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Université d’Artois, Lens, France
konieczny@cril.fr

Ramón Pino Pérez
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Facultad de Ciencias
Universidad de Los Andes

Mérida, Venezuela
pino@ula.ve

Abstract

We introduce a new class of change operators. They are a
generalization of usual iterated belief revision operators. The
idea is to relax the success property, so the new information is
not necessarily believed after the improvement. But its plau-
sibility has increased in the epistemic state. So, iterating the
process sufficiently many times, the new information will be
finally believed. We give syntactical and semantical charac-
terizations of these operators.

Introduction
Modelling belief change is a central topic in artificial intel-
ligence, psychology and databases. One of the predomi-
nant approaches was proposed by Alchourrón, Gärdenfors
and Makinson and is known as the AGM belief revision
framework (Alchourrón, Gärdenfors, & Makinson 1985;
Gärdenfors 1988; Katsuno & Mendelzon 1991). The main
requirements imposed by AGM postulates are the principle
of coherence asking to maintain consistency as far as possi-
ble, the so called principle of minimal change saying that we
have to keep as much of the old information as possible, and
the last important requirement is the principle of primacy of
update (also called success property) that demands the new
information to be true in the new belief base. The postu-
lates proposed to characterize belief revision operators (Al-
chourrón, Gärdenfors, & Makinson 1985; Gärdenfors 1988;
Katsuno & Mendelzon 1991; Hansson 1999) just aimed at
capturing logically these principles.

A drawback of AGM definition of revision is that the con-
ditions for the iteration of the process are very weak, and
this is caused by the lack of expressive power of logical be-
lief bases (Herzig, Konieczny, & Perussel 2003). In order
to ensure good properties for the iteration of the revision
process, one needs a more complex structure. So shifting
from logical belief bases to epistemic states was proposed
in (Darwiche & Pearl 1997). In this framework, one can
define interesting iterated revision operators (Darwiche &
Pearl 1997; Booth & Meyer 2006; Jin & Thielscher 2007;
Konieczny & Pino Pérez 2000). Let us call these operators
DP belief revision operators.
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Another framework that allows to define interesting it-
erated change operator is the one of Ordinal Conditional
Functions (OCF), also named kappa-rankings, that was pro-
posed by Spohn in (Spohn 1988), and further developed in
(Williams 1994). An OCF can be represented by a function
that associates an ordinal to every interpretation, with at least
one interpretation taking the value 0. The ordinal associated
to the interpretation represents the degree of disbelief of the
interpretation. This notion can be used to define a degree
of acceptance of a formula.

So a change operator in this framework, called a trans-
mutation (Williams 1994), is a function that changes the de-
gree of acceptance of a formula. This means that it requires
more information than AGM/DP belief revision operators,
since, in addition to the new information, one needs to give
its new degree of acceptance. This has one important draw-
back, since one has to find this new degree somewhere! It
it is not a problem if it is given by the application, but if
the only received input is the new information, justifying
an “arbitrary” degree of acceptance can be problematic. On
the other hand, this more general framework allows to de-
fine interesting operators. It allows to define revision and
contraction operators, by choosing the right degree of ac-
ceptance. In particular most of the works on DP iterared
revision operators use OCF operators as examples (see e.g.
(Darwiche & Pearl 1997; Jin & Thielscher 2007)). But it
also allows to define restructuring operators (Williams 1994;
Spohn 1988), that modify the OCF, without changing the be-
lieved formulae. Such operators do not exist in the classical
DP belief revision framework, that obey the success prop-
erty, that asks the new information to be believed after the
change.

The aim of this paper is to define such restructuring-like
operators in the standard AGM/DP framework. We want to
define change operators on epistemic states that do not (nec-
essarily) satisfy the success property, although still improv-
ing the plausibility of the new information. We call these
operators improvement operators. This idea is quite intu-
itive since usual AGM/DP belief revision operators can be
considered as too strong: after revising by a new informa-
tion, this information will be believed. Most of the time
this is the wanted behaviour for the revision operators. But
in some cases it may be sensible to take into account the
new information more cautiously. Maybe because we have



some confidence in the source of the new information, but
not enough for accepting unconditionally this new informa-
tion. This can be seen as a kind of learning/reinforcement
process: each time the agent receives a new information α,
this formula will gain in plausibility in the epistemic state of
the agent. And if the agent receives the same new informa-
tion many times, then he will finally believe it.

Our operators are close in spirit to the bad day/good day
approach of Booth and Meyer (also called abstract interval
orders revision) (Booth & Meyer 2007; Booth, Meyer, &
Wong 2006). Unlike their operators that need an extra in-
formation, our operators are defined in the usual DP frame-
work. We give more details on this relationship at the end of
the paper.

The rest of the paper is organized as follows: we give
the preliminaries in the first section. The second section is
devoted to the introduction of improvement operators. The
third section is devoted to a discussion of the irrelevance of
syntax property. In the fourth and fifth sections we state the
main results concerning syntactical and semantical charac-
terizations, namely two representation theorems. The fifth
section shows an example and how to encode improve-
ment using OCF. The sixth section contains some interesting
properties of improvement operators. The last section is the
conclusion. There is also an appendix containing the proofs
of the main results.

Preliminaries
We consider a propositional language L defined from a fi-
nite set of propositional variables P and the standard con-
nectives. Let L∗ denote the set of consistent formulae of
L.

An interpretation ω is a total function from P to {0, 1}.
The set of all interpretations is denotedW . An interpretation
ω is a model of a formula φ ∈ L if and only if it makes it
true in the usual truth functional way. [[α]] denotes the set
of models of the formula α, i.e., [[α]] = {ω ∈ W | ω |= α}.
When {w1, .., wn} is a set of models we denote by ϕw1,..,wn
a formula such that [[ϕw1,..,wn ]] = {w1, .., wn}.

We will use epistemic states to represent the beliefs of the
agent, as usual in iterated belief revision (Darwiche & Pearl
1997). An epistemic state Ψ represents the current beliefs of
the agent, but also additional conditional information guid-
ing the revision process (usually represented by a pre-order
on interpretations, a set of conditionals, a sequence of for-
mulae, etc). Let E denote the set of all epistemic states. A
projection function B : E −→ L∗ associates to each epis-
temic state Ψ a consistent formula B(Ψ), that represents the
current beliefs of the agent in the epistemic state Ψ.

For simplicity purpose we will only consider in this paper
consistent epistemic states and consistent new information.
Thus, we consider change operators as functions ◦ mapping
an epistemic state and a consistent formula into a new epis-
temic state, i.e. in symbols, ◦ : E × L∗ −→ E . The image
of a pair (Ψ, α) under ◦ will be denoted by Ψ ◦ α.

We adopt the following notations:

• Ψ ◦n α defined as: Ψ ◦1 α = Ψ ◦ α
Ψ ◦n+1 α = (Ψ ◦n α) ◦ α

• Ψ ? α = Ψ ◦n α, where n is the first integer such that
B(Ψ ◦n α) ` α.
Note that ? is undefined if there is no n such that B(Ψ ◦n

α) ` α, but for all operators ◦ considered in this work, the
associated operator ? will be total, that is for any pair Ψ, α
there will exist n such that B(Ψ ◦n α) ` α (see postulate
(I1)) below.

Finally, let≤ be a a total pre-order, i.e a reflexive (x ≤ x),
transitive ((x ≤ y ∧ y ≤ z) → x ≤ z) and total (x ≤
y ∨ y ≤ x) relation overW . Then the corresponding strict
relation < is defined as x < y iff x ≤ y and y 6≤ x, and the
corresponding equivalence relation ' is defined as x ' y iff
x ≤ y and y ≤ x. We denote w � w′ when w < w′ and
there is no w′′ such that w < w′′ < w′. We also use the
notation min(A,≤) = {w ∈ A | @w′ ∈ A w′ < w}.

When a setW is equipped with a total pre-order ≤, then
this set can be splitted in different levels, that gives the or-
dered sequence of its equivalence classesW = 〈S0, . . . Sn〉.
So ∀x, y ∈ Si x ' y. We say in that case that x and y are
at the same level of the pre-order. And ∀x ∈ Si ∀y ∈ Sj
i < j implies x < y. We say in this case that x is in a lower
level than y. We extend straightforwardly these definitions
to compare subsets of equivalence classes, i.e if A ⊆ Si and
B ⊆ Sj then we say that A is in a lower level than B if
i < j.

Improvement operators
First, let us state the basic logical properties that are asked
for improvement operators.
Definition 1 An operator ◦ is said to be a weak improve-
ment operator if it satisfies (I1) to (I6):
(I1) There exists n such that B(Ψ ◦n α) ` α
(I2) If B(Ψ) ∧ α 6` ⊥, then B(Ψ ? α) ≡ B(Ψ) ∧ α
(I3) If α 0 ⊥, then B(Ψ ◦ α) 0 ⊥
(I4) For any positive integer n if αi ≡ βi for all i ≤ n then
B(Ψ ◦ α1 ◦ · · · ◦ αn) ≡ B(Ψ ◦ β1 ◦ · · · ◦ βn)
(I5) B(Ψ ? α) ∧ β ` B(Ψ ? (α ∧ β))
(I6) IfB(Ψ?α)∧β 6` ⊥, thenB(Ψ?(α∧β)) ` B(Ψ?α)∧β

We have put together these properties because they allow
to obtain a first basic representation theorem (see Theorem
1). These properties are very close to the usual ones for
iterated belief revision (Darwiche & Pearl 1997). Note nev-
ertheless that there is a real difference since in usual for-
mulation ? is a revision operator, whereas here it denotes a
sequence of improvements.

Remark that (I3) is a straightforward consequence of the
definition of the operator ◦, since we ask the new informa-
tion and the epistemic states to be consistent. Although
(I3) is redundant in our framework, we have chosen to put it
explicitly to remain close to the usual DP postulates.

The main difference with usual belief revision operators
is that we do not ask the fundamental success property
B(Ψ ◦ α) ` α. We ask instead the weaker (I1), that just
requires that after a sequence of improvements, we will fi-
nally imply the new information. So this means that the (re-
vision) operator ? defined as a sequence of improvements ◦
is always defined.



Postulate (I4) is also stonger than the usual version of
(Darwiche & Pearl 1997). We discuss it in the next Section.

Before establishing more specific postulates concerning
the iteration by different formulas, we have to define new
notions that help us to keep light notations.

Definition 2 Let ◦ be a change operator satisfying (I1). Let
α, β and Ψ be two formulae and an epistemic state respec-
tively. We say that α is below β with respect to Ψ, given ◦,
denoted α ≺◦Ψ β (or simply α ≺Ψ β if there is no ambiguity
about ◦) if and only if B(Ψ ? α) ` B(Ψ ? (α ∨ β)) and
B(Ψ ? β) 6` B(Ψ ? (α ∨ β)).

The pair (α, β) is Ψ-consecutive, denoted α ≺≺◦Ψ β (or
simply α ≺≺Ψ β if there is no ambiguity about ◦) if and only
if α ≺Ψ β and there is no formula γ such that α ≺Ψ γ ≺Ψ

β.

The idea of these two definitions is that α ≺◦Ψ β denotes
that α is more entrenched (plausible) than β in the epistemic
state Ψ. And α ≺≺◦Ψ β denotes the fact that α is a formula
immediately more entrenched (plausible) than β.

Now we are ready to state the postulates concerning more
specific properties of iteration:

Definition 3 A weak improvement operator is said to be an
improvement operator if it satisfies I7 to I11
(I7) If α ` µ then B((Ψ ◦ µ) ? α) ≡ B(Ψ ? α)
(I8) If α ` ¬µ then B((Ψ ◦ µ) ? α) ≡ B(Ψ ? α)
(I9) If B(Ψ ? α) 6` ¬µ then B((Ψ ◦ µ) ? α) ` µ
(I10) If B(Ψ ? α) ` ¬µ then B((Ψ ◦ µ) ? α) 6` µ
(I11) If B(Ψ ? α) ` ¬µ, α ∧ µ 6` ⊥ and α ≺≺Ψ α ∧ µ then
B((Ψ ◦ µ) ? α) 6` ¬µ

A first observation about these postulates is that they are
expressed in terms of both ◦ and ?. And that it is thanks to
these several iterations until revision1, modeled by ?, that we
can define powerful properties on ◦. Postulates (I7), (I8) are
close to the properties (C1) and (C2) of (Darwiche & Pearl
1997), but translated for weak improvement operators. Pos-
tulate (I9) is also close to the property of Independence in
(Jin & Thielscher 2007) (called also property (P) in (Booth
& Meyer 2006)), but also translated for weak improvement
operators. Postulates (I9) and (I11) deals with the improve-
ment of the new information, i.e. the increase of its plausi-
bility in the epistemic state. Postulates (I10) and (I11) deals
with the the cautiousness of the approach, i.e. they express
the fact that the increase of the plausibility of the new in-
formation is limited. Postulate (I10) says that if after a se-
quence of improvements by α, the obtained epistemic state
imply ¬µ, then, if before the sequence of improvements by
α we improve by µ, then it will not be enough to imply µ af-
ter the sequence of improvements. This means that it is not
possible to go directly by an improvement from an epistemic
state where a formula is believed to one where its negation
is believed. And postulate (I11) captures some of the ideas
behind improvement operators as “small change” operators.

1Note that the ? operator satisfies the success property, so it can
be called revision operator. We will use this term in the following.
The fact that ? is a true AGM/DP revision operator will be proved
in Corollary 1.

Basically it says that if ¬µ is believed when revising by α,
but µ is quite plausible given α, then improving by µ before
starting the sequence of improvements needed to revise by
α will be enough to ensure the result to be consistent with µ.

Irrelevance of syntax
As it has been pointed out by many authors (see for instance
(Darwiche & Pearl 1997; Booth & Meyer 2006)) the postu-
late of independence (or irrelevance) of syntax is a delicate
matter for epistemic states. Actually a basic translation of
Darwiche and Pearl (R*4) in our framework would lead to:

If α ≡ β, then B(Ψ ◦ α) ≡ B(Ψ ◦ β) (1)
But even adding this postulate is not sufficient. Booth

and Meyer have well illustrated this idea in (Booth & Meyer
2006). Actually, it is not enough that (1) holds in order to
have a good iterative behavior with respect to revision by
sequences of equivalent formulae. Consider:

If (α ≡ β & γ ≡ θ), then B(Ψ◦α◦γ) ≡ B(Ψ◦β ◦θ) (2)

Postulate (1) doesn’t entail postulate (2). So the good be-
haviour with respect to equivalent formulae is not guaran-
teed on two iterations. This is why Booth and Meyer have
proposed in (Booth & Meyer 2006) to replace the usual pos-
tulate (1) by (2) in the usual DP framework.

We agree with Booth and Meyer that postulate (1) is not
enough. But we think that (2) does not go far enough. In
fact the example they give for showing that Postulate (1)
does not avoid the problem at the second iteration can be
easily extended to show that Postulate (2) does not avoid the
problem at the third iteration. So one has to specify this for
every number of iterations. That leads to the postulate (I4).

The following example, which follows the same lines of
the Example 1 in (Booth & Meyer 2006), shows that replac-
ing the postulate (1) by the postulate (2) in the basic RAGM2

framework is not enough to get the postulate (I4).
Example 1 Take a language with only two propositional
letters p and q (in this order when we consider the interpre-
tations). Let ϕ1 = p∨¬p and ϕ2 = q ∨¬q. Let Φ such that
Φ ◦ ϕ1 6= Φ ◦ ϕ2. Note that this is compatible with RAGM
plus (2), because the only constraint imposed by (2) is that
≤Φ◦ϕ1=≤Φ◦ϕ2 but not that Φ ◦ ϕ1 = Φ ◦ ϕ2. Moreover we
can takeB(Φ◦ϕ1) = p∧q = B(Φ◦ϕ2). Let Φ1,Φ2 be two
epistemic states such that B(Φ1) = p = B(Φ2), 00 <Φ1 01
and 01 <Φ2 00. Now, it is compatible with RAGM plus (2)
to put ≤Φ◦ϕ1◦p=≤Φ1 and ≤Φ◦ϕ2◦¬¬p=≤Φ2 . But then, by
the representation, we have B(Φ ◦ ϕ1 ◦ p ◦ ¬p) = ¬p ∧ ¬q
and B(Φ ◦ ϕ2 ◦ ¬¬p ◦ ¬p) = ¬p ∧ q, what clearly is a
counter-example to (I4).

Nevertheless, it worths noticing that all the well-known
iterated revision operators, as natural revision (Boutilier
1996), Darwiche and Pearl • operator (Darwiche &
Pearl 1997), Nayak’s lexicographic revision (Nayak 1994;

2RAGM is the name that Booth and Meyer give to AGM/DP
belief revision operators satisfying (R*1)-(R*6) (Darwiche & Pearl
1997).



Konieczny & Pino Pérez 2000) for instance, satisfy (I4).
The reason behind this phenomenon is that all these oper-
ators satisfy the following property

If α ≡ β and ≤Ψ=≤Φ then ≤Ψ◦α=≤Φ◦β (3)

In the presence of the other RAGM properties, the previ-
ous property entails the property (2). But the converse is not
true as we can see via the example 1.

Remark also that usual belief revision operators satisfy all
other weak improvement properties (with n = 1 in (I1)), so
weak improvements operators are a generalization of usual
DP belief revision operators (Darwiche & Pearl 1997).

Representation theorem
Let us first define strong faithful assignements.

Definition 4 A function Ψ 7→≤Ψ that maps each epistemic
state Ψ to a total pre-order on interpretations ≤Ψ is said to
be a strong faithful assignment if and only if:

1. If w |= B(Ψ) and w′ |= B(Ψ), then w 'Ψ w′

2. If w |= B(Ψ) and w′ 6|= B(Ψ), then w <Ψ w′

3. For any positive integer n if αi ≡ βi for any i ≤ n then
≤Ψ◦α1◦···◦αn= ≤Ψ◦β1◦···◦βn

Note that conditions 1 and 2 are equivalent to [[B(Ψ)]] =
min(W,≤Ψ), and are the usual ones for faithful assignment
(Darwiche & Pearl 1997). Condition 3 is a very natural
condition that links pre-orders associated to iteration of im-
provements: two sequences of improvements of the same
pre-order by equivalent formulae lead to the same pre-order.

Let us first show a first representation theorem on weak
improvement operators, before turning on the more interest-
ing iteration properties.

Theorem 1 A change operator ◦ is a weak improvement op-
erator if and only if there exists a strong faithful assignment
that maps each epistemic state Ψ to a total pre-order on in-
terpretations ≤Ψ such that

[[B(Ψ ? α)]] = min([[α]],≤Ψ) (4)

It is easy to check that the faithful assignment represent-
ing ◦ in the previous theorem is unique.

An obvious corrolary of the previous Theorem and its
proof is the following one:

Corollary 1 If ◦ is a weak improvement operator, then ? is
an AGM/DP revision operator, i.e. it satisfies (R*1)-(R*6)
of (Darwiche & Pearl 1997).

As a consequence of the previous theorem we have also
the following trichotomy property:
Proposition 1 Let ◦ be a weak improvement operator. Then

B(Ψ ? (α ∨ β)) =

{
B(Ψ ? α) or
B(Ψ ? β) or
B(Ψ ? α) ∨B(Ψ ? β)

Let us now give two corollaries of these results, that are
useful to understand the definitions of≺Ψ and≺≺Ψ, and that
will be useful in the proof of the main Theorem (Theorem
2).

Corollary 2 Let ◦ be a weak improvement operator. Then
α ≺Ψ β if and only if there exist w, w′ such that w ∈
[[B(Ψ ? α)]], w′ ∈ [[B(Ψ ? β)]], w <Ψ w′.

Corollary 3 Let ◦ be a weak improvement operator. Then
α ≺≺Ψ β if and only if there exist w, w′ such that w ∈
[[B(Ψ ? α)]], w′ ∈ [[B(Ψ ? β)]], w <Ψ w′ and there is no
w′′ such that w <Ψ w′′ <Ψ w′.

Main result
Let us turn now to the main representation result about im-
provement operators.

Definition 5 Let ◦ be a weak improvement operator and
Ψ 7→≤Ψ its corresponding strong faithful assignment. The
assignment will be called a gradual assignment if the prop-
erties S1, S2, S3, S4 and S5 are satisfied

(S1) If w,w′ ∈ [[α]] then w ≤Ψ w′ ⇔ w ≤Ψ◦α w
′

(S2) If w,w′ ∈ [[¬α]] then w ≤Ψ w′ ⇔ w ≤Ψ◦α w
′

(S3) If w ∈ [[α]], w′∈ [[¬α]] then w ≤Ψ w′ ⇒ w <Ψ◦α w
′

(S4) If w ∈ [[α]], w′∈ [[¬α]] then w′ <Ψ w ⇒ w′ ≤Ψ◦α w
(S5) If w ∈ [[α]], w′ ∈ [[¬α]] then w′ �Ψ w ⇒ w ≤Ψ◦α w

′

Properties (S1) and (S2) correspond to usual properties
(CR1) and (CR2) for DP iterated revision operators (Dar-
wiche & Pearl 1997). Property (S3) is the new prop-
erty proposed in (Jin & Thielscher 2007; Booth & Meyer
2006), and that forces to increase the plausibility of the
models of the new information. Property (S4) shows how
the increase of plausibility of the models of the new in-
formation is limited by improvement operators. This is
an important difference with usual DP iterated revision op-
erators (Darwiche & Pearl 1997; Jin & Thielscher 2007;
Booth & Meyer 2006). Property (S5) asks (together with
(S4)) that if a model of ¬α is just a little more plausible than
a model of α, then after improvement the two models will
have the same plausibility.

Theorem 2 A change operator ◦ is an improvement opera-
tor if and only if there exists a gradual assignment such that

[[B(Ψ ? α)]] = min([[α]],≤Ψ)

This theorem has important consequences. In particular
the relationship between ≤Ψ and ≤Ψ◦α imposed by Defini-
tion 5 is very tight. Actually, the total pre-order ≤Ψ◦α is
completely determined by ≤Ψ and α as it will be stated in
Proposition 2. We first need the following lemma:

Lemma 1 Let ◦ be an improvement operator and Ψ 7→≤Ψ

its gradual assignment. If w <Ψ w′, w ∈ [[¬α]], w′ ∈ [[α]]
and w 6�Ψ w′ then w <Ψ◦α w

′.

This Lemma is interesting since it gives the missing re-
lation between ≤Ψ◦α and ≤Ψ, since all other relations are
given by the properties of Definition 5.

Proposition 2 Let ◦ be an improvement operator and
Ψ 7→≤Ψ its gradual assignment. Then for every formula
α, the pre-order≤Ψ◦α is completely determined by ≤Ψ and
[[α]].



w ∈ [[α]] w′ ∈ [[α]] w ≤Ψ w′ ⇔ w ≤Ψ◦α w
′ (S1)

w ∈ [[¬α]] w′ ∈ [[¬α]] w ≤Ψ w′ ⇔ w ≤Ψ◦α w
′ (S2)

w ∈ [[α]] w′ ∈ [[¬α]]

w <Ψ w′ ⇔ w <Ψ◦α w
′ (S3)

w 'Ψ w′ ⇒ w <Ψ◦α w
′ (S3)

w′ �Ψ w ⇒ w 'Ψ◦α w
′ (S4) & (S5)

w′ <Ψ w ∧ w′ 6�Ψ w ⇒ w <Ψ◦α w
′ (Lemma 1)

Table 1: From ≤Ψ to ≤Ψ◦α

This proposition is a very important one since it says, in
a sense, that there is a unique improvement operator. In fact
one can define different improvement operators by assigning
to the initial epistemic state of the sequence different pre-
orders. Once this pre-order is known, Proposition 2 tells us
that there is no more freedom on the choice of subsequent
pre-orders.

So clearly if ones considers pre-orders on interpretations
as epistemic states (recall that the representation theorem
just says that we can associate a pre-order on interpretation
to each epistemic state, it does not presume anything on the
exact nature of these epistemic states), then there is a unique
improvement operator.

The exact construction of≤Ψ◦α from≤Ψ is given in Table
1. Roughly speaking, ≤Ψ◦α is obtained by shifting down
one level the models of α in the total pre-order ≤Ψ. This
will be stated more formally in the next section.

Concrete example: Improvement via OCF
Let us now show how to implement an improvement opera-
tor via OCF. Let us denote Ord the class of ordinals.

Definition 6 An Ordinal Conditional Function (OCF) κ is
a function from the set of interpretations W to the set of
ordinals such that at least one interpretation is assigned 0.
A function from the set of interpretations W to the set of
ordinals will be called a free OCF.
The set of OCF will be denoted K.

Let us now state how to implement improvement using the
framework of OCF. More precisely we will give two results:
first we will show how to simply compute the resulting pre-
order after an improvement, using a translation through free
OCFs. Then, we will see how to define an improvement
operator in the OCF framework.

So, what we do first is the following: giving≤Ψ and α we
describe ≤Ψ◦α using the machinery of OCF. At this point
let us recall the equivalent view of a total pre-order ≤ in-
troduced in the preliminaries: a total pre-order overW can
be seen as the splitting of the set W in different levels (the
equivalent classes), 〈S0, . . . Sn〉m the ordered sequence of
its equivalence classes. Thus, ∀x, y ∈ Si x ' y and ∀x ∈ Si
∀y ∈ Sj i < j implies x < y.

Let κ be the canonical representative of ≤Ψ, i.e. if ≤Ψ

has n levels and w is in the level i, κ(w) = i.
Consider now the following free OCF:

κα(w) =
{
κ(w) if w |= α
κ(w) + 1 if w |= ¬α

It is not hard to see that this free OCF represents ≤Ψ◦α,
that is, the total pre-order associated to this function in the
natural way (w ≤κα w′ iff κα(w) ≤ κα(w′)) satisfies all the
properties of Table 1. So this result just aims at illustrating
simply the behaviour of improvement operators in terms of
total pre-orders via free OCF.

Note however that the free OCF used above is very par-
ticular, since it is build from the pre-order ≤Ψ. In order
to be able to define an improvement operator on any given
OCF, this requires much more difficult definitions in order
to modelize the smooth increase of plausibility of improve-
ment operators.

So now we turn to a plain representation of an improve-
ment operator ◦ in the full OCF framework. Thus, we as-
sume that epistemic states are indeed OCF’s and ◦ : K ×
L∗ −→ K. In this framework, we define the function B by
putting [[B(κ)]] = {w : κ(w) = 0}.

Remember that κ(α) = min{κ(w) : w ∈ [[α]]}. Given
κ and α, an OCF and a consistent formula respectively, we
are going to define the new OCF κ ◦ α by cases according
to κ(α) > 0 or κ(α) = 0. In the first case (κ(α) > 0)
we perform the sliding down the models of α via an auxil-
iary function called fκα↓ defined below. In the second case
(κ(α) = 0) we simulate the sliding down the models of
α via an auxiliary function called fκα↑ defined below that
performs the sliding up the models of ¬α. The functions
fκα↓ : [[α]] −→ Ord and fκα↑ : [[¬α]] −→ Ord are defined
by putting

fκα↓(w) =


max{ρ : ∃w′ ∈ [[¬α]] κ(w′) = ρ & ρ < κ(w)

& 6 ∃w′′ ∈ [[α]] ρ < κ(w′′) < κ(w)}
if this set is nonempty

κ(w)− 1 otherwise
fκα↓ maps w, a model of α, into the first rank below κ(w)

where there is a model of ¬α in the case that there is no
models of α strictly in between this two levels. Otherwise
fκα↓ maps w into κ(w)− 1.

fκα↑(w) =


min{ρ : ∃w′ ∈ [[α]] κ(w′) = ρ & κ(w) < ρ

& 6 ∃w′′ ∈ [[¬α]] κ(w) < κ(w′′) < ρ}
if this set is nonempty

κ(w) + 1 otherwise



fκα↑ mapsw, a model of ¬α, into the first rank above κ(w)
where there is a model of α in the case that there is no mod-
els of ¬α strictly in between this two ranks. Otherwise fκα↑
maps w into κ(w) + 1.

Again, we define two functions mapping worlds into ordi-
nals according to whether or not κ(α) = 0. When κ(α) = 0
we put

κ ↑ ¬α(w) =
{
κ(w) if w |= α
fκα↑(w) if w |= ¬α

and when κ(α) > 0 we put

κ ↓ α(w) =
{
κ(w) if w |= ¬α
fκα↓(w) if w |= α

Finally we define κ ◦ α by putting

κ ◦ α =
{
κ ↑ ¬α if κ(α) = 0
κ ↓ α if κ(α) > 0

Let us now take an example in order to see how it works.

Example 2 Consider a language with propositional vari-
ables p, q and r in this order. Let κ be the OCF with image
{0, 1, 2, 4, 5} described in the diagram below and α a
formula such that α = ¬p. The following diagrams shows
κ, κ ◦ α, κ ◦ α ◦ α and κ ◦ α ◦ α ◦ α (the models of α are in
boldface):

5
4
3
2
1
0

110
011

−−−−−−
010 000 001

101 100
111
κ

110
−−−−−−

011
−−−−−−

101 100 010 000 001
111
κ ◦ α

5
4
3
2
1
0

6
5
4
3
2
1
0

110
−−−−−−
−−−−−−
−−−−−−
101 100 011

111 010 000 001
κ ◦ α ◦ α

110
−−−−−−
−−−−−−
−−−−−−

101 100
111 011

010 000 001
κ ◦ α ◦ α ◦ α

6
5
4
3
2
1
0

Properties of improvement operators
Let us give now some additional properties on improvement
operators, that illustrate how it relates with existing opera-
tors.

Proposition 3 Improvement operators can not be repre-
sented as Spohn’s Conditionalisation nor Williams’ Adjust-
ment.

This is quite an intuitive result since Conditionalisation
and Adjustement operate the same “global” change on the
interpretation ranks, whereas, as sum up in Table 1, im-
provement requires a more adaptative behaviour (that de-
pends more on the ranks of the other interpretations).

Proposition 4 • There exists n such that Ψ ◦n α is Nayak’s
lexicographic revision (Nayak 1994; Konieczny & Pino
Pérez 2000). Let us note Ψ ?lex α = Ψ ◦n α.

• Actually, the first n such that Ψ ?lex α = Ψ ◦n α is
a fixed point for improvement by α, in the sense that
≤Ψ?lexα=≤Ψ?lexα◦α.

This can be shown easily with the help of Proposition 2
or with the representation of ≤Ψ◦α via the free OCF. In fact
it requires at most k iterations where k is the level in ≤Ψ of
the worst world of α (i.e. the model of α at the highest level)
to reach this fixed point.

This last proposition is interesting since it illustrate the
fact that the process of improvement does not stop as soon
as the new information is believed. So in particular:

Proposition 5 B(Ψ) ` α does not imply that ≤Ψ◦α=≤Ψ

and therefore does not imply Ψ ◦ α = Ψ.

It is worth noticing that even if we have a fixed point in
the sense of Proposition 4, i.e. ≤Ψ=≤Ψ◦α we can have Ψ 6=
Ψ ◦ α. The operator defined via the OCF is an example of
such a situation.

Remark 1 Improvements operators can be used to define
contractions operators. Actualy, define Ψ � α = Ψ ◦n ¬α
where n is the smallest integer such that Ψ◦n¬α 6` α. Then,
� is a contraction operator.

Let us now elaborate on the links between improvement
operators and the bad day/good day approach of Booth et al.
(Booth & Meyer 2007; Booth, Meyer, & Wong 2006) (also
called abstract interval orders revision). In both cases the
change is small, in the sense that the increase of plausibil-
ity of the models of the new information is limited. A first
difference is that their operators are defined as revision of to-
tal pre-orders, whereas improvements are defined on general
DP epistemic states. A second, more important difference
between Booth et al. approach and ours is that they need
an extra-logical information in order to guide the process,
whereas our operators are completely defined in the usual
DP framework. This is an important improvement, that al-
lows for instance to easily iterate the process.

Actually, given ≤Ψ, it is possible to define �, a ≤Ψ-
faithful tpo (see (Booth, Meyer, & Wong 2006)), such that
the revision of � by α, in the sense of Booth-Meyer-Wong,
is exactly ≤Ψ◦α. So, according to this link, improvement
operators could be considered in a sense as a special case of
Booth and Meyer operators.

Finally there is a very interesting behaviour of improve-
ment operator with respect to long term behaviour. When
working in a finite framework, no existing iterated belief re-
vision operator escapes one of the following limit cases after
a long course of revisions: maxichoice revision, or full meet
revision.

Full meet revision means that the beliefs of the new epis-
temic state is either the conjunction of the new information
with the beliefs of the old epistemic state it if is consistent,
or just the new information otherwise. This is problematic,
since it means that after a long course of revision the agent
has lost all his beliefs. But for instance Lehmann’s opera-
tors (Lehmann 1995) lead to this limit case when working
on finite frameworks.

Maxichoice revision means that the revision leads to an
epistemic states whose beliefs are a complete formula. This



is also problematic, since it means that when this situation is
reached, any revision by any formula will allow to be com-
pletely determined about each issue. It can be argued that
this is due to the long revision history, that allows the agent
to have a very precise view of the world. But still it seems
sensible to be able to be uncertain about some issues, and to
lose some certainties sometimes. Note that most of DP-like
operators lead to this limit case (Darwiche & Pearl 1997;
Nayak 1994; Boutilier 1996; Konieczny & Pino Pérez 2000;
Booth & Meyer 2006; Jin & Thielscher 2007).

Note that it is not the case in the framework of OCFs, af-
ter any sequence of conditionalization, or adjustment, it is
possible to reach any other OCF by some sequence. This
is one of the advantage of using a more quantitative frame-
work (using a degree of acceptance for each input formula),
compared to the fully qualitative one that is the DP iterated
belief revision framework.

It is interesting to note that improvement operators have
no limit case. Actually, after any sequence of improvements,
it is possible to reach any formula (as beliefs of an epis-
temic state) by an adequate sequence of improvements (the
same result holds for associated pre-orders: any pre-order
can be reached after an adequate sequence of improvements
starting from any other pre-order). Whereas for DP iterated
belief revision operators it is not the case: after some se-
quences of revisions, some formulae (or pre-orders) are not
reachable anymore.

The following proposition summarizes this property of
improvement operators:

Proposition 6 Let ≤ be any pre-order on interpretations
and ≤Ψ the pre-order associated to Ψ then there exists a se-
quence of formulae α1, . . . , αn such that ≤Ψ◦α1◦...◦αn=≤.

Improvement operators are, as far as we know, the first
change operators defined in the DP framework that allows
to avoid these limit cases.

Conclusion
We have introduced a new family of change operators called
improvement operators. These operators have a more cau-
tious behaviour than usual DP iterated revision operators.
The main iterated revision operators of the literature satisfy
all the properties of weak improvement operators. In that
respect weak improvement operators can be considered as a
generalization of iterated revision operators.

An essential point for being able to state logical properties
and theorems on improvement operators is the interesting re-
lationship between ◦ and its corresponding revision operator
?.

(I11), the last postulate required for improvement opera-
tors is very strong, in the sense that it determines in a unique
way the pre-orders associated to the improvement. Thus,
there are room to explore some variants of (I11) leading to
other interesting weak improvements operators. We keep
this as future work.
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Appendix
Proof of Theorem 1: (only if) Let ◦ be a weak improve-
ment operator. We define an assignment Ψ 7→≤Ψ by putting

w ≤Ψ w′ if and only if w |= B(Ψ ? ϕw,w′)

By I4, the relation≤Ψ is well defined, i.e. it does not depend
on the choice of the formula ϕw,w′ . We prove now that ≤Ψ

is a total pre-order.
Totality: Let w, w′ be any interpretations (eventually
w = w′). By I1, [[Ψ ? ϕw,w′ ]] ⊆ {w,w′} and by defi-
nition [[Ψ ? ϕw,w′]] 6= ∅, so w ∈ [[Ψ ? ϕw,w′ ]] or w′ ∈
[[Ψ ? ϕw,w′ ]] (or both), i.e. w ≤Ψ w′ or w′ ≤Ψ w.
Transitivity: Suppose w ≤Ψ w′ and w′ ≤Ψ w′′. We
want to show that w ≤Ψ w′′, that is to say w ∈
[[B(Ψ ? ϕw,w′′)]]. Suppose towards a contradiction that it
is not the case, so w 6∈ [[B(Ψ ? ϕw,w′′)]]. As by definition
[[B(Ψ ? ϕw,w′′)]] 6= ∅, this means that [[B(Ψ ? ϕw,w′′)]] =
{w′′}. Let us consider two cases:
1) If B(Ψ ? ϕw,w′,w′′) ∧ ϕw,w′′ is not consistent. Then,
as by definition B(Ψ ? ϕw,w′,w′′) 0 ⊥, we have
[[B(Ψ ? ϕw,w′,w′′)]] = {w′}. In this case as B(Ψ ?
ϕw,w′,w′′) ∧ ϕw,w′ is consistent, by I5 and I6 and I4 we get
that [[B(Ψ ? ϕw,w′)]] = [[B(Ψ ? ϕw,w′,w′′) ∧ ϕw,w′ ]] =
{w′}. This means by definition that w′ <Ψ w. Contra-
diction.
2) If B(Ψ ? ϕw,w′,w′′) ∧ ϕw,w′′ is consistent. Then
by I5 and I6 and I4 we get that [[B(Ψ ? ϕw,w′′)]] =
[[B(Ψ ? ϕw,w′,w′′) ∧ ϕw,w′′ ]] = {w′′}. This means by defi-
nition that w′′ <Ψ w. Contradiction.
Let us prove now equation (4). First we will prove that
[[B(Ψ ? α)]] ⊆ min([[α]],≤Ψ). Take w in [[B(Ψ ? α)]].
Thus, B(Ψ?α)∧ϕw,w′ 6` ⊥ for any w′ ∈ [[α]]. Then, by I5
and I6 and I4,B(Ψ?α)∧ϕw,w′ ≡ B(Ψ?ϕw,w′). Therefore
w ∈ [[B(Ψ ? ϕw,w′)]], that is w ≤Ψ w′ for any w′ ∈ [[α]]
what exactly means w ∈ min([[α]],≤Ψ).
Now we will prove the converse inclusion that is
min([[α]],≤Ψ) ⊆ [[B(Ψ ? α)]]. Suppose that w ∈
min([[α]],≤Ψ). We want to show that w ∈ [[B(Ψ ? α)]].
Towards a contradiction suppose that w 6∈ [[B(Ψ ? α)]].
Let w′ be a model of B(Ψ ? α).Then, by I5 and I6 and
I4, B(Ψ ? α) ∧ ϕw,w′ ≡ B(Ψ ? ϕw,w′). By assumption
w 6∈ [[B(Ψ ? α)]] so [[B(Ψ ? ϕw,w′)]] = {w′}. Therefore
w′ <Ψ w, contradicting the minimality of w in [[α]] with
respect to ≤Ψ.
Now we prove the conditions of the strong faithful assign-
ment. First to show conditions 1 and 2 it is equivallent to
show that [[B(Ψ)]] = min(W,≤Ψ). Suppose that w |=



B(Ψ). We want to see that w ≤Ψ w′ for any interpre-
tation w′. In order to do that, let w′ be a interpretation.
Note that w |= B(Ψ) ∧ ϕw,w′ , so B(Ψ) ∧ ϕw,w′ 6` ⊥.
Then, by I2, B(Ψ ? ϕw,w′) ≡ B(Ψ) ∧ ϕw,w′ . There-
fore, w |= B(Ψ ? ϕw,w′), i.e. w ≤Ψ w′. This proves
that [[B(Ψ)]] ⊆ min(W,≤Ψ). For the converse inclusion
take w ∈ min(W,≤Ψ). Towards a contradiction, suppose
that w 6∈ [[B(Ψ)]]. Let w′ be a model of B(Ψ). Then
[[B(Ψ) ∧ ϕw,w′ ]] = {w′}. Thus, by I2, B(Ψ ? ϕw,w′) ≡
B(Ψ) ∧ ϕw,w′ and therefore [[B(Ψ ? ϕw,w′)]] = {w′}, i.e.
w′ <Ψ w, contradicting the minimality of w with respect to
≤Ψ.
Now for condition 3 suppose αi ≡ βi for any i ≤ n we want
to show≤Ψ◦α1◦···◦αn= ≤Ψ◦β1◦···◦βn . We proceed by induc-
tion on k = 0, . . . , n. For k = 0 is trivial because ≤Ψ=≤Ψ.
For shortening the notation put Θk = Ψ ◦ α1 ◦ · · · ◦ αk and
Γk = Ψ ◦ β1 ◦ · · · ◦ βk. Thus our induction hypothesis is
≤Θk= ≤Γk . We want to show that ≤Θk◦αk+1= ≤Γk◦βk+1 .
In order to do that, we prove that each level of ≤Θk◦αk+1

is equal to the corresponding level of ≤Γk◦βk+1 . This is
done by induction on the number of levels of ≤Θk◦αk+1 .
We sketch the proof. For the level 0: we want to see
that min(W,≤Θk◦αk+1) = min(W,≤Γk◦βk+1). By equa-
tion (4), we have min(W,≤Θk◦αk+1) = [[B(Γk ◦ αk+1)]]
and min(W,≤Γk◦βk+1) = [[B(Γk ◦ βk+1)]]. By
I4+, [[B(Θk ◦ αk+1)]] = [[B(Γk ◦ βk+1)]]. Therefore,
min(W,≤Θk◦αk+1) = min(W,≤Γk◦βk+1). Now sup-
pose that the first i levels of ≤Θk◦αk+1 correspond exactly
to the first i levels of ≤Γk◦βk+1 . We will prove that the
level i + 1 of ≤Θk◦αk+1 is contained in the level i + 1
of ≤Γk◦βk+1 (and with a symmetrical argument we will
prove the inverse inclusion). Towards a contradiction sup-
pose that w is in the level i + 1 of ≤Θk◦αk+1 and w is
not in the level i + 1 of ≤Γk◦βk+1 . Take w′ in the level
i + 1 of ≤Γk◦βk+1 . As the first i levels of ≤Θk◦αk+1

and ≤Γk◦βk+1 are equal, w′ is in a level j, with j > i
for the pre-order ≤Θk◦αk+1 . Consider now the formula
ϕw,w′ . Then it is clear that w ∈ min([[ϕw,w′ ]],≤Θk◦αk+1

) and w 6∈ min([[ϕw,w′ ]],≤Γk◦βk+1). From this,
by equation (4), follows [[B(Θk ◦ αk+1 ◦ ϕw,w′)]] 6=
[[B(Γk ◦ βk+1 ◦ ϕw,w′)]], contradicting I4+.
(if) Suppose that we have a strong faithful assignment
Ψ 7→≤Ψ such that equation (4) holds. We want to check
that I1-I6 hold.
(I1) Follows from equation 4.
(I2) Let us first show that B(Ψ) ∧ α ` B(Ψ ? α). If w |=
B(Ψ) ∧ α this means that w ∈ min(W,≤Ψ). So for any
w′ ∈ W , we have w ≤Ψ w′. This is in particular true for all
the models of α, so w ∈ min(α,≤Ψ), that is, by definition,
w |= B(Ψ?α). Let us now show thatB(Ψ?α) ` B(Ψ)∧α.
By definitionw |= B(Ψ?α) meansw ∈ min([[α]],≤Ψ). So
w |= α. Let us show that w |= B(Ψ). Suppose that it is not
the case. In this case, and since by hypothesisB(Ψ)∧α 0 ⊥
we can choose a w′ ∈ [[B(Ψ) ∧ α]]. So, as w′ ∈ [[B(Ψ)]]
and w /∈ [[B(Ψ)]], we have w′ <Ψ w. But as w′, w |= α,
this implies that w /∈ min([[α]],≤Ψ). Contradiction.
(I4) Suppose αi ≡ βi for any i ≤ n we want to show

B(Ψ ◦ α1 ◦ · · · ◦ αn) ≡ B(Ψ ◦ β1 ◦ · · · ◦ βn). By equation
(4), this is equivalent to prove min([[αn]],≤Ψ◦α1◦···◦αn−1

) = min([[βn]],≤Ψ◦β1◦···◦βn−1). But this is clear because,
by S6, we have ≤Ψ◦α1◦···◦αn−1=≤Ψ◦β1◦···◦βn−1 and by hy-
pothesis [[αn]] = [[βn]].
(I5 and I6) By equation (4) we have [[B(Ψ ? (α ∧ β))]] =
min([[α ∧ β]],≤Ψ) and [[B(Ψ ? α) ∧ β]] = min([[α]],≤Ψ

) ∩ [[β]]. Thus, it is enough to see that

min([[α]],≤Ψ) ∩ [[β]] = min([[α ∧ β]],≤Ψ)

under the hypothesis min([[α]],≤Ψ) ∩ [[β]] 6= ∅. It is quite
clear that min([[α]],≤Ψ) ∩ [[β]] ⊆ min([[α ∧ β]],≤Ψ).
For the other inclusion take w ∈ min([[α ∧ β]],≤Ψ). As
w is in [[β]] it remains to see that w ∈ min([[α]],≤Ψ). We
know that w ∈ [[α]]. We claim that it is minimal in [[α]]
with respect to ≤Ψ. Towards a contradiction, suppose that
ir is not the case. As ≤Ψ is a total pre-order there exists
w′ ∈ min([[α]],≤Ψ) such that w′ <Ψ w. By hypothesis,
there exists w′′ ∈ min([[α]],≤Ψ) ∩ [[β]]. Again as≤Ψ

is a total pre-order, w′ ∼Ψ w′′, therefore w′′ <Ψ w
contradicting the minimality of w in [[α ∧ β]] with respect
to ≤Ψ.

Proof of Proposition 1: If min([[α]],≤Ψ) and
min([[β]],≤Ψ) are in the same level with respect to≤Ψ then
min([[(]]α ∨ β),≤Ψ) = min([[α]],≤Ψ) ∪ min([[β]],≤Ψ).
Thus, by Theorem 1, [[B(Ψ ? (α ∨ β))]] = [[B(Ψ ? α)]] ∪
[[B(Ψ ? β)]]. Otherwise, min([[α]],≤Ψ) is in a lower
level than min([[β]],≤Ψ) or min([[β]],≤Ψ) is in a
lower level than min([[α]],≤Ψ). In the first case,
min([[(]]α ∨ β),≤Ψ) = min([[α]],≤Ψ). Thus, by the
Theorem 1, [[B(Ψ ? (α ∨ β))]] = [[B(Ψ ? α)]]. In the
second case, min([[(]]α∨ β),≤Ψ) = min([[β]],≤Ψ). Thus,
by the Theorem 1, [[B(Ψ ? (α ∨ β))]] = [[B(Ψ ? β)]].

Proof of Corollary 2: (only if) Assume that α ≺Ψ β, that
isB(Ψ?α) ` B(Ψ?(α∨β)) andB(Ψ?β) 6` B(Ψ?(α∨β)).
By Proposition 1 and its proof, necessarily min([[α]],≤Ψ)
is in a lower level than min([[β]],≤Ψ). Thus, by Theo-
rem 1, it is enough to take w ∈ min([[α]],≤Ψ) and w′ ∈
min([[β]],≤Ψ) to get w ∈ [[B(Ψ ? α)]], w′ ∈ [[B(Ψ ? β)]],
w <Ψ w′.
(if) Assume that there exist w, w′ such that w ∈
[[B(Ψ ? α)]], w′ ∈ [[B(Ψ ? β)]], w <Ψ w′. Then, by Theo-
rem 1, min([[α]],≤Ψ) is in a lower level than min([[β]],≤Ψ

). Then, by Proposition 1 and its proof, B(Ψ ? (α ∨ β)) ≡
B(Ψ ? α). On the other hand B(Ψ ? β) 6` B(Ψ ? (α ∨ β))
because min([[α]],≤Ψ) and min([[β]],≤Ψ) are not in the
same level. Therefore α ≺Ψ β

Proof of Corollary 3: (only if) Assume α ≺≺Ψ β. By
Corollary 2, we get w, w′ such that w ∈ [[B(Ψ ? α)]],
w′ ∈ [[B(Ψ ? β)]], w <Ψ w′. Towards a contradiction,
suppose that there exists w′′ such that w <Ψ w′′ <Ψ w′.
But it is clear, using Corollary 2, that α ≺Ψ ϕw′′ ≺Ψ β
contradicting the fact α ≺≺Ψ β.
(if) Assume there exist w, w′ such that w ∈ [[B(Ψ ? α)]],



w′ ∈ [[B(Ψ ? β)]], w <Ψ w′ and there is no w′′ such
that w <Ψ w′′ <Ψ w′. By Corollary 2, α ≺Ψ β. Thus,
the only possibility for α 6≺≺Ψ β, is the existence of γ
such that α ≺Ψ γ ≺Ψ β. Again, by Corollary 2, taking
w′′ ∈ [[B(Ψ ? γ)]] we have w <Ψ w′′ <Ψ w′, a contradic-
tion.

Proof of Theorem 2: (only if) By Theorem 1 we know
that there exists an epistemic assignment Ψ 7→≤Ψ such that
the equation (4) holds. Thus, it remains to prove that the as-
signment is indeed a gradual assignment, i.e. it satisfies S1,
S2, S3, S4 and S5.
(S1) Suppose w,w′ ∈ [[α]]. Thus, ϕw,w′ ` α. By I7,
B((Ψ ◦ α) ? ϕw,w′) ≡ B(Ψ ? ϕw,w′). Then by equation (4)
we have w ≤Ψ◦α w

′ ⇔ w ∈ min({w,w′},≤Ψ◦α)
⇔ w ∈ [[B((Ψ ◦ α) ? ϕw,w′)]]
⇔ w ∈ [[B(Ψ ? ϕw,w′)]]
⇔ w ∈ min({w,w′},≤Ψ)
⇔ w ≤Ψ w′

(S2) The proof is analogous to the one of S1 but using I8
instead of I7.
(S3) Suppose that w ∈ [[α]], w′ ∈ [[¬α]] and w ≤Ψ w′.
We want to show that w <Ψ◦α w′. As w ≤Ψ w′, nec-
essarily w ∈ min({w,w′},≤Ψ) what, by Equation (4),
means w ∈ [[B(Ψ ? ϕw,w′)]]. Then B(Ψ ? ϕw,w′) 6` ¬α,
so by I9, B((Ψ ◦ α) ? ϕw,w′) ` α. Then, by I1 and I3,
[[B((Ψ ◦ α) ? ϕw,w′)]] = {w}. From this, using Equation
(4), we get w <Ψ◦α w

′.
(S4) Suppose that w ∈ [[α]], w′ ∈ [[¬α]] and w′ <Ψ w.
We want to show that w′ ≤Ψ◦α w. From the hypothesis
w′ <Ψ w we get min({w,w′},≤Ψ) = {w′}. Then, by
Equation (4), [[B(Ψ ? ϕw,w′)]] = {w′}. Therefore B(Ψ ?
ϕw,w′) ` ¬α. Thus, by I10, B((Ψ ◦ α) ? ϕw,w′) 6` α. Then
w′ ∈ [[B((Ψ ◦ α) ? ϕw,w′)]], and by Equation (4), w′ ∈
min({w,w′},≤Ψ◦α), i.e. w′ ≤Ψ◦α w.
(S5) Suppose that w ∈ [[α]], w′ ∈ [[¬α]], w′ <Ψ w and
that there is no w′′ such that w′ <Ψ w′′ <Ψ w. We
want to show that w ≤Ψ◦α w′. From w′ <Ψ w we have
min({w,w′},≤Ψ) = {w′}, so from Theorem 1 we have
[[B(Ψ ? ϕw,w′)]] = {w′}. So B(Ψ ? ϕw,w′) ` ¬α. On the
other hand, the assumptions with the Corollary 3 gives us
ϕw,w′ ≺≺Ψ ϕw,w′ ∧ α. Then, by I11, B((Ψ ◦ α) ? ϕw,w′) 6`
¬α, that means by Theorem 1, w ≤Ψ◦α w

′.
(if) By Theorem 1 we know that ◦ is a weak improvement
operator. Thus, it remains to check that I7-I11 hold.
(I7) Suppose that α ` µ, i.e. [[α]] ⊆ [[µ]]. We want to show
B((Ψ ◦µ) ?α) ≡ B(Ψ ?α). By Equation (4) this is equiva-
lent to prove that min([[α]],≤Ψ◦µ) = min([[α]],≤Ψ). That
is a straightforward consequence of S1 that gives (since
[[α]] ⊆ [[µ]]) ∀w,w′ |= α,w ≤Ψ w′ iff w ≤Ψ◦µ w

′.
(I8) Suppose that α ` ¬µ, i.e. [[α]] ⊆ [[¬µ]]. We want to
show B((Ψ ◦ µ) ? α) ≡ B(Ψ ? α). By Equation (4) this is
equivalent to prove that min([[α]],≤Ψ◦µ) = min([[α]],≤Ψ

). Like for (I7), this is a straightforward consequence of S2
that gives (since [[α]] ⊆ [[¬µ]]) ∀w,w′ |= α,w ≤Ψ w′ iff
w ≤Ψ◦µ w

′.
(I9) Let us remark from the fact that ≤Ψ and ≤Ψ◦µ are total

pre-orders, that postulate S3 is equivalent to the following
one:
(S3’) If w ∈ [[µ]], w′ ∈ [[¬µ]] then w′ ≤Ψ◦µ w ⇒
w′ <Ψ w

Now suppose that B(Ψ ? α) 6` ¬µ. We want to show
B((Ψ ◦ µ) ? α) ` µ. Towards a contradiction, suppose that
B((Ψ ◦µ) ? α) 6` µ, i.e. there exists w ∈ [[B((Ψ ◦ µ) ? α)]]
such that w 6∈ [[µ]]. By Equation (4) w ∈ min([[α]],≤Ψ◦µ),
so for any w′ ∈ [[α]], w ≤Ψ◦µ w′. By the assumption,
there exists w′′ ∈ [[B(Ψ ? α)]] ∩ [[µ]]. In particular, by
I1, w′′ ∈ [[α]]. Thus, w ≤Ψ◦µ w′′. On the other hand,
by Equation (4) w′′ ∈ min([[α]],≤Ψ). As w ∈ [[¬µ]] and
w′′ ∈ [[µ]], and w ≤Ψ◦µ w

′′, by S3’, w <Ψ w′′. But, since
w ∈ [[α]], this contradicts the minimality of w′′ in [[α]] with
respect to ≤Ψ.
(I10) Let us remark from the fact that ≤Ψ and ≤Ψ◦µ are to-
tal pre-orders, the postulate S4 is equivalent to the following
one:
(S4’) If w ∈ [[µ]], w′ ∈ [[¬µ]] then w <Ψ◦µ w′ ⇒
w ≤Ψ w′

Suppose that B(Ψ ? α) ` ¬µ. We want to show B((Ψ ◦
µ) ? α) 6` µ. Towards a contradiction suppose that B((Ψ ◦
µ) ? α) ` µ. Let w,w′ be such that w |= B((Ψ ◦ µ) ? α)
and w′ |= B(Ψ ? α). By the assumptions w ∈ [[µ]] and
w′ ∈ [[¬µ]]. By Equation (4), w ∈ min([[α]],≤Ψ◦µ) and
w′ ∈ min([[α]],≤Ψ). By the assumptions, w 6'Ψ◦µ w′

and w 6'Ψ w′, because if not w′ ∈ min([[α]],≤Ψ◦µ) or
w ∈ min([[α]],≤Ψ). But this is impossible because in the
first case w′ ∈ [[µ]], a contradiction and in he second case
w ∈ [[¬µ]], a contradiction. Thus, necessarily w <Ψ◦µ w

′

and w′ <Ψ w. As we have w ∈ [[µ]], w′ ∈ [[¬µ]] and
w <Ψ◦µ w

′, by S4’, w ≤Ψ w′, a contradiction.
(I11) Assume B(Ψ ?α) ` ¬µ, α∧µ 6` ⊥ and α ≺≺Ψ α∧µ.
We want to show that B((Ψ ◦ µ) ? α) 6` ¬µ. Towards a
contradiction, suppose that B((Ψ ◦ µ) ? α) ` ¬µ. Let w,w′
such that w′ ∈ [[B(Ψ ? α)]] and w ∈ [[B(Ψ ? (α ∧ µ))]].
By the assumptions we have w′ ∈ [[¬µ]] and w ∈ [[µ]].
By Corollary 3, w′ <Ψ w and there is no w′′ such that
w′ <Ψ w′′ <Ψ w. By S5, w ≤Ψ◦µ w′. By S4,
w′ ≤Ψ◦µ w. Therefore, w 'Ψ◦µ w′. That means that
[[B(Ψ ? α)]] and [[B(Ψ ? α ∧ µ)]] are in the same level
with respect to ≤Ψ◦µ. We claim that this level is the
level of min([[α]],≤Ψ◦µ). But this is a contradiction
because we have w ∈ min(min([[α]],≤Ψ◦µ)) and therefore
w |= ¬µ which contradicts the fact that w |= µ. Now we
turn to the proof of our claim. Towards a contradiction,
suppose the claim is not true. Then, necessarily there
is w′′ ∈ min([[α]],≤Ψ◦µ) such that w′′ <Ψ◦µ w. We
consider two cases: w′′ ∈ [[µ]] and w′′ ∈ [[¬µ]]. In
the case w′′ ∈ [[µ]], we don’t have w′′ <Ψ w because
w ∈ min([[α ∧ µ]],≤Ψ). Therefore w ≤Ψ w′′. Then, by
S1, w ≤Ψ◦µ w

′′, a contradiction. In the case w′′ ∈ [[¬µ]],
we don’t have w′′ <Ψ w′ because w′ ∈ min([[α]],≤Ψ).
Therefore w′ ≤Ψ w′′. Then, by S2, w′ ≤Ψ◦µ w′′, that is
w ≤Ψ◦µ w

′′, a contradiction.



Proof of Lemma 1: Define A =
{w′′ ∈ W : w <Ψ w′′ <Ψ w′}. By the assumptions
w <Ψ w′ and w 6�Ψ w′, the set A is nonempty. Thus
A ∩ [[¬α]] 6= ∅ or A ∩ [[α]] 6= ∅. We consider first the case
A ∩ [[¬α]] 6= ∅. Take w′′ ∈ max(A ∩ [[¬α]],≤Ψ). By
definition of A, w <Ψ w′′ and w′′ <Ψ w′. We consider two
subcases:
• w′′ �Ψ w′. In this situation, we conclude by S4 and S5
w′′ ∼Ψ◦α w

′. By S2, w <Ψ◦α w
′′. Therefore by transitivity

w <Ψ◦α w
′.

• w′′ 6�Ψ w′. In this situation we take w′′′ such that
w′′ �Ψ w′′′. Its clear that w′′′ <Ψ w′ and by definition
of w′′, w′′′ ∈ [[α]]. By S4 and S5, w′′ 'Ψ◦α w′′′. Thus
w <Ψ◦α w′′′. By S1, w′′′ <Ψ◦α w′. Then, by transitivity,
w <Ψ◦α w

′.
For the second case, A ∩ [[α]] 6= ∅, we proceed
with an analogous reasoning, but this time taking
w′′ ∈ min(A ∩ [[α]],≤Ψ).

Proof of Proposition 2: Towards a contradiction,
suppose that we have ≤1

Ψ◦α 6=≤2
Ψ◦α and both pre-orders

obey to (S1-S5). Let w,w′ be witness of this inequality.
Thus, without lost of generality, we can supposew <1

Ψ◦α w
′

and w′ ≤2
Ψ◦α w. By S1, it is not the case w,w′ ∈ [[α]],

since otherwise by w <1
Ψ◦α w′ we obtain w <Ψ w′ and

by w′ ≤2
Ψ◦α w we obtain w′ ≤Ψ w and a contradiction.

Similarly by S2, it is not the case w,w′ ∈ [[¬α]]. Thus,
the only possibilities are w ∈ [[α]] and w′ ∈ [[¬α]] or
w ∈ [[¬α]] and w′ ∈ [[α]].
We consider the first case, i.e. w ∈ [[α]] andw′ ∈ [[¬α]]. As
w′ ≤2

Ψ◦α w, by S3, w 6≤Ψ w′, i.e. w′ <Ψ w. If w′ 6�Ψ w
then, by the Lemma 1 w′ <1

Ψ◦α w, a contradiction. If
w′ �Ψ w, by S4 and S5, w′ '1

Ψ◦α w, again a contradiction.
Now, we consider the second case, i.e. w ∈ [[¬α]] and
w′ ∈ [[α]]. As w <1

Ψ◦α w
′, by S3, w′ 6≤Ψ w, i.e. w <Ψ w′.

Suppose w �Ψ w′. Then, by S5, w′ ≤1
Ψ◦α w a contra-

diction. So w 6�Ψ w′, and by Lemma 1, w <2
Ψ◦α w′, a

contradiction.
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