logic and
Computation, 7:605-631, 1997.

M. Dalal. Investigations into a theory of knowledge base revision: Preliminary
report. In Proc. of the Seventh National Conference on Artificial Intelligence
(AAAI’S8), pp. AT5-479, 1988.

C. Damasio, W. Nedjdl, and L. M. Pereira. Revise: An extended logic programming
system for revising knowledge bases. In Proc. of the 4th International Conference
on Principles of Knowledge Representation and Reasoning, pp. 607-618, Morgan
Kaufmann, 1994.

A. Darwiche, and J. Pearl. On the logic of iterated belief revision. Artificial
Intelligence, 89:1-29, 1997.

T. Eiter and G. Gottlob. On the complexity of propositional knowledge base
revision, updates and counterfactuals. In Proc. of 11th Symposium on Principles
of Database Systems, pp. 261-273, ACM Press, 1992.

. R. Fagin, G. Kuper, J.D. Ullman, and M.Y. Vardi. Updating logical databases.

Advances in Computing Research, 3:1-18, 1986.

M. Freund and D. Lehmann. Belief revision and rational inference. Technical
Report 94-16, Institute of Computer Science, The Hebrew University of Jerusalem.
1994.

A. Fuhrmann. Theory contraction through base contraction. Journal of Philo-
sophical Logic, 20:175-203, 1991.

P. Gardenfors. Knowledge in Flux: modeling the dynamics of epistemic states. MI'T
press, Cambridge, MA, 1988.

P. Gardenfors and D. Makinson. Relations between the logic of theory change and
nonmonotonic logic. In The Logic of Theory Change, Workshop, Konstanz, FRG,
Octuber 1989, pages 185-205. Springer-Verlag, 1989. Lecture Notes in Artificial
Intelligence 465.

S.0. Hansson. Theory contraction and base contraction unified. Journal of Sym-
bolic Logic, 58:602-625, 1993.

S.0. Hansson. Reversing the Levi identity. Journal of Philosophical Logic, 22:637—
669, 1993.

H. Katsuno and A.O. Mendelzon. Propositional knowledge base revision and min-
imal change. Artificial Intelligence, 52:263-294, 1991.

H. Katsuno and A.O. Mendelzon. On the difference between updating a knowledge
database and revising it. In Belief Revision, P. Gardenfors Ed. Cambrigde tracts
in theoretical computer science 29. Cambridge University Press, 1992.

D. Lehmann. Belief revision, revised. In Proceedings IJCAI’95, 1995, pages 1534—
1540.

D. Lehmann and M. Magidor. What does a conditional knowledge base entail?
Artificial Intelligence, 55:1-60, 1992.

Paolo Liberatore. The complexity of iterated belief revision. In Proceedings of
the Sizth International Conference on Database Theory -1CDT 97, Delphi, Greece,
January 8-10, 1997. Lecture Notes in Computer Science, Vol. 1186, Springer, 1997,
pages 276-290.

V. Marek and M.Truszczynski. Revision programming, Database Updates and
Integrity Constraints. In Proc. of 5th International Conference of Database Theory,
Prague, Czech Republic, January 11-13, 1995. Lecture Notes in Computer Science,
Vol. 893, Springer, 1995, pages 368-382.

A.C. Nayak. Foundational Belief Change. Journal of Philosophical Logic, 23:495—
533, 1994.

23. B. Nebel. Syntax-Based Approches to Belief Revision. In Belief Revision, P. Gar-
denfors Ed. Cambrigde tracts in theoretical computer science 29. Cambridge Uni-
versity Press, 1992, pages 52-88

24. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57—
95, 1987.

25. K. Satoh. Nonmonotonic reasoning by minimal belief revision. In Proceedings In-
ternational Conference on Fifth Generation Computer Systems, Tokio, 1988, pages
455-462.

26. N. Tennant. Changing the Theory of Theory Change: Towards a Computational
Approach. British Journal for Philosophy of Science , 45:865-897, 1994.

27. A. Weber. Updating propositional formulas. In Proceedings First Conference on
Database Systems, 1986, pages 487-500.

28. M. Winslett. Reasoning about action using a possible models approach. In Pro-
ceedings AAAI'88, 1988, pages 89-93.

Appendix: Update algorithm

Let P be a fixed program which in this context can be seen as our background
theory or our integrity constraints. Let L be a set of facts which can be seen as
our beliefs about the world. We would like to define the change produced by a
set of facts L’ coding a new piece of information about the world. The following
definition describes the result of this change:

Lit if L or L' is not P-consistent
L op L/ =
(Ly UL, .., Ly UL") otherwise

where {L1,..., Ly} is the set of subsets of L which are maximal and P U L'-
consistent.

This is computed in two steps: first, we compute sets of facts that lead to
inconsistency, called contradictory sets. Then, given the set SC' of contradictory
sets, we compute the minimal hitting sets of SC. The maximal subsets of L such
that L U L'is P-consistent are the sets L \ H, where H is a minimal hitting set
of SC.

First step. A contradictory set C' is a subset of L corresponding to a way of
proving a pair of opposite literals from PUL UL’ : C is a contradictory set if C
is a subset of L and there exists a minimal subset P’ of P such that P"UC UL’
is not consistent and, for each [in C, [appears in the body of a rule of P’.

We assume that, for every atom a that appears in the knowledge base, we
have an implicit rule a,—a — 1.

To compute the contradictory sets when updating L with L', we build a
contradiction tree T, 1/, starting from L : a node is a pair(L; C), where L is a
list of literals to prove to obtain contradiction and C' is a partial contradictory
set. We start with the node (L;{}) . Let N = (l1,{a,... ,{s;C) be a node of

T7,10. The successors of N are computed as follows:

—ifly € L' or l; € P or if l; is already in C, then (I3, ... ,{,;C) is the only
successor of N

— else for each rule g1, 92, ...,9p = b1, (91,92, .-, 9p, 12, ..., ln ; C is a successor
of N and if {; € L, then (I3,...,1,; CU{l1})) is a successor of N.

A branch terminates with an empty list of literals or with a node that cannot
be developed. If a branch ends with (; C), then C'is a contradictory set of facts.
Note that if we suppose that L’ is consistent with P, we can’t obtain (0;0). 7%, 1.
doesn’t give only the minimal contradictory sets, but all the ways to entail a pair
of opposite literals from P and L U L.

Example. We consider the program P and the set of literals L, with P =
{a,b—c; a,d— ¢} and L = {a,b,d}. When updating L with {—c}, we obtain
two contradictory sets {a,d} and {a,b}. Fig 1 shows the contradiction tree (to
simplify, we consider only the rule —¢,c — L at the first step, since the only pair
of contradictory literals that actually appears in this case is ¢, —¢).

14}

{e,mehs {}
{eh {3

{a, 0} {} {a,d}; {}

{b}; {a} {d}; {a}

{};{a, b} {}:{a. d}
Fig 1. Contradiction tree

Second step. The contradiction tree produces a set of contradictory sets SC' =
{C4,...,C,}. To update L with L' we compute all the maximal subsets S of L
such that S U L’ is P-consistent. The subsets S of L are obtained by removing
from L at least one element of each contradictory set: if H is a set of facts such
that, for each element C; of SC, SNC; # B , then (L\ H) UL’ is consistent. H
is usually called a hitting set of SC'. To find the maximal consistent subsets of
L, we need all the minimal hitting sets (by set inclusion) of SC.

The figure 2 illustrates the algorithm we implemented in Prolog to compute
the minimal hitting sets.

SC; {{a,b},{a,e},{b,c},{c,e}} {(I,b}
J(a) = {{a,b}} () = {{a,0}}

{a,e} {a,e}

J(a) = {{a,b},{a,(i}}
J(e) = {{a,e}}

{b,c} {b,c}

J(a) = {{a,e}}

J((b) = {{b,c}} b
J(b) = {{a7 b}7 {bv C}}
{c, e} {c,e}

J(b) ={} J(a) = {} J(e) = {{a,e},{c,e}

fail fail LI {a,c} L1 {b,¢e}

Fig 2. Minimal Hitting sets: {a,c} and {b,e}

This algorithm is very close to the one given by Reiter in [24]. Let SC =
{C4,Cs, ...,Cr}. We try to construct a hitting set of SC' by examining the ele-
ments of SC one by one: if the current set C; is not already hit by the partial
hitting set HS, we add one of the literals of C; in HS. To know if a hitting
set is minimal, we maintain a set of justifications J(I) for each literal ! of the
hitting set: J(I) contains all the sets of literals that are hit only by /. When a new
literal I must be added to the hitting set, the justification sets are updated by
removing all the sets containing {. If one of the justification sets becomes empty,
the current hitting set is not minimal anymore and so the construction fails.

Concerning the relationships between our algorithm and Reiter’s notice that
we construct the same kind of H S-tree, where nodes are labeled with elements of
SC and edges are labeled with elements of the hitting sets. The main difference
is the use of justification sets instead of tree pruning. Tree pruning is used in
Reiter’s algorithm in order to compute not all the hitting sets but only the
minimal ones. In our algorithm, this is done with justification sets and each
minimal hitting set is computed in a unique branch.

