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Université d’Artois, Lens, France
konieczny@cril.univ-artois.fr

Abstract

There are relatively few proposals for inconsistency measures
for propositional belief bases. However inconsistency mea-
sures are potentially as important as information measures
for artificial intelligence, and more generally for computer
science. In particular, they can be useful to define various
operators for belief revision, belief merging, and negotiation.
The measures that have been proposed so far can be split into
two classes. The first class of measures takes into account the
number of formulae required to produce an inconsistency: the
more formulae required to produce an inconsistency, the less
inconsistent the base. The second class takes into account
the proportion of the language that is affected by the incon-
sistency: the more propositional variables affected, the more
inconsistent the base. Both approaches are sensible, but there
is no proposal for combining them. We address this need in
this paper: our proposal takes into account both the number of
variables affected by the inconsistency and the distribution of
the inconsistency among the formulae of the base. Our idea
is to use existing inconsistency measures (ones that takes into
account the proportion of the language affected by the incon-
sistency, and so allow us to look inside the formulae) in order
to define a game in coalitional form, and then to use the Shap-
ley value to obtain an inconsistency measure that indicates
the responsibility/contribution of each formula to the overall
inconsistency in the base. This allows us to provide a more
reliable image of the belief base and of the inconsistency in
it.

Introduction
There are numerous works on reasoning under inconsis-
tency. One can quote for example paraconsistent logics,
argumentation frameworks, belief revision and fusion, etc.
All these approaches illustrate the fact that the dichotomy
between consistent and inconsistent sets of formulae that
comes from classical logics is not sufficient for describing
these sets. As shown by these works two inconsistent sets
of formulae are not trivially equivalent. They do not con-
tain the same information and they do not contain the same
contradictions.

Measures of information à la Shannon have been stud-
ied in logical frameworks (see for example (Kemeny 1953)).
Roughly they involve counting the number of models of
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the set of formulae (the less models, the more informa-
tive the set). The problem is that these measures give a
null information content to an inconsistent set of formulae,
which is counter-intuitive (especially given all the proposals
for paraconsistent reasoning). So generalizations of mea-
sures of information have been proposed to solve this prob-
lem (Lozinskii 1994; Wong & Besnard 2001; Knight 2003;
Konieczny, Lang, & Marquis 2003; Hunter & Konieczny
2005).

In comparison, there are relatively few proposals for in-
consistency measures (Grant 1978; Hunter 2002; Knight
2001; Konieczny, Lang, & Marquis 2003; Hunter 2004;
Grant & Hunter 2006). However, these measures are po-
tentially important in diverse applications in artificial in-
telligence, such as belief revision, belief merging, and ne-
gotiation, and more generally in computer science. Al-
ready measuring inconsistency has being seen to be a use-
ful tool in analysing a diverse range of information types
including news reports (Hunter 2006), integrity constraints
(Grant & Hunter 2006), software specifications (Barragáns-
Martı́nez, Pazos-Arias, & Fernández-Vilas 2004; 2005; Mu
et al. 2005), and ecommerce protocols (Chen, Zhang, &
Zhang 2004).

The current proposals for measuring inconsistecy can be
classified in two approaches. The first approach involves
“counting” the minimal number of formulae needed to pro-
duce the inconsistency. The more formulae needed to pro-
duce the inconsistency, the less inconsistent the set (Knight
2001). This idea is an interesting one, but it rejects the pos-
sibility of a more fine-grained inspection of the (content of
the) formulae. In particular, if one looks to singleton sets
only, one is back to the initial problem, with only two val-
ues: consistent or inconsistent.

The second approach involves looking at the propor-
tion of the language that is touched by the inconsistency.
This allows us to look inside the formulae (Hunter 2002;
Konieczny, Lang, & Marquis 2003; Grant & Hunter 2006).
This means that two formulae (singleton sets) can have dif-
ferent inconsistency measures. But, in these approaches one
can identify the set of formulae with its conjunction (i.e. the
set {ϕ, ϕ′} has the same inconsistency measure as the set
{ϕ ∧ ϕ′}). This can be sensible in several applications, but
this means that the distribution of the contradiction among
the formulae is not taken into account.



What we propose in this paper is a definition for incon-
sistency measures that allow us to take the best of the two
approaches. This will allow us to build inconsistency mea-
sures that are able to look inside the formulae, but also to
take into account the distribution of the contradiction among
the different formulae of the set. The advantage of such a
method is twofold. First, this allows us to know the degree
of blame/responsability of each formula of the base in the
inconsistency, and so it provides a very detailed view of the
inconsistency. Second, this allows us to define measures of
consistency for the whole base that are more accurate, since
they take into account those two dimensions.

To this end we will use a notion that comes from coali-
tional game theory: the Shapley value. This value assigns
to each player the payoff that this player can expect from
her utility for each possible coalition. The idea is to use ex-
isting inconsistency measures (that allow us to look inside
the formulae) in order to define a game in coalitional form,
and then to use the Shapley value to obtain an inconsistency
measure with the wanted properties. We will study these
measures and show that they are more interesting than the
other existing measures.

After stating some notations and definitions in the next
section, we introduce inconsistency measures that count the
number of formulae needed to produce an inconsistency.
Then we present the approaches where the inconsistency
measure is related to the number of variables touched by
the inconsistency. The next section gives the definition of
coalitional games and of the Shapley value. Then we intro-
duce the inconsistency measures based on the Shapley value.
The penultimate section sketches the possible applications
of those measures for belief change operators. In the last
section we conclude and give perspectives of this work.

Preliminaries
We will consider a propositional language L built from a fi-
nite set of propositional symbols P . We will use a, b, c, . . .
to denote the propositional variables, and Greek letters
α, β, ϕ, . . . to denote the formulae. An interpretation is a
total function from P to {0, 1}. The set of all interpretations
is denoted W . An interpretation ω is a model of a formula
ϕ, denoted ω |= ϕ, if and only if it makes ϕ true in the usual
truth-functional way. Mod(ϕ) denotes the set of models of
the formula ϕ, i.e. Mod(ϕ) = {ω ∈ W | ω |= ϕ}. We
will use ⊆ to denote the set inclusion, and we will use ⊂ to
denote the strict set inclusion, i.e. A ⊂ B iff A ⊆ B and
B 6⊆ A. We will denote the set of real numbers by IR.

A belief base K is a finite set of propositional formulae.
More exactly, as we will need to identify the different for-
mulae of a belief base in order to associate them with their
inconsistency value, we will consider belief bases K as vec-
tors of formulae. For logical properties we will need to use
the set corresponding to each vector, so we suppose that we
have a function such that for each vector K = (α1, . . . , αn),
K is the set {α1, . . . , αn}. As it will never be ambigous, in
the following we will omit the and write K as both the
vector and the set.

Let us note KL the set of belief bases definable from for-

mulae of the language L. A belief base is consistent if there
is at least one interpretation that satisfies all its formulae.

If a belief base K is not consistent, then one can define
the minimal inconsistent subsets of K as:

MI(K) = {K ′ ⊆ K | K ′ ` ⊥ and ∀K ′′ ⊂ K ′, K ′′ 0 ⊥}

If one wants to recover consistency from an inconsistent
base K by removing some formulae, then the minimal in-
consistent subsets can be considered as the purest form of
inconsistency. To recover consistency, one has to remove
at least one formula from each minimal inconsistent subset
(Reiter 1987).

A free formula of a belief base K is a formula of K that
does not belong to any minimal inconsistent subset of the
belief base K, or equivalently any formula that belongs to
any maximal consistent subset of the belief base.

Inconsistency Measures based on Formulae
When a base is not consistent the classical inference re-
lation trivializes, since one can deduce every formula of
the language from the base (ex falso quodlibet). Other-
wise in this case the use of paraconsistent reasoning tech-
niques allows us to draw non-trivial consequences from the
base. One possibility is to take maximal consistent sub-
sets of formulae of the base (cf (Manor & Rescher 1970;
Benferhat, Dubois, & Prade 1997; Nebel 1991)). This idea
can also be used to define an inconsistency measure. This is
the way followed in (Knight 2001; 2003).
Definition 1 A probability function on L is a function P :
P → [0, 1] s.t.:
• if |= α, then P (α) = 1

• if |= ¬(α ∧ β), then P (α ∨ β) = P (α) + P (β)

See (Paris 1994) for more details on this definition. In the
finite case, this definition gives a probability distribution on
the interpretations, and the probability of a formula is the
sum of the probability of its models.

Then the inconsistency measure defined by Knight (2001)
is given by:
Definition 2 Let K be a belief base.
• K is η−consistent (0 ≤ η ≤ 1) if there is a probability

function P such that P (α) ≥ η for all α ∈ K.
• K is maximally η−consistent if η is maximal (i.e. if γ > η

then K is not γ−consistent).
The notion of maximal η-consistency can be used as an

inconsistency measure. This is the direct formulation of the
idea that the more formulae are needed to produce the in-
consistency, the less this inconsistency is problematic. As it
is easily seen, in the finite case, a belief base is maximally 0-
consistent if and only if it contains a contradictory formula.
And a belief base is maximally 1-consistent if and only if it
is consistent.
Example 1 Let K1 = {a, b,¬a ∨ ¬b}.

K1 is maximally 2
3−consistent.

Let K2 = {a ∧ b,¬a ∧ ¬b, a ∧ ¬b}.
K2 is maximally 1

3−consistent, whereas each subbase of
cardinality 2 is maximally 1

2−consistent.



For minimal inconsistent sets of formulae, computing this
inconsistency measure is easy:
Proposition 1 If K ′ ∈ MI(K), then K ′ is maximally
|K′|−1
|K′| −consistent.

But in general this measure is harder to compute. How-
ever it is possible to compute it using the simplex method
(Knight 2001).

Inconsistency Measures based on Variables
Another method to evaluate the inconsistency of a belief
base is to look at the proportion of the language concerned
with the inconsistency. To this end, it is clearly not possible
to use classical logics, since the inconsistency contaminates
the whole language. But if we look at the two bases K1 =
{a∧¬a∧b∧c∧d} and K2 = {a∧¬a∧b∧¬b∧c∧¬c∧d∧¬d},
we can observe that in K1 the inconsistency is mainly about
the variable a, whereas in K2 all the variables are touched
by a contradiction. This is this kind of distinction that these
approaches allow.

One way to circumscribe the inconsistency only to the
variables directly concerned is to use multi-valued logics,
and especially three-valued logics, with the third “truth
value” denoting the fact that there is a conflict on the truth
value (true-false) of the variable.

We do not have space here to detail the range of differ-
ent measures that have been proposed. See (Grant 1978;
Hunter 2002; Konieczny, Lang, & Marquis 2003; Hunter
& Konieczny 2005; Grant & Hunter 2006) for more details
on these approaches. We only give one such measure, that
is a special case of the degrees of contradiction defined in
(Konieczny, Lang, & Marquis 2003). The idea of the defini-
tion of these degrees in (Konieczny, Lang, & Marquis 2003)
is, given a set of tests on the truth value of some formulae
of the language (typically on the variables), the degree of
contradiction is the cost of a minimum test plan that ensures
recovery of consistency.

The inconsistency measure we define here is the (normal-
ized) minimum number of inconsistent truth values in the
LPm models (Priest 1991) of the belief base. Let us first
introduce the LPm consequence relation.
• An interpretation ω for LPm maps each propositional

atom to one of the three “truth values” F, B, T, the third
truth value B meaning intuitively “both true and false”.
3P is the set of all interpretations for LPm. “Truth val-
ues” are ordered as follows: F <t B <t T.

– ω(>) = T, ω(⊥) = F
– ω(¬α) = B iff ω(α) = B

ω(¬α) = T iff ω(α) = F
– ω(α ∧ β) = min≤t

(ω(α), ω(β))

– ω(α ∨ β) = max≤t
(ω(α), ω(β))

• The set of models of a formula ϕ is:

ModLP (ϕ) = {ω ∈ 3P | ω(ϕ) ∈ {T, B}}
Define ω! as the set of “inconsistent” variables in an inter-
pretation w, i.e.

ω! = {x ∈ P | ω(x) = B}

Then the minimum models of a formula are the “most
classical” ones:

min(ModLP (ϕ)) = {ω ∈ ModLP (ϕ) |

@ω′ ∈ ModLP (ϕ) s.t. ω′! ⊂ ω!}

The LPm consequence relation is then defined by:

K |=LPm
ϕ iff min(ModLP (K)) ⊆ ModLP (ϕ)

So ϕ is a consequence of K if all the “most classical”
models of K are models of ϕ.

Then let us define the LPm measure of inconsistency,
noted ILPm

, as:

Definition 3 Let K be a belief base.

ILPm
=

minω∈ModLP (K)(| ω! |)

| P |

Example 2 K4 = {a ∧ ¬a, b,¬b, c}. ILPm
(K4) = 2

3

In this example one can see the point in these kinds of
measures compared to measures based on formulae since
this base is maximally 0-consistent because of the contradic-
tory formula a ∧ ¬a. But there are also non-trivial formulae
in the base, and this base is not very inconsistent according
to ILPm

.
Conversely, measures based on variables like this one are

unable to take into account the distribution of the contradic-
tion among formulae. In fact the result would be exactly the
same with K ′

4 = {a ∧ ¬a ∧ b ∧ ¬b ∧ c}. This can be sen-
sible in several applications, but in some cases this can also
be seen as a drawback.

Games in Coalitional Form - Shapley Value
In this section we give the definitions of games in coalitional
form and of the Shapley value.

Definition 4 Let N = {1, . . . , n} be a set of n players. A
game in coalitional form is given by a function v : 2N → IR,
with v(∅) = 0.

This framework defines games in a very abstract way, fo-
cusing on the possible coalitions formations. A coalition is
just a subset of N . This function gives what payoff can be
achieved by each coalition in the game v when all its mem-
bers act together as a unit.

There are numerous questions that are worthwhile to in-
vestigate in this framework. One of these questions is to
know how much each player can expect in a given game v.
This depend on her position in the game, i.e. what she brings
to different coalitions.

Often the games are super-additive.

Definition 5 A game is super-additive if for each T, U ⊆ N
with T ∩ U = ∅, v(T ∪ U) ≥ v(T ) + v(U).

In super-additive games when two coalitions join, then
the joined coalition wins at least as much as (the sum of) the
initials coalitions. In particular, in super-additive games, the
grand coalition N is the one that brings the higher utility for



the society N . The problem is how this utility can be shared
among the players1.

Example 3 Let N = {1, 2, 3}, and let v be the following
coalitional game:

v({1}) = 1 v({2}) = 0 v({3}) = 1
v({1, 2}) = 10 v({1, 3}) = 4 v({2, 3}) = 11

v({1, 2, 3}) = 12

This game is clearly super-additive. The grand coalition
can bring 12 to the three players. This is the highest util-
ity achievable by the group. But this is not the main aim
for all the players. In particular one can note that two coali-
tions can bring nearly as much, namely {1, 2} and {2, 3}
that gives respectively 10 and 11, that will have to be shared
only between 2 players. So it is far from certain that the
grand coalition will form in this case. Another remark on
this game is that all the players do not share the same situa-
tion. In particular player 2 is always of a great value for any
coalition she joins. So she seems to be able to expect more
from this game than the other players. For example she can
make an offer to player 3 for making the coalition {2, 3},
that brings 11, that will be split in 8 for player 2 and 3 for
player 3. As it will be hard for player 3 to win more than
that, 3 will certainly accept.

A solution concept has to take into account these kinds of
arguments. It means that one wants to solve this game by
stating what is the payoff that is “due” to each agent. That
requires to be able to quantify the payoff that an agent can
claim with respect to the power that her position in the game
offers (for example if she always significantly improves the
payoff of the coalitions she joins, if she can threat to form
another coalition, etc.).

Definition 6 A value is a function that assigns to each game
v a vector of payoff S(v) = (S1, . . . , Sn) in IRn.

This function gives the payoff that can be expected by
each player i for the game v, i.e. it measures i’s power in the
game v.

Shapley proposes a beautiful solution to this problem. Ba-
sically the idea can be explained as follows: considering that
the coalitions form according to some order (a first player
enters the coalition, then another one, then a third one, etc),
and that the payoff attached to a player is its marginal util-
ity (i.e. the utility that it brings to the existing coalition), so
if C is a coalition (subset of N ) not containing i, player’s
i marginal utility is v(C ∪ {i}) − v(C). As one can not
make any hypothesis on which order is the correct one, sup-
pose that each order is equally probable. This leads to the
following formula:

Let σ be a permutation on N , with σn denoting all the
possible permutations on N . Let us note

pi
σ = {j ∈ N | σ(j) < σ(i)}

That means that pi
σ represents all the players that precede

player i for a given order σ.
1One supposes the transferable utility (TU) assumption, i.e. the

utility is a common unit between the players and sharable as needed
(roughly, one can see this utility as some kind of money).

Definition 7 The Shapley value of a game v is defined as:

Si(v) =
1

n!

∑

σ∈σn

v(pi
σ ∪ {i})− v(pi

σ)

The Shapley value can be directly computed from the pos-
sible coalitions (without looking at the permutations), with
the following expression:

Si(v) =
∑

C⊆N

(c − 1)!(n − c)!

n!
(v(C) − v(C \ {i}))

where c is the cardinality of C.
Example 4 The Shapley value of the game defined in Exam-
ple 3 is ( 17

6 , 35
6 , 20

6 ).
These values show that it is player 2 that is the best placed

in this game, accordingly to what we explained when we
presented Example 3.

Besides this value, Shapley proposes axiomatic properties
a value should have.

•
∑

i∈N Si(v) = v(N) (Efficiency)
• If i and j are such that for all C s.t. i, j /∈ C,
v(C ∪ {i}) = v(C ∪ {j}), then Si(v) = Sj(v)

(Symmetry)
• If i is such that ∀C v(C ∪ {i}) = v(C), then Si(v) = 0

(Dummy)
• Si(v + w) = Si(v) + Si(w) (Additivity)

These four axioms seem quite sensible. Efficiency states
that the payoff available to the grand coalition N must be ef-
ficiently redistributed to the players (otherwise some players
could expect more that what they have). Symmetry ensures
that it is the role of the player in the game in coalitional
form that determines her payoff, so it is not possible to dis-
tinguish players by their name (as far as payoffs are con-
cerned), but only by their respective merits/possibilities. So
if two players always are identical for the game, i.e. if they
bring the same utility to every coalitions, then they have the
same value. The dummy player axiom says simply that if a
player is of no use for every coalition, this player does not
deserve any payoff. And additivity states that when we join
two different games v and w in a whole super-game v + w
(v + w is straightforwardly defined as the function that is
the sum of the two functions v and w, that means that each
coalition receive as payoff in the game v + w the payoff it
has in v plus the payoff it has in w), then the value of each
player in the supergame is simply the sum of the values in
the compound games.

These properties look quite natural, and the nice result
shown by Shapley is that they characterize exactly the value
he defined (Shapley 1953):
Proposition 2 The Shapley value is the only value that sat-
isfies all of Efficiency, Symmetry, Dummy and Additivity.

This result supports several variations : there are other
equivalent axiomatizations of the Shapley value, and there
are some different values that can be defined by relaxing
some of the above axioms. See (Aumann & Hart 2002).



Inconsistency Values using Shapley Value
Given an inconsistency measure, the idea is to take it as the
payoff function defining a game in coalitional form, and then
using the Shapley value to compute the part of the inconsis-
tency that can be imputed to each formula of the belief base.

This allows us to combine the power of inconsistency
measures based on variables and hence discriminating be-
tween singleton inconsistent belief base (like Coherence
measure in (Hunter 2002), or like the test action values of
(Konieczny, Lang, & Marquis 2003)), and the use of the
Shapley value for knowing what is the responsibility of a
given formula in the inconsistency of the belief base.

We just require some basic properties on the underlying
inconsistency measure.

Definition 8 An inconsistency measure I is called a basic
inconsistency measure if it satisfies the following properties,
∀K, K ′ ∈ KL, ∀α, β ∈ L:

• I(K) = 0 iff K is consistent (Consistency)
• 0 ≤ I(K) ≤ 1 (Normalization)
• I(K ∪ K ′) ≥ I(K) (Monotony)
• If α is a free formula of K∪{α}, then I(K∪{α}) = I(K)

(Free Formula Independence)
• If α ` β and α 0 ⊥, then I(K ∪ {α}) ≥ I(K ∪ {β})

(Dominance)

We ask for few properties on the initial inconsistency
measure. The consistency property states that a consistent
base has a null inconsistency measure. The monotony prop-
erty says that the amount of inconsistency of a belief base
can only grow if one adds new formulae (defined on the
same language). The free formula independence property
states that adding a formula that does not cause any inconsis-
tency cannot change the inconsistency measure of the base.
The Dominance property states that logically stronger for-
mulae bring (potentially) more conflicts. The normalization
property of the inconsistency measure is not mandatory, it is
asked only for simplification purposes.

Now we are able to define the Shapley inconsistency val-
ues :

Definition 9 Let I be a basic inconsistency measure. We
define the corresponding Shapley inconsistency value (SIV),
noted SI , as the Shapley value of the coalitional game de-
fined by the function I , i.e. let α ∈ K :

SK
I (α) =

∑

C⊆K

(c − 1)!(n − c)!

n!
(I(C) − I(C \ {α}))

where n is the cardinality of K and c is the cardinality of C.

Note that this SIV gives a value for each formula of the
base K, so if one considers the base K as the vector K =
(α1, . . . , αn), then we will use SI(K) to denote the vector
of corresponding SIVs, i.e.

SI(K) = (SK
I (α1), . . . , S

K
I (αn))

This definition allows us to define to what extent a for-
mula inside a belief base is concerned with the inconsisten-
cies of the base. It allows us to draw a precise picture of the
contradiction of the base.

From this value, one can define an inconsistency value for
the whole belief base:

Definition 10 Let K be a belief base, ŜI(K) = max
α∈K

SI(α)

One can figure out other aggregation functions to define
the inconsistency measure of the belief base from the incon-
sistency measure of its formulae, such as the leximax for
instance. Taking the maximum will be sufficient for us to
have valuable results and to compare this with the existing
measures from the literature. Note that taking the sum as ag-
gregation function is not a good choice here, since as shown
by the distribution property of Theorem 3 this equals I(K),
“erasing” the use of the Shapley value.

We think that the most interesting measure is SI , since it
describes more accurately the inconsistency of the base. But
we define ŜI since it is a more concise measure, that is of the
same type as existing ones (it associates a real to each base),
that is convenient to compare our framework with existing
measures.

Let us see see now two instantiations of SIVs.

Drastic Shapley Inconsistency Value
We will start this section with the simplest inconsistency
measure one can define:

Definition 11 The drastic inconsistency value is defined as:

Id(K) =

{

0 if K is consistent
1 otherwise

This measure is not of great interest by itself, since it
corresponds to the usual dichotomy of classical logic. But
it will be useful to illustrate the use of the Shapley incon-
sistency values, since, even with this over-simple measure,
one will produce interesting results. Let us illustrate this on
some examples.

Example 5 K1 = {a,¬a, b}.
Then Id({a,¬a}) = Id({a,¬a, b}) = 1, and the value is

SId
(K1) = ( 1

2 , 1
2 , 0). So ŜId

(K1) = 1
2 .

As b is a free formula, it has a value of 0, the two other
formulae are equally responsible for the inconsistency.

Example 6 K2 = {a, b, b ∧ c,¬b ∧ d}.
Then the value is SId

(K2) = (0, 1
6 , 1

6 , 4
6 ).

And ŜId
(K2) = 2

3 .

The last three formulae are the ones that belong to some
inconsistency, and the last one is the one that causes the most
problems (removing only this formula restores the consis-
tency of the base).

Example 7 K4 = {a ∧ ¬a, b,¬b, c}.
The value is SId

(K4) = ( 4
6 , 1

6 , 1
6 , 0). So ŜId

(K4) = 2
3 .



LPm Shapley Inconsistency Value
Let us turn now to a more elaborate value. For this we use
the LPm inconsistency measure (defined earlier) to define a
SIV.
Example 8 Let K4 = {a ∧ ¬a, b,¬b, c}

and K ′
4 = {a ∧ ¬a ∧ b ∧ ¬b ∧ c}.

Then SILPm
(K4) = ( 1

3 , 1
6 , 1

6 , 0), and ŜILPm
(K4) = 1

3 .
Whereas SILPm

(K ′
4) = ( 2

3 ) and ŜILPm
(K ′

4) = 2
3 .

As we can see on this example, the SIV value allows us to
make a distinction between K4 and K ′

4, since ŜILPm
(K ′

4) =
2
3 whereas ŜILPm

(K4) = 1
3 . This illustrates the fact that

the inconsistency is more distributed in K4 than in K ′
4. This

distinction is not possible with the original ILPm
value. Note

that with Knight’s coherence value, the two bases have the
worst inconsistency value (maximally 0-consistent).

So this example illustrates the improvement brought by
this work, compared to inconsistency measures on formulae
and to inconsistency measures on variables, since none of
them was able to make a distinction between K4 and K ′

4,
whereas for ŜILPm

K4 is more consistent than K ′
4.

Let us see a more striking example.
Example 9 Let K5 = {a, b, b ∧ c,¬b ∧ ¬c}.

Then SILPm
(K5) = (0, 1

18 , 4
18 , 7

18 ),
and ŜILPm

(K5) = 7
18 .

In this example one can easily see that it is the last for-
mula that is the more problematic, and that b∧c brings more
conflict than b alone, which is perfectly expressed in the ob-
tained values.

Logical properties
Let us see now some properties of the defined values.
Proposition 3 Every Shapley Inconsistency Value satisfies:

•
∑

α∈K SI(α) = I(K) (Distribution)
• If ∃α, β ∈ K s.t. for all K ′ ⊆ K s.t. α, β /∈ K ′,
I(K ′ ∪ {α}) = I(K ′ ∪ {β}), then SI(α) = SI(β)

(Symmetry)
• If α is a free formula of K, then SI(α) = 0

(Free Formula)
• If α ` β and α 0 ⊥, then SI(α) ≥ SI(β) (Dominance)

The distribution property states that the inconsistency val-
ues of the formulae sum to the total amount of inconsis-
tency in the base (I(K)). The Symmetry property ensures
that only the amount of inconsistency brought by a formula
matters for computing the SIV. As one could expect, a for-
mula that is not embedded in any contradiction (i.e. does
not belong to any minimal inconsistent subset) will not be
blamed by the Shapley inconsistency values. This is what
is expressed in the Free formula property. The Dominance
property states that logically stronger formulae bring (poten-
tially) more conflicts.

The first three properties are a restatement in this logical
framework of the properties of the Shapley value. One can

note that the Additivity axiom of the Shapley value is not
translated here, since it makes little sense to add different
inconsistency values.

Let us turn now to the properties of the measure on belief
bases.

Proposition 4
• ŜI(K) = 0 if and only if K is consistent (Consistency)
• 0 ≤ ŜI(K) ≤ 1 (Normalization)
• If α is a free formula of K ∪ {α}, then
ŜI(K ∪ {α}) = ŜI(K) (Free Formula Independence)
• ŜI(K) ≤ I(K) (Upper Bound)
• ŜI(K) = I(K) > 0 if only if ∃α ∈ K s.t. α is inconsis-
tent and ∀β ∈ K, β 6= α, β is a free formula of K

(Isolation)

The first three properties are the ones given in Definition
8 for the basic inconsistency measures. As one can easily
note an important difference is that the monotony property
and the dominance property do not hold for the SIVs on be-
lief bases. It is sensible since distribution of the inconsisten-
cies matters for SIVs. The upper bound property shows that
the use of the SIV aims at looking at the distribution of the
inconsistencies of the base, so the SIV on belief bases is al-
ways less or equal to the inconsistency measure given by the
underlying basic inconsistency measure. The isolation prop-
erty details the case where the two measures are equals. In
this case, there is only one inconsistent formula in the whole
base.

Let us see, on Example 10, counter-examples to
monotony and dominance for SIV on belief bases:

Example 10 Let K6 = {a,¬a,¬a ∧ b},
K7 = {a,¬a,¬a ∧ b, a ∧ b},

and K8 = {a,¬a,¬a ∧ b, b}.
ŜId

(K6) = 2
3 , ŜId

(K7) = 1
4 , ŜId

(K8) = 2
3 .

On this example one can see why monotony can not be
satisfied by SIV on belief bases. Clearly K6 ⊂ K7, but
ŜId

(K6) > ŜId
(K7). This is explained by the fact that the

inconsistency is more diluted in K7, than in K8. In K7 the
formula a is the one that is the most blamed for the incon-
sistency (SK6

Id
(a) = ŜId

(K6) = 2
3 ), since it appears in all

inconsistent sets. Whereas in K7 inconsistencies are equally
caused by a and by a ∧ b, that decreases the responsability
of a, and the whole inconsistency value of the base.

For a similar reason dominance is not satisfied, we clearly
have a ∧ b ` b (and a ∧ b 0 ⊥), but ŜId

(K7) < ŜId
(K8).

Applications for Belief Change Operators
As the measures we define allow us to associate with each
formula its degree of responsibility for the inconsistency of
the base, they can be used to guide any paraconsistent rea-
soning, or any repair of the base. Let us quote two such
possible uses for belief change operators, first for belief re-
vision and then for negotiation.



Iterated Revision and Transmutation Policies
The problem of belief revision is to incorporate a new piece
of information which is more reliable than (and conflicting
with) the old beliefs of the agent. This problem has re-
ceived a nice answer in the work of Alchourron, Gardenfors,
Makinson (Alchourrón, Gärdenfors, & Makinson 1985) in
the one-step case. But when one wants to iterate revision
(i.e. to generalize it to the n-steps case), there are numer-
ous problems and no definitive answer has been reached
in the purely qualitative case (Darwiche & Pearl 1997;
Friedman & Halpern 1996). Using a partially quantitative
framework, some proposals have given interesting results
(see e.g. (Williams 1995; Spohn 1987)). Here “partially
quantitative” means that the incoming piece of information
needs to be labeled by a degree of confidence denoting how
strongly we believe it. The problem in this framework is to
justify the use of such a degree, what does it mean exactly
and where does it come from. One possibility is to use an
inconsistency measure (or a composite measure computed
from an information measure (Lozinskii 1994; Knight 2003;
Konieczny, Lang, & Marquis 2003) and an inconsistency
measure) to determine this degree of confidence. Then one
can define several policies for the agent (we can suppose that
an agent accepts a new piece of information only if it brings
more information than contradiction, etc). We can then use
the partially quantitative framework to derive revision oper-
ators with a nice behaviour. In this setting, since the degree
attached to the incoming information is not a given data, but
computed directly from the information itself and the agent
policy (behaviour with respect to information and contradic-
tion, encoded by a composite measure) then the problem of
the justification of the meaning of the degrees is avoided.

Negotiation
The problem of negotiation has been investigated recently
under the scope of belief change tools (Booth 2001; 2002;
2006; Zhang et al. 2004; Meyer et al. 2004; Konieczny
2004; Gauwin, Konieczny, & Marquis 2005). The problem
is to define operators that take as input belief profiles (multi-
set of formulae2) and that produce a new belief profile that
aims to be less conflicting. We call these kind of operators
conciliation operators. The idea followed in (Booth 2002;
2006; Konieczny 2004) to define conciliation operators is to
use an iterative process where at each step a set of formulae
is selected. These selected formulae are logically weakened.
The process stops when one reaches a consensus, i.e. a con-
sistent belief profile3. Many interesting operators can be de-
fined when one fixes the selection function (the function that
selects the formulae that must be weaken at each round) and
the weakening method. In (Konieczny 2004) the selection
function is based on a notion of distance. It can be sensible
if such a distance is meaningful in a particular application. If
not, it is only an arbitrary choice. It would then be sensible to
choose instead one of the inconsistency measures we defined

2More exactly belief profiles are sets of belief bases. We use
this simplifying assumption just for avoiding technical details here.

3A belief profile is consistent if the conjunction of its formulae
is consistent.

in this paper. So the selection function would choose the for-
mulae with the highest inconsistency value. These formulae
are clearly the more problematic ones. More generally SIVs
can be used to define new belief merging methods.

Conclusion

We have proposed in this paper a new framework for
defining inconsistency values. The SIV values we introduce
allow us to take into account the distribution of the incon-
sistency among the formulae of the belief base and the vari-
ables of the language. This is, as far as we know, the only
definition that allows us to take both types of information
into account, thus allowing to have a more precise picture of
the inconsistency of a belief base. The perspectives of this
work are numerous. First, as sketched in the previous sec-
tion, the use of inconsistency measures, and especially the
use of Shapley inconsistency values, can be valuable for sev-
eral belief change operators, for instance for modelizations
of negotiation. The Shapley value is not the only solution
concept for coalitional games, so an interesting question is
to know if other solutions concept can be sensible as a basis
for defining other inconsistency measures. But the main way
of research opened by this work is to study more closely the
connections between other notions of (cooperative) game
theory and the logical modelization of belief change oper-
ators.

Acknowledgments
The authors would like to thank CNRS and the Royal Soci-
ety for travel funding while collaborating on this research.
The second author is supported by the Région Nord/Pas-de-
Calais and the European Community FEDER program.

Proofs
Proof of Proposition 3 : To show distribution, let us
recall that
SK

I (α) =
∑

C⊆K
(c−1)!(n−c)!

n! (I(C) − I(C \ {α}))
= 1

n!

∑

σ∈σn
I(pα

σ ∪ {α}) − I(pα
σ)

where σn is the set of possible permutations on K, and
pα

σ = {β ∈ K | σ(β) < σ(α)}. Now
∑

α∈K SI(α) =
∑

α∈K
1
n!

∑

σ∈σn
I(pα

σ ∪ {α}) − I(pα
σ )

= 1
n!

∑

σ∈σn

∑

α∈K I(pα
σ ∪ {α}) − I(pα

σ)
Now note that we can order the elements of K accordingly
to σ when computing the inside sum, that gives:

= 1
n!

∑

σ∈σn
[I({ασ(1), . . . , ασ(n)})

−I({ασ(1), . . . , ασ(n−1)})]
+[I({ασ(1), . . . , ασ(n−1)})

−I({ασ(1), . . . , ασ(n−2)})]
+ . . . + [I({ασ(1)}) − I(∅)]

= 1
n!

∑

σ∈σn
I({ασ(1), . . . , ασ(n)}) − I(∅)

= 1
n! n! I(K)

= I(K)

To show symmetry, assume that there are α, β ∈ K s.t. for
all K ′ ⊆ K s.t. α, β /∈ K ′, I(K ′ ∪ {α}) = I(K ′ ∪ {β}).



Now by definition

SK
I (α) =

∑

C⊆K

(c − 1)!(n − c)!

n!
(I(C) − I(C \ {α}))

Let us show that SK
I (α) = SK

I (β) by showing (by cases)
that the elements of the sum are the same:
If α 6∈ C and β 6∈ C, then I(C) = I(C\{α}) = I(C\{β}),
so I(C) − I(C \ {α}) = I(C) − I(C \ {β}).
If α ∈ C and β ∈ C, then note that by hypothesis, as α, β /∈
C \ {α, β}, we deduce that I(C \ {α}) = I(C \ {β}). So
I(C) − I(C \ {α}) = I(C) − I(C \ {β}).
If α ∈ C and β 6∈ C. Then I(C)−I(C\{β}) = 0, and let us
note I(C)−I(C \{α}) = a. Let us note C = C ′∪{α}, and
C ′′ = C ′∪{β}. Now notice that I(C ′′)−I(C ′′ \{α}) = 0,
and as we can deduce I(C \ {α}) = I(C ′′ \ {β}) by the
hypothesis, we also have I(C ′′) − I(C ′′ \ {β}) = a.
To show the free formula property, just note that if α is a
free formula of K, then for every subset C of K, by the free
formula independence property of the basic inconsistency
measure we have that for every C, such that α ∈ C, I(C) =
I(C \α), so I(C)− I(C \α) = 0. Straightforwardly if α 6∈
C, I(C) = I(C \ α). So the whole expression SK

I (α) =
∑

C⊆K
(c−1)!(n−c)!

n! (I(C) − I(C \ {α})) sums to 0.

Finally, to show dominance we will proceed in a simi-
lar way than to show symmetry. Assume that α, β ∈ K
are such that α ` β and α 0 ⊥. Then, by the domi-
nance property of the underlying basic inconsistency mea-
sure, we know that for all C ⊆ K, I(C ∪ {α}) ≥
I(C ∪ {β}). Now by definition of the SIV SK

I (α) =
∑

C⊆K
(c−1)!(n−c)!

n! (I(C) − I(C \ {α})). Let us show that
SK

I (α) ≥ SK
I (β) by showing (by cases) that the elements

of the first sum are greater or equal to the corresponding el-
ements of the second one:
If α 6∈ C and β 6∈ C, then I(C) = I(C\{α}) = I(C\{β}),
so I(C) − I(C \ {α}) ≥ I(C) − I(C \ {β}).
If α ∈ C and β ∈ C, then let us note C \ {α} = C ′ ∪ {β}.
So we also have C \ {β} = C ′ ∪ {α}. Now note that by
hypothesis I(C ′ ∪ {β}) ≤ I(C ′ ∪ {α}), so I(C \ {α}) ≤
I(C\{β}). Hence I(C)−I(C\{α}) ≥ I(C)−I(C\{β}).
If α ∈ C and β 6∈ C. Then I(C)−I(C\{β}) = 0, and let us
note I(C)−I(C \{α}) = a. Let us note C = C ′∪{α}, and
C ′′ = C ′∪{β}. Now notice that I(C ′′)−I(C ′′ \{α}) = 0.
So I(C) − I(C \ {β}) ≥ I(C ′′) − I(C ′′ \ {α}) Note that
I(C)\{β} = I(C ′′)\{α} = C ′. As we can deduce I(C) ≥
I(C ′′) by the hypothesis, we also have I(C)−I(C \{α}) ≥
I(C ′′) − I(C ′′ \ {β}).

�

Proof of Proposition 4 : To prove consistency note that if
K is consistent, then for every C ⊆ K, I(C) = 0 (this is a
direct consequence of the consistency property of the under-
lying basic inconsistency measure). Then for every α ∈ K,
SK

I (α) = 0. Hence ŜI(K) = maxα∈K SI(α) = 0. For the
only if direction, by contradiction, suppose that ŜI(K) = 0

and that K is not consistent. As K is not consistent, then by
the consistency property of the underlying basic inconsis-
tency measure I(K) = a 6= 0. By the distribution property
of the SIV we know that

∑

α∈K SI(α) = a 6= 0, then ∃α ∈

K such that SI(α) > 0, so ŜI(K) = maxα∈K SI(α) > 0.
Contradiction.
The normalization property is a consequence of the defini-
tion of ŜI(K) as a maximum of values that are all greater
than zero, that ensures 0 ≤ ŜI(K), and that are all smaller
than 1. An easy way to show ŜI(K) ≤ 1 is as a consequence
of the upper bound property (shown below) ŜI(K) ≤ I(K)
and of I(K) ≤ 1 obtained by the normalization property of
the underlying basic inconsistency measure I .
To show the free formula independence property, just notice
that for any formula β that is a free formula of K ∪ {β},
it is also a free formula of every of its subsets. It is easy
to see from the definition that for any α ∈ K, SK

I (α) =

S
K∪{β}
I (α). This is easier if we consider the second form of

the definition: SK
I (α) = 1

n!

∑

σ∈σn
I(pα

σ ∪ {α}) − I(pα
σ )

where σn is the set of possible permutations on K. Now
note that for S

K∪{β}
I (α), the free formula does not bring

any contradiction, so it does not change the marginal contri-
bution of every other formulae. Let us call the extensions of
a permutation σ on K by β, all the permutations of K ∪{β}
whose restriction on elements of K is identical to σ, i.e.
an extension of σ = (α1, . . . , αn) by β is a permutation
σ′ = (α1, . . . , αi, β, αi+1, . . . , αn). Now note that there
are n + 1 such extensions, and that if σ′ is an extension of
sigma, I(pα

σ ∪ {α}) − I(pα
σ) = I(pα

σ′ ∪ {α}) − I(pα
σ′). So

S
K∪{β}
I (α) = 1

(n+1)! (n + 1)
∑

σ∈σn
I(pα

σ ∪ {α}) − I(pα
σ )

= 1
n!

∑

σ∈σn
I(pα

σ ∪ {α}) − I(pα
σ) = SK

I (α). Now as we

have for any α ∈ K, SK
I (α) = S

K∪{β}
I (α), we have

ŜI(K ∪ {α}) = ŜI(K).
The upper bound property is stated by rewriting I(K) as
∑

α∈K SI(α) with the distribution property of the SIV, and
by recalling the definition of ŜI(K) as maxα∈K SI(α).
Now by noticing that for every vector a = (a1, . . . , an),
maxai∈a ai ≤

∑

ai∈a ai, we conclude maxα∈K SI(α) ≤
∑

α∈K SI(α), i.e. ŜI(K) ≤ I(K).
Let us show isolation. The if direction is straighforward:
As α is inconsistent, K is inconsistent, and by the consis-
tency and normalization properties of the underlying basic
inconsistency measure we know that I(K) > 0. By the free
formula property of SIV, for every free formula β of K we
have SI(β) = 0. As by the distribution property we have
∑

α∈K SI(α) = I(K), this means that SI(α) = I(K),
and that ŜI(K) = maxα∈K SI(α) = SI(α). So ŜI(K) =

I(K) > 0. For the only if direction suppose that ŜI(K) =
I(K), that means that maxα∈K SI(α) = I(K). But, by the
distribution property we know that I(K) =

∑

α∈K SI(α).
So it means that maxα∈K SI(α) =

∑

α∈K SI(α) = I(K).
There exists α such that SI(α) = I(K) (consequence of the
definition of the max), and if there exists a β 6= α such that



SI(β) > 0, then
∑

α∈K SI(α) > I(K). Contradiction. So
it means that there is α such that SI(α) = I(K) and for
every β 6= α, SI(β) = 0. That means that every β is a free
formula, and that α is inconsistent.

�
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