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Abstract. Merging structured knowledge has been widely investigated to build
common resources in recent years. Indeed, many merging operators have been
proposed and developed. However, the majority of them lack comparison and
evaluation. Finding ontology sources for evaluation is not an effortless task. To
this end, we propose a framework for evaluating the quality of ontology merging
operators. The primary strategy starts with an original ontology as a gold stan-
dard to create noisy ontologies as datasets and use them to evaluate the merging
operators. We generate the noisy ontologies using some perturbations of the tree
structure of the original ontology based on tree edit operations. Then, we use tree
edit distance to measure the existing merging operators with these noisy sources.
We provide the details to assess the merging operators’ efficiency in the compu-
tation time and their ability to cover (or be close to) the original ontology.
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1 Introduction

Structured knowledge relating to concepts and properties is widely employed in a vari-
ety of domains, including natural language processing (NLP) [17], information retrieval
(IR) [9], and semantic web [12]. They are generally encoded beneath the backbone of
tree structures or knowledge graphs (i.e., a hierarchy of ontology). The main difference
is that knowledge graphs are less expressive than ontologies [13]. As such, it might be
considered as a simplified variant of ontologies1.

In the context of ontologies (structured knowledge), researchers and practitioners
have to contend with the difficulties of various fresh information emerging from multi-
ple sources. Since these knowledge sources are given by different agents (i.e., ontolo-
gies), merging many diverse sources might result in inconsistencies and conflicts. From
this point, ontology merging has been widely studied in the last years aimed at obtaining
the common consistent source. Ontology merging and alignment have attracted much
attention in the literature [20,8,3]. Ontology merging aims to combine two (or more)
ontologies having the same terminology when handling conflict. In contrast, ontology
alignment (or matching) is the process of determining correspondences between termi-
nologies of ontologies. Otherwise, the problem of ontology (or DL) merging is close
to the problem of belief merging in a propositional setting [2,21] and several concrete

1 In this paper, we use ontologies to refer to knowledge graphs.
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merging operators have been proposed [15,14]. For instance, Benferhat et al. [3] stud-
ied merging assertional bases in DL-Lite fragment. They have determined the minimal
subsets of assertions to resolve conflicts based on the inconsistency minimization prin-
ciple. Wang et al. [21] provided an ontology merging operator. Their operators based
on a new semantic characterisation. Namely, the minimality of changes is realised via a
model (semantic) distance.

In general, numerous merging operators have been proposed and developed in the
last years. The postulates are actually used to evaluate the behaviours of operators.
However, to the best of our knowledge, there is no evaluation framework to assess and
compare the quality of different merging operators. For evaluating operators, this work
is motivated by two primary reasons: (1) evaluating the merging models for inputs from
multiple fields (open-domain) is a difficult challenge. Namely, even-though the open-
domain concept names are same, their meanings differ. i.e., Rock is-a Stone while
Rock is-a Music (in the music domain). Naturally, when merging these sources, there
will be no meaningful relationship between Stone and Music. (2) Another challenge
is to evaluate the merging models that require the same terminologies (signatures). In
fact, ontologies are naturally constructed based on the differing views of their builder.
Therefore, even if they are the same field, the concept names are also different. i.e.,
V acation and Holiday. At these points, finding ontology sources for the model eval-
uation is not an effortless task. To solve them, noisy sources generated from an initial
source are a potential solution for measuring the efficacy of ontology merging operators.
In this perspective, we take inspiration Tree Edit Distance (TED)2 [23,18,22] to create
noise trees and measure a distance between these attributed trees (or graphs). Here, the
distance has defined as the minimum amount of edit operations (deletion, insertion, and
substitution of nodes and edges) needed to transform a tree into another. We generate
noisy ontologes (NoiOn(s)) via the edit operation.

Taking account of the foregoing, we propose an ontology merging evaluation frame-
work to assess the quality of the ontology merging operators. The idea is to start with
an ontology (gold standard), then build some NoiOn(s) (a merging profile), apply the
merging operators to them, and compare the results to the gold standard. Particularly, we
build the NoiOn(s) generation with “local” perturbation to make sense because neigh-
boring concepts can be related to each other. Hence, we implement the modification
of the substructure with a node’s parent, child, and siblings to obtain the NoiOn. To
this end, we provide an algorithm. Then, we use the existing merging procedures to
obtain the merged ontologies. We compare the merged result and the original one to
evaluate the operators. Considering the ability of noise reduction after merging will be
a key to assess the operators. Note that the ontology is represented as a tree (graph). The
generation of NoiOn(s) and the merging of ontologies are two independent processes.

2 Background

Our approach implements on two foundations: (1) we rely on a lightweight Description
Logic (DL) framework to encode terminological Boxes of ontologies, (2) we use edit
operations and TED for creating NoiOn(s).

2 http://tree-edit-distance.dbresearch.uni-salzburg.at

http://tree-edit-distance.dbresearch.uni-salzburg.at
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2.1 Description Logics

EL is a family of lightweight DLs, which underlies the Ontology Web Language profile
OWL2-EL, that is considered as one of the main representation formalisms to express
terminological knowledge [1].

The main ingredients of DLs are individuals, concepts, and role. More formally,
let NC , NR, NI be three pairwise disjoint sets where NC , NR, NI denote a set of
atomic concepts, atomic relations (roles), and individuals, respectively. In this paper,
we consider EL⊥ concept expressions [11] which are built according to the grammar:
C ::= ⊤ | ⊥ | NC | C ⊓ C | ∃r.C where r ∈ NR. Let C,D ∈ NC , a, b ∈ NI ,
and r ∈ NR. An EL ontology O = ⟨T ,A⟩ (a.k.a. knowledge base) comprises two
components, the TBox (Terminological Box denoted by T ) and ABox (denoted by A).
The TBox consists of a set of General Concept Inclusion (GCI) axioms of the form
C ⊑ D, meaning that C is more specific than D or simply C is subsumed by D, and
axioms of the form C⊓D ⊑ ⊥, meaning that C and D are disjoint concepts. The ABox
is a finite set of assertions on individual objects of the form C(a) or r(a, b).

The semantics is given in terms of interpretations I = (∆I , ·I), which consist of a
non-empty interpretation domain ∆I and an interpretation function ·I that maps each
individual a ∈ NI into an element aI ∈ ∆I , each concept A ∈ NC into a subset
AI ⊆ ∆I , and each role r ∈ NR into a subset rI ⊆ ∆I × ∆I , each axiom C ⊑ D
into CI ⊆ DI , each C ⊓D into a subset CI ∩DI ∈ ∆I , a top concept⊤ into ∆I , and
the bottom concept ⊥ into the empty set ∅. An interpretation I is said to be a model of
(or satisfies) an axiom Φ, denoted by I |= Φ. For instance, I |= C ⊑ D if and only if
CI ⊆ DI . Similarly, I satisfies a concept (resp. role) assertion, denoted by I |= C(a)
(resp. I |= r(a, b)), if aI ∈ CI (resp. (aI , bI) ∈ rI). In this paper, we assume that
the input ontologies are provided in a specific normal form, which we apply completion
rules (see [1] for more details) for classification. Note that the classification process
works before the merging operation such that all axioms are in the normal form. We
denote a set of ontologies is a profile. This profile is able to use for ontology merging.

2.2 Edit Operation and Tree Edit Distance

We here provide several formal definitions related to the TED to use in the sequels. A
rooted tree, denoted by T , is a connected graph with nodes V (T ) and edges E(T ) ⊆
V (T ) × V (T ). The root of T is denoted by ℜ(T ). Here, we write T to represent
the set of nodes of T (replacing T by V (T )). For two nodes v1, v2 ∈ T , a parent of
v1, denoted by p(v1), is the closest ancestor of A. We denote ϑ as a finite alphabet and
lbT : T → ϑ as a labelling function.

The tree edit distance [23,18,22] between two trees T1 and T2 is defined as the
minimum cost of edit operations to transform a tree to another. In order to implement
edit operations, we denote ϵ as a blank symbol and ϑϵ = ϑ ∪ {ϵ} to represent the edit
operations. Here, we denote each of the edit operations by a pair denoted as ϑϵ × ϑϵ \
{(ϵ, ϵ)}. We now define edit operations.

Definition 1 (Edit operations). Let T be a tree and v1, v2 ∈ T . Edit operations on
T include: Replacing a node labeled v1 by other node labeled v2 in T is denoted by
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Rep(v1, v2,T ); Deleting a node labeled v1 in T such that the children of v1 will be
the children of p(v1) is denoted by Del(v1, ϵ,T ); Inserting a node labeled v1 into T
such that v1 is a child of v2 is denoted by Ins(ϵ, v1, v2,T ).

Now, let us denote a cost function on edit operations by dist : ϑ×ϑ\{(ϵ, ϵ)} → R+.
Notice that we simply write dist(v1, v2) to represent dist(lb(v1), lb2(v2)), where lb1
and lb2 are labelling functions on two trees T1 and T2. Normally, the edit operation
cost of each operation is 1, i.e., dist(v1, v2) = 1 or dist(v1, ϵ) = 1. However, we
may also re-define this cost (see [4] for more details). Notice that we will use the cost
of each operation equals to 1 for this whole work. Moreover, an edit mapping is a
description of how a sequence of edit operations transforms from T1 into T2. Now,
we present a mapping between two trees for computing the distance between them. An
edit mapping between T1 and T2, denoted by MT1

T2
, is a subset of T1 × T2 (a.k.a.

MT1

T2
⊆ V (T1)× V (T2)). A pair (v1, v2) ∈ MT1

T2
is called a node alignment between

v1 ∈ T1 and v2 ∈ T2. The set of all mappings between T1 and T2 is denoted by
M(T1,T2). The cost of computing a mapping between the two trees is defined as:

Definition 2. Let T1 and T2 be two trees, MT1

T2
be a mapping between them, and

(v1, v2) ∈ MT1

T2
. The cost of a mapping between T1 and T2 is defined as follows:

dist(MT1

T2
) =

∑
(v1,v2)∈M

T1
T2

dist(v1, v2)+
∑

v1∈T1
dist(v1, ϵ)+

∑
v2∈T2

dist(ϵ, v2).

Intuitively, the cost of mapping is a total of the cost of all edit operations with a
mapping MT1

T2
to transform T1 into T2. Now, we present how to compute the edit tree

distance between two trees referring to [19,22] as follows:

Definition 3 (Tree Edit Distance). Let T1 and T2 be two trees. The edit distance be-
tween T1 and T2 is defined as: dist(T1,T2) = min{dist(MT1

T2
) |MT1

T2
∈M(T1,T2)}.

3 Ontology Merging Evaluation Framework

We propose an evaluation framework to assess the quality of the existing ontology merg-
ing operators including generating and merging NoiOn(s). We first establish a profile
with many different NoiOn(s) from a single ontology source, then merge them using
the merging operator. A noisy ontology builds on the local perturbations. Namely, our
framework includes six steps Si.

S1 - Given an input ontology, we randomly collect the concepts’ number (rP%).
These selected concepts are the signatures to build NoiOn(s). S2 - For each selected con-
cept (from S1), we filter the local relatives including Children, Fathers, Siblings. This
process is the collection of concept’s nearest neighbors. We focus on the surrounding
neighbourhoods of concepts since the close concepts can be interconnected. S3 - After
collecting the concepts and their neighbors, we use the edit operations [23] to create
NoiOn(s). Note that we do not generate NoiOn(s) from all nodes that only concentrate
on the (rP%) random nodes with their relatives. Here, we call a local perturbation. In
particular, we re-structure the hierarchy of ontology by two methods: (1) [DI] Delete
a node (or a concept) and insert it into an arbitrary position in the ontology hierarchy;
(2) [Sw] Swap between two nodes in the ontology hierarchy. S4 - We here select n-top
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Algorithm 1: Generating Noisy Ontologies

input: rP : A Random Percentage of Concepts, n: Number of Noisy Trees, t: Threshold,O: An OriOn
output: P : A Set of Noisy Ontologies

1 begin
2 T ←− H(O), P ←− ∅
3 while |P| ≤ n do

// Randomly collect r% concepts from ontologies
4 α←− ℜC(O, rP )

// Collect the neighbourhood concepts of the concepts in α
5 V ←− ⊞Neighbours(O, α)

// Extract the hierarchical structure of ontology

6 T N ←− H(O)
7 foreach (vC , vD) ∈ V × V do

// Randomly select one edit operation for a pair
// True: use [DI] method, False: use [Sw] method

8 if ℜM () is True then
9 T ′ ←− Del(vC , ϵ,T N )

10 T N ←− Ins(ϵ, vC , vD,T ′)

11 else
12 T N ←− Rep(vC , vD,T N )

13 if 0 < dist(T N ,T ) ≤ t and T N ̸∈ P then
14 P ←− P ∪ T N

15 return P

NoiOn(s) close to the original one (based on the TED) to create a profile for merging.
To this end, we compute the distances between an OriOn and NoiOn(s). Moreover, we
use a threshold t to detect the close NoiOn(s) and n to limit the number of NoiOn(s).
S5 - We take advantage of the existing ontology merging method for the framework.
Noteworthy, if we only merge the NoiOn(s), the merging result can lose some axioms
of the OriOn. Hence, we add m input ontologies into the profile to guarantee that the
merging outcome cover fully the original one. Then, a profile includes m OriOn(s) and
k NoiOn(s) called a hybrid profile. S6 - After the merged result obtains, we compute
the distance between the merged result and the OriOn to measure the quality of merging
operators. For this work, we evaluate the two above operators ([6] and [7]).

In the sequel, we explicitly present how to collect NoiOn(s) based on the edit oper-
ations to create a profile for merging.

4 Building Ontology Profile

To begin, an ontology structure (tree) is denoted by T . Here, the input of this process is
an ontology, and the output is a set of NoiOn(s). Before collecting NoiOn(s), we define
T def= H(O), where O is an ontology and H(O) = {A ⊑ B ∈ O | ∀A,B ∈ NC} is a
function to structure a hierarchical tree. We here take an account of axioms of the form
A ⊑ B since one of the most common forms to build the ontology’s hierarchy [16,5]. If
concepts do not have a father, the “Thing” concept (⊤) will be assigned as their father.

Collection of Noisy Ontologies We now provide how to collect NoiOn(s) from an input
ontology. The idea is to select some concept pairs and edit them. Formally, we represent
how to collect the NoiOn(s) by Algorithm 1.
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We call Algorithm 1 as G(rP, n, t,O). The algorithm works as follows: we ran-
domly collect concepts (rP%) from OriOn(s) (line 4). e.g., rP = 5 and n = 80, then
we have 5% × 80 concepts = 4 concepts. We here define α = ℜC(O, rP ) def= {C ∈
σ | σ ⊆ NC , |σ| < nr} where nr = rP×|NC |

100 . Next, we collect the relative nodes in
α (Children, Father, Sibling) at line 5. Given A ∈ α, the concepts related to A denote
as A’s neighbors. We define ⊞Neighbours(O, α) = {g(O, A) | A ∈ α} where g =
{NC,NF, FC,NS}. Therein, NC(O, A) = {(A,B) | B ∈ O, B is a Child of A},
NF (O, A) = {(B,A) | B ∈ O, B is a Father of A}, FC(O, A) = {(B,A) | B ∈
O, B is a close ancestor of A}, NS(O, A) = {(A,B) | B ∈ O, B is a sibling of A}.
From each node pair in ⊞Neighbours, we select randomly one method to modify the on-
tology, including the Deletion-Insertion operation ([DI]) (using Del(vC , ϵ,T N ) and
Ins(ϵ, vC , vD,T ′) (from line 9 to 10)) and the swap operation ([Sw]) (using replace-
ment operation Rep(vC , vD,T N ) (at line 12)). Here, we define ℜM () is a binary ran-
dom function (return True or False) to select either [DI] or [Sw]. We denote P as a
set of NoiOn(s) or a profile. After the NoiOn obtains, we compute the distance be-
tween the NoiOn T N and the OriOn T to measure their closeness. A NoiOn is col-
lected into P (P ←− P ∪ T N ) if the distance is less than or equal to a threshold t
(dist(T N ,T ) ≤ t) at line 13 and 14. We choose the acceptable threshold based on the
number of concepts. The goal of threshold is to find a NoiOn close to the original one.
Finally, the number of NoiOn(s) depends on the parameter n at line 3 with the condition
|P| ≤ n. This “while” loop works until the number of NoiOn(s) is fully collected. Note
that the collection process of NoiOn(s) from line 3 to 14 runs in parallel to improve the
computation time. Formally, a set of NoiOn(s) is defined as P def= G(rP, n, t,O). Here,
Algorithm 1 runs in a time that is polynomial on the number n of NoiOn(s), given access
to an NP oracle in one step (line 3). Indeed, (i) the size of P depends on threshold t (line
13), (ii), the function Del, Ins, Rep, and ℜ are computed in O(1). (iii) the iteration’s
number from line 7 is in O(|V × V |). The algorithm complexity is in FPNP .

Collecting a merging profile After collecting the n NoiOn(s), we use the TED to filter
the k NoiOn(s) that are closest to the OriOn. To this end, we say ⪯P is a pre-order3

on P such that ∀T N
1 ,T N

2 ∈ P : T N
1 ⪯P T N

2 iff dist(T N
1 ,T ) ≤ dist(T N

2 ,T )
where T is a hierarchical structure of the OriOn O. Note that, the noisy trees in P are
always distinct since the condition T N ̸∈ P at line 13 (Algorithm 1) is implemented.

Definition 4. Let T be an ontology tree and ⪯P= {T N
1 , . . . ,T N

n } be a pre-ordered
set of all noisy ontology trees. The set of “top-k” NoiOn trees close to the OriOn is
defined as follows: Pk

Top
def= {T N

i ∈⪯P | 1 ≤ i ≤ k < n}.

Here, Pk
Top is a profile with k NoiOn(s). e.g., a profile with three noisy trees is

P3
Top. As explained in S5, because noisy trees are generated using randomization, in

the worst-case scenario, an axiom of the original tree is not existing in all noisy trees.
Therefore, it leads to no source stating that constraint. As a result, they may lose some
of the axioms in OriOn. This is why we add some original trees to the profile to ensure
that the merged result covers the OriOn. Formally, an extended profile is defined as:

3 A preorder is a reflexive and transitive relation.
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Definition 5. Let Pk
Top be a set of “k” NoiOn trees and T be an OriOn tree. A “hy-

brid” profile extended by adding “m” original trees is defined as follows:Pk,mdef=Pk
Top∪

{Ti = T | 1 ≤ i ≤ m}.
Note that we denote Pk,m = {Ti} corresponding to Pk,m = {Oi}, where Ti are

hierarchical structures ofOi. Now we apply the merging methods to the profile created.

5 Ontology Merging Operators

This section provides some existing merging operators designed for the EL intending
to evaluate them. Namely, two merging operators investigate in this paper, including
(1) the model-based ontology merging framework of [6] and (2) the ontology merging
method via merging the Qualitative Constraint Network (QCN) of [7]. Now, a brief
description of the merging frameworks is as follows:

For the (1) merging method, this approach implements with DL EL to encode the
knowledge. Regarding this setting, There are no logical contradictions in ontology be-
cause negative (or bottom) notions do not exist in them.. This method crucially focuses
on handling the semantic conflicts and objects to model-based merging. Here, we denote
MMBM as a “model-based merging” function [6]. Regarding the (2) merging method,
Bouraoui et al. has proposed an ontology merging method via merging the QCNs. Their
merging procedure focuses on the DL EL⊥. Their approach allows us to benefit from
the expressivity and the flexibility of RCC5 while dealing with conflicting knowledge
in a principled way. From this approach, we investigate the subsumption (A ⊑ B) and
disjoints (A ⊓ B ⊑ ⊥) for our NoiOn(s) merging work. Formally, we denote MQM as
a “QCN merging” function [7].

Let us denoteOM as the NoiOn merged result (using MMBM and MQM ). Note that
the merging profiles are always different since the NoiOn(s) generated are different.
Note that, let us denote dist(OM ,O) as dist(T M ,T ), where T M = H(OM ). An
merged result using the existing merging operators is defined as follows:

Definition 6. Let Pk,m be a “hybrid” profile of NoiOn(s). An ontology merged result
is defined as: OM def= y(Pk,m) where y = {MMBM ,MQM}.

6 Experimental Evaluation

In this section, we describe our implementation and interpret the experimental results.

6.1 Description of Implementation

We implement the framework4 to assess the operators with 09 practical ontologies5,
including conference, cmt-2, ekaw, sigkdd, swo, Cree-hydro, pto, human, and mouse.
The information of ontologies is showed in Table 1a. Here, we select these sources
since we investigate how the operators reacts as the number of concepts and axioms
increases. Recall that the process of merging and generating NoiOn(s) is discrete.

4 https://github.com/ontologymerging/NoisyOntologyMerging
5 https://oaei.ontologymatching.org/2021/

https://github.com/ontologymerging/NoisyOntologyMerging
https://oaei.ontologymatching.org/2021/
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Ontology Nbr of Nbr of is-a Nbr of
Name Concepts Relations Axioms

conference 57 55 397
cmt-2 30 38 318
ekaw 74 85 341

sigkdd 50 49 193
swo 86 144 349

cree-hydro 80 183 6,252
pto 1,541 1,747 16,148

human 3,304 5,423 30,364
mouse 2,744 4,493 11,043

(a) Number of concepts and ax-
ioms in ontologies

Ontology n k,m rP t TG
TM

Name MMBM MQM

conference 400 20,5 15% 40 281.96 77.21 61.47
cmt-2 400 20,5 15% 40 129.86 58.68 42.54
ekaw 300 20,5 15% 40 212.47 91.49 85.27

sigkdd 300 15,3 15% 50 244.39 74.52 59.46
swo 200 15,5 10% 50 301.26 439.67 171.23

cree-hydro 200 15,5 10% 80 255.62 682.26 235.43
pto 100 10,5 3% 150 637.18 3,162.98 1,586.68

human 80 10,5 3% 400 1,765.21 7,158.19 3,758.22
mouse 80 10,5 3% 400 1,177.16 6,024.52 2,981.21

(b) Parameters and the computation time

Table 1: Information and quantitative results.

For generating NoiOn(s), we implement the whole framework on pure python (python
3.8). Moreover, we use an Owlready2 library6 to extract all information of ontology. We
take account of the ontology hierarchy as a tree structure. We here use the python library
named “networkx”7 to optimize the paths (transitive relations) in the tree structure.
The transitive axioms will be represented explicitly by this library. Note that the pre-
processing step carries out to normalize the OriOn’s axioms into the EL normal form
[1] before generating and merging the NoiOn(s). In addition, we use the “zss” python li-
brary8 to compute the distance (i.e., TED) between two trees (using simple distance()).
We implement the multi-processing procedure to improve the running time for generat-
ing noisy ontologies.

For implementing merging operations, instead of taking account of all axioms into
merging process, we filter the set of the same axioms, a.k.a. agreements statements and
the set of distinguishable axioms, a.k.a. disagreement statements. Here, the disagree-
ment statements will be taken into the merging procedures. This process reduces the
number of axioms and improves the running time. Now, we present how to implement
merging frameworks: (1) For the MMBM approach [6], since the process of generat-
ing all possible interpretations is huge; therefore, a timeout variable is implemented to
seek out the acceptable result. Otherwise, if the number of disagreement statements is
large (i.e., greater than 80 axioms for the human ontology), we cluster the axioms in-
dependently in order to collect local sub-trees, which we subsequently merge. A local
sub-tree corresponds to a sub-hierarchy within a general ontology structure. If a sub-
tree remains enormous (i.e., more than 40 axioms per sub-tree), we split those sub-trees
into smaller ones. This step resolves the data enumeration explosion problem. (2) For
the MQN approach [7], along with the subsumption relation, the author investigates the
disjoint in this research (i.e., A ⊓ B ⊑ ⊥). We here use a “PyRCC8” python library9

to check the consistency of the QCN. As we know, the number of concepts (regions)
increases, the enumeration of all possible QCNs will be huge. Therefore, we solve the

6 https://owlready2.readthedocs.io/en/v0.36/
7 https://networkx.org/
8 https://pythonhosted.org/zss/
9 https://pypi.org/project/PyRCC8/

https://owlready2.readthedocs.io/en/v0.36/
https://networkx.org/
https://pythonhosted.org/zss/
https://pypi.org/project/PyRCC8/
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problem of generating all possible QCNs by the P-MAXSAT [10]. First, we translate
the merged QCN into the CNF format using the FCTE encoding. Next, we build a CNF
file underlying a DMACS format based on this encoding. Then, we use a MAXSAT
solver10 (using RC2) to enumerate the possible consistent QCNs. After collecting the
consistent solutions from the solver, we translate back the CNF models into the QCNs.
Leveraging the power of the MAXSAT solver is a suitable selection to improve the pro-
cessing time in the enumeration process because consistent solutions are always able to
be found (with tolerable confidence) that do not need to enumerate all possible cases.

6.2 Quantitative Results

We evaluate the computation time of the two main parts for each dataset, including the
time of generating NoiOn(s) denoted as TG and the time of merging them denoted as
TM . Therein, we test our proposal with several parameters, including (1) the number
of noisy trees generated n, (2) the number of noisy trees selected into a profile k (3)
combined with m OriOn(s), (4) the percentage of nodes to generate the NoiOn(s) rP ,
(5) the threshold t of selecting close NoiOn(s), and (6) finally the merged ontology’s
number q. These parameters and the computation time are shown in Table 1(b). We
investigate our framework on two merging methods, including MMBM [6], and MQM

[7] (see Section 5).
From the result obtained, the merging time of MQM is faster than MMBM (see

Table 2). A reason is that the effective existing support tools of MQM improve the
computation time. Regarding the large ontology, such as human and mouse, MQM ’s
merging time is acceptable and effective in practice with about 50-70 minutes. i.e.,
3,758.22s for human ontology. At the same time, MMBM can spend about two hours
for around 100 concepts (3%× 3, 304 = 99.12). i.e., 7158.19s for human ontology. In
general, the merging time of MMBM increases rapidly in proportion to the number of
ontology (subsumption) axioms, while the number of concepts influences the merging
time of MQM . Otherwise, regarding TG, the computation time is also suitable in prac-
tice with around 20 minutes for a large ontology (i.e., 1,765.21 for human ontology).
Although the number of noisy ontologies collected is high (400 NoiOn(s)), the TG is
still around 6-7 minutes. (i.e., it is 377.60s for the “conference” ontology). The thresh-
old t has a direct impact on TG because NoiOn(s) collected depend on this threshold.
Moreover, TG also depends on the number of CPUs since we implement this procedure
with multi-processing.

6.3 Qualitative Results

First of all, we provide a distance measurement table (see Table 2). It includes the dis-
tance between the OriOn and the NoiOn(s) (column 3-5) denoted by [ON ] and the
distance between the OriOn and merged results denoted by [OM ] (column 6-7). Here,
the TED is a measurable tool of an operator’s noise-canceling ability. From these dis-
tances, we can compare and evaluate the quality of the operator. Otherwise, we also
shows how the merging operators work with noisy ontologies. In general, the MMBM

10 https://pysathq.github.io/

https://pysathq.github.io/
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Ontology Distance ([ON ]) Distance ([OM ])
Times (OriOn and NoiOn) (OriOn and Merged Result)

Name Avg Min Max MMBM MQM

conference 50 12.70 3 27 4.46 5.82
cmt-2 50 11.48 2 25 4.12 5.37
ekaw 50 12.78 2 28 6.78 7.86

sigkdd 50 15.85 3 32 5.83 7.03
swo 40 21.78 6 33 10.18 12.79

cree-hydro 40 33.86 9 67 14.25 16.76
pto 20 43.62 14 107 22.78 25.40

human 20 187.57 62 376 127.68 134.52
mouse 20 143.70 42 307 86.47 91.88

Table 2: A measurement of the distance (TED) to evaluate merging operators.

seems to be better than MQM (compare between column 6 and 7 in Table 2). However,
both MMBM and MQM are effective because the [OM ] is always smaller than the
average distance of [ON ]. The TEDs have shown that the merge operator reduces the
noise of the sources. Intuitively, the difference in the quality of the two operators is not
much since the variance of distance between them is small (i.e., regarding conference
ontology, 4.46 of MMBM and 5.82 MQM ; the difference is 5.82 − 4.46 = 1.36). Re-
call that, the distance of each edit operation is 1, for human ontology, we have 127.68
of MMBM (or 134.52 of MQM ) is corresponding to 127.68 (or 134.52) modifications.
Hence, if we compare 127.68 modifications with 30, 364 of input axioms, these changes
are quite minimal (implying that the merged ontology is close to the OriOn).

In the following example, we provide the input sub-tree and the result of merging
to illustrate that the merging outcome fully covers the original one.

Example 1. Let us take account of a ExtremityPart sub-tree of the “human” con-
ference in (i-ii) of Figure 1. Several new constraints using the MMBM are as follows:
Toe ⊑ Foot, Forearm ⊑ Arm, Finger ⊑ Hand, Hand ⊑ Arm, Foot ⊑ Leg,
others. In this case, the merging result is plausible and acceptable. Since we add m = 5
OriOn(s), the main structure holds.

Example 2. Let us have a sub-hierarchy of “Conference” as (iii-v) in Figure 1. Several
new constraints using the MQM are as follows: InvSpe ⊑ RegAut, ActConPar ⊑
RegAut, InvSpe ⊑ ConPar, ConCon⊓PassConPar ⊑ ⊥, InvSpe⊓PassConPar ⊑
⊥, RegAut⊓PassConPar ⊑ ⊥ showed in the (b) of (ii) of Figure 1. There are some
disjoints in these cases, including Con1ThAut ⊓ ConCoAuth ⊑ ⊥, EarPaiApp ⊓
LatPaiApp ⊑ ⊥, ActConPar ⊓ PasConPar ⊑ ⊥.

7 Conclusion

In this paper, we introduced a framework to assess ontology merging operators. Therein,
we also provided an algorithm to create noisy ontologies by modifying the structure of
a source. Moreover, this framework evaluates ontology merging models on computa-
tion time and distance measurement. Finally, an experimental result using the practical
ontologies was provided and discussed. Intuitively, most merged outcomes are accept-
able and sensible since they cover the OriOn and are constantly cross-checked against
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Fig. 1: Results of ontology merging. (i-ii) Structure of ExtremityPart in the “Human”
ontology including (i) is an original hierarchy, (ii) is the merged result using MMBM ;
(iii-iv) Structure of Person in the “Conference” ontology including (iii) is an original
hierarchy, (iv) is the merged result using MQM , (v) is the merged QCN result.

the original one (using TED). Otherwise, generating the NoiOn(s) is separate from the
ontology merging process. Therefore, the evaluation of the operators is unaffected by
any other external factors. Additionally, using TED to evaluate the quality of operators
makes sense because we can quantify their capacity to eliminate noise. In the future,
we will enhance the process of re-structuring noisy ontologies by taking account of the
semantics of concept names rather than randomly selecting them. Additionally, lever-
aging machine learning is also our next direction to predict the potential axioms for
editing ontology structures.
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