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Abstract
In this paper, we explore the links between measures of in-
consistency for a belief base and the minimal inconsistent
subsets of that belief base. The minimal inconsistent subsets
can be considered as the relevant part of the base to take into
account to evaluate the amount of inconsistency. We define
a very natural inconsistency value from these minimal incon-
sistent sets. Then we show that the inconsistency value we
obtain is a particular Shapley Inconsistency Value, and we
provide a complete axiomatization of this value in terms of
five simple and intuitive axioms. Defining this Shapley In-
consistency Value using the notion of minimal inconsistent
subsets allows us to look forward to a viable implementation
of this value using SAT solvers.

Introduction
The need to develop robust, but principled, logic-based tech-
niques for analysing inconsistent information is increasingly
recognized as an important research area for artificial intel-
ligence in particular, and for computer science in general
(Bertossi, Hunter, & Schaub 2004). This interest stems from
the recognition that the dichotomy between consistent and
inconsistent sets of formulae that comes from classical log-
ics is not sufficient for describing inconsistent information.

A number of proposals have been made for measuring the
degree of information of a belief base in the presence of in-
consistency (Lozinskii 1994; Wong & Besnard 2001; Knight
2003; Konieczny, Lang, & Marquis 2003), and for measur-
ing the degree of inconsistency of a belief base (Grant 1978;
Knight 2001; Hunter 2002; Knight 2003; Konieczny, Lang,
& Marquis 2003; Hunter 2004; 2003; Grant & Hunter 2006;
Hunter & Konieczny 2006; Grant & Hunter 2008). For a
review see (Hunter & Konieczny 2004).

These measures are potentially important in diverse ap-
plications in artificial intelligence, such as belief revision,
belief merging, negotiation, multi-agent systems, decision-
support, and software engineering tools. Already, mea-
suring inconsistency has been seen to be a useful tool in
analysing a diverse range of information types including
news reports (Hunter 2006), integrity constraints (Grant &
Hunter 2006), information merging (Qi, Liu, & Bell 2005),
databases (Martinez et al. 2007), ontologies (Ma et al.
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2007), software specifications (Barragáns-Martńez, Pazos-
Arias, & Fernández-Vilas 2004; Mu et al. 2005), and ecom-
merce protocols (Chen, Zhang, & Zhang 2004).

Each of the current proposals for measuring inconsistency
can be described as being one of the following two ap-
proaches.

The first approach involves “counting” the minimal num-
ber of formulae needed to produce the inconsistency in a set
of formulae. The more formulae needed to produce the in-
consistency, the less inconsistent the set (Knight 2001). This
idea is an interesting one, but it rejects the possibility of a
more fine-grained inspection of the (content of the) formu-
lae. In particular, if one looks to singleton sets only, one is
back to the initial problem, with only two values: consistent
or inconsistent.

The second approach involves looking at the proportion
of the language that is touched by the inconsistency in a
set of formulae. This allows us to look inside the for-
mulae (Hunter 2002; Konieczny, Lang, & Marquis 2003;
Grant & Hunter 2006; 2008). This means that two formulae
(singleton sets) can have different inconsistency measures.
In these proposals one can identify the set of formulae with
its conjunction (i.e. the set {ϕ,ϕ′} has the same inconsis-
tency measure as the set {ϕ∧ϕ′}). Whilst the lack of syntax
sensitivity may be appropriate for some applications, it does
mean that the distribution of the contradiction among the
formulae is not taken into account.

It seems difficult to build measures that take these two di-
mensions into account. But, in (Hunter & Konieczny 2006)
a unified framework was proposed with this aim. The main
point was to define inconsistency values that give the in-
consistency of each formula of the base, in constrast to the
above inconsistency measures that give the inconsistency of
the whole base. This allows us to draw a more precise pic-
ture of the inconsistencies of the base. The idea is to start
from one of the measures considered in the two approaches
above and use it to assign a measure of inconsistency to a set
of formulae, and then to use a technique based on coopera-
tive game theory: the Shapley value (Shapley 1953). This
then allows us to identify the blame/responsibility of each
formula in the inconsistency of the belief base (Hunter &
Konieczny 2006). This means for example that we can use a
measure from the second approach which considers the pro-
portion of the language touched by inconsistency, and then



using the Shapley value, apportion the blame for the incon-
sistency in the set to the individual formulae in a principled
way.

Against this background, it is interesting to note that the
use of minimal inconsistent subsets of a belief base has re-
ceived much less attention as the basis for defining inconsis-
tency measures. So in this paper, we explore the nature of
some interesting measures of inconsistency based on mini-
mal inconsistent subsets of the belief base, and we consider
how these new measures relate to the family of Shapley In-
consistency Values.

It has been known for a long time that minimal inconsis-
tent subsets of the base are a cornerstone of analysing incon-
sistencies. For instance, to recover consistency, one has just
to remove one formula from each minimal inconsistent sub-
set (Reiter 1987). For conflict resolution, where the syntac-
tic representation of the information is important, measuring
inconsistency in terms of the minimal inconsistent subsets is
intuitive and it is informative for deciding how to change the
set of formulae through a process such as negotiation, com-
promise, or resolution. So it should be natural to study how
these minimal inconsistent subsets could be used to define
measures of inconsistency.

The idea to analyse minimal inconsistent subsets of the
belief base was followed in order to define scoring functions
that, for each subsetK ′ of a set of formulaeK, gives a score
that is the number of minimal inconsistent subsets of K that
would be eliminated if K ′ were removed from K. Then this
score is used to compare different subsetsK ′ (Hunter 2004).

Obviously, these approaches are syntax sensitive, which
for some applications, is necessary. Consider capturing
requirements for a new corporate computer system in a
process where a user may present his or her requirements
in the form of a set of propositional formulae (Hunter &
Nuseibeh 1998). Here presenting the set of requirements
{α, β} should be treated differently to the set of require-
ments {α ∧ β} since the first set says that there are two re-
quirements, the first being α and the second β, whereas in
the second set says that is one requirement, namely α ∧ β.

In the rest of this paper, we study how to use minimal
inconsistent subsets in order to define inconsistency values,
that will allow us to define the inconsistency of each formula
of the base (like with Shapley Inconsistency Values (Hunter
& Konieczny 2006)). To this end we introduce the family of
MIV (for MinInc Inconsistency Value), and focus on a very
intuitive one: MIVC . As these values have the same aim as
the family of Shapley Inconsistency Values, it is interesting
to study the relationship between these two families. More-
over, we show a surprising result: the value MIVC is in
fact a Shapley Inconsistency Value. This result is very inter-
esting as it allows us to state interesting logical properties,
and to find a way to implement the Shapley Inconsistency
Values using existing automated reasoning technology. The
additional interest of this value is that its intuitive logical
properties have led us to a complete axiomatization through
five intuitive axioms.

Preliminaries
We consider a propositional language L built from a finite
set of propositional symbols P . We use a, b, c, . . . to denote
the propositional variables, and Greek letters α, β, ϕ, . . . to
denote the formulae. An interpretation is a total function
from P to {0, 1}. The set of all interpretations is denoted
W . An interpretation ω is a model of a formula ϕ, denoted
ω |= ϕ, if and only if it makes ϕ true in the usual truth-
functional way. Mod(ϕ) denotes the set of models of the
formula ϕ, i.e. Mod(ϕ) = {ω ∈ W | ω |= ϕ}. We will use
⊆ to denote the set inclusion, and we will use ⊂ to denote
the strict set inclusion, i.e. A ⊂ B iff A ⊆ B and B 6⊆ A.
We will denote the set of natural numbers by N and the set
of real numbers by R.

LetA andB be two subsets ofC, we noteC = A⊕B ifA
and B form a partition of C, i.e. C = A⊕B iff C = A∪B
and A ∩B = ∅.

A belief base K is a finite set of propositional formulae.
More exactly, as we will need to identify the different for-
mulae of a belief base in order to associate them with their
inconsistency value, we will consider belief bases K as vec-
tors of formulae. For logical properties we will need to use
the set corresponding to each vector, so we suppose that we
have a function such that for each vectorK = (α1, . . . , αn),
K is the set {α1, . . . , αn}. As it will never be ambiguous,
in the following we will omit the and write K as both the
vector and the set. We use KL to denote the set of belief
bases definable from formulae of the language L.

A belief base is consistent if there is at least one inter-
pretation that satisfies all its formulae. If a belief base K is
not consistent, then one can define the minimal inconsistent
subsets of K as:

MI(K) = {K ′ ⊆ K | K ′ ` ⊥ and ∀K ′′ ⊂ K ′,K ′′ 0 ⊥}

If one wants to recover consistency from an inconsistent
base K, then the minimal inconsistent subsets can be con-
sidered as the purest form of inconsistency, since to recover
consistency, one has to remove at least one formula from
each minimal inconsistent subset (Reiter 1987).

A free formula of a belief base K is a formula of K that
does not belong to any minimal inconsistent subset of the
belief base K. This means that this formula has nothing to
do with the conflicts of the base.

Inconsistency values defined from minimal
inconsistent sets

Apart from (Hunter & Konieczny 2006), existing inconsis-
tency measures allow us to evaluate the amount of incon-
sistency of a whole base, but not to evaluate the amount of
inconsistency of each formula of the base. In other words,
existing inconsistency measures do not allow us to evaluate
the responsability of each formula in the inconsistency of the
base. Yet it is possible to define some such measures using
minimal inconsistent sets. Furthermore, as these minimal in-
consistent sets are the parts of the base where inconsistencies
lie, it should be natural to use only the minimal inconsistent
sets for evaluating the amount of inconsistency of the bases.
This is the motivation for the following definition where f



is some function that takes as input a formula α and the set
of minimal inconsistent subsets for a belief base K.

Definition 1 A MinInc Inconsistency Value (MIV ) is a
function MIV : KL × L → R such that MIV (K,α) =
f(α,MI(K)) where f is a function of α and MI(K).

Instances of a MIV (such as those given in Definitions 2
and 4) depend on the choice of function f .

So this definition states exactly the fact that the inconsis-
tency value only takes into account the minimal inconsistent
subsets of the base. In particular two different bases K and
K ′ with exactly the same minimal inconsistent sets will have
the same amount of inconsistency.

The simplest types of MIV one can define are the follow-
ing ones:

Definition 2 MIVD and MIV# are defined as follows:

• MIVD(K,α) =
{

1 if ∃M ∈ MI(K) α ∈M
0 otherwise

• MIV#(K,α) = |{M ∈ MI(K) | α ∈M}|
The first value is the drastic one, that takes value one if the

formula belongs to a minimal inconsistent subset, and zero
otherwise. The second one is a cardinality value, that counts
the number of minimal inconsistent subsets the formula be-
longs to.

The first value is of little interest, since it allows us just
to make a distinction between free formulas and the other
ones. The second one is more useful, and allows us to find
more interesting results. Let us check this on the following
example.

Example 1 Let K1 = {a,¬a,¬a ∧ c, a ∨ d,¬d, b ∧ ¬b, e},
so the minimal inconsistent subsets of K1 are

MI(K1) = {{b∧¬b}, {a,¬a}, {a,¬a∧c}, {¬a, a∨d,¬d}}

and the MIV# value gives as a result:

MIV#(K1, a) = 2 MIV#(K1,¬d) = 1
MIV#(K1,¬a) = 2 MIV#(K1, b ∧ ¬b) = 1
MIV#(K1,¬a ∧ c) = 1 MIV#(K1, e) = 0
MIV#(K1, a ∨ d) = 1

It is easy to check that MIV# is just a scoring function
(Hunter 2004) applied uniquely on formulae:

Definition 3 Let K ∈ KL. Let S be the scoring function
for K defined as follows, where S : ℘(K) 7→ N and K ′ ∈
℘(K)

S(K ′) = |MI(K)| − |MI(K −K ′)|
For a belief baseK, a scoring function S gives the number

of minimal inconsistent subsets of K that would be elimi-
nated if the subset K ′ was removed from K. See (Hunter
2004) for more details on the use of these scoring func-
tions. So if α ∈ K, it is straighforward to see that we have
MIV#(α,K) = S({α}).

The evaluation of the inconsistency value of each formula
given by MIV# is still very rough. In particular, it does
not take into account the cardinalities of the minimal incon-
sistent subsets the formula belongs to. But, as explained in
several works (see for example (Knight 2001)), the size of

the minimal inconsistent subset can have an impact on the
evaluation of the inconsistency. The idea is that the smaller
the value of the minimal inconsistent subset, the bigger is
the inconsistency. To illustrate this we use the prototypical
example of the lottery paradox given by Knight to motivate
his approach.
Example 2 There are a number of lottery tickets with one
of them being the winning ticket. Suppose wi denotes ticket
i will win, then we have the assumption w1 ∨ . . . ∨ wn. In
addition, for each ticket i, we may pessimistically (or proba-
bilistically if the number of tickets is important) assume that
it will not win, and this is represented by the assumption
¬wi. So the base KL is:

KL = {¬w1, . . . ,¬wn, w1 ∨ . . . ∨ wn}
Clearly if there are three or two (or one!) tickets in the

lottery, then this base is highly inconsistent. But if there are
millions of tickets there is intuitively (nearly) no conflict in
the base.

So it could prove better not to simply take the number
of minimal inconsistent subsets a formula belongs to, but to
take into account their cardinalities. This idea gives a third
MIV value:
Definition 4 MIVC is defined as follows:

MIVC(K,α) =
∑

M∈MI(K)s.t.α∈M

1
|M |

This allows us to define a much more precise view of the
inconsistency, as illustrated in the following example.
Example 3 Let K1 = {a,¬a,¬a ∧ c, a ∨ d,¬d, b ∧ ¬b, e}

and the MIVC value gives as a result:

MIVC(K1, a) = 1 MIVC(K1,¬d) = 1
3

MIVC(K1,¬a) = 5
6 MIVC(K1, b ∧ ¬b) = 1

MIVC(K1,¬a ∧ c) = 1
2 MIVC(K1, e) = 0

MIVC(K1, a ∨ d) = 1
3

We can compare these obtained results with the ones of
Example 1, where less distinction was possible, with only
three different levels. We can notice that now we can make
a distinction between ¬a ∧ c, and a ∨ d, that both belong to
only one minimal inconsistent subset, but the one of a∨ d is
bigger. We also note that an inconsistent formula has a high
degree of inconsistency according to the MIVC value. One
can remark that with MIVC the formula b∧¬b is evaluated
as more conflicting than the formula ¬a which belongs to
two larger minimal inconsistent subsets, whereas the evalu-
ation is the converse for MIV#.

We can see more clearly on a dedicated example why
MIVC gives a more precise view of the conflict brought by
each fomula than MIV#.
Example 4 Consider K2 = {a ∧ ¬a, b ∧ ¬b} and K3 =
{a∧¬b,¬a∧ b}. Here we see that the MIV# value assigns
the same value to each formula, even though for instance
a ∧ ¬a is entirely responsible for an inconsistency, whereas
a ∧ ¬b is only partially responsible for an inconsistency.

MIV#(K2, a ∧ ¬a) = 1 MIV#(K3, a ∧ ¬b) = 1
MIV#(K2, b ∧ ¬b) = 1 MIV#(K3,¬a ∧ b) = 1



In contrast, the MIVC value is more discriminating and so
for instance a ∧ ¬a, which is entirely responsible for an in-
consistency, has the maximum value of 1, whereas a ∧ ¬b,
which is only half of the cause of an inconsistency, has a
value of 1/2.

MIVC(K2, a ∧ ¬a) = 1 MIVC(K3, a ∧ ¬b) = 1
2

MIVC(K2, b ∧ ¬b) = 1 MIVC(K3,¬a ∧ b) = 1
2

More generally, we see that the MIVC value is affected
by the size of each minimal inconsistent subset: Returning
to Example 2, we see that for KL and for some α ∈ KL, the
value of MIVC(KL, α) decreases as the cardinality of KL

increases.
We now give a few observations regarding theMIVC def-

inition. Other properties will be also derivable from later
results of the paper.

Proposition 1

• If α is a free formula in K, then MIVC(K,α) = 0
• MIVC(K ∪K ′, α) ≥MIVC(K,α)
• If α ≡ ⊥, then MIVC(K,α) = 1
• If φ ` ψ and φ 6` ⊥ then

MIVC(K ∪ {φ}, α) ≥MIVC(K ∪ {ψ}, α)

So from the examples and observations in this section, it
seems that MIVC is an appealing and informative measure
of inconsistency.

Shapley Inconsistency Values
Shapley Inconsistency Values were introduced in (Hunter &
Konieczny 2006) in order to be able to define a measure of
inconsistency for each formula, from a measure of inconsis-
tency on belief bases.

The idea is to start from one basic measure of inconsis-
tency from the literature, that allows us to evaluate the incon-
sistency of a belief base, to use this measure as the definition
of a coalitional game, and to use a notion from cooperative
game theory, the Shapley value (Shapley 1953), that allows
us to define the merits of one individual in a given game. In
our setting, with the scale reversal, this amounts to define
the blame/responsabity of one formula in a given base for
the inconsistencies.

So the idea is similar to the one that drove the definition
of MIV in the last section. Therefore it is natural to wonder
if there are some links between the two approaches.

Let us first give the background on Shapley Inconsistency
Values (SIV). We will just give here the definitions needed
for this paper and for the proofs, for more details see (Hunter
& Konieczny 2006).

First we recall the standard definitions of games in coali-
tional form and of the Shapley value (Aumann & Hart 2002).

Definition 5 Let N = {1, . . . , n} be a set of n players. A
game in coalitional form is given by a function v : 2N → R,
with v(∅) = 0.

This framework defines games in a very abstract way, fo-
cusing on the possible coalition formations. A coalition is
just a subset of N . This function gives what payoff can be
achieved by each coalition in the game v when all its mem-
bers act together as a unit.

A natural notion of solution for this kind of game is to try
to define the payoff that can be expected by each player i for
the game v. This is what is called a value.
Definition 6 A value is a function that assigns to each game
v a vector of payoff S(v) = (S1, . . . , Sn) in Rn, where Si is
the payoff for player i.

Despite these very abstract definitions of the game and of
the value, it is possible to define a notion of solution, i.e. a
value, that gives for any game the expected payoff (merits)
of each player. The first (and main) such value has been
defined by Shapley (Shapley 1953).

Basically the idea can be explained as follows: consid-
ering that the coalitions form according to some order (a
first player enters the coalition, then another one, then a
third one, etc), and that the payoff attached to a player is its
marginal utility (i.e. the utility that it brings to the existing
coalition), so if C is a coalition (subset of N ) not containing
i, player’s i marginal utility is v(C ∪ {i}) − v(C). As one
can not make any hypothesis on which order is the correct
one, we may suppose that each order is equally probable.
This leads to the following formula:

Let σ be a permutation on N , with σn denoting all the
possible permutations on N . We need the following nota-
tion:

piσ = {j ∈ N | σ(j) < σ(i)}
That means that piσ represents all the players that precede
player i for a given order σ.
Definition 7 Let i ∈ N be a player, and n be the number of
players. The Shapley value of a game v is defined as.

Si(v) =
1
n!

∑
σ∈σn

v(piσ ∪ {i})− v(piσ)

The Shapley value can be directly computed from the pos-
sible coalitions (without looking at the permutations) using
the following expression:

Si(v) =
∑
C⊆N

(c− 1)!(n− c)!
n!

(v(C)− v(C \ {i}))

where c is the cardinality of C.
Besides the fact that this definition gives very sensible re-

sults, its legitimacy is also given by a nice characterization
result:
Proposition 2 (Shapley 1953) The Shapley value is the
only value that satisfies all of Efficiency, Symmetry, Dummy
and Additivity.
•
∑
i∈N Si(v) = v(N) (Efficiency)

• If i and j are such that for all C s.t. i, j /∈ C,
v(C ∪ {i}) = v(C ∪ {j}), then Si(v) = Sj(v)

(Symmetry)



• If i is such that ∀C v(C ∪ {i}) = v(C), then Si(v) = 0
(Dummy)

• Si(v + w) = Si(v) + Si(w) (Additivity)

This result supports several variations: there are other
equivalent axiomatizations of the Shapley value, and there
are some different values that can be defined by relaxing
some of the above axioms. See (Aumann & Hart 2002).

So the idea is to consider an inconsistency measure (that
allows us to evaluate the inconsistency of a belief base) as a
game in coalitional form, and to compute the corresponding
Shapley value, in order to be able to define the inconsistency
value of each formula of the base.

We ask some properties for the underlying inconsistency
measure:

Definition 8 An inconsistency measure I is called a basic
inconsistency measure if it satisfies the following proper-
ties, ∀K,K ′ ∈ KL, ∀α, β ∈ L:
• I(K) = 0 iff K is consistent (Consistency)
• I(K ∪K ′) ≥ I(K) (Monotony)
• If α is a free formula ofK∪{α}, then I(K∪{α}) = I(K)

(Free Formula Independence)
• If α ` β and α 0 ⊥, then I(K ∪ {α}) ≥ I(K ∪ {β})

(Dominance)

In (Hunter & Konieczny 2006), a Normalization property
was also presented as an optional property. We do not con-
sider that property in this paper.

Definition 9 Let I be a basic inconsistency measure. We de-
fine the corresponding Shapley Inconsistency Value (SIV),
noted SI , as the Shapley value of the coalitional game de-
fined by the function I , i.e. let α ∈ K :

SIα(K) =
∑
C⊆K

(c− 1)!(n− c)!
n!

(I(C)− I(C \ {α}))

where n is the cardinality of K and c is the cardinality of C.

Note that this SIV gives a value for each formula of the
base K. This definition allows us to define to what extent a
formula inside a belief base is concerned with the inconsis-
tencies of the base. It allows us to draw a precise picture of
the contradiction of the base.

So, from a SIV, one can define an inconsistency measure
for the whole belief base:

Definition 10 Let K be a belief base,

ŜI(K) = max
α∈K

SIα(K)

There are alternatives to Definition 10, see the discussion
in (Hunter & Konieczny 2006).

MI Shapley Inconsistency Value
Since minimal inconsistent subsets of a base can be consid-
ered as fundamental features in charaterizing inconsistency,
we use the notion here as the basic inconsistency measure.

Definition 11 The MI inconsistency measure is defined as
the number of minimal inconsistent sets of K, i.e. :

IMI(K) = |MI(K)|

Example 5 K = {a,¬a,¬a ∧ c, a ∨ d,¬d, b ∧ ¬b, e}
Hence, we get the following:
IMI(K) = 4 IMI({a,¬a,¬a ∧ c}) = 2
IMI({b ∧ ¬b, e}) = 1 IMI({¬a,¬a ∧ c}) = 0

Proposition 3 The MI inconsistency measure IMI is a ba-
sic inconsistency measure, i.e. it satisfies the properties
of Consistency, Monotonicity, Free Formula Independence,
and Dominance.

And in fact the following result shows that this MI Shap-
ley Inconsistency Value is exactly the MIVC measure of
Definition 4:

Proposition 4 SIMI
α (K) = MIVC(K,α)

Proof: Let us first show the following lemma that will be
useful in the proof.

Lemma 1 If a simple game in coalitional form on a set
of players N = {1, . . . , n} is defined by a single winning
coalition C ′ ⊆ N , i.e:

v(C) =
{

1 if C ′ ⊆ C
0 otherwise

Then the corresponding Shapley value is:

Si(v) =
{

0 if i 6∈ C ′
1
|C′| if i ∈ C ′

Proof of Lemma 1 : The proof is direct using the logical
properties of the Shapley value given in Proposition 2.
Since by (Dummy) we get that if i 6∈ C ′, then Si(v) = 0.
By (Efficiency) we know that the outcome of the grand
coalition N must be shared in the sum of the Shapley
values of the players:

∑
i∈N Si(v) = 1. Since for players

i 6∈ C ′ we know that Si(v) = 0, it means that it has to
be split between members of C ′. So

∑
i∈C′ Si(v) = 1.

Now by (Symmetry) we get that for all i, j ∈ C ′, we
have Si(v) = Sj(v). So this implies that if i ∈ C ′, then
Si(v) = 1

|C′| . �

Let us now state the result. First suppose that α is a free
formula of K, then we have immediately by (Minimality)
that SIMI

α (K) = 0. We also have immediately by definition
that MIVC(K,α) = 0. So the equality is satisfied in this
case.
Now suppose that α is not a free formula of K. First
remark that IMI can be decomposed in IMI(C) =∑
M∈MI(K) M̂(C), where M̂ is the following characteristic

function

M̂(C) =
{

1 if M ⊆ C
0 otherwise

Let us denote by M̂(K) the game in coalitional form defined
from K and the characteristic function M̂ .



So now let us start from the MI Shapley Inconsistency Value:

SIMI
α (K)

=
X
C⊆K

(c− 1)!(n− c)!
n!

(IMI(C)− IMI(C \ {α}))

=
X
C⊆K

(c− 1)!(n− c)!
n!

(
X

M∈MI(K)

M̂(C)

−
P
M∈MI(K) M̂(C \ {α}))

=
X
C⊆K

(c− 1)!(n− c)!
n!

(
X

M∈MI(K)

(M̂(C)− M̂(C \ {α})))

=
X
C⊆K

X
M∈MI(K)

(c− 1)!(n− c)!
n!

(M̂(C)− M̂(C \ {α}))

=
X

M∈MI(K)

X
C⊆K

(c− 1)!(n− c)!
n!

(M̂(C)− M̂(C \ {α}))

=
X

M∈MI(K)

Sα(M̂(K))

Now note that by Lemma 1 we have Sα(M̂(K)) = 1
|M | .

That gives SIMI
α (K) =

∑
M∈MI(K)

1
|M |

= MIVC(K,α).

�

This proposition is interesting for several reasons. First, it
confirms the appeal of Shapley Inconsistency Values, since
the very natural measure MIVC is a special case of these
measures. Second, it gives a simpler definition of SIMI

α than
the one using the Shapley value. In general, obtaining a
Shapley value is computationally demanding (Deng & Pa-
padimitriou 1994). However, in the case of SIMI

α , the above
proposition hints at the possibility of computationally viable
implementations for calculating these values. Finally, this
equality is useful to state the logical properties of this value,
as done in the next Section.

Logical Properties
It is quite difficult to state logical properties about inconsis-
tency handling (and measure of inconsistency) in a purely
classical framework, i.e. without adding too many hypothe-
ses, by using an (arbitrary) paraconsistent logic to do so.

In (Hunter & Konieczny 2006) some logical properties
for inconsistency measures are defined, as well as specific
ones for Shapley Inconsistency Values. But there was no
characterization theorem in that paper. We provide such a
theorem below.

Let us first strengthen the condition on the basic inconsis-
tency measure:

Definition 12 A MinInc Separable basic inconsistency
measure (MSBIM) I is a basic inconsitency measure that
satisfies this additional property:
• If MI(K ∪K ′) = MI(K) ⊕MI(K ′), then I(K ∪K ′) =
I(K) + I(K ′) (MinInc Separability)

This property basically expresses the fact that the incon-
sistency measure depends on the minimal inconsistent sub-

sets, so that if we can partition the belief base in two sub-
bases without “breaking” any minimal inconsistent subset,
then the global inconsistency measure is the sum of the in-
consistency measure of the two subbases. Clearly, the MI
inconsistency measure satisfies this property.

Let us now enumerate the properties that we expect
inconsistency values to satisfy:
•
∑
α∈K S

I
α(K) = I(K) (Distribution)

• If ∃α, β ∈ K s.t. for all K ′ ⊆ K s.t. α, β /∈ K ′,
I(K ′ ∪ {α}) = I(K ′ ∪ {β}), then SIα(K) = SIβ(K)

(Symmetry)
• If α is a free formula ofK, then SIα(K) = 0 (Minimality)
• If α ` β and α 0 ⊥, then SIα(K) ≥ SIβ(K) (Dominance)
• If MI(K ∪K ′) = MI(K)⊕MI(K ′), then SIα(K ∪K ′) =
SIα(K) + SIα(K ′) (Decomposability)

The first four properties were already discussed in (Hunter
& Konieczny 2006). The first three of these are closely re-
lated to original Shapley’s properties. The distribution prop-
erty states that the inconsistency values of the formulae sum
to the total amount of inconsistency in the base (I(K)). The
symmetry property ensures that only the amount of incon-
sistency brought by a formula matters for computing the in-
consistency value. As one could expect, a formula that is
not embedded in any contradiction (i.e. does not belong to
any minimal inconsistent subset) will not be blamed by the
inconsistency value. This is what is expressed in the min-
imality property. The dominance property states that logi-
cally stronger formulae bring (potentially) more conflicts. It
was shown in (Hunter & Konieczny 2006) that every Shap-
ley Inconsistency Value satisfies these four properties.

The Decomposability property is related to Shapley’s Ad-
ditivity property. We explain in (Hunter & Konieczny 2006)
that a direct translation of this Additivity property makes lit-
tle sense because it is not meaningful to add different (basic)
inconsistency measures. But one can consider another trans-
lation of the additivity property, by looking to the “addition”
of two different bases: the set union. So direct translation of
that meaning leads to

SIα(K ∪K ′) = SIα(K) + SIα(K ′)

This formulation is not satisfactory because it forgets the
fact that new conflicts can appear when making the union
of the two bases. So we want this property to hold only
when joining two bases does not create any new inconsis-
tencies. That is ensured by the condition of the Decompos-
ability property. Note that this possibility of interaction be-
tween the two subgames that is not taken into account in the
usual Additivity condition, is one of the criticisms about this
condition. Let us quote for instance the following paragraph
from (Luce & Raiffa 1957):

The last condition is not nearly so innocent as the other
two. For although v + w is a game composed from v
and w, we cannot in general expect it to be played as
if it were the two separate games. It will have its own
structure which will determine a set of equilibrium out-
comes which may be different from those for v and w.



Therefore, one might very well argue that its a priori
value should not necessarily be the sum of the values
of the two component games. This strikes us as a flaw
in the concept value, but we have no alternative to sug-
gest.

In our framework the interaction between the two bases is
simply the new logical conflicts that appears when joining
the bases, that allows us to say when this addition can hold,
and when it is not sensible.

For setting the characterization result we have to ask one
additional property that states that each minimal inconsis-
tent subset brings the same amount of conflict:

• If M ∈ MI(K), then I(M) = 1 (MinInc)

So now we reach the wanted characterization result

Proposition 5 An inconsistency value satisfies Distribution,
Symmetry, Minimality, Decomposability and MinInc if and
only if it is the MI Shapley Inconsistency Value SIMI

α .

Proof: To prove that the MI Shapley Inconsistency Value
satisfy the logical properties is easy. (Distribution), (Sym-
metry), (Minimality) are satisfied by all Shapley Inconsis-
tency Values (Proposition 3 of (Hunter & Konieczny 2006)).
So it remains to show (Decomposability) and (MinInc).
(MinInc) is satisfied by definition since IMI(M) =
|MI(M)| = 1 for any M ∈ MI(K).
For (Decomposability), by definition SIα(K ∪ K ′) =∑
C⊆K∪K′

(c−1)!(n−c)!
n! (I(C)− I(C \ {α})). Now split C

on K and K ′, i.e. define H = C ∩ K and H ′ = C ∩ K ′.
It is easy to check that C = H ∪H ′, and from the hypoth-
esis that MI(K ∪K ′) = MI(K) ⊕MI(K ′) we deduce that
MI(H ∪H ′) = MI(H)⊕MI(H ′), so as SIMI = MIVC sat-
isfies (MinInc Separability) we have that I(C) = I(H) +
I(H ′). So using this in the definition we have

SIα(K ∪K′)

=
X

C⊆K∪K′

(c− 1)!(n− c)!
n!

(I(C)− I(C \ {α}))

=
X

C⊆K∪K′

(c− 1)!(n− c)!
n!

(I(H) + I(H ′)

−I(H \ {α})− I(H ′ \ {α}))

=
X

C⊆K∪K′

(c− 1)!(n− c)!
n!

(I(H)− I(H \ {α})

+
X

C⊆K∪K′

(c− 1)!(n− c)!
n!

(I(H ′)− I(H ′ \ {α}))

=
X
H⊆K

(c− 1)!(n− c)!
n!

(I(H)− I(H \ {α})

+
X

H′⊆K′

(c− 1)!(n− c)!
n!

(I(H ′)− I(H ′ \ {α}))

= SIα(K) + SIα(K′)

For the converse implication suppose that we have an in-
consistency value that satisfies (Distribution), (Symmetry),
(Minimality), (Decomposability) and (MinInc). We want
to show that it is the MI Shapley Inconsistency Value.

First note that for any K such that MI(K) =
{M1, . . . ,Mn}, if one chooses a sequence M1, . . . ,Mn,
then for all i where 1 ≤ i < n, the following holds:

MI(M1∪. . .∪Mi∪Mi+1) = MI(M1∪. . .∪Mi)⊕MI(Mi+1)

Hence, there is a sequence of the minimal inconsistent sub-
sets of K, such that by use of (Minimality) and successive
use of (Decomposability) we have that

SIα(K) =
∑

M∈MI(K)

SIα(M)

Now for each M if α 6∈ M we have by (Minimality) that
SIα(M) = 0. And if α ∈M then we have by (Distribution)∑
α∈M SIα(M) = I(M). And by (Symmetry) we have that

∀α, β ∈M , SIα(M) = SIβ(M). So we obtain that

∀α ∈M, SIα(M) =
I(M)
|M |

and therefore

SIα(K) =
∑

M∈MI(K)s.t.α∈M

I(M)
|M |

Now by (MinInc) we know that for all M ∈ MI(K),
I(M) = 1. That gives

SIα(K) =
∑

M∈MI(K)s.t.α∈M

1
|M |

That is the definition of MI Shapley Inconsistency Value.
�

This result means that the Shapley Inconsistency Value
SIMI
α is completely characterized by five simple and intu-

itive axioms.
Note that Dominance, although satisfied by SIV, is not

required for stating this proposition.

Towards Implementation of Inconsistency
Values

The development of SAT solvers has made impressive
progress in recent years, allowing, despite the computational
complexity of the problem, to practically solve a number of
intractable problems (Kautz & Selman 2007).

Based on SAT solvers, some techniques have been aimed
at the identification of minimal inconsistent subsets (called
in these works Minimally Unsatisfiable Subformulas or
MUS). Although the identification problem is computation-
ally hard, since checking whether a set of clauses is a
MUS or not is DP-complete, and checking whether a for-
mula belongs to the set of MUSes of a base, is in ΣP2
(Eiter & Gottlob 1992); it seems that finding each MUS can
be practically feasible (Grégoire, Mazure, & Piette 2007;
2008).

Thanks to Proposition 4, we then can define an easy
algorithm to compute the MI Shapley Inconsistency Value



of the formulae of a base:

Input: A belief base K = {α1, . . . , αn}
Output: A profile of values (SIα1

(K), . . . , SIαn
(K))

1- For i from 1 to n
Si ← 0

2- Compute MI(K)
3- For each C ∈ MI(K)

For each αi ∈ C
Si ← Si + 1

|C|
4- Return (S1, . . . , Sn)

The hard step in the above algorithm is step 2. But if it
can be viably computed, then the rest of the algorithm is just
polynomial in the size of the MI(K) (but of course the size
of MI(K) can be exponential in the size of K).

In future work, we plan to implement such an algorithm
using an existing algorithm to identify MUS (Grégoire,
Mazure, & Piette 2007; 2008). This would gives us a practi-
cal tool to measure inconsistency.

A possible approach to ameliorate the cost of entailment
in finding minimal inconsistent subsets is to use approxi-
mate entailment: Proposed in (Levesque 1984), and devel-
oped in (Schaerf & Cadoli 1995), classical entailment is ap-
proximated by two sequences of entailment relations. The
first is sound but not complete, and the second is complete
but not sound. Both sequences converge to classical en-
tailment. For a set of propositional formulae ∆, a formula
α, and an approximate entailment relation |=i, the decision
of whether ∆ |=i α holds or ∆ 6|=i α holds can be com-
puted in polynomial time. Approximate entailment has been
developed for anytime coherence reasoning (Koriche 2001;
2002), and in furture work, we will investigate its potential
for an approximate version of the MI Shapley Inconsistency
Value.

By focussing on subsystems of classical logic, such as de-
scription logics, there appears to be much potential in har-
nessing existing specialized reasoning systems for finding
minimal inconsistent subsets of a belief base (for example
by using the Pellet reasoning system for description logics
(Kalyanpur et al. 2005; Parsia, Sirin, & Kalyanpur 2005)).
Furthermore, measuring inconsistency in description logic
ontologies offers a potentially interesting and worthwhile
application problem (Qi & Hunter 2007).

Another application area for inconsistency measures is in
supporting reasoning with inconsistent databases (for exam-
ple when using maximally consistent subsets of the database
(Bertossi & Bravo 2005)). Again, this is an application
where language restrictions and specialized reasoning sys-
tems offer the potential for viable means for finding minimal
inconsistent subsets of a belief base, and thereby finding the
MI Shapley Inconsistency Value.

Conclusion
As discussed in the introduction, there are a number of pro-
posals for measures of inconsistency. The main novel con-
tributions provided by this paper are :

• A first discussion on the definition of inconsistency val-
ues based on minimal inconsistent subsets of belief bases,
and this leads to the definition of the family of Minimal
Inconsistent Values;

• An equivalence between a particular Shapley Inconsis-
tency Value (the MI Shapley Inconsistency Value) and
a simple Minimal Inconsistent Value which gives an ad-
ditional argument to support the Shapley Inconsistency
Value definition since it captures this very natural value
as particular case;

• The first (as far as we know) axiomatization of an incon-
sistency value;

• And finally, the characterization of the MI Shapley In-
consistency Value in terms of the MIVC measure opens
the possibility for computationally viable calculation of
inconsistency values.

In future work, we would like to analyse the computa-
tional complexity of using the MI Shapley Inconsistency
Value, develop algorithms and implementations (possibly
based on approximation techniques), and undertake case
studies of applications of this value.
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