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Abstract

The seminal characterization of iterated belief revision was
proposed by Darwiche and Pearl, which uses an abstract no-
tion of epistemic states. In this work we look for a canonical
representation of these epistemic states. Total preorders are
not expressive enough to be used as such a canonical repre-
sentation. Actually, we show that some operators can even
not be represented on a countable epistemic space. Nonethe-
less, under a very reasonable assumption on the epistemic
space, we show that OCFs (Ordinal Conditional Functions)
can be considered as a canonical representation.

1 Introduction
Belief revision is an important issue in many domains. In
particular, if one wants to conceive a truly autonomous
agent, it has to be able to revise incorrect information on
its model of its environment.

The standard model for belief revision as been proposed
by Alchourron, Gärdenfors and Makinson (Alchourrón,
Gärdenfors, and Makinson 1985; Gärdenfors 1988; Fermé
and Hansson 2011), and is called the AGM theory. This
theory perfectly gives account of a one step revision, as
attested by several representation theorems (Alchourrón,
Gärdenfors, and Makinson 1985; Alchourrón and Makin-
son 1985; Katsuno and Mendelzon 1991; Grove 1988;
Hansson 1994; del Cerro and Herzig 1996), showing that
the AGM rationality postulates correspond exactly to the
most sensible way to build revision operators. The close for-
mal links between belief revision and non-monotonic infer-
ence relations (Makinson and Gärdenfors 1989; Gärdenfors
1990) on one side and possibilistic logic (Dubois and Prade
1991) on the other side, also prove that this theory adequatly
captures this fundamental process.

Nonetheless, one weakness of the AGM theory is that it
provides no constraint on sequences of revision, allowing
several inadequate behaviors. This may be seen as a real
problem, since any autonomous agent is typically expected
to perform a large number of revisions during its activity.

To fill the gap, many papers aimed to identify the correct
model for iterated belief revision, which was a very active
topic during the nineties (Nayak 1994; Nayak et al. 1994;
Nayak et al. 1996; Rott 2009). What is considered now
as the most convincing approach for iterated belief revi-
sion was proposed by Darwiche and Pearl (1997), who in-

troduced four additional postulates about successive revi-
sions. Some extensions of this work have also been inves-
tigated (Booth and Meyer 2006; Jin and Thielscher 2007;
Konieczny and Pino Pérez 2008; Konieczny, Medina Gres-
pan, and Pino Pérez 2010).

While the AGM framework uses simple logical theo-
ries to represent an agent’s epistemic state, the Darwiche
and Pearl’s framework requires more complex objects (Dar-
wiche and Pearl 1994; Freund and Lehmann 1994; Lehmann
1995; Friedman and Halpern 1999). Indeed, if one needs
not only to represent the current beliefs of an agent but
also some information on the relative plausibility of cur-
rently disbelieved information, then this additional infor-
mation has to be represented somewhere to guide the iter-
ated revision process. Yet epistemic states, in Darwiche and
Pearl’s framework, are very abstract objects: we know very
little about them, besides the fact that each epistemic state is
associated with a logical formula that represents the current
beliefs of an agent. This can be seen both as a strength and a
weakness of the approach. One can see it as a weakness, be-
cause as opposed to the standard AGM case, the Darwiche
and Pearl’s representation theorem is not definitional: one
can characterize the revised beliefs of the agent (the formula
associated with the epistemic state), but not the whole epis-
temic state. One can also see it as a strength, because it is
general enough to encompass all possible ways to practically
encode the epistemic states.

The Darwiche and Pearl’s representation theorem is an
extension of the Katsuno and Mendelzon’s one for AGM
belief revision (Katsuno and Mendelzon 1991). It states that
each epistemic state can be associated with a total preorder
on propositional worlds, such that the new beliefs after revi-
sion of this epistemic state is obtained by selecting the most
plausible models of the new piece of information w.r.t. this
total preorder. It may then be tempting to identify the epis-
temic states and these total preorders on worlds: not only
the representation theorem itself seems to suggest total pre-
orders on worlds as a canonical representation, but they are
also a very intuitive way to represent the relative plausibility
of each formula. In fact, some works explicitly choose this
representation for epistemic states (Booth and Meyer 2011;
Ramachandran, Nayak, and Orgun 2012; Booth and Chan-
dler 2016; Booth and Chandler 2019), and this is enough for
a lot of applications.
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But one has to be aware not to make a step further, by con-
sidering these total preorders to be the canonical representa-
tion of Darwiche and Pearl’s epistemic states, and to restrict
them to this case, as it is done in some works1. For instance,
Aravanis et. al (2019) showed an example of a revision op-
erator that can not be represented as functional transitions
between total preorders, would those total preorders be the
ones given by the Darwiche and Pearl’s representation theo-
rem. In this paper, we show without any further assumption
that total preorders are not the canonical representation of
Darwiche and Pearl’s epistemic states via an example using
ordinal conditional functions (OCFs), a well-known repre-
sentation of epistemic states for belief change. Then, we
investigate the extent to which a canonical representation
can be found for these epistemic states. To do so, based on
the work initiated in (Aravanis, Peppas, and Williams 2019;
Schwind and Konieczny 2020), we make precise the con-
dition under which a revision operator defined on a given
epistemic space can be “instantiated” into another epistemic
space. Would such a target epistemic space exist for every
Darwiche and Pearl’s revision operator, that epistemic space
could be considered as an appropriate canonical representa-
tion of Darwiche and Pearl’s epistemic states.

We start from the important remark that whatever the cho-
sen representation, every epistemic state can be viewed as
a black box associating each finite sequence of formulae
with a formula representing the beliefs of the agent after
the successive revision of the epistemic state by each for-
mula from the sequence. Based on that observation, two
epistemic states are strongly equivalent according to a re-
vision operator if they cannot be distinguished from each
other by any such successive revision steps, which means
that these epistemic states have the same behavior for that
revision operator. So the question now is whether one can
find a canonical representation of the whole quotient set of
epistemic states under this strong equivalence relation. We
show that in general this is not possible. The number of
possible (quotient set of) epistemic states is just too large.
Nevertheless, we show that under the very natural assump-
tion that every epistemic state is reachable from an initial,
“empty”, epistemic state, through a finite succession of revi-
sions, OCFs are a possible candidate of canonical represen-
tation of epistemic states. This suggests that to encode all
such possible epistemic states, what is missing in the total
preorder representation is the additional numerical informa-
tion OCFs accordingly provide.

2 Preliminaries
We consider a propositional language LP built up from a
finite set of propositional variables P and the usual connec-
tives. The set of consistent formulae is denoted by L∗P . ⊥
(resp. >) is the Boolean constant always false (resp. true).
An interpretation (or world) is a mapping from P to {0, 1}.
The set of all worlds on LP is denoted by Ω. |= denotes log-
ical entailment, ≡ logical equivalence, and [ϕ] denotes the
set of models of the formula ϕ.

1See (Meng, Kou, and Li 2015) for instance.

In iterated belief change, it is standard to assume that the
current set of beliefs of an agent is represented by an epis-
temic state. An epistemic state allows one to represent the
current beliefs of the agent and some conditional informa-
tion guiding the revision process. In all generality, an epis-
temic state can be any object Ψ from which the set of beliefs
of the agent can be extracted through a mappingBel, so that
Bel(Ψ) is a propositional formula from LP . Formally:

Definition 1 (Epistemic Space). An epistemic space E is a
tuple 〈E,Bel〉, where E is a set andBel is a mappingBel :
E → L∗P .

We illustrate this concept with some basic epistemic
spaces:

Example 1. Let us define the TPO-based epistemic space2

The TPO-based epistemic space is the epistemic space
Etpo = 〈Utpo, Btpo〉 where:

• Utpo is the set of all total preorders over the set of all
worlds from Ω;

• Btpo is the mapping associating each total preorder �
from Utpo with a formula ψ ∈ L∗P such that [ψ] =
min([>],�).

The second example of epistemic space is built with the
ordinal conditional functions (OCFs) (Spohn 1988; Williams
1995). An OCF κ is a function associating each world with a
non-negative integer3 such that there is a world ω such that
κ(ω) = 0.

Example 2. The OCF-based epistemic space is the epistemic
space Eocf = 〈Uocf , Bocf 〉 where:

• Uocf is the set of all OCFs over Ω;
• Bocf is the mapping associating each OCF κ from Uocf

with a formula ψ such that [ψ] = {ω | κ(ω) = 0}.
Given an epistemic space E = 〈E,Bel〉, a belief revision

operator ◦ on E associates every epistemic state Ψ from E
and every consistent formula µ with a new epistemic state
from E, denoted by Ψ ◦ µ, i.e, ◦ is a mapping ◦ : E ×
L∗P → E. In the rest of the paper, when a revision operator
◦ will be referred to without the epistemic space on which
it is defined, we will implicitely assume that ◦ is defined on
some epistemic space denoted by E = 〈E,Bel〉.

Let us recall the set of postulates which are expected for
such operators to have a good iterative behavior (Darwiche
and Pearl 1997):

Definition 2 (DP operator (Darwiche and Pearl 1997)). A
revision operator ◦ is a DP operator if the following proper-
ties are satisfied, for each epistemic state Ψ and all formulae
µ, µ′:

(R*1) Bel(Ψ ◦ µ) |= µ;
(R*2) If Bel(Ψ)∧µ 6|= ⊥, then Bel(Ψ◦µ) ≡ Bel(Ψ)∧µ;
(R*3) If µ 6|= ⊥, then Bel(Ψ ◦ µ) 6|= ⊥;

2TPO stands for total preorder.
3Note that in the original definition (Spohn 1988) OCFs are de-

fined on ordinals. But here, as in mosts cases, the integer restriction
is enough. Note however than using the full power of ordinals can
prove useful in some cases (Konieczny 2009).
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(R*4) If µ ≡ µ′, then Bel(Ψ ◦ µ) ≡ Bel(Ψ ◦ µ′);
(R*5) Bel(Ψ ◦ µ) ∧ µ′ |= Bel(Ψ ◦ (µ ∧ µ′));
(R*6) If Bel(Ψ ◦ µ) ∧ µ′ 6|= ⊥,

then Bel(Ψ ◦ (µ ∧ µ′)) |= Bel(Ψ ◦ µ) ∧ µ′.
(C1) If α |= µ, then Bel((Ψ ◦ µ) ◦ α) ≡ Bel(Ψ ◦ α)

(C2) If α |= ¬µ, then Bel((Ψ ◦ µ) ◦ α) ≡ Bel(Ψ ◦ α)

(C3) If Bel(Ψ ◦ α) |= µ, then Bel((Ψ ◦ µ) ◦ α) |= µ

(C4) If Bel(Ψ ◦ α) 6|= ¬µ, then Bel((Ψ ◦ µ) ◦ α) 6|= ¬µ
The postulates (R*1-R*6) are a direct adaptation of the

standard KM postulates to epistemic states. The remaining
four postulates, (C1-C4), add constraints w.r.t. iteration.

Darwiche and Pearl also provided a characterization of
DP operators in terms of total preorders over worlds:
Definition 3 (Faithful assignment). Given an epistemic
space E = 〈E,Bel〉, a mapping Ψ 7→�Ψ associating each
epistemic state Ψ ∈ E with a total preorder4 over worlds
�Ψ is a faithful assignment (on E) if and only if for all
worlds ω, ω′ ∈ Ω:
1. If ω |= Bel(Ψ) and ω′ |= Bel(Ψ), then ω 'Ψ ω′

2. If ω |= Bel(Ψ) and ω′ 6|= Bel(Ψ), then ω ≺Ψ ω′

Theorem 1 ((Darwiche and Pearl 1997)). An operator ◦ is a
DP operator if and only if there exists a faithful assignment
Ψ 7→�Ψ that satisfies the following properties:

CR1. If ω |= µ and ω′ |= µ, then ω �Ψ ω′ ⇔ ω �Ψ◦µ ω
′

CR2. If ω 6|= µ and ω′ 6|= µ, then ω �Ψ ω′ ⇔ ω �Ψ◦µ ω
′

CR3. If ω |= µ and ω′ 6|= µ, then ω ≺Ψ ω′ ⇒ ω ≺Ψ◦µ ω
′

CR4. If ω |= µ and ω′ 6|= µ, then ω �Ψ ω′ ⇒ ω �Ψ◦µ ω
′,

and such that for each epistemic state Ψ and each formula
µ, [Bel(Ψ ◦ µ)] = min([µ],�Ψ).

When a faithful assignment exists for ◦, we will call such
a faithful assignment a DP assignment corresponding to
◦. As a matter of fact, when such assignment exists it is
unique5.

Conditions (CR1-CR4) above correspond to the iteration
postulates (C1-C4). They impose constraints on the total
preorder�Ψ◦µ: CR1 and CR2, the “rigidity” conditions, say
that the order between models of µ is preserved and the order
between models of ¬µ is also preserved. CR3 and CR4 say
that there is no worsening between the models of µ and the
models of ¬µ.

Theorem 1 has important applications. One of them is
that, for some epistemic spaces, it allows to define some DP
operators in a constructive way, for which the verification
that they satisfy indeed the DP postulates is done almost triv-
ially. Let us illustrate this through the following examples.
Example 3. We consider the Boutilier’s natural revision
operator ◦B defined over the epistemic space Etpo. This
operator associates each total preorder Ψ ∈ Utpo and
each formula µ with a total preorder Ψ ◦B µ that satisfies
min(Ψ ◦ µ) = min([µ],Ψ) and the following condition:

4For each preorder�,' denotes the corresponding indifference
relation, and ≺ the corresponding strict ordering.

5That is due to the fact that if an assignment satisfies [Bel(Ψ ◦
µ)] = min([µ],�Ψ), then ω �Ψ ω′ iff ω ∈ [Ψ ◦ αω,ω′ ] (where
[αω,ω′ ] = {ω, ω′}), from which the unicity follows.
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Ψ ◦B (p⇔ ¬q)
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011
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Ψ ◦N (p⇔ ¬q)

Figure 1: The Boutilier and Nayak operators.

B. If ω, ω′ /∈ min([µ],Ψ), then ω �Ψ ω′ ⇔ ω �Ψ◦Bµ ω
′,

where �Ψ denotes Ψ and �Ψ◦Bµ denotes Ψ ◦B µ.

That is, Boutilier’s revision operator on Etpo consists in
selecting the set of all models of µ that are minimal accord-
ing to an input preorder, and defining this set as the first level
of the revised preorder while leaving the rest of the preorder
unchanged. This is a DP operator: one of the most easy ways
to see that is to note that the assignment Ψ 7→ Ψ is a faithful
assignment which satisfies the conditions (CR1-CR4), and
that min(Ψ ◦ µ) = min([µ],Ψ). Then by Theorem 1, ◦B is
a DP operator.

Example 4. Another example is the Nayak’s lexicographic
operator ◦N defined also in the epistemic space Etpo. It is
defined by min(Ψ ◦ µ) = min([µ],Ψ), conditions (CR1-
CR4) and:

N. If ω |= µ and ω′ 6|= µ, then ω ≺Ψ◦Nµ ω
′

Nayak’s revision moves all models of µ below all mod-
els of ¬µ, and keeps the relationships between worlds of µ
(resp. of ¬µ) unchanged. Using the same argument as in the
previous example, one can see that this operator is also a DP
operator.

Let us illustrate how the behaviors of Boutilier and Nayak
revision operators depart from each other.

Example 5. Let P = {p, q, r}. Figure 1 depicts a to-
tal preorder Ψ over worlds6 , and the revised total pre-
orders Ψ ◦B (p ⇔ ¬q) and Ψ ◦N (p ⇔ ¬q). We have
that Btpo(Ψ) ≡ p ∧ q, and Btpo(Ψ ◦B (p ⇔ ¬q) ≡
Btpo(Ψ ◦N (p ⇔ ¬q)) ≡ p ∧ ¬q. Then it is easy to see
from the figure that:

• Btpo(Ψ ◦B (p⇔ ¬q) ◦B q ≡ p ∧ q
• Btpo(Ψ ◦N (p⇔ ¬q) ◦N q ≡ ¬p ∧ q ∧ r,

i.e.,Btpo(Ψ◦B (p⇔ ¬q)◦B q 6≡ Btpo(Ψ◦N (p⇔ ¬q)◦N q.

The next example is an operator on the epistemic space of
OCFs, that is, it is defined on Eocf .

Example 6. Given an OCF κ and a formula α, we define
κ(α) = min{n : ∃ω ∈ [α], κ(ω) = n}.

Consider an OCF κ, a formula µ, and an integer x such
that x ≥ 1. The (µ, x)-conditionalization (Spohn 1988) of κ

6A world ω is at the same or at a lower level than a world ω′

iff ω ≤Ψ ω′. So minimal (i.e., most plausible) worlds are at the
lowest levels.
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is the OCF κ′ defined for each world ω by:

κ′(ω) =

{
κ(ω)− κ(µ) if ω |= µ
κ(ω)− κ(¬µ) + x if ω 6|= µ

The operator ◦C on Eocf is defined for each κ ∈ Uocf
and each µ ∈ L∗P by κ ◦C µ = κ′, where κ′ is the (µ, x)-
conditionalization of κ.

Conditionalization was the first change operator proposed
on OCFs (Spohn 1988) (see (Williams 1995) for a general-
ization and other operators on OCFs). The conditionalization
of an OCF performs a (DP) revision under some conditions
(if x > 0 and κ(µ) > 0), but in the other cases we can ob-
tain a contraction or a re-ordering. Please see Definition 7 in
Section 4 for an example of a pure DP revision on OCFs.

The most commonly used epistemic spaces are Etpo and
Eocf . Their popularity can be explained by their simplic-
ity and by the fact that the representation theorems for
iterated change operators as (Darwiche and Pearl 1997;
Booth and Meyer 2006; Konieczny and Pino Pérez 2008;
Konieczny, Medina Grespan, and Pino Pérez 2010; Med-
ina Grespan and Pino Pérez 2013) allow to define opera-
tors as transitions between states (cf. Example 3, 4 and 6.
The choice of such epistemic spaces is for instance used
in (Booth and Meyer 2011; Booth and Chandler 2019;
Spohn 1988).

Before concluding this section, let us introduce a few no-
tations that will be used in some subsequent proofs. Given
a set E, card(E) denotes the cardinality of E. Given any
total preorder Ψ ∈ Utpo and any world ω, rank(Ψ, ω) de-
notes the rank of ω in Ψ. More precisely, rank(Ψ, ω) =
k − 1 when there is a chain (ω1, . . . , ωk) of size k such that
ω = ωk and for each i, j such that i < j, ωi ≺ ωj (≺ de-
notes the strict ordering corresponding to Ψ), and such that
no such chain of size k′ with k < k′ exists. Then, given a
non-negative integer i, lvl(Ψ, i) denotes the set of models at
the ith level in Ψ, i.e., lvl(Ψ, i) = {ω | rank(Ψ, ω) = i},
and max(Ψ) = max{i | i ∈ N, lvl(Ψ, i) 6= ∅}. Lastly,
given an OCF κ ∈ Uocf , tpo(κ) denotes the total preorder
associated with κ, i.e., tpo(κ) is defined as the total pre-
order � where for all worlds ω, ω′, ω � ω if and only if
κ(ω) ≤ κ(ω′).

3 Instantiability of Revision Operators
Each revision operator is defined on a given epistemic space,
but can be equivalently defined on a different epistemic
space. Intuitively, given two epistemic spaces E = 〈E,Bel〉
and I = 〈U,B〉, we say that a revision operator ◦ on E is
“safely I-instantiable” whenever one can find a revision op-
erator ◦I on I that has the same “behavior” as ◦, i.e., ◦I
models the same transitions between epistemic states from
U as ◦ between those from E , modulo the beliefs that can be
observed from these epistemic states in the context of belief
revision. The set of all epistemic states from E is mapped
onto another set U , and B is used to associate with each
mapped epistemic state from U its corresponding beliefs.
Formally:
Definition 4 ((Safe) translation). Let ◦ be a revision opera-
tor on E = 〈E,Bel〉, and let I = 〈U,B〉 be an epistemic

space. A translation of ◦ into I is a pair (fE , ◦I), where fE
is a mapping from E to U and ◦I is a revision operator on
I such that for each Ψ ∈ E , Bel(Ψ) ≡ B(fE(Ψ)), and for
each Ψ ∈ E and each µ ∈ L∗P , fE(Ψ ◦ µ) = fE(Ψ) ◦I µ.
Such a translation is said to be safe if there exists a mapping
hI : U → E such that (hI , ◦) is a translation of ◦I into E .

When a such a (safe) translation exists we say that ◦ is
(safely) I-instantiable.

Note that the notion of translation is close to the notions
of simulation in (Aravanis, Peppas, and Williams 2019) and
of instantiation in (Schwind and Konieczny 2020). We in-
tend now to explain why safe translations are of particular
interest. Let I = (U,B), I ′ = (U ′, B′) be two epistemic
spaces, let ◦I be a revision operator on I and ◦I′ be a re-
vision operator on I ′. Given Ψ ∈ U and Ψ′ ∈ U ′, we
say that Ψ is strongly equivalent7 to Ψ′ w.r.t. (◦I , ◦I′), de-
noted by Ψ ≡(◦I ,◦I′ ) Ψ′, if B(Ψ) ≡ B′(Ψ′) and for each
finite sequence of formulae σ = (µ1, . . . , µk) with k ≥ 1,
B(Ψ ◦I σ) ≡ B′(Ψ′ ◦I′ σ).

In the particular case where I = I ′ and ◦I = ◦I′ = ◦,
we simply say that Ψ and Ψ′ are strongly equivalent w.r.t. ◦
and simplify the notation Ψ ≡(◦I ,◦I′ ) Ψ′ into Ψ ≡◦ Ψ′.
Then given a revision operator ◦ on I = (U,B), we denote
by U≡◦ the the quotient of U by the equivalence relation≡◦.
That is, if (Ψ)≡◦ denotes the equivalence class8 of Ψ, then
U≡◦ = {(Ψ)≡◦ | Ψ ∈ U}.

The notion of strong equivalence between epistemic states
is very important. Indeed, each epistemic state, whatever the
epistemic space to which it belongs, can actually be seen as
a black box that associates each finite sequence of formulae
with a formula representing the beliefs of the agent. And
even if epistemic states may contain more complex informa-
tion, this additional information does not have any further
impact in the iterated revision process. That is, if two epis-
temic states have the same behavior for any Darwiche and
Pearl’s iterated revision, then they can not be distinguished
from one another in this context, and in that case they belong
to the same equivalence class.

Let us now use the notion of strong equivalence between
epistemic states to define the notion of equivalence between
two operators defined on two different epistemic spaces:

Definition 5. Let I = (U,B) and I ′ = (U ′, B′) be two
epistemic spaces, ◦I be a revision operator on I, and ◦I′
be a revision operator on I ′. We say that ◦I and ◦I′ are
equivalent if there is a one-to-one and onto correspondence
g from U≡◦I to U ′≡◦I′

such that for each V ∈ U≡◦I and for
all Ψ ∈ V , Ψ′ ∈ g(V ), we have that Ψ ≡(◦I ,◦I′ ) Ψ′.

Let us state an important lemma:

Lemma 1. Let ◦ be a revision operator, I = (U,B) be an
epistemic space, and (fE , ◦I) be a translation of ◦ into I.
Then for each Ψ ∈ E, we have that Ψ ≡(◦,◦I) fE(Ψ).

7In standard DP papers, two epistemic states are said to be
equivalent iff B(Ψ) ≡ B(Ψ′). This is why we call this notion
strong equivalence. Note that a similar distinction was made in
(Konieczny and Pino Pérez 2000).

8(Ψ)≡◦ = {Ψ′ ∈ U | Ψ′ ≡◦ Ψ}
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Proof. Let Ψ ∈ E. First, by definition of fE we get that
Bel(Ψ) ≡ B(fE(Ψ)). Second, for each sequence of formu-
lae σ = (µ1, . . . , µk), k ≥ 1, we know that Bel(Ψ ◦ σ) ≡
B(fE(Ψ ◦ σ)). Since fE(Ψ ◦ µ) = fE(Ψ) ◦I µ for any for-
mula µ, it is easy to see, by induction, that fE(Ψ ◦ σ) =
fE(Ψ)◦I σ, thus Bel(Ψ◦σ) ≡ B(fE(Ψ)◦I σ). This shows
that Ψ ≡(◦,◦I) fE(Ψ).

Taking advantage of Lemma 1, we are ready to make clear
why the notion of safe translation is of particular interest:

Proposition 1. Let ◦ be a revision operator and I = (U,B)
be an epistemic space. If (fE , ◦I) is a safe translation of ◦
into I, then ◦ and ◦I are equivalent.

Proof. Let ◦ be a revision operator on E = (E,Bel),
I = (U,B) be an epistemic space, and (fE , ◦I) be a safe
translation of ◦ into I. For each (Ψ)≡◦ ∈ E≡◦ , let g be
the mapping (Ψ)≡◦ 7→ (fE(Ψ))≡◦I . From Lemma 1, it is
easy to see that g is well defined and defines an injective
mapping from E≡◦ to U≡◦I , and we directly get for each
(Ψ)≡◦ ∈ E≡◦ and for all Ψ1 ∈ (Ψ)≡◦ , Ψ2 ∈ (fE(Ψ))≡◦I ,
that Ψ1 ≡(◦,◦I) Ψ2. Since (fE , ◦I) is safe, there is a map-
ping hI : U → E such that (hI , ◦) is a translation of ◦I into
E . Then, similar to g, let us define the function g′, mapping
each (Ψ′)≡◦I ∈ U≡◦I into (hI(Ψ′))≡◦ . From Lemma 1
again, g′ defines an injective mapping from U≡◦I to E≡◦ ,
and it is easy to verify that for each (Ψ)≡◦ ∈ E≡◦ and for
each(Ψ′)≡◦I ∈ U≡◦I we have g′(g((Ψ)≡◦)) = (Ψ)≡◦ and
g(g′((Ψ′)≡◦I )) = (Ψ′)≡◦I . Thus, g is a one-to-one and
onto correspondence from E≡◦ to U≡◦I . Therefore, g sat-
isfies the requirements of Definition 5, which means that ◦
and ◦I are equivalent.

We have also the following result:

Proposition 2. If a revision operator ◦ is not I-instantiable,
then there is no revision operator on I equivalent to ◦.

Proof. We prove the contrapositive of the statement. Let
◦ be a revision operator, I = (U,B) be an epistemic
space, and let ◦I be an operator on I that is equivalent to
◦. So there is a bijection g : E≡◦ → U≡◦I such that
for each F ∈ E≡◦ , each Ψ ∈ F and each Ψ′ ∈ g(F ),
Ψ ≡(◦,◦I) Ψ′. First, let δU : U≡◦I → U be a map-
ping associating every equivalence class F ∈ U≡◦I with
an arbitrary chosen epistemic state from F , in particular,
if δU (V ) = Ψ, then V = (Ψ)≡◦I . Define now the revi-
sion operator ◦′I on I for each Ψ ∈ U and each µ ∈ L∗P
by Ψ ◦′I µ = δU ((Ψ ◦I µ)≡◦I ). Obviously enough, ◦′I is
equivalent to ◦I , thus ◦′I is equivalent to ◦. Now, define
fE : E → U for each Ψ ∈ E as fE(Ψ) = δU (g((Ψ)≡◦)).
It is easy to see for each Ψ ∈ E that Bel(Ψ) ≡ B(fE(Ψ)).
And for each Ψ ∈ E and each µ ∈ L∗P , fE(Ψ) ◦′I µ =
δU (g((Ψ)≡◦)) ◦′I µ = δU ((δU (g((Ψ)≡◦)) ◦I µ)≡◦I ) =

δU (g((Ψ ◦ µ)≡◦)) = fE(Ψ ◦µ). This shows that (fE , ◦′I) is
a translation of ◦ into I, i.e., ◦ is I-instantiable.

Propositions 1 and 2 show why the notion of (safe) in-
stantiability is a key concept: (safe) I-instantiability it is a

(sufficient and) necessary condition for defining an operator
equivalent to ◦ in the space I.

Another important consequence of Lemma 1 is the fol-
lowing:

Proposition 3. Let ◦ be a revision operator and I =
(U,B) be an epistemic space. If ◦ is I-instantiable, then
card(E≡◦) ≤ card(U).

Proof. Let ◦ be a revision operator and I = (U,B) be an
epistemic space. Assume that ◦ is I-instantiable, and let
(fE , ◦I) be a translation of ◦ into I. So let Ψ,Ψ′ ∈ E
and assume that Ψ 6≡◦ Ψ′. From Lemma 1, we know
that fE(Ψ) 6≡ fE(Ψ

′), thus fE(Ψ) 6= fE(Ψ
′). This means

that there is an injective mapping from E≡◦ to U . Hence,
card(E≡◦) ≤ card(U).

This result is quite intuitive: in order to be used as an ap-
propriate space for defining an operator equivalent to a given
operator ◦, an epistemic space has to be “large enough”
to encode all the equivalence classes (w.r.t. ◦) of epistemic
states in the initial epistemic space. This point is important
for our subsequent results.

4 TPO vs OCF
In this section, we investigate the links between the TPO
and OCF epistemic spaces. We start by defining the notion
of “structure preservation”, in order to work with epistemic
states that are closely related to the total preorders obtained
by the representation theorem. Then we show how to find
for every operator on the TPO epistemic space an equivalent
operator on the OCF epistemic space. Lastly, we show that a
converse translation is not possible.

A very interesting feature of operators defined in the
spaces Etpo and Eocf is that they are typically built using the
ordered structure of the epistemic states in a natural way. For
instance, the DP assignment corresponding to the operators
in Examples 3 and 4 is the identity, and the one correspond-
ing to the operator on Eocf introduced later in Definition 7
is “almost” the identity. An appealing property of an oper-
ator defined on Etpo or Eocf is thus to preserve the internal
ordered structure of their epistemic states according to its
corresponding assignment. Let us formalize this property:

Definition 6. Let ◦ be a DP operator defined on Etpo and
Ψ 7→�Ψ be the DP assignment corresponding to ◦. We say
that ◦ is structure preserving if for each Ψ ∈ Utpo, Ψ =�Ψ.
Likewise, let ◦ be a DP operator defined on Eocf and κ 7→�κ
be the DP assignment corresponding to ◦. We say that ◦ is
structure preserving if for each κ ∈ Uocf , tpo(κ) =�κ.

One can wonder if there exist DP operators that are not
structure preserving. The following example shows an oper-
ator defined on Etpo which is not structuring preserving.

Example 7. Consider a propositional language with two
propositional variables. Thus, there are four interpretations
ω1, ω2, ω3 and ω4. Let ◦N be the Nayak operator on Etpo.
Consider the two following total preorders: Ψ1 defined by
ω1 ∼ ω2 ≺ ω3 ≺ ω4 and Ψ2 defined by ω1 ∼ ω2 ≺ ω4 ≺
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ω3. Clearly Ψ1 6= Ψ2 and Btpo(Ψ1) ≡ Btpo(Ψ2). Now,
define a new operator ? as follows:

Ψ ? µ =

{
Ψ2 ◦N µ if Ψ = Ψ1

Ψ1 ◦N µ if Ψ = Ψ2

Ψ ◦N µ, otherwise

It is easy to see that ? is a DP operator and, moreover,
Ψ1 =�?Ψ2

. Therefore ? is not structure preserving.

However, we can show that:
Proposition 4. An operator ◦ on Etpo is a DP operator if
and only if there is a structure preserving DP operator ◦′ on
Etpo that is equivalent to ◦.

Proof. The (if) part of the proof is direct: since ◦′ is equiva-
lent to ◦ and ◦′ is a DP operator, ◦ is a DP operator as well.
Let us prove the (only if) part of the proof. Let ◦ be a DP op-
erator. Let τ denote the faithful assignment corresponding
to ◦ (recall that it is unique), and let us first show that τ is
a one-to-one-correspondence on Utpo. It is enough to prove
that τ is surjective. In the following, τ(Ψ) will sometimes
be denoted by �Ψ.

Let us start with a useful observation. Let Ψ ∈ Utpo and
α be a formula such that [α] ⊆ lvl(�Ψ,max(�Ψ)), i.e., α
is a formula whose models lie at the last level of �Ψ. Then
from the representation theorem (Theorem 1) and condition
CR2, the total preorder �Ψ◦α is uniquely defined by:

• if ω, ω′ |= α, then ω �Ψ◦α ω
′

• if ω |= α, ω′ 6|= α, then ω ≺Ψ◦α ω
′

• if ω, ω′ 6|= α, then ω �Ψ◦α ω
′ iff ω �Ψ ω′

From this observation, we can show that every total preorder
� corresponds to τ(Ψ) from some Ψ ∈ Utpo. Indeed, let �
be any total preorder from Utpo, let Ψ> ∈ Utpo be such that
Btpo(Ψ>) ≡ > (note that �Ψ> is always the “flat” total
preorder defined for all worlds ω, ω′ by ω 'Ψ> ω

′), and let
σ = (α1, . . . , αmax(�)) be a sequence of formulae such that
for each αi, [αi] = lvl(�,max(�) − i). It is easy to see
from the observation above that τ(Ψ> ◦σ) =�. This shows
that τ is surjective, so it is a one-to-one correspondence.

Now, let us consider the operator ◦′ on Etpo defined
for each Ψ ∈ Utpo and each µ ∈ L∗P by Ψ ◦′ µ =
τ(τ−1(Ψ) ◦ µ), and let us show that (τ, ◦′) is a safe trans-
lation of ◦ into Etpo. Let Ψ ∈ Utpo and µ ∈ L∗P . The
fact that Btpo(Ψ) ≡ Btpo(τ(Ψ)) is direct from the repre-
sentation theorem (cf. Theorem 1) and conditions 1 and 2 of
a faithful assignment. Yet we also have that τ(Ψ) ◦′ µ =
τ(τ−1(τ(Ψ)) ◦ µ) = τ(Ψ ◦ µ). This shows that (τ, ◦′) is
a translation of ◦ into Etpo. To show that (τ, ◦′) is safe, it
is enough to remark that (τ−1, ◦) is a translation of ◦′ into
Etpo, since Btpo(Ψ) ≡ Btpo(τ

−1(Ψ)) and τ−1(Ψ ◦′ µ) ≡
τ−1(τ(τ−1(Ψ) ◦ µ)) = τ−1(Ψ) ◦ µ.

Since (τ, ◦′) is a safe translation of ◦ into Etpo, from
Proposition 1 we get that ◦ and ◦′ are equivalent, which con-
cludes the proof.

This result is very important, since it means that we can
always assume to work with structure preserving operators
for any DP operator on Etpo.

Now, let us show that every revision operator on Etpo is
safely Eocf -instantiable. Let ◦ be any revision operator on
Etpo. Let fEtpo be the mapping from Utpo to Uocf defined
for each Ψ ∈ Utpo by fEtpo(Ψ) = κΨ, where κΨ is the OCF
defined for each world ω by κΨ(ω) = rank(Ψ, ω). Now, let
us define a revision operator ◦Eocf on Eocf for each κ ∈ Uocf
and each µ ∈ L∗P as κ ◦Eocf µ = fEtpo(tpo(κ) ◦ µ). Then:

Proposition 5. (fEtpo , ◦Eocf ) is a safe translation of ◦ into
Eocf .

Proof. First, it is easy to see that for each Ψ ∈ Btpo, we
have that Btpo(Ψ) = Bocf (κΨ). Then, remark that for each
Ψ ∈ Utpo, by construction of κΨ we get that tpo(κΨ) =
Ψ. Thus for each Ψ ∈ Utpo and each µ ∈ L∗P we get that
fEtpo(Ψ) ◦Eocf µ = κΨ ◦Eocf µ = fEtpo(tpo(κΨ) ◦ µ) =
fEtpo(Ψ ◦ µ). This shows that (fEtpo , ◦Eocf ) is a translation
of ◦ into Eocf .

To see that this is also a safe translation, simply consider
the mapping hEocf : Uocf → Utpo defined for each κ ∈ Uocf
as hEocf (κ) = tpo(κ). On the one hand, it is easy to see
that Bocf (κ) ≡ Btpo(hEocf (κ)). On the other hand, remark
that for each Ψ ∈ Utpo, hEocf (fEtpo(Ψ)) = tpo(κΨ) = Ψ.
Hence, we get for each κ ∈ Uocf and each µ ∈ L∗P that
hEocf (κ◦Eocf µ) = hEocf (fEtpo(tpo(κ)◦µ)) = tpo(κ)◦µ =
hEocf (κ) ◦ µ. This shows that (hEocf , ◦) is a translation of
◦Eocf into Utpo, which proves that (fEtpo , ◦Eocf ) is a safe
translation of ◦ into Eocf .

We call the pair (fEtpo , ◦Eocf ) the canonical translation of
◦ into Eocf .

A particular consequence of Proposition 5 is that every re-
vision operator ◦ on Etpo is safely Eocf -instantiable. More-
over, it is easy to see by construction of ◦Eocf that if ◦ is a
structure preserving DP operator, then ◦Eocf is also structure
preserving. Hence, a direct consequence of Propositions 4
and 5 is that:
Corollary 1. For every DP operator ◦ on Etpo, there is an
operator on Eocf equivalent to ◦ that is structure preserving.

So we can encode any DP revision defined on TPOs into
the OCF epistemic space by a structure preserving operator.
Let us now show that the converse translation is not possible,
by providing an example of operator that is defined on OCFs
and that is not Etpo-instantiable.
Definition 7. Let •+ be the revision operator on Eocf de-
fined for each κ ∈ Uocf and each µ ∈ L∗P by κ′ = κ •+ µ,
where for each world ω ∈ Ω, κ′(ω) is defined by:

κ′(ω) =

{
0 if ω |= µ and κ(ω) = κ(µ)
κ(ω) if ω |= µ and κ(ω) > κ(µ)
κ(ω) + 1 if ω 6|= µ

This operator can be related with the • operator proposed
by Darwiche and Pearl to illustrate their DP postulates (Dar-
wiche and Pearl 1997), since • and •+ deal with the coun-
termodels of µ in a similar way. However, •+ depart from •
in its treatment of the models of µ that do not move (except
in the case where they are the minimal ones).

First, please observe that :
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Proposition 6. •+ is a DP revision operator.

Proof. Let τ be the mapping from Uocf to Utpo defined
for each κ ∈ Uocf by τ(κ) = tpo(κ). The fact that •+
is a DP operator is shown as follows: one can easily ob-
serve by definition of •+ that τ satisfies conditions 1 and
2 of a faithful assignment and conditions (CR1-CR4) of
Theorem 1, and for each κ ∈ Uocf and each µ ∈ L∗P ,
[Bocf (κ •+ µ)] = min([µ], tpo(κ)). That is, τ defines a
DP assignment corresponding to •+, which from Theorem 1
shows that •+ is a DP operator.

Let us illustrate the behavior of this operator through the
following example:

Example 8. Let P = {p, q}, and consider the two OCFs κ
and π defined by:9

κ(00) = 0 κ(01) = 1 κ(10) = 1 κ(11) = 2
π(00) = 0 π(01) = 1 π(10) = 1 π(11) = 4
Then κ •+ p = κ1, π •+ p = π1, π1 •+ p = π2, π2 •+ p =

π3, as illustrated in Figure 2.10

Note that •+ is structure preserving, so its corresponding
faithful assignment associates κ and π with the same total
preorder �. Would •+ be safely Etpo-instantiable, Propo-
sitions 1 and 4 together show that there would be a struc-
ture preserving operator on Etpo that is equivalent to •+, and
so κ and π would be translated to the same total preorder.
But this example shows that this can not be the case, since
Bocf ((κ•+p)•+q) 6≡ Bocf ((π•+p)•+q), and so κ and π are
not strongly equivalent. Similarly, one can remark that the
TPO translated from π1 and π2 should be exactly the same,
but Bocf ((π1 •+ p) •+ q) 6≡ Bocf ((π2 •+ p) •+ q).

This example is enough to conclude that •+ is not safely
Etpo-instantiable, but let us give a more general result:

Proposition 7. Uocf,≡•+ is countably infinite.

Proof. Without loss of generality, assume that LP is such
that |P | ≥ 2. Let ω1, ω2, ω3 be three distinct worlds from
Ω. Since Uocf is a countable set, Uocf,≡•+ is a countable
set. Let N∗ denotes the set of positive integers. To conclude
the proof that Uocf,≡•+ is countably infinite, since N∗ is in-
finite it is enough to build an injective mapping τ from N∗
to Uocf,≡•+ . So let us define τ : N∗ → Uocf,≡•+ for each
i ∈ N∗ as τ(i) = κi, where κi is any arbitrary OCF that
satisfies κi(ω1) = 0, κi(ω2) = 1, and κi(ω3) = i + 2.
For each k ∈ N∗, let σk be the sequence of formulae
(α13, . . . , α13) where [α13] = {ω1, ω3} and α13 appears ex-
actly k times in the sequence. Let us denote by κik the OCF

κi •+ σk. By definition of •+, we get for all i, k ∈ N∗ that
κik(ω1) = κi(ω1) = 0, κik(ω2) = κi(ω2) + k = k + 1, and
κik(ω3) = κi(ω3) = i+ 2. Hence,

• κii+1(ω2) = κii+1(ω3)

• if k < i+ 1, then κik(ω2) < κik(ω3)

• otherwise, i.e., if k > i+ 1, then κik(ω2) > κik(ω3)

9A world is denoted by an ordered pair of two symbols from
{0, 1} according to the ordering p < q.

10κ(ω) = i iff ω appears at the level associated to the integer i.
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Figure 2: The DP operator •+

This shows that Bocf (κik •+ α23) ≡ α23 if and only if k =
i + 1, where [α23] = {ω2, ω3}. Stated otherwise, for all
i, j ∈ N∗, if i 6= j then the sequence σ = σi+1 · α23 is such
that Bocf (κi •+ σ) 6≡ Bocf (κj •+ σ). This means that if
i 6= j then κi 6≡•+ κj , which shows that τ is an injective
mapping from N∗ to Uocf,≡•+ , and concludes the proof that
Uocf,≡•+ is countably infinite.

Then from Propositions 3 and 7 and from the fact that
Utpo is a finite set, we can conclude that:

Corollary 2. •+ is not Etpo-instantiable.

Proposition 7 is more interesting than the counter-
example, since the fact that Uocf,≡•+ is countably infinite
means not only that an operator on Etpo that is equivalent to
•+ can not be found on the same propositional language, but
also that trying to use a larger language in order to gain in
expressivity (i.e., artifically adding new atoms to have more
TPOs) can not work either.

5 An Impossibility Result
Let us start this section by the definition of an epistemic
space I being C-complete where C is a class of revision
operators, meaning that I is rich enough to endorse any op-
erator of a given class C (e.g., satisfying a set of postulates).

Definition 8. Given a class C of revision operators, we say
that an epistemic space I = (U,B) is C-complete if every
operator from C is safely I-instantiable.

WhenC is the class of DP operators and I isC-complete,
we simply say that I is DP-complete.

In this section, we intend to introduce an impossibil-
ity result, that is, no epistemic space I = (U,B) where
U is countable is DP-complete. To this end, we intend
to introduce a specific DP revision operator that is not I-
instantiable, for any I = (U,B) where U is a countable set.

Let us first define our revision operator, denoted by •∗.
Without loss of generality, we can assume that LP is such
that |P | ≥ 2. Let ω1, ω2, ω3 be three distinct worlds from Ω.
Let BN be the set of all (countably infinite) binary sequences
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of values from {0, 1}. For each δ ∈ BN and for each integer
i ≥ 1, δ(i) denotes the ith value of δ in the sequence, and
(δ+ 1) denotes the sequence from BN defined for each inte-
ger i ≥ 1 as (δ + 1)(i) = δ(i+ 1) (e.g., if δ = (00101 · · · ),
then (δ + 1) = (0101 · · · )). Moreover, let ◦B and ◦N be re-
spectively the Boutilier revision operator and the Nayak lex-
icographic operator on Etpo (recall that both operators are
DP operators). Lastly, let Φ123 denote the subset of total
preorders from Utpo that satisfy ω1 < ω2 < ω3 and for each
ω /∈ {ω1, ω2, ω3}, ω3 < ω.

Let us now define an epistemic space E∗ = 〈E∗, Bel∗〉
as follows. Let E∗ = Utpo × BN, and let Bel∗ be defined
for each (Ψ, δ) ∈ E∗ as Bel∗((Ψ, δ)) = Btpo(Ψ). We now
define the revision operator •∗ on E∗ as follows, for each
(Ψ, δ) ∈ E∗:
• (Ψ, δ) •∗ µ = (Ψ ◦N µ, (δ + 1)), if Ψ ∈ Φ123, [µ] =
{ω1, ω3}, and δ(1) = 1,

• (Ψ, δ) •∗ µ = (Ψ ◦B µ, (δ + 1)), if Ψ ∈ Φ123, [µ] =
{ω1, ω3}, and δ(1) = 0,

• (Ψ, δ) •∗ µ = (Ψ ◦B µ, δ), in the remaining cases.

Let us first show that:

Proposition 8. •∗ is a DP operator.

Proof. Let τ be the mapping associating each epistemic
state (Ψ, δ) ∈ E∗ with the total preorder Ψ. On the one
hand, sinceBel∗((Ψ, δ)) = Btpo(Ψ) for every (Ψ, δ) ∈ E∗,
by definition of Btpo(Ψ) we directly get that τ satisfies con-
ditions 1 and 2 of a faithful assignment. On the other hand,
by construction of •∗, for every (Ψ, δ) ∈ E∗, we have
that τ((Ψ, δ) •∗ µ) ∈ {Ψ ◦N µ,Ψ ◦B µ}. Yet ◦B and
◦N are both structure preserving, so the identity function
on Utpo defines a DP assignment corresponding to both ◦B
and ◦N . Then τ satisfies conditions (CR1-CR4) as well,
and for each epistemic state (Ψ, δ) and each formula µ,
[Bel((Ψ, δ) •∗ µ)] = min([µ],Ψ). This means that τ is the
DP assignment corresponding to •∗. Then, by Theorem 1,
•∗ is a DP revision operator.

Our impossibility result is based on the following state-
ment, which shows E∗≡•∗ is uncountable:

Proposition 9. card(BN) ≤ card(E∗≡•∗ ).

Proof. Let σ321 be the sequence of formulae (α3, α2, α1)
with [α3] = {ω3}, [α2] = {ω2}, and [α1] = {ω1}. Let Ψ be
any total preorder fromUtpo, and let us note Ψ′ = Ψ◦Bσ123.
It is easy to verify by construction of ◦B that Ψ′ ∈ Φ123.
Yet by definition of ◦∗, we know that for each epistemic
state (Ψ, δ) ∈ E∗, (Ψ, δ) •∗ σ123 = (Ψ ◦B σ123, δ). Hence,
for each epistemic state (Ψ, δ) ∈ E∗, (Ψ, δ) •∗ σ123 is an
epistemic state (Ψ′, δ) such that Ψ′ ∈ Φ123.

Now, given any such epistemic state (Ψ′, δ) ∈ E∗ such
that Ψ′ ∈ Φ123, when α13, α23 are formulae such that
[α13] = {ω1, ω3} and [α23] = {ω2, ω3}, we have that:

• if δ(1) = 1, then (Ψ′, δ)•∗α13 •∗α23 = (Ψ′ ◦N α13, (δ+
1))•∗α23 = (Ψ′◦Nα13◦Bα23, (δ+1)), which we denote
by (Ψ1, (δ + 1)); and

• if δ(1) = 0, then (Ψ′, δ)•∗α13 •∗α23 = (Ψ′ ◦B α13, (δ+
1))•∗α23 = (Ψ′◦Bα13◦Bα23, (δ+1)), which we denote
by (Ψ2, (δ + 1)).

And it is easy to verify by construction of ◦B and ◦N that
Btpo(Ψ1) ≡ α3 and Btpo(Ψ2) ≡ α2, thus Bel((Ψ1, (δ +
1)) ≡ α3 and Bel((Ψ2, (δ + 1)) ≡ α2.

Overall, we have shown that for each epistemic state
(Ψ, δ) ∈ E∗, when σ is the sequence of formulae σ =
σ123 · α13 · α23,

• if δ(1) = 1, then (Ψ, δ) •∗ σ = (Ψ1, (δ + 1)) and
Bel((Ψ1, (δ + 1))) ≡ α3, and

• if δ(1) = 0, then (Ψ, δ) •∗ σ = (Ψ2, (δ + 1)) and
Bel((Ψ2, (δ + 1))) ≡ α2.

That is, for all epistemic states (Ψ, δ), (Ψ, δ′) ∈ E∗,

δ(1) 6= δ′(1)⇒ Bel((Ψ, δ) •∗ σ) 6≡ Bel((Ψ, δ′) •∗ σ) (1)

We intend now to show that if (Ψ, δ), (Ψ, δ′) are two epis-
temic states from E∗ such that δ 6= δ′, then (Ψ, δ) 6≡•∗
(Ψ, δ′). Given a vector δ ∈ BN and an integer k ≥ 1, δ
can be rewritten as the concatenation of two vectors δ−k and
δ+k, i.e., δ = δ−k · δ+k, where δ−k = (δ(1), . . . , δ(k − 1))
(δ−k is possibly empty) and δ+k = (δ(k), δ(k + 1), . . .).
Now, let δ 6= δ′, then let i be the smallest integer such that
δ(i) 6= δ′(i), formally i = min({j ∈ N | δ(j) 6= δ′(j)}).
We have that δ−i = δ′−i and δ+i(1) 6= δ′+i(1). On the
one hand, by definition of •∗, we get that (Ψ, δ) •∗ σ(i) =
(Ψi, δ+i) and (Ψ, δ′)•∗σ(i) = (Ψi, δ

′
+i) for some unique to-

tal preorder Ψi. On the other hand, we have shown in Equa-
tion 1 above that since δ+i(1) 6= δ′+i(1), Bel(Ψi, δ+i) •∗
σ 6≡ Bel(Ψi, δ

′
+i) •∗ σ. That is, the sequence of formulae

σ(i+1) is such that Bel((Ψ, δ) •∗ σ(i+1)) 6≡ Bel((Ψ, δ′) •∗
σ(i+1)). This shows that (Ψ, δ) 6≡•∗ (Ψ, δ′).

We have shown that each total preorder Ψ ∈ Utpo and for
all δ, δ′ ∈ BN, if δ 6= δ′ then (Ψ, δ) 6≡•∗ (Ψ, δ′). This shows
that there is an injective mapping from BN to E∗≡•∗ , from
which we can conclude that card(BN) ≤ card(E∗≡•∗ ).

And so, as a consequence of Propositions 3 and 9 and
from the fact that the set BN is uncountable, we get that:

Corollary 3. Let I = (U,B) be an epistemic space such
that U is a countable set. Then •∗ is not I-instantiable.

We are ready to state our impossibility result. Since •∗ is
a DP operator (cf. Proposition 8), we get as a direct conse-
quence of Corollary 3 that:

Corollary 4. There is no DP-complete epistemic space I =
(U,B) where U is a countable set.

In particular, Eocf and Etpo are not DP-complete, and thus
these epistemic spaces cannot be used to define every DP
operator. This can be seen as a very negative result. But this
is a simple consequence of the generality of Darwiche and
Pearl’s definition of epistemic states. Nevertheless, one can
be more positive if one makes a very natural assumption on
the operator and the epistemic space on which it is defined.
This is the topic of the next section.
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6 A Possibility Result
Let us now investigate a particular, yet very natural, case,
where all epistemic states can be finitely generated from an
initial empty epistemic state and a sequence of revisions.

Let E = 〈E,Bel〉 be an epistemic space and ◦ be a revi-
sion operator on E . We consider the following property:

(G) There exists a unique Ψ> ∈ E such that Bel(Ψ>) ≡
>, and for each Ψ ∈ E , there exists a finite sequence of
formulae σ = (µ1, . . . , µk) such that Ψ = Ψ> ◦ σ

A DP operator satisfying (G) is said to be a DP+G operator.
And when C is the class of DP operators satisfying (G) and
I is C-complete, we simply say that I is DP+G-complete.

We intend to show that every DP+G operator is safely
Eocf -instantiable. For this purpose, we intend to provide a
canonical, safe translation of any DP+G operator ◦ into an
equivalent operator on OCFs, denoted by ◦Eocf . So let ◦ be
any DP+G operator on E = (E,Bel). By condition (G),
every epistemic state from E can be identified by a finite se-
quence of formulae. Since the set of all finite sequence of
formulae is a countable set, E is also countable. So one can
denote by (Ψ1, Ψ2, . . . ) the list of all epistemic states from
E. For each Ψi ∈ E, let�Ψi be the total preorder associated
with Ψi by the DP assignment corresponding to ◦. Now, let
fE be the mapping from E to Uocf defined for each Ψi ∈ E
by fE(Ψ>) = κ>, where κ> is the OCF defined for each
world ω by κ>(ω) = 0; and if Ψi 6= Ψ>, then fE(Ψi) = κi,
where κi is the OCF defined for each world ω by κi(ω) = 0
if ω is at the first level of �Ψi

otherwise κi(ω) = |Ω| + i
if ω ∈ lvl(�Ψi

,max(�Ψi
)) (i.e., if ω lies at the last level

of �Ψi
), otherwise κi(ω) = rank(�Ψi

, ω). By construc-
tion, fE is injective. Let Im(fE) be the subset of OCFs from
Uocf that is the image of fE , i.e., Im(fE) = {fE(Ψi) | Ψi ∈
E}. The fact that fE is injective allows one to define an-
other mapping hEocf : Uocf → E defined for each OCF

κ ∈ Uocf by hEocf (κ) = f−1
E (κ) if κ ∈ Im(fE), otherwise

hEocf (κ) = Ψi, where Ψi is any arbitrary chosen epistemic
state from E such that tpo(κ) =�Ψi . (Note that such an
epistemic state Ψi ∈ E exists, since the DP assignment cor-
responding to ◦ is a surjective mapping fromE to Utpo: sim-
ilar to the proof of Proposition 4 and by condition (G), we
can prove that for any total preorder �, there exists a finite
sequence σ such that Ψi = Ψ> ◦ σ and �=�Ψi

.) Then we
define the revision operator ◦Eocf on Eocf defined for each
κ ∈ Uocf and each µ ∈ L∗P by κ◦Eocf µ = fE(hEocf (κ)◦µ).

Using this translation, we get that:

Proposition 10. (fE , ◦Eocf ) is a safe translation of ◦ into
Eocf .

Proof. First, for each Ψi ∈ E, let �Ψi
be the total preorder

associated with Ψi by the DP assignment corresponding to
◦. Then we know by conditions 1 and 2 of a faithful assign-
ment that [Bel(Ψi)] = min(Ω,�Ψi). And by construction
of fE(Ψi) = κi, we have that κi(ω) = 0 if and only if
rank(�Ψi , ω) = 0 if and only if ω ∈ min(Ω,�Ψi). Hence,
for each Ψi ∈ E, we have that Bel(Ψi) = Bocf (fE(Ψi)).
Second, for each Ψi ∈ E and each µ ∈ L∗P we get that
fE(Ψi) ◦Eocf µ = κi ◦Eocf µ = fE(hEocf (κi) ◦ µ) =

fE(f
−
E 1(κi) ◦ µ) = fE(Ψi ◦ µ). This shows that (fE , ◦Eocf )

is a translation of ◦ into Eocf .
Yet by definition of hEocf , on the one hand we get for each

κ ∈ Uocf that Bocf (κ) ≡ Bel(hEocf (κ)) (since by denoting
Ψi = hEocf (κ), we have that tpo(κ) =�Ψi ). On the other
hand, for each κ ∈ Uocf and each µ ∈ L∗P we get that
hEocf (κ◦Eocf µ) = hEocf (fE(hEocf (κ)◦µ)) = f−E 1(fE(Ψi◦
µ)) = Ψi ◦ µ = hEocf (κi) ◦ µ. This shows that (hEocf , ◦)
is a translation of ◦Eocf into E . Hence, (fE , ◦Eocf ) is a safe
translation of ◦ into Eocf .

We know now that every DP+G operator ◦ is safely Eocf -
instantiable. Moreover, by construction, ◦Eocf is structure
preserving. Therefore:

Corollary 5. For every DP+G operator ◦, the operator
◦Eocf is equivalent to ◦ and is structure preserving.

And we can conclude that:

Corollary 6. Eocf is DP+G-complete.

This means that every DP operator defined on any epis-
temic space and satisfying the property (G) (that simply
states that there is an initial, empty, epistemic state and that
each epistemic state is reachable from it through a finite se-
quence of revisions) can be safely translated to the OCF epis-
temic space. As a consequence, all these operators can be
defined equivalently in the OCF epistemic space.

7 Conclusion
In this work, we focused on Darwiche and Pearl’s epistemic
states and iterated revision operators from the representa-
tional perspective. We defined epistemic spaces as the struc-
tures in which these epistemic states and revision operators
are defined. We highlighted the fact that epistemic states can
be distinguished from each other by revision operators only
by their behavior under any finite sequence of successive
revisions. This led us to focus on the notion of strong equiv-
alence between epistemic states, and to define a notion of
equivalence between revision operators defined on different
epistemic spaces. Based on these notions, we made precise
the condition under which an operator is “instantiable” into
another epistemic space.

Then, we looked for a canonical representation for the
whole quotient set of epistemic states under this strong
equivalence relation. But we showed that in general, such a
canonical representation can not exist. The number of pos-
sible (quotient set of) epistemic states is just too large.

But then, if we restrict ourselves to epistemic states
finitely generated from an initial, “empty” epistemic state,
that is a quite reasonable assumption, then we showed that
we can find such a canonical representation in terms of OCFs
(Ordinal Conditional Functions). OCFs are a well-known
representation choice for belief change operators, and are
really close to total preorders. But this paper shows that the
numerical information they add compared to total preorders
is what is missing in order to encode all possible finitely
generated epistemic state spaces.
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