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Abstract

This work proposes an axiomatic characteri-
zation of merging operators. It underlines the
differences between arbitration operators and
majority operators. A representation theo-
rem is stated showing that each merging op-
erator corresponds to a family of partial pre-
orders on interpretations. Examples of oper-
ators are given. They show the consistency of
the axiomatic characterization. A new merg-
ing operator Agpraz 18 provided. It is proved
that it is actually an arbitration operator.

1 Introduction

In a growing number of applications, we face con-
flicting information coming from several sources. The
problem is to reach a coherent piece of information
from these contradicting ones. A lot of different merg-
ing methods have already been given [BI84, LMa,
BKM91, BKMS92, Sub94]. Instead of giving one par-
ticular merging method we propose, in this paper, a
characterization of such methods following the ratio-
nality of the postulates they satisfy. We shall call
merging operators those methods that obey a mini-
mal set of rational merging postulates. Then we shall
investigate two subclasses of merging operators: arbi-
tration operators and majority operators.

Merging operators are useful in a lot of applications: to
find a coherent information in a distributed database
system, to solve a conflict between several people or
several agents, to find an answer in a decision-making
committee, to take a decision when information given
by some captors is contradictory, etc.

This work is related to the AGM (Alchourrén,
Gardenfors, Makinson) framework of revision theory
[AGMS85, Gar88, KM91]. Revision is the process of

according a knowledge base in the view of a new ev-
idence. One basic assumption of revision is that the
new information is more reliable that the knowledge
base, but it is not always the case. We can distinguish
3 cases:

o The new piece of information is more reliable than
the knowledge base: it is the assumption made in
the revision theory so we can revise our knowledge
base by the new piece of information.

e The new piece of information is less reliable than
the knowledge base: a drastic point of view could
be to ignore this unreliable piece of information
but if we want to be more constructive we can
take this piece of information into account if it is
consistent with the knowledge base and ignore it
only if it is inconsistent with our belief. Another
interesting way would be to reverse the revision,
i.e. to revise the new piece of information by the
knowledge base.

o The new piece of information is as reliable as the
knowledge base: here we can’t give the preference
to one of the two items of knowledge, so we have
to find something else. This is the aim of merging
operators.

The intuitive difference between arbitration and ma-
jority operators is that arbitration operators reach a
consensus between the protagonists’ views by trying
to satisfy as much as possible all the protagonists,
whereas majority operators elect, in a sense, the result
of the merging by taking the majority into account. In
other words arbitration operators try to minimize indi-
vidual dissatisfaction, whereas majority operators try
to minimize global dissatisfaction. One of our main
concerns in this work is to state these intuitions in a
formal way.

Some operators quite close to merging operators have



already been formally studied. Revesz defined in
[Rev93, Rev97] model-fitting operators which can be
considered as a generalization of revision for multi-
ple knowledge bases. Revesz also defined arbitration
operators from model-fitting operators. We make a
criticism about Revesz’s postulates: they do not dis-
tinguish between majority and arbitration.

Liberatore and Schaerf have proposed postulates to
characterize arbitration [LS95, LS98]. Their definition
has a strong connection with revision operators, but
the major drawback, in our opinion, is that those oper-
ators arbitrate only two knowledge bases. Furthermore
they select some interpretations in the two knowledge
bases as the result of the arbitration. We consider that
we can’t ignore interpretations which do not belong to
these knowledge bases, consider the following example:

Example 1 Suppose that we want to speculate on
the stock exchange. We ask two financial experts
about four shares A,B,C,D. We denote 1 if the share
rises and 0 if it falls (we suppose that its value can’t
be stable). These agents have the same expert level
and so they are both equally reliable. The first one
says that all the shares will rise: ¢1 = {(1,1,1,1)},
the second one thinks that all the shares will fall:
v2 = {(0,0,0,0)}. The Liberatore and Schaerf
operators will arbitrate these opinions and give the
following result: R = {(0,0,0,0),(1,1,1,1)}. So
it means that either ¢; is totally wrong or it’s
@2 who is completely mistaken. But intuitively,
if the two experts are equally reliable, there is no
reason to think that one of them has failed more
than the other: they both have to be at the same
“distance” of the truth. So they are certainly both
wrong on two shares and the result has to be: R =
{(07 07 17 1)7 (07 17 07 1)7 (07 17 17 0)7 (17 07 07 ]')7 (17 07 17 0)7
(1,1,0,0)}. So two of the shares will rise and two will
fall but we don’t know which ones.

In our opinion Liberatore and Schaerf’s operators have
to be seen as selection operators and have to be used
in applications which require the result be one of the
possibilities given by the protagonists. For example,
if the result of the arbitration is a medical treatment,
we can’t “merge” several therapies and so we have to
use Liberatore and Schaerf operators. Liberatore and
Schaerf’s operators take, in a sense, the interpreta-
tion as unit of change, we propose to take the proposi-
tional variable as such a unit, as Dalal says in [Dal88]:
“Change in truth value of a single symbol can be con-
sidered as the smallest unit of change”, we want to
apply this to arbitration.

Lin and Mendelzon proposed a theory merging by ma-
jority operator [LMa, Lin96] which solves conflicts be-

tween knowledge bases by taking the majority into ac-
count. Their theory merging operators are what we
call majority operators.

The paper is organized as follows: in section 2 we give
some definitions and state some notations. In section
3 we propose postulates for merging operators, major-
ity operators and arbitration operators and we study
the relationships between some of the postulates. In
section 4 we give a model-theoretic characterization of
those operators. In section 5 we give some examples of
merging operators, especially we show that an opera-
tor, called Agaraz, 18 an arbitration operator. Finally,
in section 6 we give some conclusions and discuss open
problems.

2 Preliminaries

We consider a propositional language £ over a finite
alphabet P of propositional letters. An interpretation
is a function from P to {0,1}. The set of all the in-
terpretations is denoted V. An interpretation I is a
model of a formula if and only if it makes it true in
the usual classical truth functional way. Let ¢ be a
formula, Mod(p) denote the set of models of ¢. And
let M be a set of interpretations, form(M) denote a
formula which set of models is M. When M = {I} we
will use the notation form(I) for reading convenience.

A knowledge base K is a finite set of propositional
formulae which can be seen as the formula ¢ which is
the conjunction of the formulae of K. By abuse, we
will use K to denote the formula ¢. We will note K
a knowledge base the sole model is I.

Let K3, ..., K, be n knowledge bases (not necessarily
different). We call knowledge set the multi-set E con-
sisting of those n knowledge bases: £ = {K,... ,K,}.
We note A\ E the conjunction of the knowledge bases
of E,ie. NE = KiA---AK,. The union of multi-sets
will be noted LI.

Remark 2 Since an inconsistent knowledge base
gives no information for the merging process, we’ll
suppose in the rest of the paper that the knowledge
bases are consistent.

K will denote the set of consistent knowledge bases
and £ will denote the set of non empty finite multi-
sets with elements in /.

Let’s denote S the set of sets of interpretations without
the empty set, i.e. S = P(W) \ {0}; and let’s denote
M the set of finite non empty multi-sets with elements
in S. Elements of S and M will be denoted by the
letters S and M respectively with possibly subscripts.



So a typical element M € M will be of the shape
{S1,...,8,.}. Let M = {S1,...,S,}, we define M
in the usual way: T e M iff VS, e M T€S,.

Definition 3 A knowledge set E is consistent if and
only if \ E is consistent. We will use Mod(E) to de-
note Mod(\ E).

Definition 4 Let Ei, Ey be two knowledge sets. FE
and Es> are equivalent, noted E; < E,, iff there ex-
ists a bijection f from Ey = {K},... ,K}} to By =
{K%,... K2} such that - f(K) < K.

Note that the relation < is an equivalence relation
on knowledge sets. As usual, we denote by £/ <+ the
quotient of £ by the relation <. Thus the function
1: &) & — M, defined by +([{K1,...,Kn}le) =
{Mod(Ky),...,Mod(K,)} is a bijection. By abuse we
will write +(E) instead of +([E].).

A pre-order over W is a reflexive and transitive relation
on W. Let < be a pre-order over W, we define < as
follows: I < Jif I<Jand J LI And~asl~J
iff ] < Jand J < I. Let I be an interpretation, we
wrote I € min(<) iff 3J € W s.t. J < I.

By abuse if R is in K (respectively in S) then R will
denote also the multi-set {R} which is in £ (resp. in
M). For a positive integer n we will denote R™ the
multi-set {R,...,R}. Thus R* =RU...UR.
———— S—

n n

An operator A will be a function mapping knowledge
sets into knowledge bases. In the rest of the paper we
will distinguish between operator and merging oper-
ator: the former when no special properties are sat-
isfied the later to indicate that the operator satisfies
the postulates of definition 5. Let K, E and A be a
knowledge base, a knowledge set and an operator re-
spectively. We define the sequence (A™(E, K))n>1 by
the following:

AVE,K) = A(EU K)
and A" = A(AME, K) U K)

3 Postulates

In this section, we are going to propose a characteriza-
tion of merging operators, i.e. we give a minimal set of
properties an operator has to satisfy in order to have a
rational behaviour concerning the merging. Let E be a
knowledge set, and let A be an operator which assigns
to each knowledge set E a knowledge base A(E).

Definition 5 A is a merging operator if and only if
it satisfies the following postulates:

(A1) A(E) is consistent

(A2) If E is consistent, then A(E) = A E

(A3) If By + Es, then - A(E)) < A(Es)

(A4) If K A K' is not consistent, then A(K UK') ¥ K
(A5) A(E1) A NA(Es) = A(E; U E»)

(A6) If A(E1) A A(E») is consistent, then
A(E; U Es) B A(Er) ANA(Es)

These six postulates are the basic properties a merg-
ing operator has to satisfy, the intuitive meaning of
the postulates is easy to understand: we always want
to extract a piece of information from the knowledge
set, what is forced by (A1) (Notice that, as assumed
in remark 2, all the knowledge bases of the knowledge
set are consistent). If all the knowledge bases agree
on some alternatives, (A2) assures that the result of
the merging will be the conjunction of the knowledge
bases. (A3) states that the operator A obeys a prin-
ciple of irrelevance of syntax, i.e. if two knowledge
sets are equivalent in the sense of definition 4, then
the two knowledge bases resulting from the merging
will be logically equivalent. (A4) is the fairness postu-
lates, the point is that when we merge two knowledge
bases, merging operators must not give preference to
one of them. We will see (theorem 11) that (A4) is the
clue for distinguishing arbitration operators from ma-
jority operators. (A5) expresses the following idea: if a
group E; compromises on a set of alternatives which T
belongs to, and another group F» compromises on an
another set of alternatives which contains I, so I has to
be in the chosen alternatives if we join the two groups.
(A5) and (A6) together state that if you could find
two subgroups which agree on at least one alternative,
then the result of the global arbitration will be exactly
those alternatives the two groups agree on. The pos-
tulates (A5) and (A6) have been given in [Rev97] by
Revesz for weighted model fitting operators.

Observation 6 By definition, merging operators are
commutative, i.e. the result of a merging does not de-
pend on any order of elements of the knowledge set.

Let’s now turn our attention to the difference between
majority and arbitration operators. We give here a
postulate that renders the behaviour of majority op-
erators, that is to say that if an opinion has a large
audience, then it will be the opinion of the group:

(M7) VK 3n A(EUK™FK

Thus we define majority operators by the following;:



Definition 7 A merging operator is a majority oper-
ator if it satisfies (M7).

Besides, arbitration operators are those operators
which are, in a large extent, majority insensitive. We
first give a postulate which seems to be a good char-
acterization of arbitration operator:
(A7) VK Vn A(EUK"™) =A(EUK)

This postulate states that the result of an arbitra-
tion is fully independent from the frequency of dif-
ferent views. Unfortunately the set of postulates
{Al,..., A6, A7'} is not consistent. The proof of this
result has been pointed out by P. Liberatore (personal
communication):

Theorem 8 There is no merging operator satisfying

(AT").

Proof: Let E; = {K,~K} and E; = {K} be two
knowledge sets. By (A7') we have that A(E; U Ey) =
A(E;). By (A4) we have also that A(E;) ¥ K
and A(E;) ¥ =K. Furthermore by (A2) we deduce
A(Es) = K. So A(E;) A A(Es) is consistent and by
(A6) we have A(Ey U Ey) F A(Eq) AA(E»), it can be
rewritten as A(Ey) F A(Ey) A K. Then A(Ey) F K,
which contradicts (A44). 1

Thus if we want to have a postulate expressing major-
ity insensitivity while being consistent with (A1 — A6)
we must weaken (AT7"). We propose the following al-
ternative:

(A7) VK'3K K'¥ K ¥n A(K'UK™) = A(K'UK)

(A7) states that, to a large extent, the result of the
arbitration is independent from the frequency of the
different views.

And we define arbitration operator in the following
way:

Definition 9 A merging operator is an arbitration
operator if it satisfies (AT7).

Now we investigate some relations between the postu-
lates.

Theorem 10 If an operator satisfies (A1), then it
can’t satisfy both (A7) and (MT).

Proof: From (A7') and (M7) we deduce that for any
arbitrary F

VE AEUK)FEK ()

Take K' such that K A K' + 1. Now putting F = K,
by (x), we have A(K'UK) F K. In a symmetrical way
we have A(KUK')F K'so A(KUK') - K AK' and
then A(K U K') F L which contradicts (A1). i

A merging operator can’t be an arbitration operator
and a majority operator, more precisely we have the
following;:

Theorem 11 If an operator satisfies (A4), then it
can’t satisfy both (A7) and (MT7).

Proof:  From (A7) and (M7) we deduce easily
VK' K K' ¥ K A(K'UK) F K. Let’s choose
K'=K; = form(I), then 3K K; ¥ K A(KjUK) F
K. But K; ¥ K is equivalent to Ky A K + 1 and so
by (A4) we have that A(K;U K) ¥ K. Contradiction.

So, although it seems very weak, the fairness postu-
late (A4) play a very important role, since it allows
us to differentiate arbitration operators and majority
operators.

In addition to these basic postulates we can find vari-
ous other properties, we investigate some of them be-
low.

An interesting property for a merging operator is the
following which we call the iteration property:

The intuitive idea is that, since the merging operators
give, in a sense, the average knowledge of a knowledge
set, if we always take the result of a merging and it-
erate with the same knowledge base, we have to reach
this knowledge base after enough iterations. But, even
if it seems to be a reasonable requirement, we don’t
know if all merging operators obey (A;), more ex-
actly we suspect that those operators satisfying (A;;)
are topological operators, i.e. operators defined from
a distance.

Now let’s turn our attention to the two properties
of associativity and monotony. We claim that they
are not desirable for merging operators and we show
that merging operators do not satisfy any of them.
First let’s give a formal definition of associativity and
monotony:

(Ass) A(ErUA(Ey)) = A(Ey U Ey)
Associativity seems to be an interesting property since
it would allow sub-merging within the knowledge set.
So merging could be implemented more easily and
more efficiently.



(Mon) K, FKy,... Kyt K] then A(K;U...U
K,)FAK{U...UK))

The monotony property expresses that if a knowledge
set F is “stronger” than a knowledge set Es, then the
merging of E; has to be logically stronger than the
merging of Es.

Theorem 12 If an operator satisfies (A2) and (A4),
then it doesn’t satisfy (Mon).

Proof: Let I, J be two different interpretations. Let
K, = K| = form(I), Ky = form(J), and K} =
form(I,J), so we have K; + K| and K> F K}. From
(A2) A(K] U K}) = form(I) and from (A4) A(K; U
Ky) ¥ form(I). Sowehave A(K UK») ¥ A(K{UKY).

|

So it is clear that monotony is not satisfied by merging
operators, it is not exactly the same with associativity,
we show that it is not satisfied by majority operators
and that it is not compatible with the iteration prop-
erty:

Theorem 13 If an operator satisfies (A2) (A4) and
(MT), then it can’t satisfy (Ass).

Proof: Let’s take K; and K; two different complete
formulae, by (M7) we have that In A (K;UK%}) - K.
By (Ass) we have that A(K;UK7Y) = A(KUA(KY)).
But by (A2) we have A(K7) = K. So we obtain that
A(K1UKjy) F Ky What contradicts (A4). i

Theorem 14 If an operator satisfies (A2) and (A4),
then it can’t satisfy both (A) and (Ass).

Proof: (A4;) In A™ (E,K) F K, but by (Ass) we
find that A™(E,K) = A(EUK") = A(E U A(K™))
and by (A2) we have that A(EUA(K™)) = A(EUK).
So we have that A(E U K) + K, what, taking E = K'
with K' A K F L, contradicts (A4). i

So, if we want some additional property for a merg-
ing operator, we have to choose between iteration and
associativity. We claim that iteration is a desirable
property for merging operators, so associativity is not.

4 Semantical characterizations

In this section we give a model-theoretic characteriza-
tion of merging operators first in terms of functions on
sets of interpretations and then in terms of family of
orders. More exactly we show that each merging oper-
ator corresponds to a function from multi-sets of sets
of interpretations to sets of interpretations and then

we show that each merging operator corresponds to a
family of partial pre-orders on interpretations. The
semantical characterization of the merging operators
in terms of pre-orders is very close to the axiomatic
characterization. This is due to the fact that we
can’t have a definition of the pre-order as subtle as
in the case of belief revision. But this semantical
characterization is very useful in the proofs and is
a starting point for generalizing merging operators
(e.g. when one considers the set of alternatives as a
parameter).

First we define what is a merging function:

Definition 15 A function § : M — S is said to be
a merging function if the following properties hold for
any M, My, M> € M and S,S5"' € S:

1. IfTe M, then I € 6(M)

2. IfNM#AD and I ¢ (M, then I & 5(M)

3. IfSNS"=0, thens(SUS") L S

4. If I € 6(My) and I € 6(M>), then I € §(M;UM>)

5. If 6(My)NO(Ms) # 0 and I & §(My), then I ¢
O(M; U Ms)

A majority merging function is a merging function that
satisfies the following:

6. VM eMVSeSIndMUSM)CS

A fair merging function is a merging function that sat-
isfies the following:

7.¥S'€ SIS €S S ¢S V¥nd(S'USY) =5(S'US)

It is easy to see, via the bijection # of section 2 that
the properties 1 — 5 are the semantical counterparts of
postulates (A1 — A6) (notice that postulate (A;) cor-
responds to the fact §§ € S), property 6 corresponds to
postulate (M7) and property 7 corresponds to postu-
late (AT7). More precisely we have the following repre-
sentation theorem which proof is straightforward:

Theorem 16 An operator A is a merging operator (it
satisfies (A1—A6) ) if and only if there exists a merging
function § : M — S such that

Mod(A(E)) = §(u(E)).

Furthermore /\ is a majority merging operator iff § is
a magjority merging function; and A is an arbitration
operator iff § is a fair merging function.



As in the AGM framework for revision, we can suppose
the existence of some relation which intuitively repre-
sents how credible each interpretation is for some given
knowledge set. We will see that there is a close rela-
tionship between merging function and these relations
on knowledge sets. First we define what a syncretic
assignment is:

Definition 17 A syncretic assignment is an assign-
ment which maps each knowledge set E to a pre-order
<Eg over interpretations such that for any E, Ey, Ey €
& and for any K,K' € K:

1. If 1 € Mod(E) and J € Mod(E), then I ~g J
If I € Mod(E) and J ¢ Mod(E), then I <g J

If E1 & E», then <g,=<g,

™ »

If Mod(K) N Mod(K') = 0, then min(<guk') €
Mod(K)

5 If I € min(<g,) and I € min(<g,), then I €
min(SEHUE&)

6. If min(<g,) Nmin(<g,) # 0 and I ¢ min(<g,),
then I ¢ min(SEHLIEQ)

A majority syncretic assignment is a syncretic assign-
ment which satisfies the following:

7.VE € EVK € K In min(<guk~) C Mod(K)

A fair syncretic assignment is a syncretic assignment
which satisfies the following:

8. VK' 3K if Mod(K') ¢ Mod(K), then
Vn min(SKIUKn) = min(SK,uK)

If we have an assignment that maps each knowledge
set E to a pre-order <g on W, then we can define a
function § : M — S by the following: let M € M
and let E € £ be such that «(E) = M, put

6(M) = min(<p) 1)

If the assignment satisfies property 3 above then 4§ is
well defined.

Conversely, if we have a function § : M — S we can
define a corresponding family of relations on interpre-
tations as VE € &:

<p=[6((E)) x W\SWE))U{LI}\TeW} (2)

It is easy to show that if we have a (majority, fair) syn-
cretic assignment, then the merging function obtained

by equation 1 is a (majority, fair) merging function.
Conversely, if we have a (majority, fair) merging func-
tion, then the family of relations obtained by equation
2 is a (majority, fair) syncretic assignment. This ob-
servation together with theorem 16 gives us straight-
forwardly the following:

Theorem 18 An operator is a merging operator (re-
spectively magjority merging operator or arbitration op-
erator) if and only if there erists a syncretic assign-
ment (respectively majority syncretic assignment or
fair syncretic assignment) that maps each knowledge
set E to a pre-order <g such that

Mod(A(E)) = min(<g).

As pointed out by D. Makinson (personal communi-
cation), this definition of merging operators from such
assignments can be compared to the framework of so-
cial choice theory [Kel78, Arr63]. The aim of social
choice theory is to aggregate individual choices into
a social choice, i.e. to find, for a given set of agents
(corresponding to our knowledge sets) with individual
preference relations, a social preference relation which
reflects the preferences of the set of agents. This allows
the definition of a welfare function selecting from a set
of alternatives those that best fit the social preference
relation.

5 Some merging operators

In this section we show the consistency of our merging
postulates by giving three examples of operators. The
first one is not a merging operator but it illustrates an
approach to arbitration operators. The second one is
a majority merging operator and the last one is a true
arbitration operator.

For the following operators we will use the Dalal’s dis-
tance [Dal88] to calculate the distance between two
interpretations: let I, J be interpretations, dist(1,J)
is the number of propositional letters the two interpre-
tations differ.

We also define the distance between an interpretation
and a knowledge base as the minimum distance be-
tween this interpretation and the models of the knowl-
edge base, that is:

dist(T,¢) = Jeﬁiﬁ(@

dist(I,J)
Finally we define the distance between two knowledge
bases by the following:

dist(p,¢') = min dist(I,J)

" IeMod(y) JEMod(p')



Table 1: Distances

Y1 Y2 (7283 diStMax diStE diStGMax
(0,0,00 1 1 3 3 5 (3,1,1)
(0,001) 0 0 2 2 2 (2,0,0)
(0,1,00 2 0 2 2 4 (2,2,2)
0,1,1) 1 1 1 1 3 (1,1,1)
(1,000 0 2 2 2 4 (2,2,0)
(1,0,1) 0 1 1 1 2 (1,1,0)
(1,,0) 1 1 1 1 3 (1,1,1)
(1,1,1) 1 2 0 2 3 (2,1,0)

The first operator we consider is the Ajpr.; operator.
It comes from an example of model fitting operator
given by Revesz in [Rev97]. It is close to the minimax
rule used in decision theory [Sav71]. The ideais to find
the closest information to the overall knowledge set.
Therefore it seems to be a good arbitration operator.
But, as we will see, it doesn’t satisfy all the postulates.

Definition 19 Let ¢ be a knowledge base and E be a
knowledge set:

distprer (I, E) = maxdist(I, )
pEL

So, we define the following order:

1<} ] iff distras (I, E) < distras(J, B)
and Mod(A pae(E)) = min(<3**)

The second operator we consider is the Ay operator.
This is a majority merging operator as we will see be-
low. Lin and Mendelzon give it as an example of what
they called operators of theory merging by majority in
[LMa]. Independently Revesz gives it as an example
of weighted model fitting in [Rev93]. The ¥ operator
comes from a natural idea: the distance between an
interpretation and a knowledge set is the sum of the
distances between this interpretation and the knowl-
edge bases of the knowledge set.

Definition 20 Let E be a knowledge set and let I be
an interpretation we put:

dists(I,E) = Y _ dist(I, )
pelk

I<% J iff dists(I,E) < dists(J, E)

and Mod(Asx(E)) = min(<%)

Next we present a new merging operator: Agnras
(stands for Generalized Max). The operator Agnraz
is an arbitration operator and is a refinement of the
A praz Operator.

Definition 21 Let E be a knowledge set.
E = {¢1,...,¢n}t. For each interpretation I we
build the list (df ...dL) of distances between this in-
terpretation and the n knowledge bases in E, i.e.
dJI- = dist(I,p;). Let Ly be the list obtained from
(df...dL) by sorting it in descending order. Define
distagmaz (I, E) = L. Let <je be the lexicographical
order between sequences of integers. Now we put:

Suppose

I SgM” J lﬁ diStGMaz(I; E) Slez diStGMam(J; E)
and Mod(AG ez (E)) = min(<EMae)

We will illustrate the behaviour of these three opera-

tors on the database class example given by Revesz in
[Rev93]:

Example 22 Consider a database class with three
students: E = {p1,¥2,p3}. The teacher can teach
SQL, Datalog and Oy. He asks his students in turn to
choose what to teach to satisfy the class best. The first
student wants to learn SQL or Oa: ¢1 = (SVO)A-D.
The second wants to learn Datalog or O but not both:
w2 = ("SADA-O)V (S A-DAO). The third wants
to learn the three languages: 3 = (S A D A O). Con-
sidering the propositional letters S, D and O in that
order we have: Mod(p1) = {(1,0,0),(0,0,1),(1,0,1)},
MOd((pQ) = {(Oa 1, O)a (07 0, 1)}7 MOd((p?}) = {(11 1, 1)}
Table 1 contains all distances relevant to computa-
tions in order to calculate Aprx(E), Ax(E) and
AG’Ma.m (E)

As the min in the column of distare, is 1 we have
MOd(AMGE(E)) = {(07 ]-a 1)7 (]-a 0: 1)7 (1a ]-a 0)}7 thus
the teacher has to teach two of the three languages to



best satisfy the class when the criterion to solve con-
flicts is Aprqz. Similarly as the min in the column of
dists; is 2 we have Mod(As(E)) = {(0,0,1),(1,0,1)},
thus the teacher has to teach both SQL and O or
0> alone to best fit the class when the criterion to
solve conflicts is Ay. Finally as the min in the column
of distagy.. 18 (1,1,0) we have Mod(Aguez(E)) =
{(1,0,1)}, thus the teacher has to teach SQL and O,
to best satisfy the class when the criterion to solve
conflicts is Agnraz-

As we can expect the result of the merging highly de-
pends on the operator we choose. Note in particular
that the Ajyrq, operator has selected interpretations
that satisfy as much as possible each student, whereas
the Ay operator has selected interpretations that sat-
isfy the majority of students. Notice also that in this
example the Agurqe Operator selects the interpreta-
tion chosen by both Az, and Ay operators, showing
its good behaviour.

We will see now the logical properties of these three
operators.

We first show that Apre, is not a merging operator.

Theorem 23 A, satisfies postulates (Al — A5),
(A7) and (Ay) but it doesn’t satisfy (A6).

Proof: The proof of (A1 — A3) and (A5) is straight-
forward. To prove that (A4) is satisfied suppose
K AK'E L. We consider two cases: dist(K,K') =1
or dist(K,K') > 1 If dist(K,K') = 1 then 3I €
Mod(K),3J € Mod(K') such that dist(I,J) = 1, so
as dist(I,J) is minimum I € Mod(A(K U K')) and
J € Mod(A(K U K")), so A(KUK'") I K. Other-
wise dist(K,K') > 1, and then 3] € Mod(K),3J €
Mod(K'") VI' € Mod(K),VJ' € Mod(K") dist(I,J) <
dist(I',J') and dist(I,J) > 1. But it is easy to see
that if dist(I,J) = a > 1 then there exists L € W
such that dist(L,I) < a and dist(L,J) < a, so
distpraz (L, K WK') < a. Therefore L <32, I so I ¢
Mod(A(K U K")), so A(KUK')lf K. (AT') is satis-
fied because max dist(I,¢) = max dist(I,p). So
pEELUK™ @EEUK

A(EUK™) = A(E,K). As (AT') is satisfied, (A7) is
satisfied. In order to show that (A6) is not satisfied
consider the example 22 and observe that if we take
E1 = {Lpl} and E2 = {@2,@3}, then A(El)/\A(Eg) =
form({(1,0,1)}) is consistent, and A(E; U Ey) =
form({(O, 17 1), (17 0, 1)7 (17 17 0)})7 S0 A(E‘l u EZ) ¥
A(Ey) AN A(Es).

It remains to show that (A;) holds. First, by induc-
tion on dist(K, K') we prove that

In such that A%y, (K',K)FK (x)

If dist(K,K') = 0 the proof is straightfor-
ward. Suppose dist(K,K') = 1. Then 3I €
Mod(K) 3J € Mod(K') dist(I,J) = 1. So I €
Amaz(K,K') and then, by (A2), A%, . (K',K) =
Anraz(Dpree(K', K),K) = Apaa(K',K) AN K. So
A% ..(K',K) F K. Suppose that dist(K,K') > 1.
Put a = dist(K',K), i.e. 3 € Mod(K) 3J €
Mod(K'") dist(I,J) = a. Let a/2 be the integer part
of the quotient of a by 2. Since I and J disagree on
a letters, we can find an interpretation I' such that I’
agrees with I on the letters on which I and J agree,
and I' agrees with J on a/2 letters on which I and
J disagree and I' agrees with I for the a/2 remain-
ing letters if a is even and for the a/2 + 1 remaining
letters if a is odd. So we have dist(I', K) < a/2 and
dist(I',K") < a/2if aiseven or dist(I',K') < a/2+1
if a is odd.

If a is even then distprq (I, {K, K'}) < a/2,s0if J' €
Mod(A ez (K, K")) then distara, (J', {K,K'}) < a/2.
So we have that if dist(K,K') = a with a > 1 then
dist(K, A ez (K, K')) < a/2. By induction hypothe-
sis there exists n such that A%, (A (K, K'),K) F
K that is AL (K',K) F K. The case where a is
odd is similar. Now (A;;) follows from (*) by putting
K'= A(EUK). .

The operator Ay is a majority merging operator as
stated in the following theorem.

Theorem 24 Ay satisfies postulates (A1—A6), (M7)
and (Ay).

Proof: We will prove that the assignment E —<%
is a majority syncretic assignment. Then by theorem
18 we conclude that Ay satisfies (A1 — A6) and (M7T).
Let’s verify the conditions of a majority syncretic as-
signment:

1.If I € Mod(E) and J € Mod(E), then
dists(I, E) = 0 and dists(J,E) =0, s0 I ~p J.

22.If I € Mod(E) and J ¢ Mod(E), then
dists (I, E) = 0 and dists(J,E) > 0,80 I <g J.

3. Straightforward.

4. Suppose K A K' + 1, so dist(K,K') > 0.
So 31 € Mod(K),3J € Mod(K') VI' €
Mod(K),VJ' € Mod(K") dist(I,J) < dist(I',J")
and dist(I,J) = a > 1. Tt is easy to see that
a = min{disty(L,K UK'): L € W} thus I €
Mod(A(K UK")) and J € Mod(A(K U K')), so
AKUK) VK.

5. If I € min(<g,) and I € min(<g,
), then VJ dists(I,E)) < dists(J,Ey) and



dists (I, E2) < dists(J, E2). SoVJ dists (I, E1) +
distg(I,Eg) < diStE(J,El) + dist)j(J,EQ). By
definition of disty is easy to see that for any
L,E,FE', dists(L,E U E') = dists(L,E) +
dists,(L,E'). Then VJ dists(I,E; U E») <
d?:Stg(J, Ei U EQ) Sol e min(SEluE2).

6. If min(<g,) Nmin(<g,) # 0, then 3J s.t. J €
min(<g,) and J € min(<g,). Suppose I ¢
min(<g, ), then dists(J, E1) < dists(I,E;,) and
dists(J, Es) < dists(I,Es). So dists(J,Ey) +
d?:St):(J, EQ) < d’I:Stz;(I, El) + d’I:Stz;(I, Eg) Then
diStz(J, E U EQ) < distz(l, E U Ez) Then
I g min(SE1|—|E2)'

7. We have to find a n such that min(<g k-) C
Mod(K). Consider z = rIré%cdistg(I, E), ie. z

is the distance of the furthest interpretation from
E. We choose n = = + 1, it is easy to see that
if I € Mod(K) then dists(I,ELUK™) < n. And
if I ¢ Mod(K) then disty(I, EU K™) > n. So if
I € min(<guk~) then I € Mod(K).

Now we prove that (A;;) holds. We want to show that
In AR (K',K)F K. Let a be the distance between
K and K'. Take I € Mod(K) and J € Mod(K")
such that dist(I,J) = a. It is easy to see that a =
min{dists(L, KUK") : L € W} thus I € Mod(A(K U
K")) and then As(As(K'UK),K) F K. Therefore
In AL (K',K) F K. And with K’ = Ax(E U K) we
have I3n ARL(E,K)F K. I

Now, we will state some lemmas in order to prove that
Agumaz has desirable properties.

Definition 25 Let L; and Lo be two lists of n num-
bers sorted in descending order. We define L1 ® Lo the
list obtained by sorting in descending order the con-
catenation of Ly with Lo.

Lemma 26 Let Ly, L}, Ly, LY be 4 lists of integers
sorted in descending order. If Ly <jep Lj and Ly <jeq
L’2 then L1 O] L2 Slez Lll ®© LI2

Proof: Suppose that Ly < Lj and Ly < Li. Tt is
easy to see that the two following inequalities hold:
Ll O] L2 Slew Lll ® L2 and L2 ® Lll Slew le ® Lll So
by transitivity Ll O] L2 Slew Lll ® le 1

Lemma 27 Let Ly,L}, Ly, LYy be 4 lists of integers
sorted in descending order. If Ly <jep Lj and Ly <jeq
LY, then Ly ® Ly <jep Ly © L.

Proof: With the assumptions it is easy to see that
Ly ® Ly <lex Lll ® Ly and Ly ® Lll <lez LIQ O] Lll We
conclude by transitivity of <j,.- i

The operator Agarqe is a true arbitration operator as
showed in the following theorem.

Theorem 28 The operator Agprez Satisfies postu-
lates (A1 — A6) and (A;). Furthermore Agaray Satis-
fies (A7) iff card(P) > 1. But it doesn’t satisfy (A7").

Proof: In order to show that GMax satisfies (A1 —
AT) we use the representation theorem and we show
that the assignment E +—<$™ is a fair syncretic as-
signment.

1. If I € Mod(E) and J € Mod(E), then VK;
E I € Mod(K;) and J € Mod(K;), then Ly
(0,...,0)and Ly =(0,...,0) ,s0 [ ~p J.

m

2.If I € Mod(E) and J ¢ Mod(E), then L; =
(0,...,0)and Ly # (0,...,0),s0 I <g J.

3. If By & E,, then is obvious that <g,=<g,.

4. This property is proved in a similar way as (A4)
for Apres (theorem 23).

5. If I € min(<g,) and I € min(<g,), then VJ €
w Lfl <lex L]Jd31 and sz <lex L?Z. So, by
lemma 26, we have V.J LFluEZ <lex L‘JEI"'EQ.
Then I € min(<g, g, )-

6. If min(<g,) Nmin(<g,) # 0 and I ¢ min(<g,),
let J € min(<p,) Nmin(<p,), so L' <jep L}
and L}JE2 <lez L}h7 and by lemma 27 follows
LPYP < LP'YP2 Then I ¢ min(<p,up,)-

7. Consider a knowledge base K'. We will show
that if there are 2 or more propositional vari-
ables then there exists a K s.t. K' ¥ K and
Vn min(<gr ) = min(<gyk). We consider
2 cases, first if card(Mod(K')) > 1 then let
I € Mod(K'), we choose K = form(I). So,
by condition 1 and 2, min(<gux) = {I[} and
Vn min(<gugn) = {I}. Hence Vn min(<guxn
) = min(<gruK). Second, if card(Mod(K')) =1,
let Mod(K') = {J}, we choose K = form(I)
s.t. dist(I,J) = 2, this is possible because there
are at least two propositional variables. So there
exists I' s.t. dist(I',I) = 1 and dist(I',J) =
1. So min(SK/uKn) = {II diSt(II,I) =
1 and dist(I',J) = 1} otherwise if 3J' such
that dist(J',K) = 0 then dist(J',K')
or if dist(J',K') = 0 then dist(J', K)
and so Ly < Ljy. So Vn min(SK:uKn)
{I' : dist(I',I) = 1 and dist(I',J) = 1}. Then
Vn min(<gr k=) = min(<gui). Conversely
suppose that P = {p}. Put K’ = p. Then the
only consistent K (up to logical equivalence) such

> 2
> 2



Table 2: Summary Table

Al A2 A3 A4 A5 A6 AT AT M7 A
Max v v v v - v v — v
D) v v v v v - - v v
GMax v v v v v v — — v

that K' tf K is K = —p but Agpre.(K'UK™) =
—-p for any n > 2 whereas Agprez(K' U K) =
“pVp.

To show that Agares doesn’t satisfy (A7) consider the
following example: Suppose that P = {p, ¢} and that
K'=-pA-qand K = —-pAgq. It is easy to see that
Agmaz(K U K') = —p whereas Agurqa(K'U K") =
—p A q for any n > 2.

Finally the proof that the postulate (A;) holds for
AGraz goes exactly the same way that for Ay, (the-
orem 23). i

Actually GMaz operator is a refinement of the Max
operator. More precisely we have the following obser-
vation the proof of which is straightforward:

Observation 29 Aguroz(E) F Arez(E).

We end this section referring the reader to table 2
which sums up the properties of operators defined
above. It is filled using the results of this section to-
gether with some results of section 3. The symbol
v (respectively —) in a square means that the corre-
sponding operator satisfies (resp. does not satisfy) the
corresponding postulate.

6 Conclusion and future work

We have proposed in this paper a set of postulates
that a rational merging operator has to satisfy. We
have made a distinction between arbitration operators
striving to minimize individual dissatisfaction and ma-
jority operators striving to minimize global dissatis-
faction. The fairness postulate is the key postulate in
this distinction. We have shown that our characteri-
zation is equivalent to a family of pre-orders on inter-
pretations. We show the consistency of the axiomatic
characterization by giving examples of operators. In
particular, we have proposed a new rational merging
operator called Agarqr and shown that it is an arbi-
tration operator.

Actually, in a committee, all the protagonists do not
have the same weight on the final decision and so one

needs to weight each knowledge base to reflect this.
The idea behind weights is that the higher weight
a knowledge base has, the more important it is. If
the knowledge bases reflect the view of several people,
weights could represent, for example, the cardinality
of each group. We want to characterize logically the
use of this weights. Majority operators are close to this
idea of weighted operators since they allow to take car-
dinalities into account. But a more subtle treatment
of weights in merging is still to do, in particular the
notion of weighted arbitration operators is missing.

In this work the result of a merging is a subset of the
set of all interpretations but a lot of systems have to
conform to a set of integrity constraints, for that rea-
son it is interesting to be able to merge some knowl-
edge sets in the presence of these constraints [LMb].
And so one has to restrain the result of the merging to
be a subset of the set of allowed interpretations. Sup-
pose that these integrity constraints are denoted by the
knowledge base IC. If we consider a weighted rational
merging, a way to incorporate integrity constraints is
to add IC to E with a weight “infinity”. Thus we
would ensure that the interpretations selected were
models of IC. Intuitively, it amounts to consider a
person in the committee whose view is unquestionable
and therefore one has to choose among the alternatives
given by that person.

But the best way to include integrity constraints seems
to be to select the minimal models in the models of the
IC base rather than in W. Intuitively, we restrict the
choices of interpretations to those which satisfy IC'. It
is in a sense what Revesz called model fitting operators
[Rev9T].

In that paper we use only the Dalal’s distance to define
the distance between two interpretations, it would be
interesting to study operators defined with other dis-
tances, in particular distances which give partial or-
ders.

Notice also that the three merging operators defined
in the paper are based on the Dalal’s distance. But
if one chooses an other distance between interpreta-
tions and keeps the same definitions, then one obtains
other merging operators. So, more exactly, we have



defined in this paper three families of merging opera-
tors, function of the definition of the distance between
interpretations. It would be interesting to find what
the minimum conditions on that distance are to ensure
that the operators satisfy the axiomatic characteriza-
tion.

Two other points of interest are to study merg-
ing operators which are not defined from a distance
and to study syntactic definition of merging operators.
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